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Abstract

Motivation: Over-represented k-mers in genomic DNA
regions are often of particular biological interest. For ex-
ample, over-represented k-mers in co-requlated families
of genes are often associated with the DNA binding sites
of transcription factors. We introduce a new measure
of over-representation and apply it to the pooled 500bp
ORF upstream regions of yeast. More importantly, we
inwvestigate the context and spatial distribution of over-
represented k-mers in upstream regions.

Results: We find that the spatial distributions of most
over-represented k-mers are highly non-random. We
study the single and double-stranded distribution patterns
of these k-mers and relate three especially common pat-
terns to DNA structure, function, and evolution. Specif-
ically, we show that the three most common patterns cor-
respond to: a) homologous ORF clusters associated with
sharply localized distributions; b) regulatory elements as-
sociated with a symmetric broad hill-shaped distribution
in the 50-200 bp upstream region; and c) runs of As,
Ts, and ATs associated with a broad hill-shaped distri-
bution also in the 50-200 bp upstream region, for which
we hypothesize a structural role. Analysis of overrepre-
sentation, homology, localization, and DNA structure are
essential components of a general data-mining approach
to finding biologically important k-mers in raw genomic
DNA and understanding the “lexicon” of regulatory re-
gions.

Contact: pfbaldi@ics.uci.edu, hampson@ics.uci.edu, ki-
bler@ics.uci.edu.

1 Introduction

Over-represented k-mers in genomic DNA regions are of-
ten of particular biological interest. For example, over-
represented k-mers in co-regulated families of genes are
often associated with the DNA binding sites of tran-
scription factors (van Helden et al., 1998; Brazma et al.,
1998). In this case over-representation compares the
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frequecy of k-mers in the co-regulated genes to their
frequency over all genes. However, over-representation
can be compared between other sets and quantified in
various ways. Here we first develop an efficient new
measure of over-representation, C0/C1, which compares
a k-mer’s frequency to the frequency of its one-base-
difference neighbors. Then we investigate the spatial dis-
tribution of over-represented k-mers in yeast upstream
regions.

Somewhat surprisingly, in yeast upstream regions, al-
most all over-represented k-mers have distinctive distri-
bution patterns. Distinctive distribution patterns result
from a variety of biological factors, so k-mers with non-
random localization patterns generally have other non-
random properties as well. Understanding a string’s dis-
tribution pattern is an important component in inferring
its biological significance.

In this paper we focus on some of the most common
spatial distribution patterns for over-represented k-mers
in yeast. In particular, for & = 8 or 9, we show that
the three most common distribution patterns correspond
to: a) homologous ORF clusters associated with sharply
peaked distributions; b) regulatory elements associated
with a symmetric broad hill-shaped distribution in the
50-200 bp upstream region; and ¢) runs of As, Ts, and
ATs associated with a broad hill-shaped distribution also
in the 50-200 bp upstream region, for which we hypoth-
esize a structural role. This distribution is asymmetric
for runs of As and Ts, and trivially symmetric for runs
of ATs.

Taken together, the results show that C0/C1 over-
representation identifies biologically significant k-mers,
most of which have distinctive distribution patterns.
Analysis of these patterns suggests explanatory mech-
anisms.

2 Methods

Sequence Data. While over-representation analysis
can be applied to any class of genomic DNA, here
we focus exclusively on the 500 bp upstream regions
(USRs) of each of the 6225 ORFs in the yeast genome



taken from the Stanford data base (fttp://genome-
ftp.standford.edu/yeast). For convenience, we often use
the same label for the ORF and the USR. It is assumed
that much of the control for each ORF’s transcription
rate resides in this region. Base positions in the USR
are numbered positively with zero on the right, nearest
the coding region.

Microarray Data. Some of the methods to be pre-
sented have been derived so that they can be applied to
raw genomic data. For comparison purposes, and be-
cause such data is becoming increasingly available, in
some of the analysis we also use microarray data from
which classes of co-regulated genes can be inferred (De-
Risi et al., 1997; Eisen et al., 1998; Brown et al., 2000;
Hu et al., 2000). We use the same data as in (Hampson
et al., 2000) derived by studying the oxidative stress re-
sponse in yeast using Affimetryx Gene Chip microarray
technology (Wodicka, 1997). In a typical experiment,
the wildtype yeast strain YPH500 (Sikorski & Hieter,
1989) was used with 3 untreated controls grown at room
temperature and 2 treated data sets, assayed indepen-
dently. Oxidative stress treatment was given in the form
of 0.4mM of oxygen peroxide (H205) for 5, 10, and 20
minutes. GeneChip Expression Analysis v. 3.1 software
was used to obtain the average difference values. All
experiments were prepared using the polyA mRNA pro-
tocol.

Over-Representation. The number of occurrences,
CO0, of each of the 4% k-mers (k < 9) can be collected in a
single pass through the data set. Only non-overlapping
occurrences of each k-mer are counted. Experiments for
length k = 9 are reported here, but useful results are also
obtained with smaller values of k, and would presumably
also with larger values. As a point of general comparison,
based on the average first-order nucleotide composition
of yeast (AxT=30%, C~G~20%), the expected number
of occurrences for a random 9-mer is between approx-
imately 2 and 60. Some strings of interest are well in
excess of this range, but many are not.

Over-representation of a k-mer is calculated with re-
spect to some background model. A standard back-
ground model is provided by a Markov model of order
z. In this case, the over-representation of k-mers can be
ranked using the measure C0/E,(C0), where E,(C0)
is the expected counts based on a model of order z,
(x < k) (Burge et al., 1992; van Helden et al., 2000;
Bussemaker et al., 2000; Baldi & Brunak, 2001).

Here for each k-mer we compute a different ratio,
C0/C1, where C1 is the number of times the string oc-
curs with exactly one mismatch. A random k-mer would
be expected to have a C0/C1 ratio of approximately
1/3k since there are 3 x k different single-mismatch (M1)
neighbors for each zero mismatch (M0) string. An espe-
cially large value of C0/C1 means that the exact pattern

is over-represented compared to the density of patterns
in its immediate vicinity. C0 can be computed in a sin-
gle O(N) pass, where N is the number of bases in the
set. Here N = 500 x 6225 ~ 3 x 10%. Once CO has
been computed for all k-mers, C'1 can be computed in
3k steps for each of the 4 k-mers. The total time com-
plexity of computing C0/C1 for all k-mers is therefore
O(N) + O(k * 4F). For k < 9, this takes only a few
seconds on a workstation.

Alternatively, over-representation could be calculated
for the non-coding versus coding region, downstream re-
gion, or the genome as a whole (Brazma et al., 1998;
van Helden et al., 1998; van Helden et al., 2000). All of
these measures work to some extent for identifying bio-
logically interesting strings. While the C0/C1 measure
appears to have some advantages, the main focus of this
work is not on the comparison of various measures of
over-representation, but on the most common localiza-
tion patterns of strings derived by sorting on the C0/C1
ratio.

Spatial Distribution. A distinctive spatial distribu-
tion pattern on one or both strands can provide sup-
portive information regarding the structure, function, or
evolution of a k-mer. Regulatory motifs can often oc-
cur on either strand, but some distribution patterns are
one-stranded or distinctly different on the two strands,
so the distribution on each strand is shown separately. In
practice, this is computed by searching the transcribed
strand for both a string and its reverse complement
(RC). The histograms associated with the location of
an over-represented k-mer are displayed back to back,
facing up for the transcribed strand and down for the
untranscribed strand.

Context Analysis. A conserved context around an
over-represented k-mer on one or both strands can also
provide useful information. Thus, once a particular k-
mer of interest is chosen for further study, we study its
context using both local and global alignments of the
USRs in which it is found (Durbin et al., 1998). Param-
eter values used in the alignment scoring function are:
match = 1, mismatch = —1, start delete = —2, and
continue delete = — 1. Using those values, the average
score of random USR pairs is -44, a score over 0 indi-
cates some level of non-random homology, and a score
over 50 virtually assures it (Hampson et al., 2000). How-
ever, considerable local homology may exist without be-
ing apparent in the global homology score. Empirically,
some USR pairs with local homology of over 200 bp have
a negative global alignment score. For local alignments,
we report the length of the longest highly homologous re-
gion. “Highly” is somewhat subjective, but is defined as
maintaining a positive alignment score over the length of
the homologous region despite increasing the mismatch
and delete values to -3. A larger value such as -5 would



Table 1: Exact TRANSFAC matches for the 100 most fre-
quent and 100 least frequent k-mers by three measures of
over-representation versus 100 random k-mers.

C0 CO0/F1(C0) | CO0/C1 | random
k | high | low | high | low | high | low
7] 71 | 16 | 48 | 12 | 63 | 12 25
8| 38 | 4 | 24 2 0 | 3 6
9] 19 | 0 | 14 0 17 | 0 2

identify shorter, more highly homologous regions.

