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Abstract—The Internet-of-Things (IoT) has quickly evolved to
a new appified era where third-party developers can write apps
for IoT platforms using programming frameworks. Like other
appified platforms, e.g., the smartphone platform, the permission
system plays an important role in platform security. However,
design flaws in current IoT platform permission models have
been reported recently, exposing users to significant harm such as
break-ins and theft. To solve these problems, a new access control
model is needed for both current and future IoT platforms. In this
paper, we propose ContexIoT, a context-based permission system
for appified IoT platforms that provides contextual integrity by
supporting fine-grained context identification for sensitive actions,
and runtime prompts with rich context information to help users
perform effective access control. Context definition in ContexIoT
is at the inter-procedure control and data flow levels, that we
show to be more comprehensive than previous context-based
permission systems for the smartphone platform. ContexIoT is
designed to be backward compatible and thus can be directly
adopted by current IoT platforms.

We prototype ContexIoT on the Samsung SmartThings plat-
form, with an automatic app patching mechanism developed to
support unmodified commodity SmartThings apps. To evaluate
the system’s effectiveness, we perform the first extensive study
of possible attacks on appified IoT platforms by reproducing
reported IoT attacks and constructing new IoT attacks based
on smartphone malware classes. We categorize these attacks
based on lifecycle and adversary techniques, and build the first
taxonomized IoT attack app dataset. Evaluating ContexIoT on
this dataset, we find that it can effectively distinguish the attack
context for all the tested apps. The performance evaluation on
283 commodity IoT apps shows that the app patching adds nearly
negligible delay to the event triggering latency, and the permission
request frequency is far below the threshold that is considered
to risk user habituation or annoyance.

I. INTRODUCTION

The Internet-of-Things (IoT) has quickly evolved from
its initial stage where sensors and actuators each provide
hard-coded and disjoint functionality, to a new appified era,

where programming frameworks are provided for third-party
developers to build applications (apps) to manage a single or
even a number of smart devices at the same time to realize
more advanced and smarter control. Many such appified IoT
platforms, for example Samsung SmartThings [13], Apple
HomeKit [3], and Google Weave/Brillo [7], have already
gained great popularity among home users today.

Like other appified platforms such as the smartphone
platform, the permission model plays an important role in
the security of these appified IoT platforms, defining an app’s
access to sensitive resources [19]. However, security-critical
design flaws in the permission1 model of these platforms, for
example overprivilege problems due to the current coarse-
grained permission definitions, have already been reported
recently, exposing smart home users to significant harm such
as break-ins and theft [35]. To solve these problems, a new
access control model is needed in these appified IoT platforms
in order to provide home users with more fine-grained control
of app behavior.

Existing access control mechanisms employed by the most
recent appified platform with huge popularity—the smartphone
platform—have long been criticized to be coarse-grained,
insufficient, and undemanding [19], [56], [64], [67], which
are quite similar to the aforementioned problems in current
IoT platforms. From numerous studies on Android and iOS
permission systems, a key design flaw is that they either
require users to make uninformed decision at install time [1]
or prompt users at runtime when an app requests any of a
handful of resources, without providing essential contextual
information [2], [8]. These studies conclude that it is highly
desirable to put the user in context when making permission
granting decisions at runtime. This helps ensure a property
known as “contextual integrity” defined by Nissenbaum [52]
with which “information flows according to contextual norms,”
and it is advocated as the desired norm for future permission
system design of the smartphone platform [64], [68], [19].

Taking lessons from previous permission systems, in this
paper we aim to provide contextual integrity in appified IoT
platforms in order to solve the security problems arising in
current IoT platform permission systems. However, as dis-
cussed in previous attempts to support it in the smartphone
platform [64], [19], providing contextual integrity in appified
systems is challenging due to two reasons:

1SmartThings uses the term capability instead of permission [35]
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• Availability of context is not guaranteed in the life-
cycle of the app: majority of sensitive permission
requests occur when the user is not interacting with
the requesting app [64]. This situation only gets worse
in the IoT scenario, since unlike the UI-oriented
smartphone apps, the whole point of developing IoT
apps is to provide automated device control with min-
imum user involvement. Except sending notifications,
usually no user interaction is required after the app
setup procedure, making it more difficult to involve
user in the context at runtime.

• Frequency of prompts is another important factor
for a permission system to be effective [64]. On the
smartphone platform, since the request frequencies
for some permissions are too high to prompt the
user each time a request occurs without risking user
habituation or annoyance, current designs shift toward
a model of only prompting the user the first time a
request occurs to increase usability [64]. However,
this harms contextual integrity since the subsequent
sensitive actions may be performed in a completely
different context than that of the initial request.

In view of these challenges, we design and implement
ContexIoT (means putting IoT into context), a context-based
permission system for appified IoT platforms which supports
fine-grained identification of context for a sensitive action and
runtime prompts with rich context information to help provide
contextual integrity. In our design, the context is defined at
inter-procedure control and data flow levels, and can be flexibly
tuned to support different context granularity in order to best
balance security and usability. ContexIoT is designed to be
backward compatible, and thus can be directly adopted by
current IoT platforms to provide more effective access control.

At a high level, ContexIoT design is based on the observa-
tion that a permission granted by the user is expected to allow
the triggered app functionality only under that particular usage
context. We abstract the usage context of an app functionality
as a program path, and thus define the context as the execution
flow of the code at runtime, including how the functionality is
triggered and what data is flowing along the execution path.
This definition falls into the trigger-action based programming
model of IoT apps [62], so that when the user is prompted,
the context can be naturally represented as the triggering
sequence of real-world physical events. To help the user make
a more informed decision, we use taint analysis to track the
runtime data on the execution path and label the data source
when presenting the context information to the user, e.g.,
showing whether the data to be sent out is the user password
or just the battery level. We compare ContexIoT context
definition with existing context-based security approaches for
smartphone platforms, and find that our fine-grained definition
at inter-procedural control and data flow levels can successfully
identify stealthy attack paths that can evade other systems,
showing better visibility than previous design.

We built a prototype of ContexIoT on the Samsung Smart-
Things platform, which at the time of writing has the largest
number of supported device types and IoT apps (called Smar-
tApps) among all the IoT platforms [35]. To support existing
SmartApps without changing the closed-source SmartThings

cloud backend, we developed an app patching mechanism that
can convert unmodified commodity SmartApps to ContexIoT-
compatible SmartApps. The patching process separates the
execution flow of a sensitive action in the original SmartApp
into two steps: (1) Collect the context information before the
action is executed, and (2) Allow or deny the action based on
the in-context user decision. ContexIoT uses a cloud backend
to remember the previous decisions by maintaining a mapping
between an in-context sensitive action for an app and the
granting decision. If no mapping is found, the system prompts
the user with the context and the requested action, and stores
the user decision to the ContexIoT cloud backend.

To evaluate the effectiveness of our approach, we exten-
sively collect the reported IoT attacks from multiple sources.
For exploits on non-appified platforms, we explore the pos-
sibility of migrating them to appified IoT platforms. In total,
we have constructed 10 SmartApps that are either malware or
vulnerable apps based on the reported IoT attacks. Considering
that appified IoT platforms are still in a primitive stage and
not many attacks are reported, we further survey malware
classes from appified smartphone platforms. We taxonomize
them into 4 categories based on the malware lifecycle, with
3–6 species in each category. Out of the 17 species in total,
we find that 15 of them can be naturally migrated to IoT
platforms due to the similarity of appified platforms. Overall,
we build an IoT attack app dataset with 25 SmartApps, each
representing a unique attack class. Evaluating ContexIoT on
this dataset, we find that all 25 different attack execution
paths have been successfully distinguished with the context
information correctness manually confirmed.

