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Abstract—Distributed Denial-of-Service attack (DDoS) is a 

major threat for cloud environment. Traditional defending 

approaches cannot be easily applied in cloud security due to 

their relatively low efficiency, large storage, to name a few. In 

view of this challenge, a Confidence-Based Filtering method, 

named CBF, is investigated for cloud computing environment, 

in this paper. Concretely speaking, the method is deployed by 

two periods, i.e., non-attack period and attack period. More 

specially, legitimate packets are collected at non-attack period, 

for extracting attribute pairs to generate a nominal profile. 

With the nominal profile, the CBF method is promoted by 

calculating the score of a particular packet at attack period, to 

determine whether to discard it or not. At last, extensive 

simulations are conducted to evaluate the feasibility of the CBF 

method. The result shows that CBF has a high scoring speed, a 

small storage requirement and an acceptable filtering accuracy, 
making it suitable for real-time filtering in cloud environment. 

Keywords-Distributed Denial-of-Service Attack; Filtering; 

Confidence; Correlation Pattern; Network Security; Cloud 

Environment 

I.  INTRODUCTION 

A. Current Status of Related Research 

Cloud computing is a long-held dream of computing as a 
utility. As discussed in [1], it has the potential to transform a 
large part of the IT industry, making software even more 
attractive as a service and shaping the way IT hardware is 
designed and purchased. Nowadays, it is evolving as a key 
computing platform for sharing resources including 
infrastructure resources, software resources, application 
resources and business processes [2]. However, with large 
amount of resources online, these cloud systems are facing 
severe security problems.  

Distributed Denial-of-Service (DDoS) attack can be 

considered as a major threat to cloud computing. The 

attackers often compromise vulnerable hosts, called zombies, 

on the network and install attack tools on them. These 

zombies together form a botnet and will generate large 

amout of distributed attack packets targeting at the victims 

under the control of the attackers. This attack will block the 
legitimate access to the servers, exhaust their resources such 

as network bandwidth, computing power and even lead to 

great financial losses as shown in [3].  

 

In recent years, many researches on DDoS defense have 

been carried out and many successful schemes have been 

put forward. There are approximately three major branches 

of the research: attack detection [4] [5] [6], attack filtering 

[7] [8] [9] [10] [11] [12], and attack traceback [13] [14] [15].  

As mentioned in [7], the branch of attack filtering can be 

roughly categorized into three areas based on the point of 

protection:  source-initiated, path-based and victim-initiated. 

The method proposed in this article is in victim-initiated 
area, which filters incoming attack packets from victim side. 

In this area of research, a number of brilliant approaches 

have already been proposed. 

PacketScore [7] generates value distributions of some 

attributes in the TCP and IP headers, and then uses Bayes’ 

Theorem to score packets. PacketScore has a pretty high 

filtering accuracy and it is also easy to be deployed. But 

since its scoring and discarding are related to attack intensity, 

it is not suitable for handling large amount of attack traffic. 

Also it has some costly operations in scoring, which leads to 

low process efficiency in real-time filtering. 
 ALPi [8] is an improvement of PacketScore. Two 

schemes LB and AV which uses leaky buckets and value 

variances of attributes respectively are proposed and are 

evaluated by comparison with PacketScore. Hop-Count 

Filtering (HCF) [9] uses the relationship of source IP 

address and TTL value to carry out filtering. After building 

an IP to hop-count mapping, it can detect and discard 

spoofed IP packets with about 90% accuracy. It is effective 

and easy to be deployed but it is vulnerable to distributed 

attacks because of its assumption about spoofed IP traffic. 
Our method aims at mining the correlation patterns, 

which refer to some simultaneously-appeared characteristics 
in the legitimate packets. [16] [17] use the document 
popularity and user browsing behaviors to detect attack 
packets, which reflect some correlation patterns between 
packets in a flow. But these patterns are mainly in 
application layer, making these methods mostly effective for 
application layer DDoS.  