To further investigate a k-mer’s context, we also build
a probability matrix for a window of +£m bases around it.
This local context can be summarized with a consensus
string that reflects the most frequent base at each po-
sition. Conservation in the window can be assessed by
computing at each position the relative entropy (Cover
& Thomas, 1991) RE = ) Pxlog(Px/Qx) between
the first-order background distribution ) measured over
the entire data set and the observed distribution P over
X =AT,G,C.

3 Results

3.1 Measures of over-representation

Evidence that over-represented strings are biologically
significant is provided by the observation that over-
represented strings are more apt to be contained in the
TRANSFAC data base (Wingender et al., 2001) than
strings chosen at random, and under-represented strings
are less likely to be found there. This is true whether
over-representation is measured by C0/C1, C0/E,(CO0),
or by CO0 alone, where E;(C0) is the expected C0 value
based on first-order statistics. For k = 7, 8 and 9, the
number of strings found in the TRANSFAC database for
the 100 strings with the highest and lowest C0/C1 ra-
tio, C0/E;1(CO0) ratio, CO value, and a set of 100 random
strings is shown in Table 1.

A string was counted as matching TRANSFAC if ei-
ther the string or its RC exactly matched a yeast entry or
was a substring of a yeast entry. All three measures sup-
port the conclusion that over-represented strings have
a higher chance of matching regulatory motifs present
in the TRANSFAC database, whereas under-represented
strings have a lower chance.

The three measures are correlated but have noticeably
different biases. For example, the top 20 9-mers for each
measure are shown in Table 2. C0, C0/E;(C0), and
C0/C1 values are shown for each k-mer. To make the
C0/C1 ratio more meaningful, it is normalized by divid-
ing by 1/3k. Sorting on CO yields strings with a strong
bias toward high AT/GC ratios, and runs of As and Ts
in particular. These strings are presumably biologically

significant but, on the whole, are less interesting than
over-represented strings with a more balanced AT/GC
ratio. This can be addressed by dividing C0 by E;(C0),
but the ordering still has a noticeable bias toward strings
containing long runs of As and Ts. C0/C1 also identi-
fies runs of As and Ts as over-represented (Section 3.4),
but none of them are in the top 20. Strings with high
C0 and C0/E;(C0) usually have a high C0/C1 ratio, so
the measures are not independent, but overall, C0/C1
appears to yield the most diverse selection of strings.
Using higher-order statistics changes the C0/E,(C0)
ordering, but does not noticeably improve performance
over first-order results. Another variation is to sort on
the combined counts of a string and its RC. Again, this
changes the ordering, emphasizing some types of k-mers
over others, but is not necessarily an overall improve-
ment. In any event, the purpose of this paper is to char-
acterize and explore some of the most common patterns
of distribution for over-represented strings, not to deter-
mine the single best measure of over-representation.

3.2 Overview: Localization and other
non-random properties

Strings can be over-represented for a variety of reasons.
Consequently, over-represented strings may be associ-
ated with a range of different properties depending on
the reason for over-representation. Here we focus on k-
mers with a distinctive spatial distribution. Three espe-
cially common and highly non-random distribution pat-
terns are investigated in detail.

First, k-mers with sharply localized distribution pat-
terns generally identify groups of homologous ORFs. k-
mers in the 0-100 base region, corresponding to the basal
promoter, appear to be preferentially conserved. When
both a k-mer and its RC are tightly localized, divergent
ORFs are usually involved. Given one or more mem-
bers of a homologous ORF family, alignment against the
entire data set can be used to find additional members
of the family, permitting further analysis of homologous
groups. These families of homologous ORFs tend to
replicate in blocks near the ends of chromosomes.

Second, k-mers with a broad symmetrical distribution
pattern located between 50 and 200 bp appear to identify
regulatory motifs. Many of these k-mers are correlated
with decreased expression during oxidative stress, or to
simply being on during normal growth conditions. The
k-mers tend to co-occur in the same USRs, frequently in
the context of divergent ORFs. Many of these k-mers
appear to be specific instances of more general motifs.

Third, runs of Ts, As, or ATs have a broad [slightly
asymmetric for runs of As and Ts/symmetric for runs
of ATs] distribution pattern also located between 50 and
200 bp and appear to identify structural elements. These
are the most frequent k-mers in the USRs and are fre-



quently correlated with elevated expression during nor-
mal growth conditions. Runs of Ts and As are among the
stiffest, while alternating Ts and As are among the most
flexible sequences of DNA. Their distribution pattern is
not due to the distribution of the individual bases.

The number of occurrence of the three categories
within the top 20 over-represented 8- and 9-mers is given
in Table 3.

3.3 Sharply localized distributions: Ho-
mologous ORFs

3.3.1 Omne-stranded localization

If 9-mers are sorted on C0/C1 without including the RC,
a distinct and easily explained pattern of localization is
observed for many k-mers. For example, in Figure 1, the
distribution of the string ACGAGGGTC and its reverse
complement GACCCTCGT is shown, along with their
C0 and C1 counts and normalized C0/C1 ratio.

A tightly localized distribution on one strand only
might result from a group of highly homologous ORFs
resulting from duplication events. It is thought that
the entire yeast genome underwent an early duplica-
tion (Wolfe & Shields, 1997), but that in itself can-
not explain anything other than pairs of homologous
ORFs. Large groups of homologous USRs can only be
explained by additional duplication events, such as those
resulting from shared transposable elements (Kim et al.,
1998). At least 6 of the top 20 C0/C1 k-mers in Ta-
ble 2 are associated with transposon long terminal re-
peats. The homologous ORF families considered in this
paper, however, do not seem to be associated with any
transposons contained in the comprehensive list down-
loadable at http://www.public.iastate.edu/voytas (Kim
et al., 1998). About 7 of the top 20 C0/C1 k-mers in
Table 2 fall in this category of belonging to large homol-
ogous ORF families that do not seem to be associated
with transposons.

If the localization pattern does result from a group
of homologous ORFs, the shared 9-mer might occur in
the context of a larger region of conserved bases. The
5-base context of the string shows that the surrounding
area is in fact partially conserved (see Table 4). Bet-
ter conservation could be achieved by using only those
occurrences that produced the localized spike, but for
consistency with later examples without sharp spikes,
that is not done here. This can be done for both strands
of the DNA, but in this example only the top strand is
of interest.

All of the context positions are significantly conserved,
and a larger window shows an extensive region of base
conservation around the string. However, extensive local
homology around the string does not necessarily imply
overall homology of the USRs. This was investigated us-

acgagggtc

Number of occurrences
S
:

] | 1
R .

- ,
—%00 -450 -400 -350 -300 -250 -200 -150 -100 -50 0
Upstream Position

9-mer Co | C1|27TxC0/C1
ACGAGGGTC | 17 | 87 5.28
GACCCTCGT | 2 | 95 .57

Figure 1: Distribution and counts for ACGAGGGTC and
its reverse complement.

ing global and local alignment between the entire USRs.

If the set of ORFs containing a highly localized string
are aligned, they generally fall into one or two homol-
ogous sets, plus a few ORFs that are not strongly ho-
mologous to anything in the set. For example, the local
and global alignment scores for the USRs of the set of
19 ORF's containing the above string (or its RC) against
the first ORF in the set are given in Table 5.

The first ORF YALO68C aligns perfectly with itself
yielding global and local scores of 500. It is not expected
that an ORF containing the string (like 1) would show
any significant alignment with strings containing the RC
(6 and 11). Of the 19 ORFs, 13 fall in one homologous
family, although the amount of global homology varies
over a sizable range. Likewise, the length of the longest
highly homologous region varies over a wide range, al-
though this can be adjusted to some extent by adjusting
the degree of homology required. Pairs with a global
alignment score in the 300s but a local score near 500
are moderately homologous over the entire USR rather
than highly homologous over a portion of it. The lo-
cal alignment scores of 34 and 23 indicate at least one
highly homologous region in those pairs, but does not
exclude the possibility of additional shorter regions of
equal or better homology or larger regions of lower ho-
mology. As expected, the string’s location in the 13 ho-
mologous ORFs corresponds with the spike in the dis-
tribution of the whole set. All of the 13 homologous
ORF'’s are annotated in the Stanford database as either:
“strong similarity to subtelomeric encoded proteins” or
“strong similarity to members of the Srpl/Tiplp family”



Table 2: Top 20 9-mers sorted on CO alone, C0/E;(C0), and C0/C1 (normalized value =27 x C0/C1).