For performance evaluation, we build a dynamic testing
framework based on the device simulator provided by the
SmartThings IDE. Using this framework, we dynamically
inject virtual device events and are able to trigger all the 916
event handling logic in 283 SmartApps. From the performance
measurement results, we find that the SmartApp patching
logic only introduces 67.1 ms additional delay on average,
which is negligible in practice since the end-to-end latency is
dominated by the network latency between the SmartThings
cloud backend and the physical device. We also evaluate the
frequency of prompts, and find that the average possible life-
time of permission request prompts is only 3.5 times for each
SmartApp on average, which is far below the threshold that is
considered to risk user habituation or annoyance [67], [64].

To summarize, our contributions are three-fold:

• To understand the design requirements for a context-
based permission system on IoT platforms, we per-
form the first extensive study of possible attacks on
appified IoT platforms by reproducing reported IoT
attacks and constructing new IoT attacks based on
smartphone malware classes. We categorize these at-
tacks based on the lifecycle and adversary techniques,
and build the first taxonomized IoT attack app dataset
with 25 SmartApps, each representing a unique attack
class.

• We design and implement ContexIoT, a context-based
permission system for appified IoT platforms that
supports fine-grained context identification and rich
context information prompting at runtime to help pro-
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vide contextual integrity. To distinguish fine-grained
context, ContexIoT defines context as execution paths
at inter-procedure control and data flow levels, which
is shown to be more comprehensive than previous
designs for smartphone platforms. To help users make
more informed decisions, ContexIoT also labels the
data source of the runtime data using taint analy-
sis. To provide backward compatibility, ContexIoT
contributes an app-patching mechanism that converts
existing IoT apps to ContexIoT-compatible apps.

• We prototype ContexIoT on the Samsung SmartThings
platform, and evaluate it on our IoT attack app dataset
for system effectiveness with over 283 existing Smar-
tApps for system performance. For the attack app
dataset, we find that all attack execution paths have
been successfully distinguished with correct context
information annotated. The performance evaluation
results indicate that ContexIoT app patching adds
nearly negligible delay, and the permission request
frequency is far below the threshold that is considered
to risk user habituation or annoyance.

II. RELATED WORK AND BACKGROUND

In this section, we cover previous work on permission-
based access access control and IoT security, and necessary
background for Samsung SmartThings platform.

A. Related Work

1) Permission-based Access Control: The permission-
based access control plays an important role in the security
of appified platforms, and has received a lot of attention
by the security research community [33], [21], [50], [67].
Acar et al. pointed out that the current concept of permission
granting mechanism has failed in practice, and proposed a
clean break to seek for permission revolutions [19]. Backes et
al. advocates contextual integrity as the desired norm for future
permission systems design based on a rigorous user study on
Android platform [64]. Roesner et al. introduced User-Driven
Access Control where the user is kept involved with access
control decisions in case-by-case basis by using access control
gadgers [56]. Rahmati et al. introduced the concept of context-
specific access control [54] in Android where app Activities
are used to distinguish different user contexts. Compared to
these previous systems for the smartphone platforms, this paper
aims to provide contextual integrity to the IoT platforms, which
faces several IoT specific challenges, e.g., it is more difficult
to involve users in the context. Also, the context in ContexIoT
is defined at both control and data flow levels, which is more
fine-grained. We compare our context definition with those in
these previous work later in §V, and it shows that our definition
is more comprehensive and can defeat attacks that can evade
these previous design.

Another line of research focuses on improving the usability
of the permission system. Felt et al. introduced a set of
guidelines on when and how to request permissions [34], which
can instruct the design of default security policies. Wijesekera
et al. suggested the systems to learn about their users’ privacy
preferences and only confront users with consent dialogs when
a permission request is unexpected for the user [64]. Keley et
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Fig. 1: SmartThings architecture overview

al. proposed to enrich permission dialogs with more detailed
privacy-related information to help users make more effective
decision [44]. In comparison, ContexIoT targets an orthogonal
goal, i.e., enabling effective identification of fine-grained con-
text for security sensitive actions. Leveraging the rich context
information collected in ContexIoT, these approaches can be
combined with ContexIoT to improve usability.

2) IoT Security: The IoT security research is centered
around three themes: Devices, Protocols and Platforms. In
the IoT device scope, many Telnet-capable IoT devices are
reported to be vulnerable due to weak/default password or
unprotected debugging interfaces [69]. Ur et al. identified prob-
lems in the access control of the Philips Hue lighting system
and the Kwikset door lock that fails to enable essential use
cases [61]. Ronen et al. demonstrated extended functionality
attacks on smart lights that can leak information and causing
seizures using strobed light [57].

On the protocol level, researchers demonstrated flaws in
the ZigBee and ZWave protocol implementations of IoT de-
vices [37]. More recently, the misusing of some protocols
in some IoT specific scenarios has been reported to cause
security and safety problems [40]. For example, using the
BLE (Bluetooth Low Energy) range as the proof to verify
physical proximity is considered insecure in the auto-unlock
usage scenario. In our work, we extensively survey these IoT
attacks, and explore the feasibility of migrating them to the
appified IoT platform.

On the IoT platform level, recent work discovered a series
of security-critical design flaws such as the coarse-grained
permission definition on the SmartThings platform [35]. To
limit the usage of sensitive data, Fernandes et al. proposed
the FlowFence framework [36] that supports flow policy rules
for IoT apps. Our work is similarly motivated by the secu-
rity problems in the appified IoT platforms. However, unlike
FlowFence, our approach does not require additional devel-
oper effort and is backward compatible. Moreover, ContexIoT
allows user control in cases where a particular data flow might
be allowed in one scenario, but should be blocked in another.

B. Background

In this paper, we focus on the Samsung SmartThings plat-
form, which uses a popular cloud-backed architecture design
as shown in Figure 1. Other popular IoT platforms such as
Apple’s HomeKit and Google’s Weave/Brillo also use such
design, and the differences only lie in the communication
protocols used in the wireless hop. As shown later in §V,
ContexIoT also leverages such cloud-backed architecture, and
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thus is generally applicable to these popular IoT platforms
today.

As shown in Figure 1, the SmartThings ecosystem consists
of three major components: a hub, a SmartThings cloud
backend, and a smartphone Companion App. The IoT apps
in the SmartThings platform are called SmartApps, which are
written in Groovy using the Web based IDE provided by
SmartThings. These SmartApps are not running on the IoT
devices. Instead, they are executed by the SmartThings cloud
platform within a sandboxed environment. The sandbox is
an implementation of a Groovy source code transformation
that only allows whitelisted method calls to succeed in the
SmartApp, and thus disables some object-oriented language
features in Groovy such as creating classes. The SmartApp
can choose to expose web service endpoints to respond to
HTTP requests from external application, which is protected
by OAuth-based authentication. Note that SmartApps support
dynamic method invocation (using the GString feature), and
thus similar to the reflection feature in some programming
languages such as Java, a method can be invoked by providing
its name as a string parameter. In later sections, we detail the
security problems caused by this dynamic feature and how
ContexIoT addresses it.

