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Process Concept

= An operating system executes a variety of
programs

» Process - an instance of a program in

execution (with limited rights)

« For now, we assume that the process has a single
thread of execution. Therefore, the process execution
proceeds in a sequential fashion

» A process address space contains
« Stack, heap, data and code sections



Process =? Program

o A process is one instance of a program in execution

a  lrun Vim on lectures.txt, you run it on homework.java — Same program,
different processes

o A program can invoke more than one process
« A web browser launches multiple processes, e.g., one per tab



Process States

» A process changes state as it executes.

admitted interrupt

scheduler dispatch

I/O or event completion I/O or event wait



Process States

New - The process is being created.
Running - Instructions are being executed.
Waiting - Waiting for some event to occur.

Ready - Waiting to be assigned to a
Processor.

Terminated - Process has finished execution.



Process Control Block

= Kernel maintains a PCB for each
process

= Contains information associated
with each process

Process state — running, waiting, etc

Program counter — location of
instruction to next execute

CPU registers — contents of all
process-centric registers

CPU scheduling information-
priorities, scheduling queue pointers

Memory-management information —
memory allocated to the process

Accounting information — CPU used,
clock time elapsed since start

/O status information — list of open
files

process state

process number

program counter

registers

memory limits

list of open files

Process
Control
Block




Enabling Concurrency: Context
Switch

» Operation that switches CPU from one

process to another process

a the CPU must save the state of the old process into its PCB
and load the state of the new process from its PCB.

= Context-switch time is overhead

o System does no useful work while switching

a Overhead sets minimum practical switching time; can
become a bottleneck

» Time for context switch is dependent on
hardware support (typically 1- 1000
microseconds).



CPU Switch From Process to
Process

process P, operating system process P,

interrupt or system call

executing J_L /—l
| save state into PCB,, |
. idle

|reload state from PCB;|

ridle interrupt or system call executing
Il
v ~—V
| save state into PCB; |
. idle
|reload state from PCBO|

executing 1,¥

s Code executed in kernel above is overhead

a Overhead sets minimum practical switching time

m The scheduler decides which process to execute next (scheduler will be
discussed in the next lecture)




Process Creation

» Processes are created by other processes
a The kernel implements the mechanism to create a
new process in the form of a syscall.

=« Process which creates another process is
called a parent process; the created process
Is called a child process.

» Result is a tree of processes
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A tree of processes in Linux

init
pid = 1

login kthreadd sshd
pid = 8415 pid = 2 pid = 3028
bash pdflush sshd
pid = 8416 pid = 200 pid = 3610
iy S 'd:tiSZhOOS
pid = 9298 pid = 9204 pia =
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Fun question: who creates the init
process?



Fun question: who creates the init

process?
= Kernel, all on its own.
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What does It take to create a
process?

= Must construct new PCB
a Inexpensive

» Must set up the address space (e.g., set up new page
tables for address space)
o More expensive

» Copy data from parent process? (Unix fork() )

a Semantics of Unix fork() are that the child process gets a
complete copy of the parent memory

a  Originally very expensive
o  Much less expensive with “copy on write”
« Copy I/O state (file handles, etc)

o Medium expense
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UNIX Process Creation

m Address space

d First, child’s address space is duplicate of parent’s
d Then, child can load a new program

m Fork system call creates new processes

m exec() system call is used after a fork to replace the
processes memory space with a new program.

parent -m—ait\ resumes

child exec() > exit()
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Process Termination

m Process executes last statement and then asks the operating
system to delete it using the exit () system call.

d Returns status data from child to parent (via wait ())
d Process’ resources are deallocated by operating system

m Parent may terminate the execution of children processes using the
abort () system call. Some reasons for doing so:

d  Child has exceeded a threshold for allocated resources
d Task assigned to child is no longer required

d The parent is exiting and wants to terminate the child process
too
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Process Termination

m Zombie process: a child process that has terminated,
but its parent hasn’t called wait() yet.
m Orphan process: a child process, whose parent process

has died. Orphan process is adopted by the init
process.
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Threads

» Processes do not share resources well and they have
high context switching overhead

» |ldea: Separate concurrency from protection

« Multithreading: a single program made up of a number of
different concurrent activities

= Athread

o basic unit of CPU execution; it has separate:
program counter, register set, and stack space
» Athread shares the following with peer threads:

memory address space including code section, data section, heap,
etc. (Q. can one thread access another thread’s stack?)