Co C0 | COo/EL | C0/C1 CO/E; C0 | CO/E1 | C0/C1 C0/C1 C0 | CO/EL | C0/C1

TTTTTTTTT | 1320 15.01 2.87 TTTTTTTTC 994 18.77 4.08 GGCTAAGCG | 25 6.50 7.67

AAAAAAAAA | 1250 12.64 2.80 GCGATGAGC 67 17.00 6.62 GCGATGAGC | 67 17.00 6.62

TTTTTTTTC 994 18.77 4.08 CGCGCGCGC 15 16.00 5.96 TCGGCGGCT | 35 12.00 6.52

GAAAAAAAA | 906 15.91 3.94 GAAAAAAAA | 906 15.91 3.94 GACTCCCCG | 13 4.67 6.50

CTTTTTTTT 805 15.21 3.40 CTTTTTTTT 805 15.21 3.41 ACGCGCGCG 15 8.00 6.32

ATTTTTTTT 784 8.82 3.11 TTTTTTTTT 1320 15.01 2.88 CGCGCGCGC 15 16.00 5.96

AAAAAAAAT | 734 7.58 3.04 GCGCGCGCC 14 15.00 4.79 CCTCGAGGA | 46 11.75 5.89

AAAAAAAAG 715 12.56 3.21 TTTCTTTTT 689 13.02 3.27 TCCTCGAGG | 44 11.25 5.63

TTTCTTTTT 689 13.02 3.27 GCTCATCGC 51 13.00 5.26 CGATGAGCT 70 10.14 5.61

TTTTTTTCT 668 12.62 3.01 AAAAAAAAA | 1250 12.64 2.80 CGAGGGTCC | 16 5.67 5.61
AAAAAGAAA | 655 11.51 3.17 TTTTTTTCT 668 12.62 3.01 CGGGGTTCG | 13 4.67 5.57
TTTTCTTTT 629 11.89 2.88 AAAAAAAAG | T15 12.56 3.21 TAGCCGCCC 26 9.00 5.53
AAAAGAAAA | 620 10.89 2.86 TCGGCGGCT 35 12.00 6.52 GGATTCCTA 42 3.58 5.48
TCTTTTTTT 608 11.49 2.84 TTTTCTTTT 629 11.89 2.88 GGAGACCGG | 14 5.00 5.48

TTTTTTCTT 585 11.06 2.74 CCTCGAGGA 46 11.75 5.89 ACCACACCC 36 7.40 5.46

ATATATATA 582 6.20 3.83 AAAAAGAAA | 655 11.51 3.17 TTAGCCGCC 33 8.50 5.30

AGAAAAAAA 576 10.12 2.69 TCTTTTTTT 608 11.49 2.84 ACGAGGGTC 17 4.50 5.28

TTTTTCTTT 570 10.77 2.64 TCCTCGAGG 44 11.25 5.63 CATCTCATC 90 7.58 5.27

TATATATAT 569 6.13 3.94 TTTTTTCTT 585 11.06 2.75 GCTCATCGC | 51 13.00 5.26

AAGAAAAAA | 561 9.86 2.69 AAAAGAAAA | 620 10.89 2.86 CCCCACGGA | 15 5.33 5.26

Table 3: Pattern frequencies among the top 20 8- and 9-mers, sorted on C0/C1, with or without the reverse complement.
Homologous USRs due to transposons listed in (Kim et al., 1998) are counted separately. Numbers in parentheses count the
patterns with exact matches in TRANSFAC.

k 8-mer | 8-mer + RC | 9-mer | 9-mer+RC
homologous ORFs 1 0 7 3
transposons 1 6 2
motifs 11(4) 8(5) 4(0) 9 (3)
poly A/T 4 6 0 1
other 3 4 3 5

Table 4: Base frequencies and relative entropy (RE) over the 17 positive-strand occurrences of ACGAGGGTC, context of 5
on each end. Resulting consensus sequence: TCTCG ACGAGGGTC CAAAT.

A 0 0 0 0 29 | 100 0 0 100 0 0 0 0 0 5 64 | 64 | 70 17
T 88 11 82 5 64 0 0 0 0 0 0 0 100 0 5 17 17 5 64
G 0 5 5 82 0 0 0 100 0 100 | 100 | 100 0 0 0 5 11 17 5
C 11 82 11 11 5 0 100 0 0 0 0 0 0 100 | 88 11 5 5 11
RE [ 09 )10 |07 ]11|04] 1.1 1.7 | 1.7 | 1.1 1.7 | 1.7 | 1.7 | 1.2 | 1.7 | 1.2 | 0.2 | 0.2 | 0.4 | 0.2




Table 5: Alignment scores of 19 USRs containing the se-
quence: ACGAGGGTC, or its reverse complement, to the
first one of them (YALOG68C). G = global, L = local, R =
reverse complement.

G1 L1
1 YALO068C 500 | 500
2 | YCR104W 374 | 500
3 | YDR542W 145 | 34
4 YER109C -58 11
5 YGL261C 383 | 500
6 YGR130C | R | -43 9
7 YHL046C 301 | 438
8 YIL176C 380 | 500
9 YIR041W 397 | 498
10 YJL223C 380 | 500
11 | YKL199C | R | -60 8
12 | YKL224C 397 | 498
13 | YKRO86W -57 10
14 | YLLO25W 33 23
15 | YLL064C 351 | 474
16 | YLRO48W -52 10
17 | YLR461W 381 | 499
18 | YNRO76W 341 | 499
19 | YOL028C -63 10

indicating that their coding regions are also homologous.
This set of homologous ORF's re-occurs in several of the
following examples.

Further exploration of this sort of highly localized dis-
tribution pattern was facilitated by specifically selecting
for strings with this type of pattern, rather than just vi-
sually choosing them from among those selected for high
C0/C1 ratios. Specifically, the variance in location for
each string was calculated and the strings reverse sorted
on that value. A minimum of 10 matches was required.
This was quite effective in identifying a number of strings
with highly localized distribution patterns. Simply repli-
cating a single ORF in the data set will both increase the
C0/C1 ratio of the strings contained in it and decrease
the variance in their location, so strings with low vari-
ance usually have elevated C0/C1 ratios, although the
converse is not generally true.

A string may fall into more than one non-overlapping
cluster of homologous ORFs (Figure 2). Global align-
ment shows two clusters based on alignment with the
first and second ORFs (Table 6). These two sets cor-
respond to the two closely spaced spikes at about 370.
Although highly homologous within clusters, the clus-
ters show little global or local homology between them,
beyond the shared 9-mer. In both sets the string’s local
context is highly conserved, but is completely different
between sets (Tables 7 and 8). The fact that a specific
9-mer is localized in approximately the same position in
two very different ORF families may be due to random
chance, but might indicate functional significance. Fur-
ther analysis of these homologous families is provided in

tgtcacagg

Number of occurrences
N
:

o ‘ ‘ ‘ ‘ ‘
=500 -450 -400 =350 uz)ogtreéigopogfggn -150 =100 =50 0
9-mer Co | C1 |2TxCo0/C1
TGTCACAGG | 16 | 194 2.23
CCTGTGACA | 7 | 200 .95

Figure 2: Distribution and counts for TGTCACAGG and
its reverse complement.

Table 6: Alignment scores of 23 USRs containing the se-
quence TGTCACAGG, or its reverse complement, to the first
and second ones (YALO68C and YBR302C). G = global, L
= local, R = reverse complement.

Gl G2 L1 L2
1 YALO068C 500 | -49 | 500 9
2 YBR302C -49 | 500 9 500
3 YCR027C | R | -40 | -56 9 8
4 YDL248W -46 | 466 14 | 495
5 YDR519W | R | -33 | -30 9 10
6 YELO31W -38 | -34 10 11
7 YER042W | R | -35 | -42 9 9
8 YFL042C R | -45 | -50 10 9
9 YFL062W -46 | 393 11 | 493
10 | YGLO55W | R | -42 | -48 9 8
11 YGL261C 383 | -39 | 500 10
12 | YGR295C -43 | 350 11 | 497
13 YHL034C -47 | -34 9 9
14 | YHL048W -51 | 482 9 500
15 | YIR041W 397 | -40 | 498 10
16 YJR161C -49 | 490 9 500
17 | YKL224C 397 | -46 | 498 10
18 YLL064C 351 | -22 | 474 9
19 | YML132W -49 | 500 9 500
20 | YMRO14W | R | -34 | -40 8 13
21 | YNL336W -47 | 488 9 499
22 | YPL222W -46 | -45 11 13
23 | YPRI136C R | -54 | -41 12 8




Table 7: Base frequencies and relative entropy for the 5 occurrences of TGTCACAGG contained in ORFs homologous with
YALO068C, context of 5 on each end. Resulting consensus sequence: GGAAA TGTCACAGG CACAG.

