Principles of
Operating Systems

Lecture 2 - Processes and Threads
Ardalan Amiri Sani (ardalan@uci.edu)

[lecture slides contains some content adapted from : previous slides by Prof. Nalini Venkatasubramanian,
and course text slides © Silberschatz]

mailto:ardalan@uci.edu

Outline

s Processes
a | hreads

» Interprocess Communication

Process Concept

= An operating system executes a variety of
programs

» Process - an instance of a program in

execution (with limited rights)

« For now, we assume that the process has a single
thread of execution. Therefore, the process execution
proceeds in a sequential fashion

» A process address space contains
« Stack, heap, data and code sections

Process =? Program

o A process is one instance of a program in execution

a lrun Vim on lectures.txt, you run it on homework.java — Same program,
different processes

o A program can invoke more than one process
« A web browser launches multiple processes, e.g., one per tab

Process States

» A process changes state as it executes.

admitted interrupt

scheduler dispatch

I/O or event completion I/O or event wait

Process States

New - The process is being created.
Running - Instructions are being executed.
Waiting - Waiting for some event to occur.

Ready - Waiting to be assigned to a
Processor.

Terminated - Process has finished execution.

Process Control Block

= Kernel maintains a PCB for each
process

= Contains information associated
with each process

Process state — running, waiting, etc

Program counter — location of
instruction to next execute

CPU registers — contents of all
process-centric registers

CPU scheduling information-
priorities, scheduling queue pointers

Memory-management information —
memory allocated to the process

Accounting information — CPU used,
clock time elapsed since start

/O status information — list of open
files

process state

process number

program counter

registers

memory limits

list of open files

Process
Control
Block

Enabling Concurrency: Context
Switch

» Operation that switches CPU from one

process to another process

a the CPU must save the state of the old process into its PCB
and load the state of the new process from its PCB.

= Context-switch time is overhead

o System does no useful work while switching

a Overhead sets minimum practical switching time; can
become a bottleneck

» Time for context switch is dependent on
hardware support (typically 1- 1000
microseconds).

CPU Switch From Process to
Process

process P, operating system process P,

interrupt or system call

executing J_L /—l
| save state into PCB,, |
. idle

|reload state from PCB;|

ridle interrupt or system call executing
Il
v ~—V
| save state into PCB; |
. idle
|reload state from PCBO|

executing 1,¥

s Code executed in kernel above is overhead

a Overhead sets minimum practical switching time

m The scheduler decides which process to execute next (scheduler will be
discussed in the next lecture)

Process Creation

» Processes are created by other processes
a The kernel implements the mechanism to create a
new process in the form of a syscall.

=« Process which creates another process is
called a parent process; the created process
Is called a child process.

» Result is a tree of processes

10

A tree of processes in Linux

init
pid = 1

login kthreadd sshd
pid = 8415 pid = 2 pid = 3028
bash pdflush sshd
pid = 8416 pid = 200 pid = 3610
iy S 'd:tiSZhOOS
pid = 9298 pid = 9204 pia =

11

Fun question: who creates the init
process?

Fun question: who creates the init

process?
= Kernel, all on its own.

13

What does It take to create a
process?

= Must construct new PCB
a Inexpensive

» Must set up the address space (e.g., set up new page
tables for address space)
o More expensive

» Copy data from parent process? (Unix fork())

a Semantics of Unix fork() are that the child process gets a
complete copy of the parent memory

a Originally very expensive
o Much less expensive with “copy on write”
« Copy I/O state (file handles, etc)

o Medium expense

14

UNIX Process Creation

m Address space

d First, child’s address space is duplicate of parent’s
d Then, child can load a new program

m Fork system call creates new processes

m exec() system call is used after a fork to replace the
processes memory space with a new program.

parent -m—ait\ resumes

child exec() > exit()

15

Process Termination

m Process executes last statement and then asks the operating
system to delete it using the exit () system call.

d Returns status data from child to parent (via wait ())
d Process’ resources are deallocated by operating system

m Parent may terminate the execution of children processes using the
abort () system call. Some reasons for doing so:

d Child has exceeded a threshold for allocated resources
d Task assigned to child is no longer required

d The parent is exiting and wants to terminate the child process
too

16

Process Termination

m Zombie process: a child process that has terminated,
but its parent hasn’t called wait() yet.
m Orphan process: a child process, whose parent process

has died. Orphan process is adopted by the init
process.

17

Threads

» Processes do not share resources well and they have
high context switching overhead

» |ldea: Separate concurrency from protection

« Multithreading: a single program made up of a number of
different concurrent activities

= Athread

o basic unit of CPU execution; it has separate:
program counter, register set, and stack space
» Athread shares the following with peer threads:

memory address space including code section, data section, heap,
etc. (Q. can one thread access another thread’s stack?)