OS resources (open files)
No protection between threads
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Single and Multithreaded
Processes

code

data

files

registers

stack

thread —» ;

code data files
registers ||| registers ||| registers
stack stack stack

single-threaded process

;

%

gﬁ

— thread

multithreaded process

» [hreads encapsulate execution and concurrency
» Process encapsulates protection



Threads (Cont.)

» In a multi-threaded process, while one thread
IS blocked and waiting, a second thread in the

same task can run.

» Cooperation of multiple threads in the same job results
in higher throughput and improved performance.
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Thread State

» State shared by all threads in the process
a Content of memory (global variables, heap)
a |/O state (open files, network connections, etc.)

» State “private” to each thread
a Keptin TCB = Thread Control Block
a CPU registers (including, program counter)
a Execution stack

a Thread (execution) state -
= hew, ready, waiting, running, terminated
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Threads (cont.)

» Switching between two threads in the same
process still requires a register set switch, but
no memory management related work!

= Only one thread can run on a CPU at a time.
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Types of Threads

» Kernel-supported threads
» User-level threads

» Hybrid approach implements both user-level
and kernel-supported threads
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Kernel Threads

» Supported by the Kernel

o Threads created and managed directly by the kernel
o Every thread can run or block independently
a One process may have several threads waiting on different things

« Downside of kernel threads: a bit expensive
o Need to make a crossing into kernel mode for scheduling

» Example
a Linux
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User Threads

» Supported above the kernel, via a set of library calls

at the user level.
= Thread management done by user-level threads library
o User program provides scheduler and thread package
« May have several user threads per kernel thread
= User threads may be scheduled non-preemptively relative to
each other (only switch on yield())
a Advantages
= Cheap, Fast
a0 Threads do not need to cross to the kernel for scheduling
a Disadv: Threads will not run in parallel, only one thread at a
time per kernel thread

» Example thread libraries:
o POSIX Pthreads can support user threads
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Signhal Handling

e Signals are used in UNIX systems to notify a process that a
particular event has occurred.

e Asignal handler is used to process signals
1. Signal is generated by a particular event
2. Signal is delivered to a process
3. Signal is handled by one of two signal handlers:
1. default
2. user-defined

e Every signal has default handler that runs when handling
signal

o User-defined signal handler can override default
m Can’t override SIGKILL and SIGSTOP



Multi (processing, programming, threading)

» Definitions:
o Multiprocessing: Multiple processors/CPUs
o Multiprogramming: Multiple jobs/processes
o Multithreading: Multiple threads per process

’
A »
Multiprocessing B
C *

Multiprogramming A B C
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Interprocess Communication

Processes within a system may be independent or cooperating
Reasons for cooperating processes:

e Information sharing

o Computation speedup

e Modularity

e Convenience

Cooperating processes need to communicate and share data. For
this purpose, they use interprocess communication (IPC)

Two models of IPC
e Shared memory
o Message passing
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Interprocess Communication —
Shared Memory

e An area of memory shared among the processes that wish
to communicate

e The communication is under the control of the processes
not the operating system.

e Major issues is to provide mechanism that will allow the
user processes to synchronize their actions when they
access shared memory.

e Synchronization will be discussed in future lectures.
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Interprocess Communication —
Shared Memory

process A
[: shared memory |«

process B —

kernel




Producer-Consumer Problem

Paradigm for cooperating processes, producer process
produces information that is consumed by a consumer
process

o unbounded-buffer places no practical limit on the size
of the buffer

e bounded-buffer assumes that there is a fixed buffer
size
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Bounded-Buffer —
Shared-Memory Solution

e Shared data

#define BUFFER SIZE 10
typedef struct {

} item;
item buffer [BUFFER SIZE];

int in = 0;

int out = 0;
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Bounded-Buffer — Producer

item next produced;
while (true) {
/* produce an item in next produced */
while (((in + 1) % BUFFER SIZE) == out)
; /* do nothing */
buffer[in] = next produced;
in = (in + 1) % BUFFER SIZE;

33



Bounded Buffer — Consumer

ltem next consumed;

while (true) {

while (1n == out)

; /* do nothing */
next consumed = buffer[out];
out = (out + 1) % BUFFER_SIZE;

/* consume the item in next consumed */
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Bounded-Buffer —
Shared-Memory Solution

e How many elements can be stored in the buffer at most at a
given time?

item next produced; item next_consumed;

while (true) { while (true) {

. . hile (in == out
/* produce an item in next produced */ Wit (1 ut)
, , ; /* do nothing */

hil + 1 % BUFFER SIZE) ==
while (((in ) v 5 ) out) next consumed = buffer[out];