A 0 0 100 | 100 | 100 0 0 0 0 100 0 100 0 0 0 80 0 80 0
T 0 0 0 0 0 100 0 100 0 0 0 0 0 0 0 0 0 0 0
G 100 | 100 0 0 0 0 100 0 0 0 0 0 100 | 100 0 20 0 20 80
C 0 0 0 0 0 0 0 0 100 0 100 0 0 0 100 0 100 0 20
RE | 1.7 | 1.7 1.1 1.1 1.1 1.2 1.7 | 1.2 1.7 | 1.1 1.7 | 1.1 1.7 | 1.7 1.7 1 0.8 | 1.7 | 0.8 | 1.2

Table 8: Base frequencies and relative entropy for the 8 occurrences of TGTCACAGG contained in ORFs homologous with
YBR302C, context of 5 on each end. Resulting consensus sequence: AGTTT TGTCACAGG AAATC.

A 100 0 0 0 0 0 0 0 0 100 0 100 0 0 75 | 100 | 87 0 0
T 0 12 | 100 | 100 | 100 | 100 0 100 0 0 0 0 0 0 0 0 12 | 100 0
G 0 87 0 0 0 0 100 0 0 0 0 0 100 | 100 0 0 0 0 0
C 0 0 0 0 0 0 0 0 100 0 100 0 0 0 25 0 0 0 100
RE | 1.1 | 1.3 | 1.2 1.2 | 1.2 | 1.2 | 1.7 | 1.2 | 1.7 | 1.1 1.7 | 1.1 1.7 | 1.7 | 0.7 | 1.1 | 0.8 | 1.2 | 1.7

Appendix A.

3.3.2 Two-stranded localization:

ORFs

divergent

Another variation on this type of highly localized distri-
bution pattern occurs when both the string and its RC
are highly localized (Figure 3). In such cases, the ORFs
containing the RC generally form a separate homology
group from those containing the string itself. In this
example, alignment with the USR of YCR104W (which
contains the string on the direct strand) produces a ho-
mology set of 9 ORFs, and alignment with the USR of
YBL108W (which contains the RC) produces a separate
homology set of 6 ORFs (Table 9). The set of 9 ORFs
is a subset of the large set of 21 homologous ORFs con-
sidered in Appendix A.

The 20-base consensus contexts of the string (S) and
its reverse complement (R) show almost perfect local
homology:

S=AAAGATGAGATATGGAGGAT [-]GCTAAATGAGCATCTGTTAA
R=AAAGATGAGATATGGAGAAT [-] TCTAAATGAGCATCTGTTAA
[-1=ATGTGAGGT

This extended local RC homology suggests that one set
might be globally homologous to the RC of the other.
However, global alignment does not show any global ho-
mology between the two sets if the ORFs are aligned
with either the RC of the first or third ORF. Local align-
ment shows some local homology though. These scores
are shown in the final two columns of Table 9, where
the ORFs are locally aligned with the RC of the first
and third ORFs. Based on this value, it appears that
there is in fact considerable local RC homology between
the two sets, with the homologous region being roughly
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Figure 3: Distribution and counts for ATGTGAGGT and
its reverse complement.



Table 9: Alignment scores of 27 UTRs containing the se-
quence ATGTGAGGT, or its reverse complement, to the first
and third ones (YBL108W and YCR104W). G = global, L
= local, R = reverse complement.

G1 G3 | LR1 | LR3
1 YBL108W | R | 500 | -72 14 208
2 YCR103C R | 392 | -63 10 208
3 YCR104W -72 | 500 | 208 12
4 YCRX09C -82 | -66 11 9
5 YDR487C -84 | -91 12 8
6 YGL260W | R | 433 | -75 14 204
7 YGL261C -70 | 397 | 204 11
8 YHL022C R | -57 | -78 12 11
9 YIL150C R | -79 | -62 8 14
10 YIL174W R | 139 | -T1 14 310
11 YIL176C -71 | 413 | 204 11
12 YIR040C R | 353 | -66 14 205
13 | YIR041W -67 | 398 | 205 11
14 YJL223C -71 | 413 | 204 11
15 YJR082C R | -74 | -64 11 12
16 | YKL223W | R | 347 | -67 14 202
17 | YKL224C -63 | 390 | 202 11
18 YLL064C -68 | 446 | 208 10
19 | YLR461W -77 | 401 | 204 12
20 | YMR214W | R | -80 | -72 9 9
21 | YNRO76W -59 | 437 | 205 10
22 | YOLI121C -87 | -61 10 19
23 | YOR190W | R | -73 | -97 10 9
24 | YOR295W | R | -75 | -85 10 9
25 | YPL26TW | R | -71 | -69 8 10
26 | YPR162C -79 | -70 10 9
27 | YPRI8W | R | -60 | -75 11 11

Table 10: ORFs homologous with YBL108W.

YBL108W | 500
YCR103C | 397
YGL260W | 433
YHLO045W | 410
YIL174W 139

YIR040C 358
YKL223W | 352
YMR324C | 326

200 bases long. ORF number 10 is an exception with a
homologous region of roughly 300 bases.

There may be other mechanisms that can produce this
sort of spatial distribution pattern (a string and its RC
both tightly localized), but in this case it is associated
with a set of divergently transcribed ORFs. Specifically,
global alignment of the first ORF with the whole data set
produces a slightly larger homology set of 8 ORFs (Ta-
ble 10). Comparing this expanded set to the expanded
homologous family of 21 ORFs in Appendix A, it is ap-
parent that 6 of the 8 ORFs are physically adjacent to
ORF's in the large set and on different strands of the
DNA (eg. YCR103C and YCR104W). This means their
USRs potentially overlap, with the overlapped region of
one USR being the RC of the overlapped region of the
other. A distance of 500 between the divergent ORFs
(that is a distance of 500 between their “0” points) would
produce perfect RC homology in the current 500-base
data set. The 6 divergent pairs all have a distance of
approximately 200, resulting in a local RC homology of
approximately 200 bases. This also means that the 500-
base USR of each ORF extends 300 bases into the coding
region of its divergent partner. Regularities within this
region might reflect coding constrains as well as regula-
tory ones. With this arrangement, the sum of the dis-
tances to each of the two spikes in the distribution (170
+ 40) is equal to the distance between the two ORFs.

Any two adjacent ORFs potentially have such an ar-
rangement if they occur on opposite strands of the DNA,
and there are 1343 divergent ORF pairs that overlap to
some extent in their 500-base USRs, but the fact that
two homologous ORF families would pair this way indi-
cates that the divergent ORFs have frequently replicated
together. Note however that there are 8 ORFs in one set,
21 in the other, and only 6 adjacent pairs, so the rela-
tionship between sets is not one-to-one. Either the ORFs
have also replicated independently, or they replicated as
intact pairs but sufficient mutations accumulated so that
one member of the pair is no longer recognizable as an
ORF. For example, YBL108W (Tables 9 and 10) does
not have a divergent partner, but the “empty” region
immediately upstream of it is in fact homologous to the
divergent partners of the 6 ORFs in Table 10 that do
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Figure 4: Distribution and counts for GGCTAAGCG and
its reverse complement.

have identified partners. Thus, a pseudogene can be as-
signed to that region.

Strings are sometimes localized in more than one posi-
tion (Figure 4). This string was identified using C0/C'1
since the two widely spaced peaks on the top strand,
while highly localized, produce a large variance.

As might be expected, the ORFs fall into three ho-
mology classes corresponding to the three peaks in the
distribution, two for the string and one for the RC (Ta-
ble 11). The RC of ORF 3 is both locally and globally
homologous with one set of ORFs containing the string
but only locally homologous with the other. The two
sets containing the string are locally homologous with
each other.

The combination of multiple sets with local, global and
RC homology in the ORF's sharing the above string is
interesting in its own right, but there is one novel feature
about the distribution; the string almost always repeats.
In Figure 5, the location of the string or its RC is shown
in each of the 18 USRs it occurs in. The significance of
the repeat is unknown.

To summarize the homology results, sorting 9-mers
on C0/C1 without the RC identifies a number of strings
with tightly localized distribution patterns. In general,
these strings are the most conserved portion of larger
homology regions between ORFs and can be further in-
vestigated by specifically looking for strings with simi-
lar localized distribution patterns. This is achieved by
sorting on location variance. Localized strings are used
to identify groups of homologous ORFs, which are then
further analyzed for conserved regions. Once an initial

Table 11: Alignment scores of 18 USRs containing the se-
quence GGCTAAGCG, or its reverse complement, to the
third , fourth, and eight ones (YDR544C, YDR545W, and
YGR296W). G = global, L =local, R = reverse complement.