OS resources (open files)
No protection between threads

18

Single and Multithreaded
Processes

code

data

files

registers

stack

thread —» ;

code data files
registers ||| registers ||| registers
stack stack stack

single-threaded process

;

%

gﬁ

— thread

multithreaded process

» [hreads encapsulate execution and concurrency
» Process encapsulates protection

Threads (Cont.)

» In a multi-threaded process, while one thread
IS blocked and waiting, a second thread in the

same task can run.

» Cooperation of multiple threads in the same job results
in higher throughput and improved performance.

20

Thread State

» State shared by all threads in the process
a Content of memory (global variables, heap)
a |/O state (open files, network connections, etc.)

» State “private” to each thread
a Keptin TCB = Thread Control Block
a CPU registers (including, program counter)
a Execution stack

a Thread (execution) state -
= hew, ready, waiting, running, terminated

21

Threads (cont.)

» Switching between two threads in the same
process still requires a register set switch, but
no memory management related work!

= Only one thread can run on a CPU at a time.

22

Types of Threads

» Kernel-supported threads
» User-level threads

» Hybrid approach implements both user-level
and kernel-supported threads

23

Kernel Threads

» Supported by the Kernel

o Threads created and managed directly by the kernel
o Every thread can run or block independently
a One process may have several threads waiting on different things

« Downside of kernel threads: a bit expensive
o Need to make a crossing into kernel mode for scheduling

» Example
a Linux

24

User Threads

» Supported above the kernel, via a set of library calls

at the user level.
= Thread management done by user-level threads library
o User program provides scheduler and thread package
« May have several user threads per kernel thread
= User threads may be scheduled non-preemptively relative to
each other (only switch on yield())
a Advantages
= Cheap, Fast
a0 Threads do not need to cross to the kernel for scheduling
a Disadv: Threads will not run in parallel, only one thread at a
time per kernel thread

» Example thread libraries:
o POSIX Pthreads can support user threads

25

Signhal Handling

e Signals are used in UNIX systems to notify a process that a
particular event has occurred.

e Asignal handler is used to process signals
1. Signal is generated by a particular event
2. Signal is delivered to a process
3. Signal is handled by one of two signal handlers:
1. default
2. user-defined

e Every signal has default handler that runs when handling
signal

o User-defined signal handler can override default
m Can’t override SIGKILL and SIGSTOP

Multi (processing, programming, threading)

» Definitions:
o Multiprocessing: Multiple processors/CPUs
o Multiprogramming: Multiple jobs/processes
o Multithreading: Multiple threads per process

’
A »
Multiprocessing B
C *

Multiprogramming A B C

27

Interprocess Communication

Processes within a system may be independent or cooperating
Reasons for cooperating processes:

e Information sharing

o Computation speedup

e Modularity

e Convenience

Cooperating processes need to communicate and share data. For
this purpose, they use interprocess communication (IPC)

Two models of IPC
e Shared memory
o Message passing

28

Interprocess Communication —
Shared Memory

e An area of memory shared among the processes that wish
to communicate

e The communication is under the control of the processes
not the operating system.

e Major issues is to provide mechanism that will allow the
user processes to synchronize their actions when they
access shared memory.

e Synchronization will be discussed in future lectures.

29

Interprocess Communication —
Shared Memory

process A
[: shared memory |«

process B —

kernel

Producer-Consumer Problem

Paradigm for cooperating processes, producer process
produces information that is consumed by a consumer
process

o unbounded-buffer places no practical limit on the size
of the buffer

e bounded-buffer assumes that there is a fixed buffer
size

31

Bounded-Buffer —
Shared-Memory Solution

e Shared data

#define BUFFER SIZE 10
typedef struct {

} item;
item buffer [BUFFER SIZE];

int in = 0;

int out = 0;

32

Bounded-Buffer — Producer

item next produced;
while (true) {
/* produce an item in next produced */
while (((in + 1) % BUFFER SIZE) == out)
; /* do nothing */
buffer[in] = next produced;
in = (in + 1) % BUFFER SIZE;

33

Bounded Buffer — Consumer

ltem next consumed;

while (true) {

while (1n == out)

; /* do nothing */
next consumed = buffer[out];
out = (out + 1) % BUFFER_SIZE;

/* consume the item in next consumed */

34

Bounded-Buffer —
Shared-Memory Solution

e How many elements can be stored in the buffer at most at a
given time?

item next produced; item next_consumed;

while (true) { while (true) {

. . hile (in == out
/* produce an item in next produced */ Wit (1 ut)
, , ; /* do nothing */

hil + 1 % BUFFER SIZE) ==
while (((in) v 5) out) next consumed = buffer[out];

