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Abstract—The rapid advancement of edge and cloud comput-
ing platforms, vehicular ad-hoc networks, and machine learning
techniques have brought both opportunities and challenges for
next-generation connected and automated vehicles (CAVs). On
the one hand, these technologies can enable vehicles to leverage
more computing power from edge and cloud servers and to share
information with each other and surrounding infrastructures for
better situation awareness and more intelligent decision making.
On the other hand, the more distributed computing process and
the wireless nature of V2X (vehicle-to-everything) communication
expose vulnerabilities to various disturbances and attacks. In
this paper, we discuss the security and safety challenges for
edge- and cloud-enabled CAVs, particularly when they are
under environment interferences, execution errors, and malicious
attacks, and we will introduce our recent work and future
directions in developing system-driven, end-to-end methodologies
and tools to address these challenges and ensure system resiliency
under uncertainties.

Index Terms—connected and autonomous vehicles, edge com-
puting, cloud computing, V2X, safety, security

I. INTRODUCTION

Machine learning techniques, especially neural network-
based ones, are widely leveraged in autonomous driving (AD)
for perception [1], prediction [2], planning [3], etc. Significant
progress has been made to improve AD performance in various
traffic scenarios, including more challenging ones such as
unprotected left turn, highway merging and lane changing.
Meanwhile, connected vehicle (CV) technologies via vehicular
ad-hoc networks enable information sharing among vehicles
and surrounding infrastructures. This provides a great com-
plementary to the perception and prediction capabilities of
individual vehicles, e.g., by sharing out-of-sight information
or intentions that cannot be accurately predicted.

However, adopting these techniques requires significant
amount of computational resources, which could be challeng-
ing to deploy on future production vehicles, considering the
additional cost, energy overhead, hardware maintenance, etc.
The advancement of edge and cloud computing provides an
appealing way to overcome the computational resource limi-
tation on individual vehicles. More specifically, for connected
and autonomous vehicles (CAVs), they can communicate with
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edge devices that are roadside units (RSUs) and leverage their
affiliated local sensors and servers, as well as with cloud
devices that are far away and can connect to the internet for
more information. The tasks with high resource demands and
without real-time requirements, e.g., neural network model
training, can be uploaded to the cloud, while the tasks with
mild resource demands but requiring real-time communication,
e.g., perception of the environment and coordination with
other vehicles, can be handled by edge computing. Individual
vehicles only need to equip the necessary hardware to maintain
normal operation and ensure safety when edge and cloud
computing are not available occasionally.

In the following, Section II discusses the promises of edge
and cloud computiong for CAVs, while Section III presents the
challenges brought by them. Section IV presents our system-
driven integrated solutions for addressing the challenges.

II. THE PROMISES

Many works have shown that autonomous driving pipelines
may perform poorly in long-tailed traffic scenarios (e.g., ex-
treme weather conditions) and are vulnerable to various input
noises and attacks such as stained traffic signs or dirty patches
on the road [4]–[6]. Some methods and frameworks are
proposed to enhance the safety of individual modules [7], [8]
and the AD pipeline [9] of a single autonomous vehicle. With
V2X communication, the safety of individual vehicles as well
as the transportation systems can be further enhanced. Previous
works have shown the promises of developing safety-assured
and safety-driven frameworks for autonomous systems [10]
by control invariant computation [11], by verification-guided
control learning [12], and by joint certification and policy
optimization in RL [13], [14]. With V2X communication,
each vehicle can gather the intentions and state information
of the surroundings to generate safety constraints, which can
be ensured or optimized by reachability analysis and (control)
barrier functions, as in [15].

With connectivity technology, vehicles can share their driv-
ing attitude [16], planned behavior, and trajectory, and may
use this data to cooperate with each other. In this way, some
challenging tasks, e.g., lane changing in dense traffic scenarios,
can be executed safely and successfully in less time [17]–
[19]. [17] points out that the system performance can be
further improved as the number of connected and cooperative
vehicles increases. Connectivity can also be incorporated with
the sensor fusion module in vehicles, and such redundancy
can increase the precision of state estimation, thus improving
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system performance and robustness [18]. An edge device,
as a local centralized coordinator, can collect information
from multiple vehicles and send out motion suggestions more
efficiently because it has a more comprehensive view of the
dynamic environment and may avoid time-consuming consen-
sus processes among vehicles.

