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Some benefits of virtual memory 
(with paging and segmentation)

❑ Only PART of the program needs to be in memory for 
execution.

❑ Allocated memory in logical address space can therefore 
be much larger than physical address space.

❑ Need to allow pages to be swapped in and out.
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Demand Paging

■ Bring a page into memory only when it is 
needed.
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Demand Paging

■ Bring a page into memory only when it is 
needed.

❑ Less I/O needed
❑ Less memory needed
❑ Faster response
❑ More users

■ The first reference to an unmapped page will 
trap to OS with a page fault.

■ OS looks at some data structure or another 
table to decide

❑ Invalid reference - abort
❑ Valid but not in memory.
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Valid-Invalid Bit

❑ With each page table entry a valid-invalid bit is 
associated (1 ⇒ translation present, 0 ⇒ 
translation not present).

❑ Initially, valid-invalid bit is set to 0 on all entries.
■ During address translation, if valid-invalid bit in page 

table entry is 0  --- page fault occurs.
■ Example of a page-table snapshot

Frame # Valid-invalid bit

Page Table 5



Handling a Page Fault

❑ Page is needed - reference to page
❑ Step 1: Page fault occurs - trap to OS (process suspends).
❑ Step 2: Check if the virtual memory address is legitimate.  

Kill process if access is illegitimate. If legitimate, then page 
fault means the page content not in memory yet, continue.

❑ Step 3: Bring into memory - Find a free page frame, find 
content on disk and fetch disk content into page frame. 
When disk read has completed, add virtual memory 
mapping to indicate that page is in memory.

❑ Step 4: Restart instruction interrupted by illegitimate 
address trap.  The process will continue as if page had 
always been in memory.
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What happens if there is no free 
frame?
■ Page replacement - find some page in 

memory that is not in use and swap it.
■ Need page replacement algorithm
■ Performance Issue  - need an algorithm which will result 

in minimum number of page faults and page 
replacements.

❑ Same page may be brought into memory many 
times.
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Performance of Demand Paging

■ Page Fault Ratio - 0 ≤ p ≤ 1.0
❑ If p = 0, no page faults
❑ If p = 1, every reference is a page fault

■ Effective Access Time
EAT = (1-p) * memory access + 
             p   * (page fault overhead + 
                      swap page out (only when needed) +
                      swap page in   +
                      restart overhead + 

                               memory access)
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Demand Paging Example

■ Memory is always full
❑ Need to get rid of a page on every fault

■ Memory Access time  = 1 microsecond
■ 50% of the time the page that is being replaced has 

been modified and therefore needs to be swapped 
out.

■ Page fault and restart overheads are negligible
■ Swap Page Time (either in or out) = 10 msec = 

10,000 microsec
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Demand Paging Example

■ Memory is always full
❑ Need to get rid of a page on every fault

■ Memory Access time  = 1 microsecond
■ 50% of the time the page that is being replaced has 

been modified and therefore needs to be swapped 
out.

■ Page fault and restart overheads are negligible
■ Swap Page Time (either in or out) = 10 msec = 

10,000 microsec
EAT = (1-p) *1 + p (15000 + 1) = 1 + 15000p microsec

■ EAT is directly proportional to the page fault rate.
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Page Replacement

■ Determines which page need to be evicted to 
disk when space is needed in memory.

■ With page replacement, large virtual memory 
can be provided on a smaller physical 
memory.
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Page Replacement Algorithms

■ Want lowest page-fault rate.
■ Evaluate algorithm by running it on a 

particular string of memory references 
(reference string) and computing the number 
of page faults on that string.

■ Assume reference string in examples to 
follow is

1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5.
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First-In-First-Out (FIFO) Algorithm

Reference String: 1,2,3,4,1,2,5,1,2,3,4,5
■ Assume x memory frames ( x  pages can be 

in memory at a time per process)

9 Page faults

10 Page faults

FIFO Replacement - Belady’s Anomaly -- more frames does not mean less page faults

3 frames

4 frames
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Optimal Algorithm

■ Replace page that will not be used for longest 
period of time.

