
Principles of
Operating Systems

Lecture 6 - Main Memory
Ardalan Amiri Sani (ardalan@uci.edu)

[lecture slides contains some content adapted from previous slides by Prof. Nalini Venkatasubramanian, and
course text slides © Silberschatz]

1

mailto:ardalan@uci.edu

Virtualizing Resources

■ Physical Reality: Processes/Threads share the same
hardware
❑ Need to multiplex CPU (CPU Scheduling)
❑ Need to multiplex use of memory (Topic of these slides)

■ Why worry about memory multiplexing?
❑ The complete working state of a process and/or kernel is defined

by its data in memory (and registers).
❑ Consequently, cannot just let different processes use the same

memory
❑ Also, don’t want different processes to even have access to each

other’s memory (protection)

Important aspects of memory multiplexing

■ Controlled overlap:
❑ Processes should not collide in physical memory
❑ Conversely, would like the ability to share memory when desired (for

inter-process communication)

■ Protection:
❑ Prevent access to private memory of other processes
❑ Kernel data protected from user programsDifferent pages of memory can be

given special behavior (Read Only, Invisible to user programs, etc)

■ Translation:
❑ Ability to translate accesses from one address space (logical/virtual) to a

different one (physical)
❑ Process uses logical/virtual addresses, physical memory uses physical

addresses

Logical vs. Physical Address Space

❑ The concept of a logical address space that is
bound to a separate physical address space is
central to proper memory management.
■ Logical Address: or virtual address - generated by CPU
■ Physical Address: address seen by memory unit.

Contiguous Allocation

■ Memory allocated in contiguous partitions for
processes

❑ Relocation and limit registers used to determine the
partition at runtime

❑ Relocation register contains value of smallest physical
address; limit register contains range of logical addresses -
each logical address must be less than the limit register.

❑ Operating system has its own partition

Relocation Register

Relocation and Limit Registers

Contiguous Allocation (cont.)

■ Multiple partition Allocation
■ Hole - block of available memory; holes of various sizes

are scattered throughout memory.
■ When a process arrives, it is allocated memory from a

hole large enough to accommodate it.
■ Operating system maintains information about

❑ allocated partitions
❑ free partitions (holes)

Contiguous allocation example

OS OS OS OS
Process 5 Process 5 Process 5 Process 5

Process 2 Process 2 Process 2 Process 2

Process 8

Process 9 Process 9

Process 10

Dynamic Storage Allocation
Problem

❑ How to satisfy a request of size n from a list of free holes.
■ First-fit

❑ allocate the first hole that is big enough
■ Best-fit

❑ Allocate the smallest hole that is big enough; must search
entire list, unless ordered by size. Produces the smallest
leftover hole.

■ Worst-fit
❑ Allocate the largest hole; must also search entire list, unless

ordered by size. Produces the largest leftover hole.

Dynamic Storage Allocation
Problem

❑ How to satisfy a request of size n from a list of free holes.
■ First-fit

❑ allocate the first hole that is big enough
■ Best-fit

❑ Allocate the smallest hole that is big enough; must search
entire list, unless ordered by size. Produces the smallest
leftover hole.

■ Worst-fit
❑ Allocate the largest hole; must also search entire list, unless

ordered by size. Produces the largest leftover hole.

❑ ??? is the best in terms of execution speed.

Dynamic Storage Allocation
Problem

❑ How to satisfy a request of size n from a list of free holes.
■ First-fit

❑ allocate the first hole that is big enough
■ Best-fit

❑ Allocate the smallest hole that is big enough; must search
entire list, unless ordered by size. Produces the smallest
leftover hole.

■ Worst-fit
❑ Allocate the largest hole; must also search entire list, unless

ordered by size. Produces the largest leftover hole.

❑ First-fit is the best in terms of execution speed.
❑ ???? are better than ???? in terms of storage utilization.

Dynamic Storage Allocation
Problem

❑ How to satisfy a request of size n from a list of free holes.
■ First-fit

❑ allocate the first hole that is big enough
■ Best-fit

❑ Allocate the smallest hole that is big enough; must search
entire list, unless ordered by size. Produces the smallest
leftover hole.

■ Worst-fit
❑ Allocate the largest hole; must also search entire list, unless

ordered by size. Produces the largest leftover hole.

❑ First-fit is the best in terms of execution speed.
❑ First-fit and best-fit are better than worst-fit in terms of

storage utilization.

Fragmentation

■ External fragmentation
❑ total memory space exists to satisfy a request, but it is

not contiguous.
■ Internal fragmentation

❑ allocated memory may be slightly larger than requested
memory; this size difference is memory internal to a
partition, but not being used.