However, edge and cloud computing also create new CAV
security design opportunities, ranging from attack detec-
tion/prevention to data privacy and access control, as discussed
below.

Secure perception of infrastructure-authoritative informa-
tion in AD: Today, most existing works on attacks against
AD systems target the detection/recognition of road informa-
tion that is authoritative to the infrastructure side [20], for
example the detection of traffic signs [4], [21]–[23] and traf-
fic lights [24], [25]. With infrastructure-side communication
devices such as RSUs, such a class of AD attacks can be
greatly mitigated (if not directly eliminated) since CAVs can
now directly obtain such authoritative information from the
infrastructure side.

Secure perception of dynamic road objects in AD: Be-
sides infrastructure-authoritative information, various existing
AD attacks focus on dynamic road objects such as cars
and pedestrians, for example hiding them from victims to
cause crashes [26]–[42], or creating phantom ones in the
road to cause emergency brake [25], [29], [39], [43]–[46].
If edge devices such as RSUs can have sensing capabilities
(e.g., road-side cameras [47] and LiDAR, they can help
defend against such attacks by sharing the infrastructure-
side sensing results with CAVs so that the victim vehicles
can have new fusion/cross-checking opportunities for attack
detection/prevention.

Secure self-localization in AD: Various existing attack
works also have demonstrated that the localization of AD
vehicles can be vulnerable to external attacks such as sensor
spoofing [5], [25], [48]. With information from other vehicles
and edge devices such as RSU, the victim can have new
chances in detecting and reacting to such attacks. For example,
the other vehicles or the infrastructure can help localize
the victim and thus help the victim detect the localization
output deviations during attack. Also, since GPS signals
from receivers in different positions may help identify GPS
spoofing [49], the vehicles in proximity can share the raw
GPS signals to allow new opportunities against existing GPS
spoofing-based AD localization attacks [48].

Enhanced road data privacy: Collecting real-time traffic
information can greatly benefit city-level information sharing
and decision-making, but inevitably raise individual data pri-
vacy concerns. With edge computing devices such as RSUs,
there exist new opportunities to process the real-time traffic
data locally and share aggregated information (e.g., partial
data, updated model parameters, calculated loss, etc.) to the
city-level decision-making backend (e.g., traffic management
center). For instance, several studies [50] [51] envision Fed-
erated Learning in CAVs that leverages the collaborative local
training to minimize the individual privacy concern.

III. THE CHALLENGES

Disturbance-prone communication may lead to significant
challenges in ensuring system safety. While the use of edge
and cloud computing in CAVs has potential to improve safety
and security through information sharing and coordinated
decision making, we highlight the following challenges:

Communication latency: If edge or cloud devices are part
of a decision loop, latency in the network must be minimized
such that the round-trip time is sufficient to avoid deadline
misses in real-time decision making [52]. This is complicated
by intermittent delays associated with the wireless V2X net-
work, which we highlight in our previous works on CAV
performance and safety [53]–[55]. However, many works such
as [17] assume perfect communication and coordination be-
tween vehicles in planning, while others such as [18] consider
possible message delay and loss in the planner design, but
must be overly conservative to ensure safety.

Communication reliability: Due to their wireless medium,
V2X networks are subject to both natural and malign distur-
bances which prevent message reception. This may manifest
as either intermittent disturbance, with a few lost messages,
or steady disturbance, where the channel is blocked for a long
period of time (e.g. jamming or flooding attacks). This vector
is further explored in our prior work on weakly-hard com-
munication models [56]. CAV applications must successfully
recognize and adapt to such situations.

Network bandwidth: Current V2X networks have strict
bandwidth constraints. This significantly limits the amount
of real-time data which may be transmitted and limits the
options available for message authentication or encryption.
In congested scenarios, the inter-packet gap between safety
messages may be several seconds [57], resulting in periods
during which safety information is outdated. For safe control,
such gaps may need to be filled using predictions [2], [17].

There are many other security challenges, ranging from
new threat actors and new attack surfaces at both cyber- and
physical- layers to new privacy challenges.

New threat from malicious/compromised RSUs/CAVs: Since
the core benefits of V2X come from making use of the
road information shared by other entities (e.g., RSUs and
other CAVs), edge- and cloud-enabled CAVs face a new
security threat in which such other entities can be mali-
cious/compromised such that attackers can turn information-
sharing channels into attacking channels. For example, if the
ego CAV blindly trusts the information shared by other CAVs,
the attacker can exploit this trust by sharing falsified informa-
tion to cause erroneous driving behaviors of the victim, e.g.,
by sending a spoofed message reporting that a pedestrian out
of the sensing range of the ego CAV is about to quickly enter
the road (e.g., from behind a bus) to trigger an unnecessary
emergency brake.