B. Motivation 

Considering more and more resources being shared in 
cloud platforms, especially in an elastic cloud environment 
which could nearly provide unlimited capabilities [18], the 
effect of DDoS attacks can be not only much more powerful 
and influential, but also in much wider range. In view of this 
challenge, this paper aims at proposing a method for cloud 
security, which means to be much quicker in responding, 
easier to be widely deployed and more powerful in ability 
than before. 

C. The Organization of the Paper 

This paper is organized as follows: In Section 2, we will 
introduce some basic concepts and give an overview of our 
method, Confidence-Based Filtering. In the next three 
sections, we focus on the details of some important parts in 
the method. In Section 3, the nominal profile structure along 
with a feasible storage saving strategy is discussed. In 
Section 4 and 5, we talk about the score calculation details 
and the discarding strategy in filtering. In Section 6, the 
performance of our method under different types of DDoS 
attacks are evaluated based on real world traffic. Section 7 
discusses some important issues about the ability of the 
method, and then Section 8 gives a brief conclusion and the 
direction of future work. 

II. AN OVERVIEW OF CONFIDENCE-BASED FILTERING 

METHOD 

A. Basic Concepts 

1) Key Terms 
To help illustrate our method, some key terms used in 

this paper are summarized in Table I. 

2) Correlation Pattern 
In order to discriminate attack packets from legitimate 

ones, the method proposed in this paper utilizes correlation 
patterns. The concept of correlation refers to the situation 
that some interior characteristics take places at the same time 
in the packet flows. So the basic assumption of this method 
is that there are indeed some unique correlation patterns in 
legitimate packet flows. Fortunately, this assumption can be 
valid in most circumstances. In user browsing behaviors,  

TABLE I.  KEY TERMS APPEARED IN THIS PAPER 

Terms Description 

n 
The number of the attributes under consideration in 

the method 

Ai The i-th attribute in the packet, (1 ≤ i ≤ n) 

mi The number of values which attribute Ai can have 

ai,j The j-th value of attribute Ai, (1 ≤ j ≤ mi) 

t A time interval in packet flows 

Nn 
The total number of packets in the packet flow in one 

time interval t 

N(Ai = ai,j) 
The number of packets whose attribute Ai has value 

ai,j in this packet flow in one time interval t 

N(Ar = ar,x, 

As = as,y) 

The number of packets whose attribute Ar has value 

ar,x, attribute As has value as,y in this packet flow in 

one time interval t 

p A packet in the packet flows 

p(i)
 

The value of attribute Ai in packet p 

when a person logs on a certain website, his/her focuses tend 
to make up a certain pattern. For example, since the majority 
of NBA fans who live in Los Angeles love the team Los 
Angeles Lakers, the website of ESPN will have more packets 
containing correlations between visits of Lakers webpage 
and the IP addresses from the area around Los Angeles. 
Considering that there are a large amount of correlation 
patterns like this or even more complicate ones, it is quite 
hard for attackers to notice and mimic these patterns when 
carrying out DoS or DDoS attacks. Thus, using this kind of 
patterns to judge the legitimacy of packets can be feasible.  

In this method, we focus our probe on transport and 
network layers. The correlation patterns in these two layers 
are the co-appearances between attributes in IP header and 
TCP header. These attribute pair patterns are distinctive 
because certain characteristics of the operating system, 
network structure and even hobbies of users can affect the 
values of these attributes, and thus make some attribute pairs 
related. In [9], the hop-count filtering constructs an IP2HC 
table which maps source IP addresses to TTL values, and 
filters attack packets by checking the validation of TTL 
according to the source IP address. It can be seen that the key 
point of its success is utilizing the correlation pattern 
between TTL and source IP address. So it is reasonable to 
generalize this idea to all correlation patterns between 
attributes in IP header and TCP header. 

3) Confidence and CBF Score 
In this part, we will first introduce two concepts: the one 

named confidence for measuring correlation patterns, and the 
one named CBF score for judging the legitimacy of packets. 
With the concept of CBF score, we will define the CBF 
legitimacy of a packet.  

