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Abstract The structure of DNA regulatory pat-

terns is partially understood, revealing an indeter-

minacy in the base composition. The dominant ap-

proach for representing this intrinsic variability is

probability matrices, although some have used IU-

PAC codes and restricted regular expression lan-

guages [1]. In general the goal is to identify pat-

terns that are distinguished from the background,

where the background is usually modeled by �rst-

order statistics. In this paper we describe and eval-

uate an alternative model of base variability, that

of weight matrices. We also provide a novel algo-

rithm for learning weight matrices. Unlike a prob-

ability matrix that provides a summary motif de-

scription, a weight matrix provides a motif detector.

In addition, unlike the algorithms for determining

probability matrices, which generally use �rst-order

statistics to model the background, we provide an al-

gorithm that uses kth-order statistics when learning

length-k patterns. Arti�cial data is used to evaluate

the e�ectiveness of this representation and training

algorithm.
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1 Introduction

The particular biological problem we focus on
is that of �nding and characterizing regula-
tory elements in DNA. For lower eukaryotes
these elements are contained in the Up Stream
Regions (USRs) of Open Reading Frames
(ORFs), and for yeast predominately in the
�rst 500 base pairs [2]. A number of motif rep-

resentation languages and approaches to motif
identi�cation have been developed to identify
these patterns. However, it is di�cult to make
precise comparisons between them because the
di�erent approaches often produce di�erent re-
sults given the same set of USRs and the cor-
rect biological answer is seldom known with
complete precision. Consequently, in order
to facilitate comparison, we generate arti�cial
test cases where the correct answer is known
and problem complexity can be incrementally
adjusted along various dimensions, keeping in
mind that the arti�cial data should be relevant
to known biological constraints.

The rather successful k-mer oligonucleotide
frequency over-represenation (OFOR) method
of van Helden [3] has the advantage of mod-
eling the background of k-length motifs with
kth-order statistics. It is also fast, taking only
a few seconds to exhaustively evaluate all k-
mers (k < 10). Its primary disadvantage is
using only exact k-mer sequences to represent
motifs. Methods such as Consensus [4], DMS
[5], Gibbs Sampling [6] and Meme [7] capture
the variability of a motif in a probability ma-
trix, but limit their representation of the back-
ground to �rst-order statistics with some post-
editing (by hand or program) of the results.
They are also comparatively slow, often requir-
ing hours of computation to analyze a large
data set.

Here we provide several extensions to the ba-
sic k-mer OFOR method. These methods pro-
gressively extend the representation language
while maintaining kth-order background statis-



tics and the over-representation (OR) evalua-
tion criterion.

2 K-mer representation

The k-mer OFOR approach identi�es possible
motif instances by looking for speci�c k-mers
that are over-represented in a test set of USRs
from co-regulated genes as compared to a com-
parison set, which is typically the set of USRs
from all genes. Speci�cally, the observed num-
ber of occurrences of a k-mer in the compari-
son set is used to calculate the probability of
seeing X or more occurrences in the test set
by chance, where X is the observed count in
the test set. If Prob(X) is small, then the k-
mer is over-represented in the test set. For
example, OR can be de�ned as 1-Prob(X) or
-log(Prob(X)). The space of possible k-mers
can be searched exhaustively and sorted by
their OR values. Because over-representation
rather than coverage of the test set is com-
puted, the approach is relatively insensitive to
the presence of noise in the test-set. An added
value is that the multiple occurrences of a k-
mer in individual USRs improves the score for
that k-mer. Repetition within a USR appears
to be biologically important, although some
motif-�nding approaches do not use this infor-
mation.

Because regulatory elements are generally
e�ective on either strand of the USR, we can
compute OR on the combined counts over both
strands, or equivalently, the combined counts
of a k-mer and its reverse complement. In this
context, it is apparent that OR can be com-
puted for any set of k-mers rather than just
individual k-mers. In particular, this is true for
any motif-classi�cation language where there is
a clear-cut answer to whether a k-mer belongs
to the motif or not.

3 Prototype Representation

A useful set of instances for which OR can
be easily and quickly computed is prototype
representation. The general idea is that there

is some ideal, prototypic sequence, but that a
small amount of random variation is permitted.
For example, one or possibly two mismatches
might still be functional while a greater num-
ber would disrupt binding too much. We de�ne
the Mn shell around a k-mer to be the set of
k-mers that di�er from the central, prototypic
k-mer in exactly n places. Hence the M0 shell
is the string itself, the M1 shell is the set of k-
mers that have exactly one mismatch with the
string, the M2 shell is the set of k-mers with
exactly two mismatches, etc. The counts cor-
responding to each Mn shell are referred to as
Cn.