New cyber-layer attack surface: As a networking technol-
ogy, the deployment of V2X by nature introduces new cyber-
attack surfaces to the participating vehicles and transportation
systems. For example, a network attacker in the V2X com-
munication range can violate the confidentiality, integrity, and
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Fig. 1. Our proposed cross-layer framework for assured edge and cloud computing for CAVs.

authenticity of the real-time road information shared via V2X
by exploiting V2X protocol design flaws or implementation
bugs [58], [59], and may disrupt the V2X availability using
network denial-of-service (DoS) attacks such as jamming.
The newly-introduced edge devices such as RSUs can also
become new attack entry points for breaking into the internal
transportation infrastructure systems.

New physical-layer attack surface: Recent works have dis-
covered a wide range of physical-layer attacks against the AI
stack in AD systems (e.g., adversarial physical patches [5],
[22], [23], [60], obstacles [6], [26], [61], laser blinding [26],
[45], & GPS spoofing [24], [48]). In the edge- and cloud-
enabled CAV ecosystem, the newly-introduced edge devices
can become new physical-layer attack targets, for example
by performing sensor attacks against RSU-mounted cam-
eras/LiDARs instead of (or in combination with) the CAV-
mounted ones. Since the RSU-mounted sensor locations are
fixed, they are actually more vulnerable to such attacks, since
the attacks no longer suffer from the complication of moving
targets [5]. What’s worse, as the RSU’s sensing results can now
be shared with multiple CAVs via V2X, one adversarial attack
can now propagate and affect multiple victims simultaneously.

New privacy challenges to road users: In edge- and cloud-
enabled V2X settings, each CAV needs to frequently share
information about itself (e.g., identity, location, speed, and
heading) and the surrounding physical environment to other
vehicles, edge devices, and transportation infrastructure, which
poses unprecedented privacy concerns for road users. For
example, prior works point out that such broadcast V2X
information may be used to infer sensitive information such
as home addresses and whereabouts of drivers and passen-
gers [62].

IV. THE SOLUTIONS

In light of these challenges, we propose a cross-layer
framework to provide assured edge and cloud computing for
CAVs. This may be seen in Fig. 1. At the cloud computing
layer, large AI models for perception, prediction, and planning
will be trained and maintained on cloud servers, and offline

reachability analysis for systems using these models can be
conducted for safety assurance. The cloud computing layer
will also provide city-scale travel suggestions and coordinated
accident and security threat mitigation strategies based on
the local traffic status shared by edge devices. At the edge
computing layer, edge servers (RSUs) will directly coordinate
with surrounding traffic participants, including monitoring the
communication channel and physical motion status of vehicles,
and will decompose the dynamic system into many sub-
systems for more efficient safety and security verification. At
the individual vehicle layer, every vehicle is responsible for
preventing collisions with others, even if the communication
channel and edge devices are occasionally unavailable for
assistance.

The information shared across adjacent layers is also pre-
sented in Fig. 1. Between the cloud computing and edge
computing layers, the shared status of local traffic streams
and map updates supports timely city-scale coordination and
planning. Reported safety and security incidents mitigate im-
pacts and help to improve the models. Between the edge
computing and individual vehicle layers, information related
to localization, perception, and traffic signals can be shared.
For instance, with the shared information, we can build a Sybil
attack detection system [63] based on a credibility-enhanced
temporal graph convolutional neural network to defend edge
computing servers against Sybil attacks. At the same time,
a cyber-physical credibility framework based on blockchain
technology and vehicles’ physical sensing capabilities can be
maintained to build trust for connected vehicles [64], enabling
quick reaction to attacks in a large-scale vehicular network
with low resource overhead. Initial studies of such techniques
have demonstrated effectiveness in defense against spoofing
attacks, bad-mouthing attacks, and Sybil and voting attacks.

V. CONCLUSION

In this work, we have presented a high-level view onto the
challenges and promises of edge and cloud computing for
CAVs. We hope that our work will inspire others to pick up the
double-edged sword of edge & cloud computing for CAVs.
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