The concept of confidence reflects how much trust we 
can put on a correlation pattern between an attribute pair. In 
this paper, we define it formally as follows, 

Definition 1. (Confidence): Confidence is the frequency 
of appearances of attributes in the packet flows. The 
confidence (Conf for short) for single attributes and attribute 
pairs are calculated as (1) and (2), 

Confidence for single attributes:  
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Confidence for attribute pairs: 
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, where i1 = 1, 2, 3, …, n, i2 = 1, 2, 3, …, n, j1 = 1, 2, 
3, …, m1, j2= 1, 2, 3, …, m2,  

In (1) and (2), the meanings of the variables are listed in 
Table I. 

Indicated by Def.1, the more times an attribute pair 
appears in the legitimate packet flows, the higher confidence 
value of this pair we can get. The concept of confidence is 
the basis of the calculation of CBF score and the whole 
filtering process, so we name our method Confidence-Based 
Filtering, CBF for short. 

With confidence values of attribute value pairs, the 
legitimacy criterion of a packet is defined as follows, 



Definition 2. (CBF Score): CBF score for a packet is the 
weighted average of the confidence of the attribute value 
pairs in it. The CBF score for a packet p is calculated as (3): 
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In this definition, d is the total number of the attribute 

pairs involved in the calculation of score. 
1kA and 

2kA are 

two attributes in the k-th attribute pair.  ),(
21 kk AAW is the 

weight for the k-th attribute pair. Considering the range of 
each confidence value is in [0, 1], the range of Score(p) is 
also in [0, 1]. 

Thus, in order to calculate CBF scores of packets, we 
need to prepare the confidence of each attribute value pair in 
legitimate packet flow beforehand. In our method, we design 
a dataset for these confidence values, named nominal profile. 
The generating details of it are discussed in Section 3. 

In (3), the attribute pairs which cannot be easily copied 
by attackers will be given a high weight. Thus, higher score 
of a packet corresponds to more frequently-appeared and 
difficultly-copied correlation patterns, and thus more likely 
to be legitimate. So we can choose a discarding threshold to 
make the judgment of filtering. In view of this, the 
legitimacy of the packets is defined as follows, 

Definition 3. (CBF Legitimate Packet): The legitimate 
packet in CBF is the one whose CBF score is above the 
discarding threshold. 

So on the contrary, those packets with scores lower than 
the discarding threshold are regarded as attack ones. 

B. Confidence-Based Filtering 

The overall process of CBF method can be divided into 
two periods: non-attack period and attack period. An outline 
of our method is shown in Fig.1. The details of it will be 
introduced in the following sections. 

At non-attack period, the main target is to generate 
nominal profile. For incoming packets, our method firstly 
extracts the needed attribute value pairs from them. With (2) 
in Def.1, the number of appearances of these value pairs will 
be counted and their confidence values are calculated. Then 
these confidence values are used to update nominal profile. 

At attack period, most packets are not legitimate, so CBF 
will stop generating nominal profile. Like that at non-attack 
period, extracting the attribute value pairs from the incoming 

packets is the first step. With these value pairs, our method 
searches nominal profile for their confidence values in 
legitimate flows. Then CBF score, the filtering criterion, is 
calculated using (3) in Def.2. After a packet discarding 
strategy is selected, CBF will judge the legitimacy of the 
packet based on Def.3, and decide to let it pass or not. 

III. GENERATING NOMINAL PROFILE 

A. Nominal Profile Structure 

In this part, we will introduce the structure of nominal 
profile. Firstly, we select six candidate single attributes as 
shown in Table II. Then, we combine every two (not the 
same) of the six attributes and get 15 attribute pairs. After 
combination, the values of attribute pair will have 32-bit 
sizes since the 6 single attributes all have the sizes of no 
more than 16-bit. Table III shows an example of the nominal 
profile structure which contains two attribute pairs (TTL, 
packet size) and (TTL, source IP address). 

The overall constructing of the nominal profile is divided 
into small time intervals, which are called windows. The size 
of a window can be set to fixed ones or dynamic ones. In 
each time interval t, our method CBF counts the number of 
the value appearances of these 15 attribute pairs, and then 
use Def.1 to calculate the confidence values. At the end of 
each time interval, the new confidence values are used to 
update the nominal profile. In order to minimize the false 
negative rate, the highest confidence value of an attribute 
value pair in the nominal profile is stored, which means the 
updating only takes place when the new confidence value is 
higher than the one stored in the nominal profile. 