The C1 value for a given k-mer can be com-
puted by summing the C0 values of its M1

neighbors. In general, Cn can be computed by

summing the C0 values of the

 
k

n

!
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neighbors. However, by judicious use of lower-
order Cn values, any Cn value can be computed
by summing over just theM1 neighbors, which
signi�cantly improves performance. For exam-
ple, for k = 10 and n = 3, there are 3240 M3

neighbors but only 30 M1 neighbors.

The OR measure can be applied to C1 just
as it was to the exact-match C0 count. Be-
cause of the possible variation in a motif, if an
over-represented M0 motif instance is found,
its M1 shell is apt to be over-represented as
well. This is especially true for the most cen-
tral or prototypic instances of the motif. For
motifs with a large amount of variability, the
M1 shell can be more over-represented than the
M0 center or any of the individual k-mers that
make up the M1 shell. This is especially im-
portant with longer motifs. OR of theM1 shell
provides an independent measure of the impor-
tance of the M0 instance. If both M0 and M1

are highly over-represented, the chances of M0

being a real motif instance are increased. Al-
ternatively, the M0 and M1 patterns can be
combined and a single OR score computed.
Whether this is useful or not depends on the
degree of variability of the motif. If the motif
has low variability, the OR of the M1 shell will
be correspondingly low.



4 IUPAC Representation

The Mn shells allow for a certain amount of
variation around the central k-mer prototype.
This e�ectively deals with random variation,
but does not directly address the issue of de-
generate motifs where some positions may vary
in speci�c ways and other positions may not
vary at all. An IUPAC motif description ex-
plicitly allows for arbitrary disjunctions at each
position of the motif. This allows for degener-
ate motifs, but does not directly address the
issue of random variation. With IUPAC rep-
resentation there is no protopypic k-mer; all
positive k-mers are equally peripheral.

As with theMn prototypic shells, an IUPAC
motif de�nes a set of k-mers for which group
OR can be computed. However, unlike exact or
prototypic k-mer representation in which all 4k

k-mers can be exhaustively evaluated, there are
15k length-k IUPAC motif descriptions, which
cannot be exhaustively evaluated for anything
but very small k. Consequently a hill-climbing
approach is used: given a plausible k-mer mo-
tif instance as a starting point, IUPAC hill-
climbing sequentially tries all possible IUPAC
codes at each position of the motif, chooses the
code with the biggest OR value, and repeats
until no changes are possible.

5 Weight Matrix Representa-

tion

Like a probability table, a weight matrix uses
a 4 x k table of real numbers to represent a
length-k motif. However, unlike the proba-
bility table that summarizes the frequency of
each base at each position over a set of known
motif instances, a weight indicates the impor-
tance of each base at each position. A DNA
sequence is classi�ed by summing the corre-
sponding weights for each base in the sequence,
and if the sum is greater than or equal to a
threshold the sequence is considered a positive
example of the motif.

In this context, an exact k-mer can be real-
ized as weight matrix with three 0s and a 1 in

each column and a threshold of k. An M1 pro-
totype (including the M0 center) has a thresh-
old of k�1 and anM2 prototype has a thresh-
old of k � 2. An IUPAC motif is equivalent to
a weight matrix with weights of 0 or 1 and a
threshold of k, but having any number of 1s
in a column. A prototypic IUPAC motif could
allow for a certain amount of random variation
by setting the threshold to k� 1 or k� 2. The
�nal generalization to an unrestricted weight
matrix allows the di�erent bases within a col-
umn to be weighted di�erently.
A weight matrix can be viewed as a model of

the binding site of a regulatory protein. Each
base in a candidate motif instance makes some
positive, negative or neutral contribution to
the binding stability of the DNA-protein com-
plex. The weights in the weight matrix can be
thought of as modeling those e�ects. If the sum
of the individual contributions is greater than
a threshold, the DNA-protein complex can
be considered stable enough to be functional.
More likely, functionality would vary continu-
ously (although not necessarily linearly) with
the stability of the DNA-protein complex, but
for computational purposes, a binary classi�-
cation is a convenient simpli�cation.
In this context, the possibility of negative