❑ Typically not possible in a practical setting
❑ Generally used to measure how well an algorithm 

performs.
❑ Reference String: 1,2,3,4,1,2,5,1,2,3,4,5

6 Page faults
4 frames
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Least Recently Used (LRU) 
Algorithm

❑ Use recent past as an approximation of near 
future.

❑ Choose the page that has not been used for the 
longest period of time.

❑ May require hardware assistance to implement.
❑ Reference String: 1,2,3,4,1,2,5,1,2,3,4,5

8 Page faults

4 frames
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Implementation of LRU algorithm

■ Counter Implementation?
❑ Every page entry has a counter; every time page is referenced 

through this entry, copy the clock into the counter.
❑ When a page needs to be evicted, look at the counters to 

determine which page to evicted (page with smallest time value).
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Implementation of LRU algorithm

■ Counter Implementation: slow!
❑ Every page entry has a counter; every time page is referenced 

through this entry, copy the clock into the counter.
❑ When a page needs to be evicted, look at the counters to 

determine which page to evicted (page with smallest time value).
❑ Needs to search the page entries, which is slow
❑ Needs hardware to update entries; software update will be slow
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Implementation of LRU algorithm

■ Counter Implementation: slow!
❑ Every page entry has a counter; every time page is referenced 

through this entry, copy the clock into the counter.
❑ When a page needs to be evicted, look at the counters to 

determine which page to evicted (page with smallest time value).
❑ Needs to search the page entries, which is slow
❑ Needs hardware to update entries; software update will be slow

■ Stack Implementation?
■ Keeps a stack of page numbers in a doubly linked form
■ When a page referenced, move it to the top of the stack
■ No search required for replacement
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Implementation of LRU algorithm

■ Counter Implementation: slow!
❑ Every page entry has a counter; every time page is referenced 

through this entry, copy the clock into the counter.
❑ When a page needs to be evicted, look at the counters to 

determine which page to evicted (page with smallest time value).
❑ Needs to search the page entries, which is slow
❑ Needs hardware to update entries; software update will be slow

■ Stack Implementation: slow!
■ Keeps a stack of page numbers in a doubly linked form
■ When a page referenced, move it to the top of the stack
■ No search required for replacement
■ Stack update mainly in software, which is slow
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LRU Approximation Algorithms

❑ High-level idea: Use reference Bit (also called the 
accessed bit)

❑ With each page, associate a bit, initially = 0.
❑ When page is referenced, bit is set to 1 (by hardware).
❑ Replace the one which is 0 (if one exists). Do not know 

order however.
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LRU Approximation Algorithms

❑ Additional Reference Bits Algorithm
❑ Record reference bits at regular intervals.
❑ Keep 8 bits (say) for each page in a table in memory.
❑ Periodically, shift reference bit into high-order bit, i.e. shift 

other bits to the right, dropping the lowest bit.
❑ During page replacement, interpret the 8 bits as unsigned 

integer.
❑ The page with the lowest number is the LRU page.
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LRU Approximation Algorithms

❑ Second Chance
■ Core is a FIFO replacement algorithm
■ Implemented with circular queue (hence called the clock 

algorithm sometimes)
■ Need a reference bit.
■ When a page is selected, inspect the reference bit.
■ If the reference bit = 0, replace the page.
■ If page to be replaced (in clock order) has reference bit = 

1, then
❑ set reference bit to 0
❑ leave page in memory
❑ Move on to check the next page (in clock order). Checking 

of the next page will be subject to same rules.
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LRU Approximation Algorithms

❑ Enhanced Second Chance
■ Need a reference bit and a modify bit as an ordered pair.
■ Modify bit is set by hardware when page is written to.
■ 4 situations are possible:

❑ (0,0) - neither recently used nor modified - best page to replace.
❑ (0,1) - not recently used, but modified - not quite as good, 

because the page will need to be written to disk before 
replacement.

❑ (1,0) - recently used but not modified - probably will be used 
again soon.

❑ (1,1) - probably will be used again, will need to write out before 
replacement - worst page to replace.

❑ Used in the Macintosh virtual memory management scheme
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Counting Algorithms

■ Keep a counter of the number of references 
that have been made to each page.