TABLE II.  SINGLE ATTRIBUTES SELECTED FROM IP/TCP HEADER 

Location Attribute Description 

IP 

Header 

Total Length 
The length of the datagram, measured in 

octets, including internet header and data. 

Time to Live 

(TTL) 

The maximum time the datagram is 

allowed to remain in the internet system 

Protocol Type 
The next level protocol used in the data 

portion of the IP datagram 

Source IP 

Address 

The destination IP address (our method 

uses the 16-bit prefixes of it) 

TCP 

Header 

Flag 

Control bits that indicate different 

connection states or information about 

how a packet should be handled 

Destination 

Port Number 
The destination port number 
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Figure 1.  Outline of Confidece-Based Filtering 



TABLE III.  EXAMPLE OF NOMINAL PROFILE WITH TWO ATTRIBUTE 

PAIRS 

Attribute 

value pair 
TTL, packet size TTL, TCP flag 

1 1 
TTL=1, 

packet size=1 
0.1% 

TTL=1, 

TCP flag =1 
0.01% 

1 … 
TTL=1, 

packet size=… 
… 

TTL=1, 

TCP flag =… 
… 

1 255 
TTL=1, 

packet size=255 
1.5% 

TTL=1, 

TCP flag =255 
1.2% 

2 1 
TTL=2, 

packet size=1 
0.1% 

TTL=2, 

TCP flag =1 
0.05% 

… … … … … … 

255 255 
TTL=255, 

packet size=255 
0.3% 

TTL=255, 

TCP flag =255 
0.08% 

B. Profile Storage Saving 

In order to construct the nominal profile, CBF calculates 
the confidence values of every attribute value pairs and 
stores them in certain data structure. However, this may 
incur storage problem. The common strategy for storing 
them will use a 3-dimension array. The first dimension is for 
attribute pair and has the length of 15. The second dimension 
is the value set of certain attribute pair, which has 32-bit size. 
The third dimension is the confidence value dimension and 
the size of it depends on the precision requirement of 
confidence values. If we use 32-bit for the third dimension, 

the overall needed storage will be 15×232×4 bytes, which 
equals to 240 Gbytes. This amount of storage cannot be 
feasible in practice.  

For this problem at storing step, we can use iceberg-style 
profiles [21]. In this implementation, we only store the 
confidence values of attribute value pairs which are higher 
than a predetermined threshold, e.g., 0.001 percent. We call 
this threshold minconf, which means the minimum 
confidence value in the nominal profile. In this way, the size 
of data needed to store is cut down shapely. With the usage 
of hash functions to search and store them, this storage 
problem seems to be successfully solved. However, this 
cannot be the complete solution. At the counting step, we 
also need the same size of storage to prepare spaces for 
counting the attribute pair value appearances. The 240 
Gbytes counting space will also not be affordable. 
The other part of the solution is to generate confidence of 
attribute value pairs by confidence of single attribute values. 
If the confidence of one attribute value in an attribute value 
pair is not greater than minconf, the confidence of the 
combination of this value pair will still not be greater than 
minconf. So we can firstly count the number of appearances 
of single attribute values and calculate the confidence of 
them using (1) in Def.1. Then we get the candidate attribute 
value pairs from the combination of only single attribute 
values whose confidence values are greater than minconf. So 
at the counting step, we will only prepare storage spaces for 
the candidate attribute value pairs instead of all possible ones. 
So at the last step, we select the attribute value pairs in the 
candidate ones whose confidence values are higher than 
minconf to update the iceberg-style profile. 