Fragmentation

Contiguous allocation suffers mainly from
external fragmentation (but also from internal
fragmentation)
❑ We can reduce external fragmentation by

compaction
■ Shuffle memory contents to place all free memory together in

one large block

Fragmentation example

OS P1 P2 P3 P4

OS P1 P5 P3 P4

OS P5 P3 P6

Compaction

OS P5 P3 P65k
hole

5k
hole

6k
hole

OS P3 P6 16k
holeP5

Compaction

■ Compaction might cause problems for I/O due to
inflight DMA
❑ Solutions

■ (1) Pin process memory used by I/O devices
■ (2) Do I/O only into kernel buffers (which should also be

pinned). -> Results in an additional data copy!

Segmentation

■ A program is a collection of segments.
■ A segment is a logical unit such as

❑ Program code, stack, heap

■ Protect each entity independently
■ Allow each segment to grow independently
■ Share each segment independently

Logical view of segmentation

1

2
3

4

1
2

3

4

Logical view
of memory
for a process

Physical Memory

Segmentation Architecture

❑ Logical address consists of a two tuple
<segment-number, offset>

❑ Segment Table
■ Maps two-dimensional user-defined addresses into

one-dimensional physical addresses. Each table entry has
❑ Base - contains the starting physical address where the

segments reside in memory.
❑ Limit - specifies the length of the segment.

■ Segment-table base register (STBR) points to the segment
table’s location in memory.

■ Segment-table length register (STLR) indicates the number
of segments used by a program; segment number is illegal if
segment-number >= STLR (assuming segment-number
starting at 0).

Segmentation hardware

Segmentation example

editor

data 1
segment 1

segment 0

data 1 data 1

editorSegment Table
 process P1

0
1 43062

68348

72773

Logical Memory
 process P1

Segmentation Architecture (cont.)
❑ Relocation is dynamic - by segment table
❑ Sharing

■ Code sharing occurs at the segment level.
■ Shared segments must not necessarily have same

segment number for different processes.

Shared segments

editor

data 1
segment 1

segment 0

Segment Table
 process P2

editor

data 2

segment 1

segment 0

Logical Memory
 process P2

data 2

data 1 data 1

editor

0
1

Segment Table
 process P1

0
1 43062

68348

72773

90003

98553

Logical Memory
 process P1

Segmentation Architecture (cont.)
❑ Relocation is dynamic - by segment table
❑ Allocation of segments - dynamic storage

allocation problem
■ use best fit/first fit, may cause external fragmentation.

❑ Protection
■ protection bits associated with segments

❑ read/write/execute privileges
❑ Example use case: array in a separate segment - hardware

can check for illegal array indexes.

Paging

■ A solution that solves external fragmentation
■ process is allocated physical memory wherever the latter is

available.
■ Divide physical memory into fixed size blocks called frames

❑ size is power of 2: 4 kbytes, 1 Mbytes, etc.
■ Divide logical memory into same size blocks called pages.

❑ Keep track of all free frames.
❑ To run a program of size n pages, find n free frames and load

program.
■ Set up a page table to translate logical to physical addresses.
■ Note:: Internal Fragmentation possible!!

Address Translation Scheme

■ Address generated by CPU is divided into:
■ Page number(p)

❑ used as an index into page table which contains base
address of each page in physical memory.

■ Page offset(d)
❑ combined with base address to define the physical memory

address that is sent to the memory unit.

Address Translation Architecture

Example of Paging

Page 0

Page 1

Page 2

Page 3

0
1
2
3

:

1

4
7

3

:

Page 0

Page 1
Page 2

Page 3

Physical memoryLogical memory

Page Table Implementation

■ Page table is kept in main memory
■ Page-table base register (PTBR) points to the page table.

❑ Every data/instruction access requires 2 memory accesses.
■ One for page table, one for data/instruction
■ Two-memory access problem solved by use of special

fast-lookup hardware cache (i.e. cache page table in
registers)

❑ Associative Registers or Translation Look-aside Buffers (TLBs)

Translation Lookaside Buffer (TLB)
(aka Associative Registers)

■ If A is in TLB, get frame #
■ Otherwise, need to go to page table for

frame#
■ requires additional memory reference

❑ TLB Hit ratio - percentage of time page is found in
TLB.

Page # Frame #

Address Translation
(A, A’)

Paging hardware with TLB

Effective Access time

■ TLB lookup time = ε time units
■ Assume Memory access time = m time units
■ TLB Hit ratio = α
■ Effective access time (EAT) with TLB

❑ EAT = (m + ε) α + ((2 * m) + ε) (1-α)
■ Effective access time (EAT) without TLB

❑ EAT = 2 * m

Memory Protection

■ Implemented by associating protection bits with
each page.