weights is not unreasonable; a particular base
at a speci�c position may destabilize binding.
Negative weights will obviously never occur if
a probability table, but from a formal point of
view, the possibility of negative weights does
not in itself expand the representation power
since a weight matrix (plus threshold) with
negative weights can always be converted to an
equivalent one without negative weights. More
generally, it is possible to convert any weight
matrix to an equivalent one that conforms to
the constraints of a probability matrix (all en-
tries positive, columns sum to 1.0).
A weight matrix can also be viewed as de�n-

ing a hyperplane that classi�es k-mer patterns
as positive or negative. The basic k-mer OR
approach implicitly uses a hyperplane to con-
sider each individual k-mer pattern as the pos-
itive set. Prototype and IUPAC representa-
tions relax the restrictions on the weights of



the hyperplane. The �nal generalization is to
allow arbitrary hyperplanes. In all cases the
goal is to �nd the hyperplane whose positive
set is most over-represented.
Since all possible hyperplanes cannot be ex-

haustively tested to �nd the optimum, hill-
climbing is used. The assumption is that a
hyperplane can be signi�cantly improved with
a series of small adjustments that monoton-
ically improve its OR measure. Speci�cally,
given an initial promising k-mer, prototype or
IUPAC motif, the corresponding weight ma-
trix/hyperplane is generated and the nearest
m points (k-mer patterns) are considered as
positive and negative training instances. If the
OR measure is improved by adjusting the hy-
perplane to reclassify a point, the change is
made and the process continues using the re-
sulting new set of neighboring points. A rea-
sonable value for m is around 40, with larger
values only slightly increasing the hill-climbing
power. Various methods of adjusting the hy-
perplane to reclassify a point were investigated
and the single best method was to try all single-
base adjustments to include/exclude each of
the points. In general, weight matrix hill-
climbing can be viewed as incrementally ad-
justing a (linear) hyperplane so as to maximize
an unknown non-linear function based on its
classi�cation of the points, in this case the re-
sulting OR measure.
The perceptron training algorithm is a prov-

ably convergent method of training a hyper-
plane given a set of points that can be correctly
classi�ed by a hyperplane. This provides a
method of creating a weight matrix given a set
of known motif instances and non-instances.
However, unlike the perceptron training algo-
rithm in which the correct classi�cation of each
point is known, with OR hill-climbing it is en-
tirely possible that including a point will im-
prove the measure, then later, excluding the
same point will improve the measure again
since the measure depends on the classi�cation
of all other points, which changes on each ad-
justment. Weight matrix hill-climbing works
well in the sense that it climbs to very high
OR measures, but tends to �nd slightly di�er-

ent motifs when the search order or starting
points are varied slightly, expecially when the
correct motif is highly degenerate.

Entropy and Expectation Maximization
(EM) have both been used as the objective
function for optimizing probability matrices,
and it has been shown that the two are closely
related. A relationship can also be shown be-
tween probability and weight matrices: Specif-
ically, a k-length weight matrix de�nes a set of
k-mers that it classi�es as positive instances,
and the probability matrix for that set of k-
mers is a close approximation of the original
weight matrix [9]. Consequently, a probabil-
ity matrix optimized for entropy or EM may
also reasonably function as a weight matrix.
However, the correlation decreases as the dis-
tribution of observed positive k-mer becomes
less uniform. That is, if all positive k-mers oc-
cur with equal frequency, the correlation is very
good, although not necessarily good enough for
perfect classi�cation. However, if some positive
k-mers are over or under-represented in the bi-
ological data, the probability matrix changes
while the weight matrix does not. Thus if
the ultimate goal is classi�cation of motif in-
stances, it seems reasonable to directly opti-
mize the matrix for that property rather than
for entropy or EM.

6 K-mer Overlap

The issue of overlapping binding sites is impor-
tant for both theoretical and practical reasons.
A simple example serves to illustrate the prob-
lem: If a given region of DNA contains two
overlapping binding sites for the same tran-
scription factor, should this be considered as
one or two sites? This has theoretical impli-
cations for the optimum structure of both the
binding region and the transcription factor. It
has been observed that multiple independent
copies of a motif have a cumulative e�ect [10],
so it is not unreasonable that multiple overlap-
ping binding sites could be more e�ective than
a single site, at least in a probabilistic binding
model. Likewise, if a transcription factor could



bind the same sequence in multiple ways, this
could increase the probability of interaction.