The cloud backend also runs the SmartDevices, which are
software wrappers for physical devices in the user’s home.
A SmartApp and a SmartDevice communicate in two ways
(1) The SmartApp invokes operations on the SmartDevices
via method call (e.g., to lock the door), (2) The SmartApp
subscribes to events that the SmartDevices generates (e.g.,
smoke detected). The communication between a SmartApp
and the functionality of a SmartDevice are controlled by the
permission model, which is called the capability system of the
SmartThings platform.

The current capability model of the SmartThings platform
only provides coarse-grained binding between SmartApps and
SmartDevices. Capability defines a set of commands and
attributes that devices can support, and SmartApps state the
capabilities they need. Based on that, users bind SmartDevices
to SmartApps at the app installation time. Recent work has
uncovered several security problems with the permission/ca-
pability system of the SmartThings platform such as overpriv-
ilege [35]. In this paper, we design and implement ContexIoT,
a context-based permission system for appified IoT platforms
to address these problems.

III. THREAT MODEL AND PROBLEM SCOPE

Threat model. In this paper, we consider app-level IoT
attacks on the appified IoT platforms which attempt to access
IoT users’ sensitive data or execute privileged functionality.
The attacker can launch the attack through either (1) malware,
in which the malicious logic is embedded at the IoT app
install time, or (2) vulnerable apps, which contain design or
implementation flaws that can be exploited by a co-located
malicious IoT app or a remote network attacker to escalate
its privilege and cause damages such as unauthorized device
control and sensitive data theft. In this paper, we assume the
platform itself to be trustworthy and uncompromised, thus
some recent IoT attacks exploting the unprocted management
interfaces of IoT devices to compromise the hardware (e.g.,

Mirai attack[9]) are not in our scope; Securing the platform
by reducing its attack surface is orthogonal to our research
(e.g., [22]).

Goal and problem scope. The goal of ContexIoT is
to raise the bar for the aforementioned app-level attacks
by providing context integrity support. To achieve the goal,
ContexIoT aims to enable a user to validate two important
properties when a sensitive action is triggered at runtime:
(1) When: whether the sensitive action is triggered at the
user-desired conditions, and (2) What: whether the sensitive
action matches the user-intended action. Runtime data content
validation and protection are also in our scope, since to perform
effective access control, the user needs to understand what the
data is being accessed or about to be sent.

Since we target app-level attacks, attacks not exploiting
app-level vulnerabilities are out of our scope. For example,
attacks using stolen external service security tokens due to the
weak protection of these external services [35] are considered
as a separate problem, and should be taken care of by the
provider of each service integrated with SmartThings. Also,
the denial-of-service (DoS) behavior of “ignoring the func-
tionality” [57] is not in our scope. For instance, a malicious
break-in alert app that claims to notify the user when it detects
a break-in may ignore the event instead of sending alerts. In
this paper, we target attacks with explicit code-level malicious
logic, which can cause more severe damage such as privilege
escalation and sensitive data theft compared to DoS.

IV. ATTACK TAXONOMY

To better understand the security and privacy issues asso-
ciated with the current appified IoT platforms, we performed
an extensive survey of attacks reported on both IoT devices
and the smartphone platforms, and studied the feasibility of
their migration to the SmartThings platform. For all attacks
that are applicable, we constructed misbehaving SmartApps
that achieve similar malicious functionality to guide our design
and evaluate the effectiveness of our system.

A. Reported IoT Attacks

Similar to the early stages of any emerging technology, the
priority of most vendors are functionalities and faster time-to-
market of their products, while security and privacy have not
received much attention. The security of IoT platforms are not
hypothetical concerns as a number of real attacks have already
been reported. For example, IoT devices being compromised to
use as bots to launch DDoS attack [69], the misusing of BLE
range to confirm physical proximity are leveraged by attacker
to unlock your vehicle and door [40], [38]. Table I lists the
reported attack instances we collected from sources including
both academic papers and news articles. We categorize them
into three classes based on the problem area.

1) Vulnerable Authentication: Authentication plays an im-
portant role in the whole lifecycle of IoT devices, and vulnera-
ble authentication is spotted in many critical procedures of IoT
devices. For example, a vulnerable device-pairing mechanism
may allow attacker to take full control of the device. Due to
the lack of displaying functionality in many IoT devices, a
management console is typically provided using protocols such
as Telnet, HTTP and SSH, which can suffer from problems
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TABLE I: A taxonomy of reported IoT attacks and their applicability to the SmartThings platform

Problem area Attack description Platform Attack vectors References Applicable to ST?

Vulnerable
authentication

Backdoor pin code injec-
tion

SmartThings Stealing OAuth tokens; Inject command into Web
Service SmartApp

[35] X

Get remote shell of de-
vice

Telnet-capable IoT
devices

Weak/default password; Credential included in the
image; Unprotected debugging interface

[53], [69], [12] N/A

Leaking information /
creating seizures using
strobed light

Smart connected
LEDs

Unsecured device pairing procedure [57] X

Impersonate device to
steal data

Bonjour-supported
IoT devices

Unable to handle name collision in the local
network

[24] N/A

Malicious
app/firmware

Door lock pin code
snooping

SmartThings Overprivilege due to the SmartApp-SmartDevice
coarse-binding

[35] X

Disabling vacation mode SmartThings Misusing logic of a benign SmartApp to do event
spoofing

[35] X

Fake alarm SmartThings Controlling device without gaining appropriate
capability

[35] X

Surreptitious
surveillance

Sony surveillance
camera

Installed with malware in the device retailing
process

[17] X

Spyware Barcode scanner Preloaded with malicious firmware [5] X

Problematic
usage
scenario

Undesired unlocking BLE Smart locks Misusing BLE range to confirm the physical prox-
imity of user

[40] X

BLE relay unlocking BLE Smart locks Misusing BLE range to confirm physical proxim-
ity of user; BLE Replay attack

[40], [38] X

Lock access revocation /
logging evasion

DGC lock Failing to ensure state consistency between device
and server

[40] X

such as weak or default password. We find that beside gaining
a remote shell on the devices, many attacks can be easily
implemented as malicious SmartApps and distributed in the
platform. For example, a malicious smart light control app
can perform similar malicious activities as described in [57]
to use luminance as side channel to inform thieves near the
house that the owner is not at home, or creating seizures using
strobed lights.

2) Malicious App/Firmware: Even before the emerging of
appified IoT platforms, malicious preloaded application or
firmware have already been reported [17], [5]. Functionalities
of these malicious app/firmware can be easily migrated to
SmartThings platform, as it opens a broad range of device
capabilities to 3rd party developers. For example, one of our
constructed malicious SmartApp show how an attacker can
surreptitiously spy on the daily life of house owner if the user
installed the malware disguised as normal surveillance camera
app. In addition, some attacks that has already been reported
as feasible on SmartThings platform [35], such as snooping
the door lock pin code, are also included, and used to guide
our system design.

3) Problematic Usage Scenario: Another category of IoT
attacks exploits the misusing of technology in some IoT
specific usage scenarios. For example, using the presence of
user’s device in the BLE range as indicator of user’s presence
at the door is considered problematic, since it may undesirably
unlock all the doors of the house due to the long range of
BLE. We found that such problems can also be reproduced in
SmartThings using the capability granted to the SmartApps.