Table IV shows the storage requirements for 3 minutes 
data in a trace recorded in WAWI Traffic Archive [19]. We 

TABLE IV.  PROFILE STORAGE REQUIREMENTS FOR DIFFERENT 

MINCONF VALUES AT STORING AND COUNTING PERIOD 

minconf 

Storing Period Counting Period 

Number of 

confidence 

values 

Size of 

confidence 

values 

(Kbyte) 

Average 

number of 

counting 

spaces 

Size of 

counting 

spaces 

(Kbyte) 

0.01 177 0.691 175.393 0.685 

0.001 2213 8.645 1138.607 4.448 

0.0005 5242 20.477 2100.714 8.206 

0.0001 54120 211.406 9080.893 35.469 

0.00005 210900 823.828 15978.429 62.416 

set the window size to 5 seconds and use 32-bit to store each 
confidence value and each counting space. For measuring 
storing period storage, we count the number of confidence 
values which are actually stored in iceberg-style profile after 
processing all 3 minutes data. For counting period, we 
calculate the average number of needed counting spaces for 
candidate attribute value pairs in each window. The result in 
the table shows that even using extremely low minconf like 
0.00005, the storage usage at storing period and counting 
period will not exceed 1 Mbyte, which is much less than 240 
Gbytes. And the storage requirement of a proper minconf 
like 0.001 is around 8 Kbytes at storing period and 4.5 
Kbytes at counting period, which is feasible in most cases. 

This sharp cutting down in storage also indicates that the 
frequently-appeared attribute value pairs only make up a 
small share of all possible value pairs, thus they build up 
valid patterns for filtering. As shown in Section 6, a minconf 
around 0.0005 can be effective in filtering. So the core 
storage size for CBF is only about 20 Kbytes, which makes it 
easy to be deployed in cloud platforms. 

C. Non-Attack Period Process Details 

 
Figure 2.  Details of CBF in one window at non-attack period 
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Figure 3.  Pipeline implementation time line for CBF at non-attack period 

Step 1: Count the number of appearances of single attribute values 

and then calculate the confidence of them; 

Step 2: Select the single attribute values with confidence higher 

than minconf to generate the candidate attribute value pairs; 

Step 3: Scan the packet flow for the second time to count the 

number of appearances of the candidate attribute value pairs and 

calculate their confidence; Then use the confidence values which 

are higher than minconf to update the nominal profile; 
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Figure 4.  Example of the scoring process in CBF 

Based on the solution of storage saving, a more specified 

process at non-attack period during one time window is 

described in Fig.2. 

This is a 3-pass process and it can be largely accelerated 
if being carried out in parallel. As shown in Fig.3, the single 

attribute value counting, the candidate attribute value pair 

generating and the second time scanning can be put in a 

pipeline implementation, which will make CBF more 

suitable for real-time filtering and cloud computing.  

IV. CALCULATING CBF SCORE 

Indicated in Fig.1, in attack period CBF will firstly look 

up the nominal profile for the confidence values 

corresponding to the attribute value pairs in the current 

packets and then calculate the scores for them. In most cases, 

the confidence values of frequently-appeared attribute value 

pairs will be found in nominal profile successfully. But 
considering that we use iceberg-style profile, the confidence 

of some rarely-appeared attribute value pairs will be absent. 

In this case, we will use minconf value instead when these 

confidence values are required in score calculation. 

The adjustments of the attribute pair weights will take 

into consideration the unique characteristics of the operating 

system, the network structure and many other elements. The 

general idea is to make more outstanding the correlation 

patterns which are less possible to be copied by attackers 

and more related to the inherent features of the server. For 

example, when under a denial-of-service attack, the source 
IP address in a packet is spoofed in most cases. So we can 

give the attribute pairs including source IP address a higher 

weight. On the other hand, we can give the attribute pairs 

including protocol type or TCP flag a lower weight because 

the ranges of their values are limited, thus it is easy for 

attackers to guess. 

Fig.4 gives an example of the scoring process. In this 

figure, we assume that only 3 single attributes are involved 

in CBF filtering, which are TTL, IP protocol and TCP flag 

respectively. The scoring process starts from looking up the 

confidence of attribute value pairs in nominal profile. 
Because of the iceberg-style storing, we cannot find the 

confidence of the value pair in which TTL is 30 and IP 

protocol is 6. So we use minconf to represent its possible 

confidence value. Then a weighted average calculation is 

carried out with these confidence values to generate the 
CBF score for this incoming packet. If the weights for (TTL, 

IP protocol), (IP protocol, TCP flag) and (TTL, TCP flag) 

are 5, 1 and 3, the CBF score for the packet in the example 

is given by 

0414.0
)315(

)09.031.010005.05(






. 
The scoring part of CBF only requires a few looking-ups 

in nominal profile and some arithmetic operations. The 

asymptotic time complexity of CBF at this period is in O(1), 

so it will be fast enough even if large amount of packets 

burst in when under denial-of-service attack. 