■ Valid/invalid bit, read/write bit, and execute bit
attached to each entry in page table.

❑ Valid/invalid bit: indicates that the associated page is (bit = 1) or is
not (bit = 0) in the process’ logical address space.

❑ Read: indicates that the page can (bit = 1) or cannot (bit = 0) be read
❑ Write: indicates that the page can (bit = 1) or cannot (bit = 0) be

written to
❑ Execute: indicates that page content can (bit = 1) or cannot (bit = 0)

be executed

Copy-on-Write using page tables

■ Both parent and child processes share the address
space at first (i.e., when child is created), but only in
read-only mode.

■ If any of them tries to write to some part of the address
space, they’ll get a separate writable instance of that
part of the address space, e.g., a separate writable
page.

36

Two Level Page Table Scheme

:

:

Physical memory

Outer page tables

:
900

929

:
500

1

:
708

100

:

Inner
page tables

:

:

Two Level Paging Example

■ A logical address (32bit machine, 4K page size) is
divided into

❑ a page number consisting of 20 bits, a page offset
consisting of 12 bits

■ Since the page table is paged, the page number consists
of

❑ a 10-bit page number, a 10-bit page offset
■ Thus, a logical address is organized as (p1,p2,d) where

❑ p1 is an index into the outer page table
❑ p2 is the displacement within the page of the outer page

table

Page number
p1 p2 d

Page offset

Two Level Paging Example

Multilevel paging

■ Each level is a separate table in memory
❑ converting a logical address to a physical one may take

multiple memory accesses.

❑ TLB can help keep performance reasonable.
■ Assume a four-level page table
■ Assume TLB hit rate is 98%, memory access time is 100

nanoseconds, TLB lookup time is 20 nanoseconds
■ Effective Access time with TLB =

Multilevel paging

■ Each level is a separate table in memory
❑ converting a logical address to a physical one may take

multiple memory accesses.

❑ TLB can help keep performance reasonable.
■ Assume a four-level page table
■ Assume TLB hit rate is 98%, memory access time is 100

nanoseconds, TLB lookup time is 20 nanoseconds
■ Effective Access time with TLB = 0.98 * 120 + .02 * 520

= 128 ns
❑ This is only a 28% slowdown in memory access time.

■ Effective Access time without TLB =

Multilevel paging

■ Each level is a separate table in memory
❑ converting a logical address to a physical one may take

multiple memory accesses.

❑ TLB can help keep performance reasonable.
■ Assume a four-level page table
■ Assume TLB hit rate is 98%, memory access time is 100

nanoseconds, TLB lookup time is 20 nanoseconds
■ Effective Access time with TLB = 0.98 * 120 + .02 * 520

= 128 ns
❑ This is only a 28% slowdown in memory access time.

■ Effective Access time without TLB = 500 ns
❑ This is a 400% slowdown in memory access time

incurred just for paging.

Inverted Page Table

■ One entry for each frame of memory
■ Entry consists of virtual address of frame in physical

memory with information about process that owns page.
❑ Decreases memory needed to store page tables

for all processes
❑ Increases time to search table when a page

reference occurs
■ table sorted by physical address, lookup by virtual

address
❑ Use hash table to limit search to one (maybe few)

page-table entries.

Inverted Page Table

Inverted Page Table vs. Hashed
Inverted Page Table

Figures adopted and modified from: CS162, UC Berkeley, Spring 2004, Discussion #10, by Amir Kamil, Topics: Inverted Page Tables, TLBs
(https://web.eecs.umich.edu/~akamil/teaching/sp04/040104.pdf)

p d
p d

i d

i d

p

p

https://web.eecs.umich.edu/~akamil/teaching/sp04/040104.pdf

Shared pages

■ Code and data can be shared among processes
■ Non-self-modifying code can be shared.
■ Pages for shared code and data can appear anywhere in

logical address space.
■ Map them into pages with common page frame mappings
■ Single copy of read-only code - compilers, editors etc..

■ Shared code must not necessarily appear in the
same location in the logical address space of all
processes

■ Private code and data
■ Each process keeps separate private code and data
■ Pages for private code and data can appear anywhere in the

logical address space.

Shared Pages

Segmented Paged Memory

❑ Segment-table entry contains not the base
address of the segment, but the base address of
a page table for this segment.

■ Overcomes external fragmentation problem of
segmented memory.

■ Paging also makes allocation simpler; time to search for
a suitable segment (using best-fit etc.) reduced.

■ Enables the use of segments, e.g., for easier control of
permissions of a memory region

■ Introduces some internal fragmentation and table space
overhead.

❑ Multics - single level page table
❑ IBM OS/2 - OS on top of Intel 386

■ uses a two level paging scheme

49

 Example: single-level page tables