B. Migrated from The Smartphone Platforms

Security requirements of appified IoT platforms and the
smartphone platforms share many similarities, including the
definition of access to resources, and privilege separation. We
surveyed the mobile malware ecosystem, and categorized them
based on the different techniques they used in 4 aspects of their

lifecycle below. We discussed the possibility of each malware
classes to be appified on SmartThings platforms, and construct
real malicious SmartApps for demonstration and evaluation
purposes if applicable.

1) Installation.: The most common technique seen in mo-
bile malware samples to distribute themselves is to repackage
their malicious app logic into commodity apps that claim
normal functionality. This attack venue is clearly applicable to
IoT malware. Moreover, we find that the app update procedure,
which is reported to have been leveraged by mobile malware
to carry out their malicious payload is also vulnerable in the
SmartThings platform. SmartThings makes it very convenient
for SmartApp developers to deploy their updates, by automat-
ically updating the cloud instances of the SmartApp for all the
user. In this mode, the attacker can disguise the malicious logic
of their apps by not piggybacking the entire malicious payload
into the original app, but slowly introducing it through future
updates. In addition, drive-by download can also be easily
adopted by attacker to entice users to download the malware
app.

2) Activation: Malicious logic can potentially be triggered
by various events. We categorize these events into three cate-
gories: (1) Remote command (e.g., incoming SMS), (2) User
events (e.g., user click), and (3) System events. The trigger-
action programming model of IoT provides similar flexibility
for attacker to embed their malicious app logic into any of
the three types of events. Specifically, some IoT events are
very informative and may leak sensitive data to untrusted apps
that don’t have essential capability. For instance, the mode
change (home/away/night) events are broadcasted system-wide
and an malicious app that doesn’t have the access to any
sensing devices can know when the house owner is leaving
by receiving the broadcast, and facilitating potential break-in.

3) Adversary Technique: Two basic principles that guide
the design of malware are to (1) carry out the malicious
payload as fully as possible under the system constraints

5



TABLE II: A taxonomy of smartphone malware classes and their applicability to the SmartThings platform

Category and descriptions References Applicable to ST?

Installation
Repackaging: Malicious logic are enclosed into high-profile apps to trick user to download [27], [74], [26], [42] X
App update: Malicious payloads are downloaded during the app update process for disguising purpose [66], [74] X
Drive-by Download: Enticing user to download the “interesting” or “feature-rich” apps [74] X

Activation
Remote command: Attacker controlled remote input, e.g., incoming SMS [74], [39] X
User events: Event triggered by the user, e.g., button click [39] X
System events: Event generated by the system, e.g., boot complete event [74], [46] X

Adversary
technique

Abusing permission: malicious app logic abuses the privilege granted to the app [39], [31], [51] X
Exploiting weakness of general system design: generic system mechanisms such as IPC [63], [23] X
Exploiting weakness of platform specific features: techniques specific to platform, e.g., native code [19], [20], [49], [47] X
Exploiting system vulnerability: security flaws and bugs in the system e.g., root exploits [59], [71], [43], [65], [18] N/A
Shadow payload: disguise malicious payload using obfuscation or encryption techniques [74], [55] X
Side channel: carry out malicious payload using covert channel [32], [70], [72], [29] X

Malicious
payload

Remote control: Taking control of user’s device with C&C servers [74], [46] X
Spyware: Aiming to gather information from the victims without their knowledge [39], [31], [51], [72], [48] X
Adware: Downloading and displaying unwanted ads on the user’s device [58], [46], [42] X
Ransomware: Installed covertly to DoS the device and demands a ransom payment to restore it [45], [43] X
Privilege escalation: Exploiting a bug or design flaw of the system to gain elevated access [59], [65], [73], [47] N/A

to achieve maximum benefit; (2) evade detection to prolong
their life-time. Guided by these principles various adversary
techniques are used that we categorize into 6 classes shown
in Table II. Except exploiting system vulnerability, such as
root exploits which is orthogonal to our research, techniques
in all other 5 categories can be applied to the appified
IoT platforms. For example, the permission mechanism of
commodity platforms offers “all or nothing”, meaning that
once the permission is granted, the privilege can be used for
any purpose. This allows malicious app logic to abuse the
trusted granted to the declared benign functionality of the same
app. Such overprivilege are common in SmartThings platform
where a AutoLock SmartApp also has the capability to unlock
the door anytime [35]. Another interesting evasion technique
is to use IPC between malicious apps to carry out malicious
payload. and we demonstrate on SmartThings that even IPC is
not supported by the platform, malicious SmartApps with least
privilege can collaborate to leak sensitive data such as door
lock pin code through the device status as side-channel [35].
In addition, weaknesses in platform specific features can also
be leveraged by IoT malware. For example, the GString
support of the Groovy language enables attacker to modify
the control flow of the app at runtime, which can be used to
evade all static analysis based malware detection systems.

4) Malicious Payload.: Existing smartphone malware can
be largely characterized by their carried payloads. We par-
tition these payloads into five different categories: remote
control,spyware,adware,ransomware, and privilege escalation.
Among them, privilege escalation leverages the vulnerabilities
of the system, and is out of the scope of our work. Remote
control and spyware are two common types of payload on
the smartphone platforms and can be easily adopted by IoT
malware. Adware is a type of app that downloads and display
unwanted ads to the user. There are many channels including
push notification and SMS in IoT platforms that can be
leveraged by adware to spread ads. Ransomware is an emerg-
ing threat to modern systems, and we demonstrate examples
showing that IoT malware can also demand ransom payment
in situations where the effect caused by the ransomware cannot
be easily reverted (e.g., when the user is on vacation).

Among all the 29 categories of attacks shown in Table I

and II, 25 of them are in the scope of our research and are
the attacks that our proposed system is designed to defeat.
Using these 25 categories, we implemented 25 malicious
apps corresponding to each of the category on SmartThings
platform, and evaluated our system against them in §VII. We
provide all of malware samples developed in this project on
our website [11] to benefit future research. Below, we will
provide more detail about three instances of the proof-of-
concept attacks we have implemented. We will refer to these
three attacks in later sections to show how our design and
implementation choices defeat these attacks.

Surveillance disabling attack (Listing 1) repackages its
malicious payload in an home monitoring app, and abuse the
switch control capability granted to this app to turn off the
surveillance camera when it detects that the owner has left to
facilitate potential break-in. It also leverages the vulnerability
in the event system of SmartThings to subscribe on the mode
change events without explicitly requiring any capability.

Pin code snooping attack (Listing 2) uses a battery
monitor SmartApp to disguise its malicious intent at the source
code level, and is first proposed in the recent work [35]. The
app subscribes on the battery report of the lock, and sends
the battery data to remote client for visualization purpose.
However, it won’t reveal its malicious payload until the victim
sets up a new pin code. Due to the overprivilege issue of
the SmartThings platform, the app subscribing on the battery
report can also receive the codeReport event when pin code
is updated, and user can distinguish the benign and malicious
behaviors only based on the runtime value.

Remote control attack (Listing 3) leverages the Groovy
dynamic method invocation and the asynchronous execution
flow to disguise its malicious payload. It pulls the attack server
everyday for new malicious command and stores them in the
global variables shared by all event handlers. A separated
process that is scheduled to run every 5 minutes invokes
the malicious command stored in the global variables using
GString, which allows attacker to potentially control all of
the devices associated with this app.