. * 7 *

; /* do nothing */ out = (out + 1) % BUFFER SIZE;
buffer[in] = next produced;

in = (in + 1) % BUFFER SIZE; /* consume the item in next

consumed */

}

Producer Consumer
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Bounded-Buffer —
Shared-Memory Solution

e Can only use BUFFER_SIZE-1 elements
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Interprocess Communication —
Message Passing

e Mechanism for processes to communicate and to synchronize
their actions

e Message system — processes communicate with each other
without resorting to shared variables

e |PC facility provides two operations:
e send(message)
e receive(message)

e The message size is either fixed or variable
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Interprocess Communication —
Message Passing

process A

process B

message queue
— Mg | M4 Mo Mg| ... |Mp, e

kernel




Message Passing (Cont.)

e If processes P and Q wish to communicate, they need to:

Establish a communication link between them
Exchange messages via send/receive

e Implementation issues:

How are links established?
Can a link be associated with more than two processes?

How many links can there be between every pair of
communicating processes?

What is the capacity of a link?

Is the size of a message that the link can accommodate fixed or
variable?

Is a link unidirectional or bi-directional?
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Message Passing (Cont.)

Implementation of communication link
e Physical:

= Main memory (Figure in slide 38)
= Hardware bus

= Network
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Direct Communication

e Processes must name each other explicitly:

e send (P, message) — send a message to process P

receive(Q, message) — receive a message from process Q

e Properties of communication link

Links are established automatically

A link is associated with exactly one pair of communicating
processes

Between each pair there exists exactly one link
Link may be unidirectional or bi-directional
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Indirect Communication

Messages are directed and received from mailboxes (also referred
to as ports)

e Each mailbox has a unique id

e Processes can communicate only if they share a mailbox
Properties of communication link

e Link established only if processes share a common mailbox

e Alink may be associated with many processes

o Each pair of processes may share several communication links

e Link may be unidirectional or bi-directional
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Indirect Communication

Operations
e create a new mailbox (port)
e send and receive messages through mailbox
e destroy a mailbox
Primitives are defined as:
send(A, message) — send a message to mailbox A
receive(A, message) — receive a message from mailbox A
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Synchronization

e Message passing may be either blocking or non-blocking

e Blocking is considered synchronous
e Blocking send -- the sender is blocked until the message is
received
e Blocking receive -- the receiver is blocked until a message
Is available
e Non-blocking is considered asynchronous

e Non-blocking send -- the sender sends the message and
continues

e Non-blocking receive -- the receiver receives:
e Avalid message, or
e Null message

e Different combinations possible
o If both send and receive are blocking, we have a rendezvous
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Message passing (Cont.)

Producer-consumer becomes trivial

message next produced;

while (true) {

/* produce an item in next produced */

Producer
send (next produced) ;

}

message next consumed;
while (true) {
recelve (next consumed) ;

Consumer

/* consume the item in next consumed */
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Message passing (Cont.)

Q. What are the send and receive here? Blocking or non-blocking?

message next produced;

while (true) {

/* produce an item in next produced */

Producer
send (next produced) ;

}

message next consumed;
while (true) {
recelve (next consumed) ;

Consumer

/* consume the item in next consumed */
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Buffering

Queue of messages attached to the link is implemented in one of
three ways

1. Zero capacity — no messages are queued on a link.
Sender must wait for receiver (rendezvous)

2. Bounded capacity — finite length of n messages
Sender must wait if link full

3. Unbounded capacity — infinite length
Sender never waits
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Examples of IPC Systems - POSIX

e POSIX Shared Memory

e Process first creates shared memory segment
shm fd = shm open(name, O CREAT | O RDWR, 0666) ;

o Also used (without the O _CREAT flag) to open an existing
segment to share it

o Set the size of the object
ftruncate (shm fd, 4096);
e Now the process could write to the shared memory

sprintf (shared memory addr, "Writing to shared
memory") ;
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IPC POSIX Producer (no synchronization)

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <fcntl.h>
#include <sys/shm.h>
#include <sys/stat.h>

int main()

/* the size (in bytes) of shared memory object */
const int SIZE = 4096;

/* name of the shared memory object */

const char *name = "0S";

/* strings written to shared memory */

const char *message.0 = "Hello";

const char *message.1 = "World!";

/* shared memory file descriptor */
int shm fd;
/* pointer to shared memory obect */
void *ptr;

/* create the shared memory object */
shm fd = shm open(name, O_CREAT | O_RDWR, 0666);

/* configure the size of the shared memory object */
ftruncate(shm.fd, SIZE);