V. DISCARDING STRATEGY 

After the CBF scores of packets are generated, we will 

use them to distinguish attack packets from legitimate ones. 

According to Def.3, CBF will only accept the packets with 
scores greater than the discarding threshold. Thus for the 

example in Fig.4, if the discarding threshold is 0.03, the 

packet will be judged legitimate. On the other hand, if it is 

0.05, the packet will be an attack one. 

The discarding threshold can be fixed based on the CBF 

score distribution of legitimate packets. According to Def.2, 

the CBF score is independent from the utilization of the 

victim, so the fixed discarding threshold is feasible if the 

distribution of the scores is known. And the processing 

speed will be very high with a fixed discarding threshold. 

Also dynamic discarding threshold can be adopted. Like 
the load-shedding algorithm used in [20], we can use current 

utilization of the victim and the maximum utilization to 

generate the amount (Φ) of suspicious traffic that needs to 

be discarded. We can generate the cumulative distribution 

function (CDF) of the scores in current time window and 

decide the discarding threshold using Φ. However, this may 

incur the additional scores counting and CDF computing, 

which will be slightly slower than a fixed one. 



VI. PERFORMANCE EVALUATION 

In this section, we will use real world statistics to test the 
filtering method CBF. The data in the MAWI Traffic 

Archive [19] is adopted and the test environment is a 2.26 

GHz Intel Core 2 Duo processor with 2 Gbytes Memory. 

The simulation programs were written in C++. We will   

firstly introduce the simulation conditions including the data 

source, the parameter selection for the method and different 

attack types. The result is shown and analyzed by taking 

into consideration of the comparison with PacketScore [7]. 

A. Simulation Conditions 

1) Data 
We select the data from MAWI Working Group Traffic 

Archive [19]. The part of data used in this section is 

collected from 14:00:00 to 14:15:00 on Jan 1, 2006. There 

are about 6587564 packets (2395.28Mbytes) contained in 

this data set and the average rate is 22.33Mbps. Every 

second, the data set has around 6000 to 7000 packets. 

2) Parameters 
The window size is set to 5 seconds, and the value of 

minconf is set to 0.005. Under this circumstance, the storage 

will be around 20 Kbytes at storing period and 8 Kbytes at 
counting period, which is affordable in normal servers. Our 

method spends around 0.4 seconds to process data during 

each time window. We believe this time can be minimized 

sharply after using pipeline implementations shown in Fig.3 

and optimizations of the programs. 

The weights in score calculation are set higher in the 

attribute pairs containing source IP address, TCP server port 

number or TTL value, and set lower in those only with TCP 

flag, IP protocol type and packet size. For the fast response 

at attack period, fixed discarding threshold is adopted. 

In the comparison with PacketScore, the window size of 
PacketScore is set to 5 seconds and the threshold for 

iceberg-style profile is 0.01. In our implementation, after 

discarding percentage is selected by a load-shedding 

algorithm [20], CDF is used to calculate the discarding 

threshold of the score. We use the same six single attributes 

shown in Table II like those in CBF to carry out 

PacketScore filtering. 

3) Attack Types 
In this evaluation, we simulate the following types of 

attacks: 

a) Generic attack 
All attributes in the attack packets are selected randomly 

in their allowable ranges. 

b) TCP-SYN Flood attack 
The TCP SYN flag is set in each attack packets and the 

packet lengths of them are set to be 40. Other attributes are 

selected randomly. 

c) SQL Slammer Worm attack 
The IP protocol type is UDP, the destination port is set to 

1434 and the packet size is between 371 to 400 bytes. Other 

attributes are selected randomly. 

d) Nominal attack 
Every attributes in the packets are selected randomly in 

smaller value ranges, which contain the most frequently-

appeared values of this attribute at non-attack period. This 

attack supposes that the attackers know the value 

distributions of the single attributes and mimic it to carry 

out attack. 

e) Mixed attack 
In this attack, the attack type of each packet will be 

selected randomly from the four types above. 