Listing 1: Code snippet of surveillance disabling attack
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1 input "switch", "capability.switch", title:
"The switch your camera is controlled by"

2 // subscribe the mode change event
3 subscribe(location,"mode",handler)
4

5 def handler(evt){
6 //turn switch off if the owner has left
7 if(evt.value == "Away"){
8 switch.off()
9 }

10 }

Listing 2: Code snippet of pin code snooping attack
1 input "lock","capability.battery", title:

"The device you want to have its battery
monitored"

2 // subscribe the battery report from the lock
3 subscribe(lock,"battery",handler)
4

5 def handler(evt){
6 //transmit battery data to graphing webservice
7 httpPost (url, evt.jsonValue)
8 }

Listing 3: Code snippet of remote control attack
1 //Subscribe on the sunset event
2 subscribe(location,"sunset",dispatcher)
3 //Schedule the handler to be executed every 5

minutes
4 schedule("0 5 * * * ?", handler)
5

6 def dispatcher(){
7 httpGet(url){
8 //Query attack server for command and store

them in global variables
9 resp->

10 state.method = resp.data[’method’]
11 state.flag = true
12 }
13 }
14 def handler(){
15 //Execute the command if it’s updated
16 if(state.flag == true){
17 "$state.method"()
18 state.flag = false
19 }
20 }

V. CONTEXIOT DESIGN

Guided by the attack survey and taxonomy, we present the
context definition in ContexIoT by identifying a set of informa-
tion that is essential to distinguish the attack and benign logic
in an app at runtime. To better clarify our context definition,
we perform a comparison between ContexIoT and previous
context-based approaches that aim at detecting malicious app
logic or enforcing policies.

A. Context Definition

We use the term sink to refer to all the security sensitive
actions of the app in later sections. As shown in Table III,

we extract the context definitions from a list of representative
related work and categorize them into 5 classes:

UID/GID. For app-level access control mechanisms, the
context used to make permission granting decision is the
identify of the app, i.e., the UID/GID from the system per-
spective. Mandatory Access Control (MAC) and Discretionary
Access Control (DAC) systems on the smartphone platforms
are several examples that use this context definition [25], [60],
[31], but they are not able to distinguish attack and benign app
logic within the same app.

UI Activity. Runtime access control systems on mobile
platforms put user in the context of an app’s UI activity to
make permission granting decisions [56], [67], [33], [31]. The
problem of using UI indicators alone is that it cannot restrict
how the app uses the sensitive data. In addition, since the UI is
generally not available in the IoT apps due to the design goal
of minimum user involvement, it cannot be integrated into the
context definition of permission systems on the IoT platforms.

Control flow. The events that trigger the execution of the
payload, and the conditional statements (e.g., environmental
attributes controlling the execution of payloads) consist of the
control flow data in the definition of context. The control
flow context of a sink is useful to distinguish attack and
benign execution paths. For example, a door unlock()
action triggered by a remote command is more suspicious
than that triggered by entering the correct pin code. However,
not all malicious behaviors can be distinguished using control
flow context alone, the data floating on the execution paths
at runtime is also necessary for making proper permission
granting decisions in certain scenarios.

Runtime value. In our attack survey, we find that the same
control-flow path can be used either for benign purpose or
carrying out attack payload depending on the runtime value of
the variables that are related to the security sensitive behavior
of the app. As shown in the pin code snooping attack (Listing
2), the control flow paths of receiving the battery report and pin
code update report are the same, and it depends on the runtime
value to distinguish them. However, using runtime value to
check contextual integrity causes usability problems since even
a tiny change in the data results in different context, and
user can be overwhelmed with the large number of decisions
to make. Moreover, presenting raw runtime data may not
necessarily inform the user about the whether the data is
sensitive or not, especially when the malware uses shadow
payload technique shown in Table II to conceal the content.

Data flow. The data dependency information in the data
flow context is critical to communicate the context to the
user. Integrating it into the context definition mitigates the
problems mentioned above by (1) reducing the number of
different context by merging the runtime data that come from
the same data origin, and (2) tagging the data dependency
information to the runtime values to help user make more
informed permission granting decision based on the property
of data being sent out.

As shown, besides the UI activity that is generally not
available for IoT apps, ContexIoT integrates all the other
context components and thus has the most comprehensive
definition of context among related work. Later in §V-C,
we further use evasion attack discussion to show how this
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TABLE III: Comparison of the context definitions among related work

Name Description
Definition of context Decision made

in context?Uid/Gid UI Activity Control flow Runtime value Data flow
ACG [56] User-driven access control X X X

AppContext* [68] Static context-based analysis for malware detection X X X -
AppFence [41] Protecting private data from being exfiltrated X X

Aurasium [67] Repackaging app to attach policy enforcement code X X X X

CRePE [30] Enforcing context-based fine-grained policy X X

FlaskDroid [25] Fine-grained MAC on middleware and kernel layer X X

SEAndroid [60] Flexible MAC for Android apps X

SEACAT [31] Integrating both MAC and DAC in the policy checks X X X X

TaintDroid [33] Dynamic taint tracking and analysis system X X X X X

TriggerScope* [39] Static trigger-based analysis for malware detection X X X -
ContexIoT Providing contextual integrity to permission granting X - X X X X

* These work focus on detecting malicious behavior with static analysis, but not enforcing access control at runtime. However, their methodologies of distinguishing benign
and malicious behavior are based on their definitions of context.

comprehensive definition can help improve the permission
system effectiveness.

B. ContexIoT Approach

We next present ContexIoT, our approach that provide
contextual integrity to the permission granting process of IoT
apps using the context definition defined in §V-A. As shown
in Figure 2, the general design of ContexIoT consists of
two major steps: (1) At the app installation time, ContexIoT
patches the app with security-focused logic to collect essential
context and separate the execution flow of the security sensi-
tive behaviors into asynchronous procedures: first request the
permission in the current context, and then perform the action
when receiving permission granting response. (2) At runtime,
the cloud-backed permission management service handles the
request from the patched apps and prompts to the user with
the context if necessary. Figure 2 shows an example in which
a malicious home temperature control app is granted with the
capability to control the window based on the temperature.
However, the attack logic embedded in the app code covertly
opens the window when it detects the mode of the home is
changed to Sleep, which allows the attacker to break in.
The ContexIoT patched app puts the open window execution
on hold and sends the collected context information to the
backend. If previous decision for this context is not found in
the backend, the permission service prompts user and takes
the permission granting decision that is made in context. The
permission service learns the security preference under this
context of the user to prevent unnecessary prompts in the
future. We introduce how ContexIoT approach collects and
uses the context as follows.

Context collection. To overcome the black-box nature of
the cloud-backed IoT platform, ContexIoT patches the context
collection logic to the app code, allowing the patched apps
to gather essential information of their own running context
without requiring system access. However, precisely tracking
all the control and data flow attributes of the app requires
adding the logging logic to almost every instruction in the app
code, which may at least double the computation overhead.
To address this challenge, ContexIoT takes an hybrid approach
combining static analysis and runtime logging to collect essen-
tial context efficiently – using static analysis results to reduce
the overhead of runtime logging.

The static analysis first identifies all the potential sinks,
which are those secure sensitive behaviors in the app code,
and constructs an Inter-procedural Control Flow Graph (ICFG)
from the program entry points to the sinks. App code that is not
on any control-flow path from the entry points to the sinks does
not need to be patched with the runtime logging logic since
it won’t affect the behavior of the sensitive action. However,
some exceptions need to be made for the app logic that may
implicitly affect the sinks, which are detailed in §VI. In addi-
tion, some context information that are deterministic statically
that doesn’t depend on runtime values are precomputed by the
static analysis and annotated on the statements of the app code
to further reduce runtime computation overhead.