G3 | G4 | G8 | GR3 | L4 | LR3
1 YCR060W R | -62 | -41 | -39 -57 9 11
2 YDR210W -59 | -69 | -46 -62 10 10
3 YDR544C R | 500 | -51 | -61 -43 8 8
4 YDR545W -51 | 500 | -47 -46 500 | 203
5 YER189W -50 | 395 | -55 -50 478 | 222
6 YFL064C -42 | 411 | -46 -43 484 | 198
7 | YFR0O31C-A -52 | -61 | -77 -58 10 10
8 YGR296W -61 | -47 | 500 385 165 | 462
9 YIL177C -41 | 458 | -39 -41 500 | 198
10 YJL225C -41 | 458 | -39 -41 500 | 198
11 YKL107TW -53 | -32 | -38 -48 10 11
12 YLR467TW -51 | 500 | -47 -46 500 | 203
13 YML133C -49 | 494 | -45 -46 499 | 204
14 YNL338W R | 498 | -52 | -61 -43 8 8
15 YNL339C -61 | -47 | 500 385 165 | 462
16 YPL135W R | -66 | -47 | -58 -56 9 10
17 YPL283C -61 | -47 | 500 385 165 | 462
18 YPR202W -62 | -55 | 190 151 162 | 224

Figure 5: Location of the sequence GGCTAAGCG or its RC
in the 18 500bp USRs containing it (Table 11).



homology group is identified, additional group members
are extracted by aligning a group member against the
entire data set. Distributions with more than one spike
often result in separate homology groups for each spike.
Distribution patterns in which both the string and its RC
are localized generally define separate homology groups
resulting from divergently transcribed ORF's with over-
lapping USRs. A number of highly conserved strings are
identified. The main point, however, is not to investi-
gate homologous ORFs in depth since there are at least
160 ORFs in this set of subtelomerically-replicated seg-
ments. The goal here is to develop a methodology and
consider a few examples of some of the most distinctive
localization patterns with their possible causes and/or
implications.

3.4 Broad Symmetric Distribution:

Regulatory Motifs

Another frequent spatial distribution pattern for strings
with high C0/C1 ratios is shown in Figure 6. Includ-
ing the RC in the calculation of C0/C1 helps identify
symmetric distributions but it is not a necessity for find-
ing them. In this type of distribution, a string and its
RC occur with a broad distribution pattern localized
around 50 to 200 bps. This corresponds to a preferred
region observed in previous work (Brazma et al., 1998;
Hampson et al., 2000; Hughes et al., 2000). For 8-mers,
this is the most common distribution pattern for strings
with high C0/C1 ratio. For 9-mers it is a common
pattern if both the string and its RC are included in
the C0/C1 calculation. Close inspection of the individ-
ual strings with this distribution pattern indicates that
many of them result from a small set of longer, degener-
ate motifs. Three examples which appear to be involved
in expression regulation will be considered here.

The set of ORFs containing the above string or its
RC is too large to include, but shows no global and only
limited local alignment homology (12 or 13 bps on the
average). The local consensus context shows evidence of
weak conservation:

S=TTTTTTTTTTAAATATTTGA [-]ATTTTTTTTATAAAATATAA
R=TTTTTTATTTTAATTTTTTA[-]JATTTTTTTTAAAAAATATAA
[-1=AAATTTTTC

The similarity between the string and RC context in-
dicates some conservation in bases, but the local context
is actually quite variable if the full probability table is
considered.

A similar situation arises for another string (Figure
7) which will be considered in more detail. Most of the
general conclusions drawn about it are applicable to the
previous string. In fact, the two have a strong tendency
to co-occur in the same USRs. Both have been previ-
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Figure 6: Distribution and counts for AAATTTTTC and
its reverse complement.

ously identified based on other extraction mechanisms
(Hampson et al., 2000; Hughes et al., 2000).

Again there is no evidence of global or extended local
homology between the ORFs containing the string, but
there is a limited amount of local homology around the
shared string as measured by the consensus context:

S=AATTTTTTTTTATTAATTTT [-]1TTAAAAAAAAAATTAAAAAA
R=TATTTAATTTTTTAAATTTT[-]TTAAAAAAAAAAATAATAAA
[-1=GCGATGAGC

The consensus context indicates some local conserva-
tion since the context is similar for the string and its RC.
However, it over-states the case since it does not indicate
the actual amount of variability. For example, while the
5-base consensus context is identical for the string and
its RC in the above example, it is actually quite variable
on a case-by-case basis (Table 12).

A random consensus context would generally consist
of all As and Ts simply because these are the most com-
mon bases, so the fact that the 20-base consensus context
consists entirely of As and Ts does not necessarily mean
that the area is abnormally AT-rich. The 5-base con-
text, with an average AT frequency of about 71% rather
than the expected 60% for a random context is slightly
elevated though.

Also, while there is considerable variation at each po-
sition in the context, it is interesting to note that the
two probability tables are actually quite similar. This is
because an abnormally large number of occurrences are
in the context of divergent ORF pairs. There are 1343
divergent pairs that overlap in their 500 bp region, with



Table 12: Top half: base frequencies and relative entropy for the 67 positive-strand occurrences of GCGATGAGC,
context of 5 on each end. Resulting consensus sequence: ATTTT GCGATGAGC TTAAA. Bottom half: Same for
51 RC occurrences. Resulting consensus sequence: ATTTT GCGATGAGC TTAAA.

A [ 44 [ 32 |31 ] 40 | 16 | 0 0 0 | 100 | O 0 | 100 ] O 0 | 20 | 22 | 47 | 43 | 46

T 28 38 43 41 53 0 0 0 0 100 0 0 0 0 70 41 19 23 17

G 13 10 14 17 | 100 0 100 0 0 100 0 100 0 2 28 10 28 22

C 13 17 10 8 11 0 100 0 0 0 0 0 0 100 5 7 22 4 13

RE |00 00000101 1.7 | 17 | 17 | 1.1 | 1.2 | 17 | 1.1 | 1.7 | 1.7 |04 [ 01 | 0.1 | 0.1 | 0.1

A 41 31 31 31 13 0 0 0 100 0 0 100 0 0 19 23 43 43 37

T 37 41 43 45 62 0 0 0 0 100 0 0 0 0 70 45 19 23 21

G 1 11 11 11 9 100 0 100 0 0 100 0 100 0 0 25 11 27 23

C 19 15 13 11 13 0 100 0 0 0 0 0 0 100 9 5 25 5 17

RE |01 0000|0102 1.7 | 1.7 | 1.7 | 1.1 | 1.2 | 1.7 | 1.1 | 1.7 | 1.7 | 04 | 0.1 | 0.1 | 0.1 | 0.0
an average overlap of approximately 290, so the proba-
bility that any given occurrence of a k-mer will also be
counted as its RC in a divergent partner is approximately
((2 x 1343)/6225) x (290/500) = .25, or .27 if measured
empirically for random 2-mers, 3-mers and 4-mers. By
this argument, approximately (67 + 51)/2 * .27 = 16
in each set should be due to divergent ORF pairs, when
in fact 36 are. This produces a high degree of symme-
try in the two probability tables. The significance of
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Figure 7: Distribution and counts for GCGATGAGC and
its reverse complement.
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this association with divergent pairs is unknown, but it
is probably not a coincidence that many of the diver-
gent pairs containing this string overlap in a way that
preserves the preferred location (approximately 120) for
both the string and its RC.

Strings with this sort of broad distribution pattern are
not adequately identified by sorting on location variance,
but it is possible to devise specialized measures for this
type of distribution. One simple and effective method
is to sort on the ratio of counts in the 50-200 region to
the total number of counts in the complete USR. Strings
with this type of localization pattern that were found
using C0/C1 almost always had similar distributions for
the string and its RC and this was also true for most of
the strings selected for the 50-200 region. Consequently,
sorting on the combined ratio for the string and its RC
is probably justified. A minimum of 40 matches (string
+ RC) was required. A number of strings can be iden-
tified using this specialized metric, almost all having an
elevated C0/C1 ratio and an unexpectedly high number
of divergent pairs.

Many strings identified this way show a strong corre-
lation with expression regulation during oxidative stress,
so like homologous ORF families, the set of ORFs
containing the string can be analyzed separately as a
co-regulated ORF family (Appendix B). A number of
strings are over-represented in this set besides the string
used to define it. These additional conserved strings are
candidate regulatory motifs.

The results in Appendix B are all with respect to
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Figure 8: Distribution and counts for TTACCCGGA and
its reverse complement.

oxidative stress, but strings identified by C0/C1 will
presumably also correlate with other gene expression
patterns resulting from other experimental treatments.
Such a string is shown in Figure 8. Like the previous
string, this is an identified motif (Brazma et al., 1998;
Hughes et al., 2000), has little base conservation in
its consensus context, and occurs in divergent ORFs
more frequently than expected. But unlike the previous
strings, it is not correlated with a decrease in expression
during oxidative stress.