The score calculating and packet discarding of CBF are 

not affected by the intensity of the attack and the changing 

frequency of the attack types. Thus in this evaluation, we 
will not largely focus the tests of CBF on changing the type 

and intensity of attacks like [7] and [8]. 

B. Simulation Result and Analysis 

Fig.5 (a) shows the score distribution of generic attack 

and the legitimate flow using more than 100,000 packets 

data. To avoid the trouble with decimal scores, we multiply 
the original CBF scores with 10,000 when shown in the 

graph. Since the legitimate attribute pair patterns cannot be 

easily copied, most generic attack packets only have scores 

which consists of basic confidence minconf, 0.0005. For 

legitimate packets, high scores around 20 to 100 take place 

because they have more frequently-appeared attribute value 

pairs. Fig.5 (b) shows the cumulative distribution function 

(CDF) of the CBF scores of nominal attack and the 

legitimate flow (generic attack is not chosen here because its 

CDF curve is too steep to see a clear distribution). It 

illustrates more clearly that the majority of attack packets 
are concentrated in the low-score region. 

To evaluate CBF in a more quantified way, we will test its 

performances of false positive (FP) rate and false negative 

(FN) rate when filtering. CBF and the classic scheme 

PacketScore are both filtering methods, both use attributes 

in TCP and IP headers to build nominal profile and both 

score packets to distinguish attack ones from legitimate ones. 

So we pick up it to make comparison when analyzing the 

ability of CBF. 

Table V shows the result of their performances. The 

discarding threshold values for discarding in CBF are 
chosen to make the best performance among all possible 

ones. Since the CBF scores are not affected by attack 

intensity, the FP and FN rates are almost the same when 

there are 5 times and 10 times amount of attack packets than 

normal. 
In most cases, these two methods share similar filtering 

abilities. In generic attack, CBF has a lower false positive 
rate because it is quite hard to generate the accurate attribute 
value pairs in random approach. In false negative rate, 
PacketScore has a better performance in SQL slammer worm 
attack but a worse one in mixed attack. 
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Figure 5.  CBF score distribution of attack flow and legitimate flow 

TABLE V.  THE PERFORMANCE OF CBF AND PACKETSCORE UNDER 

DIFFERENT ATTACK TYPES 

Attack 

type 

Attack 

Intensity 

False Positive 

Rate(%) 

False Negative 

Rate(%) 

CBF PacketScore CBF PacketScore 

Generic 
5× 0.513 3.266 0.695 0.0173 

10× 0.516 1.729 0.692 0.0432 

TCP-

SYN 

Flood 

5× 7.701 3.571 7.775 1.249 

10× 7.703 1.956 7.770 1.542 

SQL 

Slammer 

Worm 

5× 1.521 3.473 3.883 0.000 

10× 1.524 1.988 3.881 0.000 

Nominal 
5× 5.229 5.032 6.925 9.519 

10× 5.234 2.929 6.915 13.462 

Mixed 
5× 4.564 4.771 6.524 7.601 

10× 4.565 2.653 6.524 9.543 

In TCP-SYN flood, the performance of CBF has some 
degradation. It results from the situation that the TCP-SYN 
packets may be also frequent in legitimate time. But the 
approximate 7.7 percent false positive rate and false negative 
rate can also be considered as an effective filtering in 
practice. 

PacketScore has a worse performance in false negative 
rate in nominal attack compared to our method. This is 
because we assume the attackers have the information of the 
single attribute value distributions in this attack. For CBF, its 
filtering can be ineffective if the attackers find the correlation 
patterns of the attribute pairs, but these data are quite 
impossible to be fully collected in practice.  