ContexIoT then efficiently patches the app with the context
collection logic. The general approach is to maintain an
environment variable to store the context information for each
application variable that are labeled as related to the program
sink by the static analysis. The environment variables are
automatically updated during the execution of the app based on
the logic implemented by ContexIoT. And when the sensitive
execution is triggered at runtime, a context collection function
gathers the essential information from the environment of
all the variables along the execution path. And the context
information is sent to the backend to request permission for
executing the sensitive action.

Context usage. Among the different types of information
in our context definition, the control flow information, which
describes the triggering action of the sensitive action, together
with the runtime data should be able to distinguish the context
of attack execution path and benign execution path. And the
data flow information is used to communicate the context to
user to better inform the user the security implications.

As shown in Figure 2, the backend permission service
maintains an authorized permission-context mapping table for
each user. Every time when a ContexIoT patched app attempts
to perform a security sensitive action, a permission request
containing the context information is sent to the backend. The
cloud-based permission service checks whether the context
has been previously allowed or denied. If not, it prompts
user with a dialog presenting the permission request and the
associated context and adds an additional entry to the mapping
table to store the user’s decision as security preferences. The
context structure contains the 4 out of 5 context components
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Fig. 2: ContexIoT overview with a concrete example showing our context-based access control

TABLE IV: Evasion attacks on context-based security ap-
proaches

Name
Evasion attacks

Asynchronous
leakage

Control flow
abuse

Dynamic code
loading

Policy
abuse

ACG ×
AppContext* ×

AppFence ×
Aurasium ×
CRePE ×

FlaskDroid ×
SEAndroid ×
SEACAT ×

TaintDroid ×
TriggerScope * ×

* These work focus on detecting malicious behavior with static analysis using
context, and are thus vulnerable to dynamic code loading.

described earlier in §V-A. Our definition cannot include the
UI Activity class since it is not available in IoT apps. In the
implementation, some optimization can be applied to reduce
the frequency of prompts by merging some components, which
is detailed later in §VI.

C. Comparison with Other Context-based Security Approaches

Since our context definition contains the complete inter-
procedure control and data flow information, it can distinguish
any attack logic in the app code level. To show the effective-
ness of this design, we compare our context definition with
other context-based security approaches proposed by previous
work for smartphone platforms. In Table IV, we list a set
of evasion attacks that can bypass those systems but can
be defeated by ContexIoT. These evasion attacks fall into 4
categories as follows.

Asynchronous leakage. Sensitive data can be leaked to
remote attacker stealthily, where the accessing and the trans-
ferring of the data are executed asynchronously, using global
variables or other sources to share the data between the two
procedures. The remote control attack shown in Listing 3 is one
such example. Access control mechanisms without information
flow tracking support [56], [41], [30] can be evaded by mal-
ware that abuses the granted access to resources and covertly
leak them to the attacker. ContexIoT defeats such attack by
integrating data dependency into the context definition. For
the remote control attack, when the malicious payload is

executed, ContexIoT presents users with the data dependency
information for the sensitive action, which explicitly tells user
that the method about to be executed comes from the response
received in a separate procedure.

Control flow abuse. Access control systems that enforce
policies only at the granularity of sinks without tracking how
the sink is triggered [67], [33] is vulnerable to malware
that abuses control flow to carry out malicious payload.
For instance, a malicious lock manager app is granted with
the unlock() capability by such sink-based access control
systems the first time it attempts to unlock the door when it
detects the house owner is back. However it can reuse the same
code snippet that has already been permitted to unlock the
door upon the remote attacker’s request. In the context design
of ContexIoT, the inconsistency of the control flows in these
two scenarios are then detected, and the user’s permission are
required separately.

Dynamic code loading. Static analysis based malware
detection approaches [39], [68] can be evaded by dynamic
code loading. The GString support of SmartApps allows
malicious payload to be revealed only at runtime. ContexIoT
statically detects potential sinks for dynamic code loading, thus
prevents malicious logic from evading the access control.

Policy abuse. MAC and DAC based approaches [25], [60],
[31] grant the access at the application level based on user or
system defined policies. And they are intrinsically vulnerable
to malicious app logic that abuses the trust granted to the app
itself, which is usually seen in repackaged apps. ContexIoT
performs access control on the program path level and can
enforce finer-grained policy to distinguish benign and attack
logic in the same app.

As shown, our fine-grained context definition at inter-
procedure control and data flow levels can successfully defeat
these evasion attacks that can bypass other context-based
security approach, showing that such a comprehensive defi-
nition can greatly improve the access control effectiveness in
permission systems.

VI. IMPLEMENTATION

We build the ContexIoT mechanism on the SmartThings
platform, which supports yet the largest number of device types
(204) among all the appified IoT platforms [15]. SmartApps
are executed in the proprietary Samsung backend and our
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Listing 4: Code snippet showing how the surveillance disabling
attack app is patched with the ContexIoT secure logic

1 //Define Web API to get permission response
2 path("/response/:data"){
3 action[POST: "onResponse"]
4 }
5 state.actionQueue = []
6 subscribe (location, "mode", handler)
7 def handler(evt){
8

9 if(evt.value == "Away"){
10 //Pseudo function that collects context
11 def context = collect_context()
12 //Enqueue the sensitive app logic
13 state.actionQueue <<

[device:"switch",command:"on()"]
14 def id = state.actionQueue.length
15 //Request permission with the context
16 httpPost(url,"[’$id,$context]")
17 }
18 }
19 def onResponse(){
20 def id = params.data.id
21 def permission = params.data.response
22 if(permission == "Allow"){
23 //Dequeue the sensitive execution
24 action = state.actionQueue[id-1]
25 //Execute the sink using dynamic code loading
26 if(’switch’==$action[’device’]){
27 switch."$action[’command’]"()
28 }
29 }
30 ...
31 }

prototype of ContexIoT automatically patches the app before
they are submitted for execution. The patched security logic
communicates the context information collected at app runtime
to our own backend permission management server when
security-sensitive behavior is triggered. We detail the key
components of the app patching mechanism of ContexIoT and
the end-to-end implementation.

A. SmartApp Patching Implementation

Recall that our context definition in §V, which contains
control and data flow attributes and also runtime values.
ContexIoT enables the patched SmartApp to collect these
context information at runtime by adding the logging logic to
the instruction set of the original app. To reduce the runtime
computation overhead of maintaining the context for the whole
program, ContexIoT also employs a static analysis approach
to (1) Identify a subset of the app code that require runtime
logging to track the sensitive execution, and (2) Precompute
some context information that is deterministic statically. Based
on the annotations done by the static analysis, ContexIoT
efficiently adds instructions to log the context attributes only
for the subset of app code that is related to the sensitive
behaviors of the untrusted app.

We define the sinks of SmartApps as the security-
sensitive behaviors of the app, which contain both capability-

protected APIs that are used to control or actuate the de-
vice, and other security-critical APIs such as sendSMS()
and setLocationMode(). As of July 2016, 83 device-
control APIs protected by 67 capabilities are supported
by SmartThings, and will be recognized as sinks in our
analysis. In addition, we also consider a set of SmartApp
APIs that can be potentially used by attacker to carry
out malicious payload. For example, malware can use the
setLocationMode() to disarm the house by changing the
mode to “Home”, use httpPost to leak sensitive data, and
use sendNotificationToContacts() to send phishing
messages to the victim’s contacts. We therefore collected 36
such APIs and added them to the sink API set.