To summarize the regulatory motif results, sorting
8-mers and 9-mers on C0/C1 identifies a number of
strings with a broad, approximately symmetric, localiza-
tion pattern in the 50-200 bp upstream of the transcrip-
tion start point. These strings do not participate in a
broader homology region. Many of them appear to result
from a small number of degenerate motifs. The strings
occur in the context of divergent ORF's more frequently
than expected and tend to co-occur in the same USRs.
Many of these strings are correlated with down regu-
lation during oxidative stress, or simply with elevated
expression during normal growth conditions. The effect
may increase with the number of occurrences per ORF.
Sorting on on/off, down/up, or the fraction of counts in
the 50-200 region, preferentially identifies such strings.

3.5 Broad Asymmetric Distribution:

Strings of Ts and As

Ts and As are over-represented in the USR with fre-
quencies of approximately AxT~30% and Cr~G~20%.
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Because of this bias, strings with high AT/GC ra-
tio have elevated C0 and C0/C1 values. However,
even within this context, three types of AT-rich k-mers
stand out because of their extreme over-representation
and distinctive localization: long strings of Ts possi-
bly interrupted by a single C, long strings of As pos-
sibly interrupted by a single G, and alternating Ts
and As. The first two are RCs of each other and the
third is its own RC. Similar sequences were reported
in (Hughes et al., 2000), and runs of Ts, As, and al-
ternating TAs are also strongly over-represented with a
broad hill-shaped spatial distribution in the region down-
stream of ORFs (van Helden et al., 2000). Interestingly,
the dinucleotide TA is under-represented across a wide
range of organisms, including yeast (Burge et al., 1992;
Karlin & Mrazek, 1997).

These strings are of special interest since they are the
most frequent strings in the USR. Consequently, strings
of this type can be identified simply by sorting on CO.
The two strings consisting of all Tss and all As are always
the first and second on the list when strings are sorted
on CO0 alone (3 < k < 10), and runs of Ts containing
a single C and runs of As containing a single G occupy
many of the other top spots. For example, of the top
20 9-mers when sorted on C0 (Table 2), all Ts and all
As are first and second, while Ts with a C and As with
a G fill 14 of the remaining positions. Alternating TAs
fill 2 more. 18 of the 20 form RC pairs even though the
strings were sorted on their individual C'O values.

Consecutive runs of Ts and As have a distinct, some-
what asymmetric distribution pattern (Figure 9). Runs
of Ts containing a C, and runs of As containing a G show
similar distribution patterns.

Consecutive runs of Ts and As are highly over-
represented: for 9-mers, 1320 and 1250 versus an ex-
pected 60 based on the first-order frequency of Ts and
As. They do not occur in the context of large-scale ho-
mology or in an unexpected number of divergent ORF
pairs. They are not strongly correlated with changes
in expression. However, they do show some correlation
with high on/off values (Appendix B), and, conversely,
sorting for high on/off identifies strings with runs of Ts
and As. One of the strings considered in the previous
section, AAATTTTTC, can be viewed from this perspec-
tive: it contains runs of both Ts and As, has a slightly
asymmetric distribution much like longer runs of Ts/As,
and has a high on/off value.

The preference for interrupting a run of Ts with
a C can be seen in the local context of the string
TTTTCTTTT (Table 13). There is only partial base
conservation, but the enhanced probability of Ts and Cs
is still apparent.

The tendency for runs of Ts and As is reflected in the
probability of seeing a T or A based on what precedes



Table 13: Base frequencies and relative entropy for the 629 positive-strand occurrences of TTTTCTTTT, context of
5 on each end. Resulting consensus sequence: TTTTT TTTTCTTTT TTTTT.

A 21 23 19 22 14 0 0 0 0 0 0 0 0 0 8 14 18 16 20
T 45 42 48 46 53 | 100 | 100 | 100 | 100 0 100 | 100 | 100 | 100 | 58 48 50 49 48
G 12 13 11 10 9 0 0 0 0 0 0 0 0 0 11 10 10 11 12
C 20 20 20 21 21 0 0 0 0 100 0 0 0 0 20 25 20 22 18
RE | 0.1 | 0.0 | 0.1 | 0.1 ] 0.2 1.2 1.2 1.2 1.2 1.7 | 1.2 1.2 1.2 1.2 102010101 0.1

teetttttt

Table 14: Probability of extending a preceding run of As,

Cs, Gs, and Ts.
min # of prec. Ts | prob A | prob T | prob G | prob C
0 .3166 3128 1834 1872
1 .2602 .3662 .1858 .1882
2 .2107 .4047 .1823 .2031
3 .1933 14394 .1604 .2083
4 .1695 4753 .1443 2124
5 .1442 .5360 .1199 .2016
500 450 400 350 -a00 250 <200 150 -100 <50 0 6 1168 6082 -0995 1769
7 .0965 .6453 .0852 1748
9-mer Cco C1 27x C0/C1 min # of prec. As | prob A | prob T | prob G | prob C
TTTTTTTTT | 1320 | 12397 2.87 0 .3166 .3128 1834 1872
AAAAAAAAA | 1250 | 12060 2.80 L 3643 | 2806 | .1858 | .1684
2 .4000 .2448 .1970 .1568
. .. . 3 4320 2284 1927 .1435
Flgure 9: Distribution and counts for TTTTTTTTT and 7} 1616 5135 To1d 1965
its reverse complement. 5 5239 | 1983 | .1721 | .1029
6 .6040 .1659 .1501 0776
7 .6448 1492 .1385 .0655

it (Tat?le 14)'. The more Ts that precede g‘locatlon, the i 7 of proc-Gs | orob A | prob T [ prob G | prob O
more likely it is to be another T. In addition, a run of 0 3166 3198 1834 1872

Ts is more likely to be followed by a C than a G. Similar 1 3167 2784 1946 2106
results are obtained for runs of As. Cs and Gs show a 2 -3186 2770 -1869 2181
different pattern for the length of their runs. 3 3141 | 2809 | .1860 | .2195
This shows that Ts and As tend to clump together, g ggg 'gigé ;Z?Z ';i’gg
but does not explain the observed localization patterns. 6 3195 | 1603 | 3378 | 1489
One possible explanation is that the distribution of long 7 .3057 1189 L4755 .1019
runs of Ts and As simply results from the underlying min # of prec. Cs | prob A | prob T | prob G | prob C
distribution of the individual bases. That is, if individ- 0 3166 | .3128 | .1834 | .1872
ual Ts are denser in a particular region of the USR, runs ; 22(1)3 :gﬁi :12?2 jggg
of Ts would also be expected to be denser in that re- 3 3108 3385 1598 1922
gion. Based on the nucleotide probabilities at each of 4 .3069 .3294 .1559 .2083
the 500 positions in the USR, the expected distribution 5 -2866 -3097 -1479 -2566
pattern of any string can be computed. For k& < 4, the 6 2302 3611 1128 2979
7 1822 .3036 .0607 .4555

expected and observed are close for runs of Ts, but for
longer runs the observed is increasingly in excess of the
expected. Thus, rather than the frequency of individual
Ts determining the distribution of runs of Ts, the con-
verse in more likely. A similar situation occurs with runs
of As.

Alternating Ts and As show a similar distribution
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Figure 10: Distribution and counts for TATATATA (equal
to its reverse complement).

(Figure 10) perfectly symmetric, however, since it is
reverse-complement invariant-hence only the string is
shown. The peak appears to fall between the peaks of
runs of Ts and As. The consensus context shows that
the string occurs in the context of longer runs of TA
alternation.

S=TATATATATATATATATATA [-1TATATATATATATATATATA
[-]1=TATATATA

The 5-base context is TA-rich and shows the prefer-
ence for T-A alternation (Table 15). Global alignment of
ORFs containing the string shows no evidence of global
homology, and only limited local homology based on the
extended region of TA alternation.

These sequences all have remarkable structural prop-
erties. Runs of A’s (or T’s) are the stiffest as can
be ascertained using a number of dinucleotide or trin-
ucleotide structural scales (Baldi et al., 1999; Baldi
& Baisnée, 2000), ranging from DNAse I bendability
(Brukner et al., 1995), to propeller twist angle (Has-
san & Calladine, 1996), to protein deformability (OIl-
son et al., 1998). Such regions of DNA are unlikely to
bend easily and probably are bad candidates for nu-
cleosome positioning when % is large. A number of
promoters in yeast contain homopolymeric dA:dT el-
ements. Such homopolymeric tracts are known from
X-ray crystallography to be straight and rigid (Nelson
et al., 1987). Studies in two different yeast species
have shown that the homopolymeric elements destabilize
nucleosomes and thereby facilitate the access of tran-
scription factors bound nearby (Iyer & Struhl, 1995;
Zhu & Thiele, 1996). A single G (resp. C) in a run of
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A’s (resp. T’s) preserves the purine (resp. pyrimidine)
tract and is unlikely to modify the stiffness properties.
The triplet ATA/TAT, characteristic of the TATA box,
is highly flexible according to the bendability scale, con-
sistently with experimental results (Parvin et al., 1995;
Starr et al., 1995; Grove et al., 1996). Runs of alter-
nating ATs can be shown to have maximal cumulative
bendability (Baldi & Baisnée, 2000) and are likely to
be associated with flexible stretches of DNA, the role of
which remains to be determined.