At attack period, CBF are quite faster than PacketScore 
due to the simplicity of score calculation. Table VI shows the 
process time in one time window (5 seconds) at attack period 

TABLE VI.  THE COMPARISON OF CBF AND PACKETSCORE IN PROCESS 

TIME AT ATTACK PERIOD 

Attack 

Intensity 

Process Time in 1 Time Window (second) 

CBF PacketScore 

1× 0.332 0.495 

5× 1.073 1.432 

10× 1.919 2.564 

20× 3.661 4.895 

for CBF and PacketScore. Since CBF has no concept of 

time window at attack period, we measure the time that CBF 

processes the same amount of packets as those in a 5 second 

window of PacketScore instead. Due to the limitation of our 

experiment environment, we believe that the process time in 

the table for both methods can be reduced largely by 

optimizations and hardware supports. 

Since the discarding period of PacketScore requires 

packet counting and CDF calculating, its process time in the 
table under all attack intensity conditions is higher than that 

of CBF, which only need a few looking-ups to generate 

score. For CBF, the most costly operation is to search the 

confidence values in nominal profile, so it can still be faster 

if a better hash function is adopted. 

VII. DISCUSSION 

CBF utilizes the attribute value pairs in TCP and IP 

headers to construct correlation patterns. In Section 6, these 

patterns are tested to be effective in distinguishing attack 

packets from legitimate ones under different types of denial-

of-service attack. As shown in evaluation results, the most 
outstanding advantages of CBF are its high efficiency at 

attack period and small storage requirements for nominal 

profile. These features make CBF powerful especially in 

attacks with extremely large amount of traffic. In filtering 

ability, CBF does not have a strictly high accuracy 

compared to the previous researches. But the FP and FN 

rates at present are no more than 8 percent, which has 

already been acceptable in most cases. 

Indeed, CBF can be ineffective if the attack packet flows 

mimic the correlation patterns of legitimate flows. However, 

in order to carry out large quantities of packets as fast as 

possible, even finding out the value distribution of single 
attributes will be too costly for the attacker. Thus the case 

that attackers have the complete attribute pair distributions 

will not be quite possible in practice. The situation that the 

single attribute value distribution is known by attackers is 

simulated in nominal attack in Section 6 and CBF takes on a 



good performance by maintaining FP and FN rates around 5 

to 6 percent. 

In the situation that a distributed attack is carried out, all 

the source IP addresses will not be spoofed in the attack 

flow. But CBF can still successfully defeat this attack 

because the ability of CBF depends on the co-appearance of 
two attributes. That means even if the source IP address is 

authentic, the attack packets need to have the right attribute 

which frequently appears along with that source IP address 

as well. Considering the difficulty of that, CBF will also be 

quite effective when dealing with distributed attacks. 

Flash crowds are the situations that a large number of 

legitimate customers happen to visit a server at the same 

time period. For CBF, it will not confuse flash crowds with 

denial-of-service attack. Since the filtering of CBF will not 

be affected by the number of packets, the packets sent by 

legitimate customers will have the frequent correlation 

patterns as usual. Thus these packets will also get a high 
CBF score to avoid being blocked. 

VIII. CONCLUSION AND FUTURE WORK 

The key concept of CBF is correlation pattern, which is 

the co-appearance of attribute pairs in our implementation. 

We introduced confidence to represent the distribution of 

attribute value pairs and then devised a feasible approach to 

generating the nominal profile in order to store these 

confidence values. With the nominal profile, CBF can 

calculate scores for incoming packets at attack period to 

conduct filtering. Since the confidence reflects the 

frequency of appearances of the attribute value pairs, 
packets with more attribute value pairs of higher confidence 

will get higher score, which means more legitimate in this 

method. As shown in Section 3 and Section 6, CBF has a 

small storage size, an acceptable filtering accuracy, and a 

high scoring speed, which together make it a practical 

DDoS defending method in cloud platforms. 

In the future, a more flexible discarding strategy to set the 

discarding threshold is required. The candidate one should 

not be so time-consuming that CBF loses its advantage of 

fast response at attack period. Also we will work on a more 

theoretical way of choosing the weights for each attribute 

pairs in CBF score calculation. The ideal strategy is 
adjusting the weights automatically based on the condition 

of the network. Finally, some optimizations and a better 

hash algorithm should be adopted to further accelerate the 

speed and the filtering accuracy of CBF. 
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