1) Static Analysis: To model the lifecycle of the SmartApp
and computes the minimum set of app code that can potentially
affect the behavior of the sink, ContexIoT builds an ICFG
for the SmartApp. The ICFG is constructed using the AST
transformation support of Groovy language [6], which allows
the static analysis to be performed directly on the Abstract
Syntax Tree (AST) generated during the compiling process.
Specifically, In the programming model of SmartApp, the
app is not continuously running, app logic is embedded in
different event handlers that are triggered by the events they
have subscribed on. We adapt our design to the trigger-action
based programming model of SmartApps, and models all the
program entry points that can potentially be triggered by
runtime events. In general, ContexIoT doesn’t patch the app
code that are not in the ICFG from the program entry points
to the sinks. However, one exception is that it will patch all
the statements that modify the value of global variables, which
are shared among executions, since they will also determine
the behavior of the sinks. The remote control attack shown in
Listing 3 is one example.

The static analysis of ContexIoT further reduces the run-
time overhead by precomputing the intra-procedural control-
flow context for program statements, which doesn’t contain
dynamic method invocation (GString) in their control-flow
paths. Similar to reflection, the dynamic method invocation
support of Groovy can modify the control-flow at runtime. The
dynamic features will be handled using runtime logging, how-
ever, except that, the intra-procedure control-flow information
for all the other statements are deterministic statically, and
ContexIoT annotates these statements with the precomputed
context. Based on the call trace collected at runtime, the
complete control-flow context for a certain sink is obtained
by composing the annotated intra-procedural context of all the
statements along the method invocation chain.

2) Runtime Logging: Excluding the intra-procedure
control-flow context that is already been computed and
annotated statically, there remain four major types of
information that are required to be collected at runtime, in
order to complete the context definition. (1) Method invocation
trace is logged by adding a variable for each method in the
app to keep track of its calling function. Every method call
expression will set the variable of the callee function with the
calling function’s signature. Once a sink is triggered, the call
trace can be extracted by tracing back the method signatures
stored in these variables. (2) Dynamic method invocation
is captured by using a variable to track the value of each
GString, which can only be determined at runtime. For
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example in the remote control attack shown in Listing 3,
when the sensitive execution in the handler is triggered
through dynamic method invocation, the patched SmartApp
will gather the device and the method name and put them into
the context. (3) Runtime data can be directly obtained from
the variables without adding new instructions to track them.
When a sink is reached at runtime, the context collection
logic gathers the current value of all the variables that the
sink statement is control-dependent on, and use them as the
runtime data in our context definition. (4) Data dependency is
critical to communicate the context with the user as described
in §V, and we design and implement a dynamic taint analysis
framework to track the data dependency information of
sink-related variables.

The dynamic taint analysis of ContexIoT maintains a taint
environment for each variable in the subset of app code output
by the static analysis. Each program variable v is associated
with a taint environment γ : v → T , where T is a set of taint
values {ti|i = 1, ..., k}. Each taint value ti is associated with a
variable vi, meaning that v is data dependent on variable vi. In
our design, variables in the taint environment gamma include
local, global, and function return variables, and are maintained
as JSON objects in our implementation. Specifically, in the
SmartThings programming language, the only global variable
is the state object, which allows developer to store data
into different fields of the object and shares the data across
executions. And our taint logic is designed to be field-sensitive
to precisely track the data dependency relationship of all the
global variables in different fields of state.

The taint propagation of ContexIoT follows the generic ap-
proach [28] and handles some Groovy-specific operations such
as the array insertion operation (<<), closure, and also the
library functions of SmartThings. We manually summarized all
the 85 SmartThings APIs available as of June 2016 in a file,
which specifies how the taint values are propagated through the
function variables to the return value. We also considered the
side effect when modeling these library functions, which is the
potential impact the functions have on the global variables. For
example, once the changeLocationMode() function sets
the global variable Mode, it will affect all the variables that
depends on it. Our analysis handles such case by updating the
taint environments for the corresponding variables when such
function calls are executed.

In addition, ContexIoT also considers implicit flows, where
the taint value is in the conditional statement that the sink is
control dependent on. The implicit flow helps capture data
dependency that is not directly propagated by assignments,
and enables the detection of information leakage through side-
channel. For instance, a malicious app we have constructed
uses the light luminance as side-channel to send sensitive
information such as the home occupancy and the lock status
to attacker nearby, which will not be detected by explicit
data flow analysis, but can be captured by implicit flow. We
label each taint value with 2 boolean values E and I in its
taint environment, for taint value coming from explicit flows
(E = true) or implicit flows (I = true). When merging two
taint values with different labels E1,I1 and E2,I2, the merged
taint value’s label is (E1||E2) and (I1||I2).

3) Secure logic patching: ContexIoT separates the exe-
cution flow of the sink into two asynchronous procedures:

first requests the permission with the collected context, and
then resumes the execution upon permission granting response.
Listing 4 shows the code snippet of the surveillance disabling
attack logic being patched by the ContexIoT. The original
sink (switch.off()) is modified to the secure logic of
enqueuing the action for future reference, and sending the
collected context to permission server. ContexIoT patches
the app with a Web API interface to receive the permission
response in an separate process to overcome the restrictions
of SmartThings on the execution time of each code block.
On receiving the response from the server, the onResponse
handler retrieves the information of the sink from the queue
and execute it, if the server allows the execution in this context.
The performance overhead of adding such secure logic is
evaluated in §VII.

B. End-to-End Implementation.

We set up the ContexIoT cloud backend service on a cloud
instance in Google App Engine, which stores the previous user
permission granting decisions. If no previous decision is found,
it prompts the user using Google Cloud Messaging through the
ContexIoT companion app to display the context and learn
the user’s decision. The basic approach for the permission
service to distinguish two context is to compare the values
of all the context attributes. However in our implementation,
differences in the runtime value may be ignored under certain
circumstances. The data floating in between SmartDevices and
SmartApps are usually in the format of key-value pair (KVP),
and in our threat model, we trust the SmartDevices to provide
the authentic KVP, where the key reflects the real property
of the data. Thus the runtime value are compared by their
keys in our implementation, and we use the pin code snooping
attack (Listing 2) to show that this design choice reduces
the prompt frequency, while maintains the effectiveness. The
malicious battery app subscribes on the device reports, and if
the KVP of two battery reports are presented in the context
as [”battery level” : 99] and [battery level” : 95], they will
be considered as the same; However, if a pin code update
report is sent out, the KVP in the context, which looks like
[”code” : 9998], will be distinguished from previous paths,
and prompted to user separately.

Figure 3 shows screenshots of the presented context infor-
mation for a malware adapted from a real SmartApp called
AutoLockDoor [4]. The legitimate functionality of this app is
to automatically lock the door after a certain period of time,
which is set by the user. In addition it checks the contact
sensor of the door before issuing the lock() command to
ensure that the door can be properly closed. Figure 3a shows
the permission dialog for this legitimate execution path, which
is consistent with the app description. However, this malware
also includes a backdoor, which allows the attacker to unlock
the door remotely via network commands when the user is
away. As shown in Figure 3b, since this malicious logic is
distinguishable in the control and data flow level, this backdoor
logic is revealed clearly in the displayed context information.