4  Discussion

Over-representation is an effective method for identify-
ing biologically important k-mers in raw genomic DNA
sequences. In addition, localization analysis can be used
to refine the results obtained from over-representation
analysis alone.

All k-mers of a given length were scored and sorted
based on the over-representation measure C0/C1. Sur-
prisingly, most over-represented k-mers have highly non-
random distribution patterns. Three common patterns
were chosen for further investigation. The first corre-
sponded to conserved regions in homologous ORF fami-
lies, the second resulted from certain types of regulatory
motifs, and the third resulted from strings containing
runs of Ts and As and TAs. Sorting on up/down and
on/off expression levels identified many of the same k-
mers as the second and third groups. Other distinctive
distribution patterns exist, but these provide a reason-
able sample of the most common distribution patterns
that are selected for using C0/C1 on the complete set
of yeast’s USRs. High-scoring k-mers sometimes result
from transposon long terminal repeats, but that source
of over-representation is not pursued in this paper.

The approach used here was motivated in part by the
method described in (van Helden et al., 1998). In that
approach, possible motif instances are identified by look-
ing for strings that are over-represented in an experimen-
tally derived test set of ORF's which respond in a similar
fashion to a shift in growth conditions. The expectation
is that over-represented strings in the set are apt to be
causally related to the observed pattern of expression
that defines the set. Specifically, the observed number
of occurrences of a string in the whole genome is used to
calculate the probability of seeing X or more occurrences
in the test set by chance, where X is the observed count
in the test set. The smaller the probability, the greater
the degree of over-representation. This can be calculated
for all k-mers and sorted.

This approach works well for highly conserved mo-
tifs (those with little variability and thus only a few
different motif instances) but degrades as variability in-
creases, since the over-representation of each individual



Table 15: Base frequencies and relative entropy over 984 positive-strand occurrences of TATATATA, context of 5 on
each end. Resulting consensus sequence: ATATA TATATATA TATAT.

A 50 23 53 28 46 0 100 0 100 0 100 0 100 | 17 61 18 54 22
T 26 50 20 37 21 100 0 100 0 100 0 100 0 60 17 59 20 54
G 12 11 14 11 20 0 0 0 0 0 0 0 0 8 12 10 14 10
C 10 14 11 22 11 0 0 0 0 0 0 0 0 13 8 11 9 11
RE (0101|0100 0.1]| 12 1.1 1.2 1.1 1.2 1.1 1.2 1.1 (02|02 02]|0.1]|0.1

motif instance decreases as the number of different mo-
tif instances increases. In order to extend the power of
the approach, over-representation of the M1 and M2
set, corresponding respectively to one or two base pair
chances, for each MO0 string was also computed (Hamp-
son et al., 2000). Based on artificial data, this was
effective in identifying motifs and motif instances that
could not be identified using over-representation of the
MO strings only.

This established the utility of using M0, M1 (and
sometimes M2) statistics, and the general idea of using
over-representation to identify potential motif instances.
Consequently, when considering the genome as a whole,
the idea of “single mismatch over-representation” based
on the C0/C1 ratio was a simple and at least plausible
criteria on which to order strings. Its main attraction
is that it is fast and can be applied directly to the data
set without the need for clustering or expression data.
Run time is linear with the size of the data set, so large
sets can be accommodated. Of course global analysis of
the entire data set is likely to preferentially identify the
most general features, so separate analysis of individual
regions or subsets is also productive when meaningful
groups are available. Similarities and differences with
other organisms is also of interest.

Other measures of over-representation are possible,
such as sorting on CO alone, the C0/E,(C0) ratio, or
the probability of seeing C0O occurrences given the C'1 or
E,(CO0) counts. These other measures sort the strings in
different orders, identifying different k-mers of interest,
and possibly finding other types of distribution patterns.
However, the C0/C1 ratio was sufficiently effective in
identifying biologically interesting k-mers that alterna-
tive over-representation measures were not extensively
explored.

There is no reason to expect that most interesting bio-
logical sequences are over-represented against single mis-
matches, but the converse appears to be true: strings
that are over-represented against single mismatches do
appear to be biologically interesting. As a specific point
of interest, it was observed that strings with a high
C0/C1 ratio generally have distinctive spatial distribu-
tion patterns. Some of these patterns could be explained
based on known properties of yeast USRs, and some
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could not. Based on our initial investigations, several
of these patterns proved to be productive points of de-
parture for exploring other properties of the USR, and
it seems likely that other strings with these distribu-
tion patterns or other distribution patterns that were
not considered here will be equally interesting.

Most importantly, what emerges from our analysis is
a general data-mining methodology for regulatory and
other regions in large genomic data sets that is compu-
tationally efficient and can flexibly accommodate com-
plementary DNA microarray data. In the case of USRs,
the flow chart can be summarize as:

1. Identify possible interesting k-mers, for instance by
computing over-representation using C0/C1, or some
other measure, applied to both the coding strand and
the coding strand plus its reverse complement.

2. Analyze the context of these strings using standard
alignment and profile methods.

3. Analyze the spatial distribution of these strings using
filters, such as low location variance.

4. Analyze the structure of these strings using structural
scales, such as bendability.

5. Focus on strings with highly non-random context
and/or spatial distribution and/or structural profiles
across the USRs containing them.

6. Strings with highly conserved context and low spatial
variance correspond to homologous USRs. The source of
homology, such as transposable elements, can be further
investigated.

7. The remaining strings, with highly non-random con-
text /localization/structure can be clustered into differ-
ent “patterns” and are likely to play significant roles,
including regulatory motifs.

Here we have applied systematically this approach to
yeast USRs. No doubt, some of the parameters we find in
the non-random distribution patterns, such as the “50-
200 bp”, are organism-dependent. Thus we are in the
process of further corroborating and extending the ap-
proach to other genomes. But the yeast results already
show that this approach can contribute to our under-
standing of the large-scale organization of genomes and
the “lexicon” of regulatory regions.



Table 16: Sets of ORFs obtained by global alignment of
ORFs 1 and 2 (YAL068C and YBR302C) against all 6225
ORFs in the data set.

Aligned with 1 Aligned with 2
YAL068C 500 YBR302C 500
YAR020C 20 YDL248W 466
YBR301W 85 YFL062W 393
YCR104W 374 YGR295C 350
YDR542W 145 YHL048W 482
YEL049W 40 YIR044C 328
YFL020C 20 YJR161C 490
YGL261C 383 YML132W 500
YGR294W 84 YNL336W 488
YHLO046C 301
YIL176C 380
YIR041W 397
YJL223C 380
YKL224C 397
YLL025W 33
YLL064C 351
YLR037C 30
YLR461W 381
YMR325W 280
YNRO76W 341
YOL161C 256

5 Appendix A: Further analysis

of homologous ORF families

Once an initial cluster has been identified, a more com-
prehensive (and slower) search can be made through the
entire data set to find further ORFs that have some ho-
mology to a representative member of the set. For ex-
ample, globally aligning the first and second ORFs in
Table 6 against all 6225 ORFs in the data set yields the
sets in Table 16. This expands the number of ORFs in
the two sets from 5 and 8 to 21 and 9.

It takes several minutes to align one ORF against the
entire data set, so while it is possible to extract a ho-
mologous ORF cluster by aligning one or more cluster
members against the complete data set, it is generally
impractical to discover clusters by aligning all ORFs
against all other ORFs, which in this case would take
at least a week. Given sufficient resources, such exhaus-
tive alignment can be done (Hampson et al., 2000) but
similar results can be achieved in a few minutes by using
C0/C1 or variance to identify conserved strings and can-
didate clusters which are then fleshed out by exhaustive
alignment using selected cluster members.

Given a family of homologous ORFs, it is possible to
investigate which parts are most conserved and which
parts are variable. Like looking for conserved regions of
homologous ORF's across different species, families of ho-
mologous ORFs within a single species can be analyzed
for conserved regions.