The practical issue is that treating all bind-
ing sites as equal and independent, even if they
overlap, greatly simpli�es computation. For
example, one method of determining how many
times an IUPAC motif matches a given data
set is to slide the motif along the DNA, count-
ing matches. It is easy to detect overlapping
matches in this case, but scanning the com-
plete data base is time consuming if done re-
peatedly. Alternatively, the data base can be
scanned once and the frequency of all k-mers
counted. The number of matches of the IUPAC
motif can then be calculated by summing the
counts of the k-mers it matches. This can be
done very quickly, but the matches may over-
lap.

Empirically, the two approaches can give
di�erent answers to the optimum IUPAC or
weight matrix motifs to maximize OR, but of-
ten they give the same answer. Thus, the
fast overlapping method might be used as an
approximation of the slower, non-overlapping
method, even if the non-overlapping model ul-
timately proves to be more biologically accu-
rate. One particularly productive application
is do non-overlapping hill-climbing, but to pre-
�lter each potential change using an overlap-
ping evaluation. Only changes that lead to
an improved overlapping score are considered
for non-overlapping evaluation. This speeds up
the hill-climbing process by at least 90% and
does not appear to signi�cantly e�ect the �nal
results. This can be done for both IUPAC and
weight matrix hill-climbing.

7 Evaluation on Synthetic

Data

Our goal is to demonstrate the e�ectiveness of
IUPAC and weight matrix OR learning using
synthetic data that is similar to real biological
data, but has the advantage that we know the
correct answer.

Experiments are done using a test of 40 arti-
�cial 500-base USRs and a comparison set, con-

taining the test set, of 1000 USRs. USRs are
arti�cially generated, but real USRs could also
be used. A hidden motif instance is added to
each of the test USRs. Motif instances are gen-
erated from an IUPAC motif description plus a
controlled amount of random variation. Both
the degree of degeneracy of the IUPAC motif
and the amount of random variation are ad-
justed and studied independently and in com-
bination. Here we only report experiments
where we vary the degree of IUPAC indeter-
minancy. These IUPAC motifs should, in prin-
ciple, be detectable by most motif-�nding al-
gorithms.

Two main questions need to be addressed:

1. Is over-representation a reasonable ob-
jective measure to optimize IUPAC and
weight-matrix motifs?

2. Can the optimum motif be found?

(a) Can any motif instances (exact k-
mers) be identi�ed?

(b) Can hill-climbing from a motif in-
stance recover the complete motif?

We will describe, summarize and discuss one
synthetic experiment here that addresses all of
these issues. An application of IUPAC hill-
climbing to biological data is found in [8].

In this experiment an 8-mer motif instance
with an increasing amount of IUPAC degen-
eracy was added to the test set. Speci�-
cally, the 8-mer atgccgta was incrementally
generalized to allow a single disjunct at 6 of
the 8 positions, resulting in the IUPAC motif
a[tg][ga][ct][ca][gc][tg]a. A �rst-order uniform
background (a = t = g = c = .25) was used,
and no random variation outside of the IUPAC
motif was permitted. In each case the task
was to recover the correct IUPAC motif start-
ing with a single motif instance. There are 158

possible IUPAC formula, so it is impossible to
search the space exaustively.

The results of this experiment are summa-
rized in Table 1. In this table, the C0 values
for test and comparison sets plus the resulting



probability value are shown for the highest-
scoring 8-mer when sorted on OR. The same
three values are shown for the IUPAC motif
that results from hill-climbing from that k-mer.
This is repeated with 0 to 6 disjuncts.
The �rst row shows the results with 0 dis-

juncts. Because the arti�cial USRs are gener-
ated with a uniform �rst-order model, the test
set C0 count alone is a reasonable predictor of
OR. With a di�erent background model this
might not be the case. With this background
model, the test set without the motif contains
two 8-mers that occur 5 times and 21 that oc-
cur 4 times. The average 8-mer is expected to
occur about .3 times = 40 � 500 � 1=(48). Thus
any 8-mer that occurs more than 5 times is sta-
tistically unusual and will be identi�ed. With
40 occurrences, the motif is easy to identify.
The k-mer occurs 5 times in the comparison set
(expected = 7.6) outside of the 40 occurrences
due to the test set. The fact that the IUPAC
values are the same as the k-mer values shows
that IUPAC hill-climbing could not generalize
the 8-mer to yield a better OR value. This is
as expected and contrasts with the results if
hill-climbing was started at a shifted version of
the motif such as tgccgtaa. In this case IUPAC
hill-climbing correctly generalized the instance
to tgccgta[atgc].
In the second row, a single disjunct is added.