❑ LFU (least frequently used) algorithm
■ replaces page with smallest count.
■ Based on the argument that the page with the smallest 

count will not be used frequently in the future either
❑ Variation - shift bits right over time to gradually retire the 

effect of old references.
❑ MFU (most frequently used) algorithm

■ replaces page with highest count. 
■ Based on the argument that the page with the smallest 

count was probably just brought in and has yet to be 
used.
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Page Buffering Algorithm

■ Keep a pool of free frames
❑ When a page fault occurs, choose victim frame.
❑ Desired page is read into free frame from pool before victim is 

written out.
❑ Allows process to restart soon, victim is later written out and 

added to free frame pool.

25



Page Buffering Algorithm

■ Keep a pool of free frames
❑ When a page fault occurs, choose victim frame.
❑ Desired page is read into free frame from pool before victim is 

written out.
❑ Allows process to restart soon, victim is later written out and 

added to free frame pool.
■ Expansion 1

❑ Maintain a list of modified pages. When disk is idle, write 
modified pages to disk and clear modify bit.
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Page Buffering Algorithm

■ Keep a pool of free frames
❑ When a page fault occurs, choose victim frame.
❑ Desired page is read into free frame from pool before victim is 

written out.
❑ Allows process to restart soon, victim is later written out and 

added to free frame pool.
■ Expansion 1

❑ Maintain a list of modified pages. When disk is idle, write 
modified pages to disk and clear modify bit.

■ Expansion 2
❑ Keep frame contents in pool of free frames and remember 

which page was in frame. If desired page is in free frame pool, 
no need to page in.
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Allocation of Frames

❑ Single user case is simple 
❑ User is allocated any free frame

❑ Problem: Demand paging + multiprogramming
■ Two major allocation schemes:

❑ Fixed allocation
❑ Priority allocation

■ Each process needs minimum number of pages based on 
instruction set architecture.

■ Example IBM 370: 6 pages to handle MVC (storage to 
storage move)  instruction
❑ Instruction is 6 bytes, might span 2 pages.
❑ 2 pages to handle from.
❑ 2 pages to handle to.

■ Will need 8 pages if MVC used as an operand of EXECUTE
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Allocation algorithms

■ Equal Allocation
❑ e.g., if 100 frames and 5 processes, give each 20 frames.

■ Proportional Allocation
■ Allocate according to the size of process

❑ Sj = size of process Pj
❑ S = ∑Sj
❑ m = total number of frames
❑ aj = allocation for Pj = (Sj/S) * m
❑ If m = 64, S1 = 10, S2 = 127 then 
              a1 = 10/137 * 64 ≈ 5
              a2 =  127/137 * 64 ≈  59
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Allocation algorithms (cont.)

■ Priority allocation
❑ May want to give high priority process more memory than 

low priority process.
❑ Use a proportional allocation scheme using priorities 

instead of size
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Global vs. Local Replacement

■ Global Replacement 
■ Selects a replacement frame from the set of all frames.
■ One process can take a frame from another.
■ Process may not be able to control its page fault rate.
■ Semi-global replacement: selects a replacement from frames 

allocated to some other processes, but not all.
■ Local Replacement

■ Selects from process’ own set of allocated frames.
■ Process slowed down even if other less used pages of 

memory are available.
■ Global replacement has better throughput

■ Hence more commonly used.
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Priority Allocation (cont.)

■ If process Pi generates a page fault
■ select for replacement one of its frames (local allocation)
■ select for replacement a frame form a process with lower 

priority number. (semi-global allocation)
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Thrashing

■ If a process does not have enough frames, 
the page fault rate can be very high.  This 
leads to:

■ low CPU utilization.
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Thrashing

■ If a process does not have enough frames, 
the page fault rate can be very high.  This 
leads to:

■ low CPU utilization.
■ OS thinks that it needs to increase the degree of 

multiprogramming
■ Another process is added to the system.
■ System throughput plunges...

❑ Thrashing  
■ A process is busy swapping pages in and out.
■ In other words, a process is spending more time paging 

than executing.

34



Thrashing (cont.)
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Thrashing (cont.)

❑ Locality: set of pages that are actively used 
together.