It is important to note that this is only a proof-of-concept
context presentation which dumps everything in the context
structure to the dialog. Since our context definition contains the
complete inter-procedure control and data flow information,
future IoT platforms which adopt the ContexIoT approach can
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(a) Legitimate logic: Automati-
cally lock the door after a speci-
fied period of time

(b) Backdoor logic: Unlock the
door when a remote command is
received from the network

Fig. 3: Screenshots showing the benign and attack context in
the malicious AutoLockDoor app

flexibly tune the context granularity, e.g., by shortening the
length of recorded control flow or merging current context
components, and also design better context presentation to
meet their usability requirements.

VII. EVALUATION

In this section, we evaluate our prototype implementation
of ContexIoT in (1) Effectiveness of secure logic patching;
(2) Permission request frequency, which is important for the
effectiveness of runtime permission system in practice [64],
[19]; (3) Runtime performance overhead of the additional
patching logic.

A. Effectiveness of Secure Logic Patching

To evaluate the secure logic patching mechanism, we use
ContexIoT to patch the 25 SmartApps we constructed, each
representing a unique class of malware or an vulnerable app
based on our IoT attack taxonomy in §IV. The SmartThings
IDE provides a simulator that can model the behavior of native
SmartThings devices without requiring a physical device [16].
Unfortunately, 3 of the attacks in our taxonomy involve 3rd
party devices, for example a camera with advanced features
used in the surreptitious surveillance attack [10], and thus
cannot be dynamically tested. Thus, we test our system against
22 attacks in the runtime, and only manually examine the
patched SmartApp code for the remaining 3 apps.

For effectiveness evaluation, we first check whether all the
potential sinks in these SmartApps are patched with the secure
logic, and find that ContexIoT accurately identifies and patches
all 72 potential sinks including dangerous usage of GString.
Next, we evaluate whether the attack execution paths in these
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Fig. 4: CDF of the estimated life-time permission request
prompts for 283 commodity SmartApps patched by ContexIoT

SmartApps can be distinguished from the remaining benign
paths in the runtime. By triggering all the program paths of
the 22 attack execution paths, we confirm that all of them
can be successfully recognized without any ambiguity, and the
other 3 attacks can also be identified based on the statically
computed intra-procedural context information. Overall, these
results show that our secure logic patching can accurately
identify sinks and logging essential context to distinguish
attacks execution paths.

B. Permission Request Frequency

Experimental setup. To measure permission request fre-
quency, we dynamically trigger the execution paths in a set
of SmartApps using the SmartThings IDE simulator. In the
experiment, we use 283 SmartApps out of the 502 commodity
SmartApps we collected since the rest of them can not be
simulated due to limited physical device support in the current
simulator. To automate the test, we leverage the trigger-action
programming model of SmartApp, i.e., app logics are all
triggered by external events, to generate inputs. Leveraging the
events generation support in the SmartThings IDE, we build
an automatic SmartApp dynamic testing framework using web
automation technique that can generate input to SmartApps and
efficiently trigger different event handling logic.

Using our dynamic testing framework, we measure the
life-time permission request number for each SmartApp by
triggering all possible execution paths in the app. This is an
upper bound estimation for a home user in practice, since
typically a user only use a subset of all features in an app.
For each SmartApp, we use the fuzz testing approach to
randomly generate all types of external events in different
triggering order to ensure good code coverage. Once a sink is
triggered, we log the permission requests, and automatically
grants permission to avoid double counting. The test stops
only if no prompts are generated after 50 consecutive random
events. As shown in Figure 4, the average life-time permission
request number among the 283 SmartApps are only 3.5, which
is far below the threshold that is considered to risk user
habituation or annoyance [67], [64].

C. Runtime Performance

In this section, we measure the performance overhead on
the event handling latency introduced by the secure logic
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patching in ContexIoT. The end-to-end latency for an event
execution can be broken down into 2 parts: (1) computation
latency, which is the time taken in executing the app code, (2)
sink execution latency, which is the time taken in communica-
tion between the SmartThings cloud backend and the physical
device. In ContexIoT, the secure logic patching adds latency to
the computation part since additional instructions are added to
the SmartApp used for tracking the control and data flows. At
the same time, it also adds permission request latency, which
is taken in communicating with the ContexIoT cloud backend
for permission granting. In this evaluation, we only measure
the latency added by the ContexIoT system itself, and thus the
decision making time taken for a user is not considered.

Using our dynamic testing framework, we inject events to
trigger all the 916 event handling logic in the 283 SmartApps,
and the measurement results are shown in Figure 5. Overall,
we observe 67.1 ms (26.7%) additional latency on average
when running those patched SmartApps on virtual devices.
In addition, we find that the end-to-end latency is dominated
by the sink execution latency, which is at least one magnitude
higher than the additional latency from ContexIoT secure logic
patching. Thus, we believe that the performance overhead from
ContexIoT is negligible in real world scenarios.

Besides testing on virtual devices, we also evaluate the
performance overhead for two events using physical devices:
(1) Locking a Schlage Z-Wave lock [14] using a commodity
lock manager SmartApp, and (2) Sending SMS to the user’s
phone from a SMS alert SmartApp once it detects motion
sensor event. We trigger both events 50 times, and as also
shown in Figure 5, the patched logic added only 9.6% and
4.5% delay on average. The breakdown of the end-to-end
latency shows that compared with running on the virtual
device, the time it takes to execute the command on physical
device is significantly longer, which is likely due to the latency
introduced by the wireless communication between hub and
the device. Thus, the overhead of ContexIoT introduced in
the computation and permission request procedures becomes
negligible in the physical device settings.

VIII. USAGE DISCUSSION

Acar et al. suggests to take both users and developers
out of the loop as a potential solution to the permission
comprehension problem [19]. Their proposed approach for
achieving this is to enable the automatic generation of security
policies. We believe that the rich context definition and flexible
design of ContexIoT benefits innovations in this direction. For
example, one potential approach can be to provide recom-
mended context-based security settings to users for different
apps, and the recommended settings come from the security
preferences that are learned by ContexIoT from a group of
expert users using the ContexIoT-patched apps.

Another possible approach that takes human out of the loop
is automatic generation of policy based on the app logic and
its interactions with user. For example, the SmartApp has a
setup procedure during the app installation, which requires
user to set some parameters that will guide the automation
of the SmartApp (e.g., automatically locks the door when it
has been opened for 2 minutes). Using the data-dependency
tracking support of ContexIoT, the security logic can mon-
itor how the app uses the user input. If it detects that the
events corresponding to the unmodified user input triggers
the user’s desired action at the runtime, the execution can be
automatically allowed since it conforms with the user specified
routine. Natural Language Processing (NLP) technique may be
required to infer the user desired action. We leave it as future
work to explore these extended usages of the ContexIoT.

IX. CONCLUSION

In this paper, we design and prototype ContexIoT, a
context-based permission system for appified IoT platforms,
which can support identification of fine-grained context defined
at inter-procedure control and data flow levels, and runtime
prompts with rich context information to help users perform
effective access control. By comparing our context definition
with those in previous context-based permission systems, we
shows that our definition is more comprehensive and can
defeat attacks that can evade these previous designs. Based
on the extensive survey of existing and potential attacks on
the appified IoT platform, we demonstrate that ContexIoT can
effectively distinguish all attack context in the tested apps.
Dynamic testing on 283 commodity SmartApps shows that
ContexIoT introduces negligible performance overhead and
has a low prompt frequency which is far below the threshold
that is considered to risk user habituation or annoyance.
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