. * 7 *

; /* do nothing */ out = (out + 1) % BUFFER SIZE;
buffer[in] = next produced;

in = (in + 1) % BUFFER SIZE; /* consume the item in next

consumed */

}

Producer Consumer

35

Bounded-Buffer —
Shared-Memory Solution

e Can only use BUFFER_SIZE-1 elements

36

Interprocess Communication —
Message Passing

e Mechanism for processes to communicate and to synchronize
their actions

e Message system — processes communicate with each other
without resorting to shared variables

e |PC facility provides two operations:
e send(message)
e receive(message)

e The message size is either fixed or variable

37

Interprocess Communication —
Message Passing

process A

process B

message queue
— Mg | M4 Mo Mg| ... |Mp, e

kernel

Message Passing (Cont.)

e If processes P and Q wish to communicate, they need to:

Establish a communication link between them
Exchange messages via send/receive

e Implementation issues:

How are links established?
Can a link be associated with more than two processes?

How many links can there be between every pair of
communicating processes?

What is the capacity of a link?

Is the size of a message that the link can accommodate fixed or
variable?

Is a link unidirectional or bi-directional?

39

Message Passing (Cont.)

Implementation of communication link
e Physical:

= Main memory (Figure in slide 38)
= Hardware bus

= Network

40

Direct Communication

e Processes must name each other explicitly:

e send (P, message) — send a message to process P

receive(Q, message) — receive a message from process Q

e Properties of communication link

Links are established automatically

A link is associated with exactly one pair of communicating
processes

Between each pair there exists exactly one link
Link may be unidirectional or bi-directional

41

Indirect Communication

Messages are directed and received from mailboxes (also referred
to as ports)

e Each mailbox has a unique id

e Processes can communicate only if they share a mailbox
Properties of communication link

e Link established only if processes share a common mailbox

e Alink may be associated with many processes

o Each pair of processes may share several communication links

e Link may be unidirectional or bi-directional

42

Indirect Communication

Operations
e create a new mailbox (port)
e send and receive messages through mailbox
e destroy a mailbox
Primitives are defined as:
send(A, message) — send a message to mailbox A
receive(A, message) — receive a message from mailbox A

43

Synchronization

e Message passing may be either blocking or non-blocking

e Blocking is considered synchronous
e Blocking send -- the sender is blocked until the message is
received
e Blocking receive -- the receiver is blocked until a message
Is available
e Non-blocking is considered asynchronous

e Non-blocking send -- the sender sends the message and
continues

e Non-blocking receive -- the receiver receives:
e Avalid message, or
e Null message

e Different combinations possible
o If both send and receive are blocking, we have a rendezvous

44

Message passing (Cont.)

Producer-consumer becomes trivial

message next produced;

while (true) {

/* produce an item in next produced */

Producer
send (next produced) ;

}

message next consumed;
while (true) {
recelve (next consumed) ;

Consumer

/* consume the item in next consumed */

45

Message passing (Cont.)

Q. What are the send and receive here? Blocking or non-blocking?

message next produced;

while (true) {

/* produce an item in next produced */

Producer
send (next produced) ;

}

message next consumed;
while (true) {
recelve (next consumed) ;

Consumer

/* consume the item in next consumed */

46

Buffering

Queue of messages attached to the link is implemented in one of
three ways

1. Zero capacity — no messages are queued on a link.
Sender must wait for receiver (rendezvous)

2. Bounded capacity — finite length of n messages
Sender must wait if link full

3. Unbounded capacity — infinite length
Sender never waits

47

Examples of IPC Systems - POSIX

e POSIX Shared Memory

e Process first creates shared memory segment
shm fd = shm open(name, O CREAT | O RDWR, 0666) ;

o Also used (without the O _CREAT flag) to open an existing
segment to share it

o Set the size of the object
ftruncate (shm fd, 4096);
e Now the process could write to the shared memory

sprintf (shared memory addr, "Writing to shared
memory") ;

48

IPC POSIX Producer (no synchronization)

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <fcntl.h>
#include <sys/shm.h>
#include <sys/stat.h>

int main()

/* the size (in bytes) of shared memory object */
const int SIZE = 4096;

/* name of the shared memory object */

const char *name = "0S";

/* strings written to shared memory */

const char *message.0 = "Hello";

const char *message.1 = "World!";

/* shared memory file descriptor */
int shm fd;
/* pointer to shared memory obect */
void *ptr;

/* create the shared memory object */
shm fd = shm open(name, O_CREAT | O_RDWR, 0666);