As expected, this divides the 40 motif instances
among two approximately equal k-mers (C0 =
22 and 18). Again, these values are very high
compared to the background and so are eas-
ily identi�ed. Like the maximum C0 value,
the maximum OR value degrades but is still
highly signi�cant. More importantly, the cor-
rect IUPAC motif is reliably recovered by hill-
climbing. The number of IUPAC matches in
the test set is 40, so it perfectly identi�es the
complete set of motif instances. The IUPAC
OR value degrades slightly because the addi-
tional IUPAC motif member matches seven ad-
ditional 8-mers in the comparison set.
A similar trend continues through four dis-

junctions. Both the maximum C0 and OR for
motif instances decline as the number of dis-
juncts, and hence the number of di�erent mo-

tif instances, increases. In addition, the OR
of the correct/optimum IUPAC motif contin-
ues to decline. It is impossible to exhaustively
verify that the correct IUPAC motif has the
greatest OR over all IUPAC formula, but we
strongly suspect this is the case. With four
disjuncts, the C0 and OR of the most frequent
motif instance is right at the boundary of de-
tectability.
With �ve disjuncts, individual motif in-

stances are no longer su�ciently over-
represented to be distinguished from the ran-
dom background. Consequently, the top k-mer
is not a motif instance. This can be addressed
by sorting on the combined M0 and M1 shells
for each k-mer. With this modi�cation, the top
k-mer is a motif instance. Starting with this
instance, IUPAC hill-climbing usually climbs
to the expected answer but occasionally gets
stuck at a noticeably worse local maxima.
In the �nal row with six disjuncts, even com-

bined C0 and C1 can't identify motif instances,
and starting from known motif instances usu-
ally gets stuck at local maxima. However,
it occasionally climbs to the expected IUPAC
answer. No better IUPAC motifs were ob-
served, so this may well the the global max-
imum. Since IUPAC hill-climbing is fast, it is
not actually necessary that the top k-mer is
a motif instance or that hill-climbing from a
motif instance always lead to the correct IU-
PAC motif. It is feasable to test the top 50 or
so k-mers with �ve or ten restarts each to see
which leads to the best IUPAC motif. Using
overlapping counts, this can be done in about
a minute. In that sense, the problem can be
solved with six disjuncts.
Despite a di�erent motif representation lan-

guage and hill-climbing algorithm, weight ma-
trix results largely paralled IUPAC results.
With 0 to 3 disjuncts, the �nal classi�cation of
the weight vector was identical to the IUPAC
answer. With four disjuncts, the weight ma-
trix achieved a slightly better OR score (1.5e-
25 vs 1.8e-25) by covering one extra k-mer in
the test set. With �ve disjuncts, weight matrix
hill-climbing frequently gets stuck at poor local
maxima, but occasionally climbs to values that



Table 1: Best k-mer and IUPAC values with
increasing number of disjuncts. D = number of
disjuncts, TC = test set C0, CC = comparison
set C0, Prob = Prob(TC).

top k-mer hill-climb IUPAC

D TC CC Prob TC CC Prob

0 40 45 3.3e-39 40 45 3.3e-39

1 22 23 7.6e-21 40 52 8.2e-37

2 11 14 2.5e-11 40 59 9.7e-35

3 9 17 4.6e-08 43 94 2.1e-30

4 6 12 1.1e-05 46 148 1.8e-25

5 3 9 5.9e-03 48 256 1.1e-17

6 58 496 2.7e-12

are similar to (and sometimes slightly better
than) the IUPAC answer. With six disjuncts,
weight matrix hill-climbing always terminated
at a poor local maxima.

8 Conclusions

A number of general conclusions can be drawn
from these results. First, for this series of
problems, maximum IUPAC and weight ma-
trix OR corresponds to the known correct an-
swer. Thus, from this and other experiments it
appears that OR is a reasonable objective func-
tion to optimize for motif classi�ers. Second, as
expected, motif instances become increasingly
hard to detect as motif degeneracy increases.
Including C1 values extends the reach of exact
k-mer identi�cation. Third, the IUPAC and
weight matrix OR hill-climbing algorithms are
reasonably e�ective since, given a single motif
instance, they can generally recover the correct
motif. The risk of being trapped at a poor local
extrema increases as the maximum/optimum
OR decreases. This can be mitigated by using
multiple restarts.
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