/* memory map the shared memory object */
ptr = mmap(0, SIZE, PROT_WRITE, MAP_SHARED, shm fd, 0);

/* write to the shared memory object */
sprintf (ptr,"%s",message.0);

ptr += strlen(message.0);

sprintf (ptr,"%s",message_1);

ptr += strlen(message.1);

return 0;



IPC POSIX Consumer (no synchronization)

#include <stdio.h>
#include <stdlib.h>
#include <fcntl.h>
#include <sys/shm.h>
#include <sys/stat.h>

int main()

{

/* the size (in bytes) of shared memory object */
const int SIZE = 4096;

/* name of the shared memory object */

const char *name = "(QOS";

/* shared memory file descriptor */

int shm fd;

/* pointer to shared memory obect */

void *ptr;

/* open the shared memory object */
shm fd = shm open(name, O RDONLY, 0666) ;

/* memory map the shared memory object */
ptr = mmap(0, SIZE, PROT.READ, MAP SHARED, shm fd, 0);

/* read from the shared memory object */
printf("%s", (char *)ptr);

/* remove the shared memory object */
shm unlink (name) ;

return 0;
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Other IPC solutions

e Remote Procedure Calls

e Sockets

e Pipes
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Sockets

A socket is defined as an endpoint for communication

Concatenation of IP address and port — a number included at
start of message packet to differentiate network services on a
host

The socket 161.25.19.8:1625 refers to port 1625 on host
161.25.19.8

Communication consists between a pair of sockets

All ports below 1024 are well known, used for standard
services

Special IP address 127.0.0.1 (loopback) to refer to system on
which process is running
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Socket Communication

host X
(146.86.5.20)

socket

(146.86.5.20:1625)
web server

(161.25.19.8)

socket
(161.25.19.8:80)
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int main(int argc, char *argv|[])

{

int sockfd, portno, n;
struct sockaddr _in *serv_addr;
char buffer[256];

portno = ...;
server_addr = ...;
sockfd = socket(AF_INET, SOCK_STREAM, 0);
if (sockfd < 0)
error("ERROR opening socket");

if (connect(sockfd, serv_addr, sizeof(*serv_addr)) < 0)
error("ERROR connecting");

I* Here, fill up the buffer with the message to send */

n = write(sockfd, buffer, strlen(buffer));
if (n <0)
error("ERROR writing to socket");

/* Here, empty the buffer */

n = read(sockfd, buffer, 255);
if (n<0)
error("ERROR reading from socket");
printf("%s\n",buffer);
close(sockfd);
return 0O;

Sockets example

based on:
http://www.linuxhowtos.org/data/6/client.c
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Remote Procedure Calls

Remote procedure call (RPC) abstracts procedure calls
between processes on networked systems

Stubs — client-side proxy for the actual procedure on the
server

The client-side stub locates the server and marshalls the
parameters

The server-side stub receives this message, unpacks the
marshalled parameters, and performs the procedure on the
server
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Pipes

Acts as a conduit allowing two processes to communicate

Ordinary pipes — cannot be accessed from outside the
process that created it. Typically, a parent process creates a

pipe and uses it to communicate with a child process that it
created.

Named pipes — can be accessed without a parent-child
relationship.
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Ordinary Pipes

Ordinary Pipes allow communication in standard producer-consumer
style

Producer writes to one end (the write-end of the pipe)

Consumer reads from the other end (the read-end of the pipe)
Ordinary pipes are therefore unidirectional

Require parent-child relationship between communicating processes

parent child
fd[O] fd[1] fd[0] fd[1]

SR
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#define READ END O
#define WRITE END 1

int main

{

(void)

(see full example in the book)

char write msg[BUFFER SIZE] = “Greetings”;
char read msg[BUFFER SIZE];

int

fd[2];

pid t pid;

if

pid

(pipe (£d)

== -1) {

/* handle error */

= fork();

if (pid < 0)
/* handle error */

If (pid > 0)

} else {

}

close (fd
write (fd
close (fd

{

{ /* parent process */
READ END]) ;

WRITE END], write msg, strlen(write msg)
[WRITE_END]);

—/

/* child process */

close (fd[WRITE END]) ;

read (fd[READ END], read msg, BUFFER SIZE);
printf (“read %$s”, read msq);

close (fd[READ END]) ;

return 0O;

Ordinary Pipes

+ 1);
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Named Pipes

Named Pipes are more powerful than ordinary pipes
Communication is bidirectional

No parent-child relationship is necessary between the
communicating processes

Several processes can use the named pipe for communication
Provided on both UNIX and Windows systems
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