The set of 21 ORF's in Table 16 show a considerable
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amount of variability in their global alignment scores
when aligned with the first on the list, indicating a wide
range of homology, but 20 of the 21 contain the 8-mer
AACAAATA, all at position 10. Likewise, 20 of the 21
contain TATAAATA at position 100. In both cases the
RC does not occur at all. There are numerous conserved
strings in the set, and many of the most highly con-
served strings are in the 0-100 region, suggesting there
is something special about this area. This is the basal
promoter region, which is in fact quite different from the
rest of the USR. For example, unlike the rest of the USR
where regulatory motifs may occur on either strand of
the DNA, much of the structure of the basal promoter
region is asymmetric. It is generally assumed that regu-
latory motifs occur upstream of this region. The second
example above, TATAAATA, is possibly an example of
TATA box. Because of its specialized role, it is useful to
restrict analysis to just the area between 0 and 100. Var-
ious over-represented strings and distinctive distribution
patterns are observed in that region which are obscured
when the entire 0-500 region is analyzed.

The best representation of ORF families based on USR
homology would probably be a hierarchy reflecting the
duplication points and subsequent divergence of the ho-
mologous ORFs. For example, based on pairwise global
alignment scores, a bottom-up clustering of one set of
homologous USRs produces the binary tree in Figure
11, which provides a possible phylogeny for the set of
ORFs. The tree is constructed by sequentially merg-
ing sets that produce the largest average pairwise global
alignment score over all USRs in the merged set. The
sets are initialized to the individual USRs.

YHLO46C

YGL261C

YLR461W

YIL176C

YKL224C

YJL223C

L L]

YIR041W

YLLO64C

YNRO76W

}7

YCR104W

YALO68C

Figure 11: Binary tree resulting from hierarchical clustering
of homologous USRs.

Another use of pairwise alignment scores is to look at
the location of homologous ORFs within the complete
genome. Specifically, in Figure 12, the location of each
ORF that has at least one homologous partner with a
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Figure 12: Location of all 149 ORFs with at least one local
USR alignment score greater than 350.

local alignment score greater than 350 is shown over the
16 chromosomes of yeast. Additional members of these
homologous ORF sets could be identified by lowering the
cutoff from 350, but between 50 and 250, transposable
elements are the predominant reason for USR homology.
All chromosomes are scaled to the same length. It is
apparent that most of the ORF's are in the subtelomeric
region of the chromosomes, and most large homologous
ORF families are exclusively in that region. The biolog-
ical significance of this localization is not known. Fur-
thermore, a detailed inspection shows that most of the
homologous ORFs occur in small contiguous blocks of 4
or 5 ORFs, indicating that they duplicated as a unit.

6 Appendix B: Further analysis

of co-regulated ORF families

Strings with this sort of distribution pattern are fre-
quently associated with rapid changes in gene expression
during oxidative stress, almost always with a decrease
in expression (Hampson et al., 2000). For example, for
ORF's containing the string GCGATGAGC (Figure 7),
3 went up and 26 went down, and for its RC 2 went
up and 20 went down. This compares to the genome
as a whole in which approximately as many went up as
down. ORFs were classified as up or down if they showed
at least a 1.5 fold change in expression during the first
ten minutes. A background level of 20 was added to
each expression value before the fold change was calcu-
lated in order to eliminate incorrect classification based
on random background differences between essentially
unexpressed ORFs. Using this method 1543 ORFs were
classified as changed, 730 up and 813 down. Stricter
classification criteria changed the absolute numbers but
did not change the general conclusions.

Strings with this spatial distribution pattern were of-
ten associated with decreased expression, and the con-
verse was also generally true. If the strings were sorted
on their up/down ratio, those with high ratios showed
little localization while those with low ratios frequently
showed the above pattern.

ORF's that measurably decrease in expression must be
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initially expressed at a measurable level. Consequently,
strings that are correlated with down regulation may also
be correlated with significant expression at time zero, i.e.
during normal growth conditions. This was investigated
by classifying ORF's with an expression less than 30 as off
and those greater than 250 as on. Using these somewhat
arbitrary cutoffs, 1524 ORF's were on and 1681 were off.

Many strings with this type of distribution are in
fact associated with a high on/off ratio, and conversely,
sorting for high on/off values preferentially identifies
strings with this distribution pattern. The k-mer,
AAATTTTTC (Figure 6), is a particularly good exam-
ple of this. It is associated with both high on/off and low
up/down values. Conversely, sorting for high on/off or
low up/down values preferentially identifies this string
and variants of it.

Like sorting on variance or localization in the 50-200
region, sorting on the on/off or up/down ratio is in it-
self another method of identifying interesting strings,
specifically ones that are likely to be regulatory motif
instances. For example, the well-known stress element
CCCCT has the highest up/down ratio over all 5-mers
during oxidative stress and its RC AGGGG has the third
highest ratio. While it is possible that a string may be
effective on one strand only, sorting on the combined
up/down ratio for a string and its RC does appear to
favor known motifs. By this measure, the stress ele-
ment is first on the list for 5-mers. Further improvement
in motif identification is possible if the probability of
a string’s observed up/down counts is calculated based
on the global up/down counts rather than sorting on a
simple up/down ratio (Hampson et al., 2000), but motif
finding based on up/down or on/off counts is not pur-
sued here. Neither the stress element or its RC have
a high C0/C1 ratio, showing that although strings with
high C0/C1 are generally interesting, the converse is not
necessarily true.

It was observed that the up/down ratio can show a
multiplicity effect: the magnitude of the ratio is corre-
lated with the number of times a string occurs in an
ORF. For example, for the stress element, the up/down
ratio monotonically increases for the sets of ORFs hav-
ing a minimum of 0 through 5 copies of the string or its
RC (Table 17).

This multiplicity effect provides additional evidence
that the string in question is a regulatory motif. Un-
fortunately, like most long strings, the 9-mer GCGAT-
GAGC (Figure 7) never occurs more than once per ORF,
so this test is not always applicable. However, by consid-
ering all 1-base variations on the original 9-mer (that is,
its M1 set), it is apparent that several are similarly over-
represented, localized and correlated with reduced ex-
pression. These one-base variations can be combined in
the TUPAC motif [GT][CA]JGATGAG[CAG], which has



Table 17: Minimum number of copies of the stress element
CCCCT versus up/down ratio.

min copies | up | down | up/down
0 730 813 .90
1 330 231 1.43
2 112 40 2.80
3 34 5 6.80
4 11 1 11.00
5 4 0 Inf
Table 18: Copies of the IUPAC  motif
[GT][CA]GATGAG[CAG] versus up/down ratio.
min copies | up | down | up/down
0 730 813 .90
1 37 175 21
2 0 21 .00
3 0 1 .00

a much larger number of instances (648) and does show a
multiplicity effect (Table 18). As seen in Table 12, there
is some conservation of bases in the string’s context, and
at a minimum, the IUPAC motif should be extended to
a 10-mer by adding a T on the right end.

This highlights a drawback of identifying exact k-mers
as regulatory motifs: in many cases the actual motif may
be degenerate. For example, the above IUPAC motif
matches 12 different 9-mers, and if the motif if statisti-
cally interesting, all of its subsets, supersets and shifted
versions will also be to a lesser extent. The relationship
among these exact k-mers is not always apparent since
they may be intermixed with instances of other degen-
erate motifs.

A more general criticism is that individual k-mers
might be functionally inactive and statistically unre-
markable, but important in combination. Such strings
would not be found, but there are sufficient strings that
are individually interesting that the issue can be de-
ferred.

The standard approach to motif identification is to
first identify families of co-regulated genes. The most
common approach is to cluster expression data (De-
Risi et al., 1997),(Eisen et al., 1998), (Brown et al.,
2000), (Hu et al., 2000). Gene expression data, how-
ever, is not always available and can be highly variable
(Lee et al., 2000; Hegde et al., 2000; Long et al., 2001;
Baldi & Long, 2001). Alternatively, a literature search
was used in (van Helden et al., 1998) to produce 10 fam-
ilies of co-regulated yeast genes that could be used for
analysis see also (Hughes et al., 2000)).

Determining the optimum motif description based on
limited data is also a difficult process with many dif-
ferent approaches. In (van Helden et al., 1998), bind-
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ing sites are represented as exact k-mers, and a statisti-
cal measure of over-representation is used to find them.
In (Brazma et al., 1998), a restricted regular expres-
sion language is used to find them via an efficient al-
gorithm for computing suffix trees. The most common
recent representation for DNA binding sites is probabil-
ity matrices (Bailey & Elkan, 1995; Chen et al., 1995;
Brown et al., 2000; Hu et al., 2000). In order to make
the search through the space of probability matrices
tractable, most programs carry out some form of heuris-
tic search, resulting in the well-known problems with
hill-climbing algorithms (see also (Pevzner & Sze, 2000;
Pevzner, 2000) and references therein). We have devel-
oped a hill-climbing algorithm to optimize IUPAC motifs
for over-representation ((Hampson et al., 2000)), but the
process of motif optimization is not pursued here.
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