/* configure the size of the shared memory object */
ftruncate(shm.fd, SIZE);

/* memory map the shared memory object */
ptr = mmap(0, SIZE, PROT_WRITE, MAP_SHARED, shm fd, 0);

/* write to the shared memory object */
sprintf (ptr,"%s",message.0);

ptr += strlen(message.0);

sprintf (ptr,"%s",message_1);

ptr += strlen(message.1);

return 0;

IPC POSIX Consumer (no synchronization)

#include <stdio.h>
#include <stdlib.h>
#include <fcntl.h>
#include <sys/shm.h>
#include <sys/stat.h>

int main()

{

/* the size (in bytes) of shared memory object */
const int SIZE = 4096;

/* name of the shared memory object */

const char *name = "(QOS";

/* shared memory file descriptor */

int shm fd;

/* pointer to shared memory obect */

void *ptr;

/* open the shared memory object */
shm fd = shm open(name, O RDONLY, 0666) ;

/* memory map the shared memory object */
ptr = mmap(0, SIZE, PROT.READ, MAP SHARED, shm fd, 0);

/* read from the shared memory object */
printf("%s", (char *)ptr);

/* remove the shared memory object */
shm unlink (name) ;

return 0;

50

Other IPC solutions

e Remote Procedure Calls

e Sockets

e Pipes

51

Sockets

A socket is defined as an endpoint for communication

Concatenation of IP address and port — a number included at
start of message packet to differentiate network services on a
host

The socket 161.25.19.8:1625 refers to port 1625 on host
161.25.19.8

Communication consists between a pair of sockets

All ports below 1024 are well known, used for standard
services

Special IP address 127.0.0.1 (loopback) to refer to system on
which process is running

52

Socket Communication

host X
(146.86.5.20)

socket

(146.86.5.20:1625)
web server

(161.25.19.8)

socket
(161.25.19.8:80)

53

int main(int argc, char *argv|[])

{

int sockfd, portno, n;
struct sockaddr _in *serv_addr;
char buffer[256];

portno = ...;
server_addr = ...;
sockfd = socket(AF_INET, SOCK_STREAM, 0);
if (sockfd < 0)
error("ERROR opening socket");

if (connect(sockfd, serv_addr, sizeof(*serv_addr)) < 0)
error("ERROR connecting");

I* Here, fill up the buffer with the message to send */

n = write(sockfd, buffer, strlen(buffer));
if (n <0)
error("ERROR writing to socket");

/* Here, empty the buffer */

n = read(sockfd, buffer, 255);
if (n<0)
error("ERROR reading from socket");
printf("%s\n",buffer);
close(sockfd);
return 0O;

Sockets example

based on:
http://www.linuxhowtos.org/data/6/client.c

54

Remote Procedure Calls

Remote procedure call (RPC) abstracts procedure calls
between processes on networked systems

Stubs — client-side proxy for the actual procedure on the
server

The client-side stub locates the server and marshalls the
parameters

The server-side stub receives this message, unpacks the
marshalled parameters, and performs the procedure on the
server

55

Pipes

Acts as a conduit allowing two processes to communicate

Ordinary pipes — cannot be accessed from outside the
process that created it. Typically, a parent process creates a

pipe and uses it to communicate with a child process that it
created.

Named pipes — can be accessed without a parent-child
relationship.

56

Ordinary Pipes

Ordinary Pipes allow communication in standard producer-consumer
style

Producer writes to one end (the write-end of the pipe)

Consumer reads from the other end (the read-end of the pipe)
Ordinary pipes are therefore unidirectional

Require parent-child relationship between communicating processes

parent child
fd[O] fd[1] fd[0] fd[1]

SR

57

#define READ END O
#define WRITE END 1

int main

{

(void)

(see full example in the book)

char write msg[BUFFER SIZE] = “Greetings”;
char read msg[BUFFER SIZE];

int

fd[2];

pid t pid;

if

pid

(pipe (£d)

== -1) {

/* handle error */

= fork();

if (pid < 0)
/* handle error */

If (pid > 0)

} else {

}

close (fd
write (fd
close (fd

{

{ /* parent process */
READ END]) ;

WRITE END], write msg, strlen(write msg)
[WRITE_END]);

—/

/* child process */

close (fd[WRITE END]) ;

read (fd[READ END], read msg, BUFFER SIZE);
printf (“read %$s”, read msq);

close (fd[READ END]) ;

return 0O;

Ordinary Pipes

+ 1);

58

Named Pipes

Named Pipes are more powerful than ordinary pipes
Communication is bidirectional

No parent-child relationship is necessary between the
communicating processes

Several processes can use the named pipe for communication
Provided on both UNIX and Windows systems

59