❑ Computations have locality!
❑ Process migrates from one locality to another.
❑ Localities may overlap.
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Thrashing (cont.)
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❑ Why does thrashing occur? 
■ ∑ (size of locality) > total memory size

❑ Solution to thrashing:
■ If ∑ (size of locality) > total memory size, then suspend 

one of the processes



Working Set Model

■ Working set is an approximation of the size of the 
locality

■ Δ ≡ working-set window
■ a fixed number of page references, e.g., 10,000

❑ WSSj (working set size of process Pj) = total number of 
pages referenced in the most recent Δ (varies in time) 

■ If Δ too small, will not encompass entire locality.
■ If Δ too large, will encompass several localities.
■ If Δ = ∞,  will encompass entire program.
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Use working set model to avoid 
thrashing
■ D = ∑ WSSj  ≡ total needed pages

■ If D > m (number of available frames)  ⇒ thrashing
❑ Policy: If D > m, then suspend one of the processes.
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Measure working set in practice

■ Use
■ interval timer + the reference bit

❑ Example: Δ = 10,000 references
❑ Let’s assume we can get the timer to interrupt after every 5000 

references (will be an approximation).
❑ Whenever a timer interrupts, copy and set the values of all 

reference bits to 0. 
❑ Keep in memory 2 bits for each page (indicated if page was used 

within last 10,000 to 15,000 references).
❑ If one of the bits in memory = 1 ⇒ page in working set.

■ Not completely accurate - cannot tell where reference 
occurred.

■ Improvement - 10 bits and interrupt every 1000 time units.
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Page fault Frequency Scheme

■ Control thrashing by establishing  acceptable page-fault 
rate (an upper bound and a lower bound).

❑ If page fault rate too low, process loses frame.
❑ If page fault rate too high, process needs and gains a 

frame.
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Demand Paging Issues

❑ Prepaging
■ Tries to prevent high level of initial paging.

❑ E.g., If a process is suspended, keep list of pages in 
working set and bring entire working set back before 
restarting process.

❑ Tradeoff - page fault vs. prepaging - depends on how many 
pages brought back are reused.

❑ Page Size Selection
■ fragmentation
■ table size
■ I/O overhead
■ locality
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Demand Paging Issues

❑ Program Structure
■ Array A[1024,1024] of integers
■ Assume each row is stored on one page
■ Assume only one frame in memory
■ Program 1

for j := 1 to 1024 do
for i := 1 to 1024 do
       A[i,j] := 0;
How many page faults?
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Demand Paging Issues

❑ Program Structure
■ Array A[1024,1024] of integers
■ Assume each row is stored on one page
■ Assume only one frame in memory
■ Program 1

for j := 1 to 1024 do
for i := 1 to 1024 do
       A[i,j] := 0;
1024 * 1024 page faults

■ Program 2
for i := 1 to 1024 do
for j:= 1 to 1024 do
       A[i,j] := 0;
How many page faults?
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Demand Paging Issues

❑ Program Structure
■ Array A[1024,1024] of integers
■ Assume each row is stored on one page
■ Assume only one frame in memory
■ Program 1

for j := 1 to 1024 do
for i := 1 to 1024 do
       A[i,j] := 0;
1024 * 1024 page faults

■ Program 2
for i := 1 to 1024 do
for j:= 1 to 1024 do
       A[i,j] := 0;
1024 page faults
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Demand Paging Issues

■ I/O (DMA) considerations
■ Process A issues I/O request, which requires DMA
■ CPU is given to other processes
■ Page faults occur  - process A’s pages are paged out.
■ DMA now tries to occur - but frame is being used for another 

process.
❑ Solution 1: never do DMA to process memory - DMA takes 

place in kernel memory, which is never paged out. Copying 
Overhead!!

❑ Solution 2: Lock/pin pages in memory - cannot be selected 
for replacement.
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Demand Segmentation

■ Used when segmentation is used.
■ OS allocates memory in segments, which it 

keeps track of through segment tables.
■ Segment table contains valid bit to indicate whether the 

segment is currently in memory.
❑ If segment is in main memory, access continues.
❑ If not in memory, segment fault is triggered. Then segment 

is then brought to memory if access is legitimate.
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