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The eBPF technology in the Linux kernel has beenwidely adopted for di�erent applications, such as networking,

tracing, and security, thanks to the programmability it provides. By allowing user-supplied eBPF programs to

be executed directly in the kernel, it greatly increases the �exibility and e�ciency of deploying customized

logic. However, eBPF also introduces a new and wide attack surface: malicious eBPF programs may try to

exploit the vulnerabilities in the eBPF subsystem in the kernel.

Fuzzing is a promising technique to �nd such vulnerabilities. Unfortunately, our experiments with the state-

of-the-art kernel fuzzer, Syzkaller, show that it cannot e�ectively fuzz the eBPF runtime, those components

that are in charge of executing an eBPF program, for two reasons. First, the eBPF veri�er (which is tasked

with verifying the safety of eBPF programs) rejects many fuzzing inputs because (1) they do not comply with

its required semantics or (2) they miss some dependencies, i.e., other syscalls that need to be issued before the

program is loaded. Second, Syzkaller fails to attach and trigger the execution of eBPF programs most of the

times.

This paper introduces the BPF Runtime Fuzzer (BRF), a fuzzer that can satisfy the semantics and dependencies

required by the veri�er and the eBPF subsystem. Our experiments show, in 48-hour fuzzing sessions, BRF can

successfully execute 8× more eBPF programs compared to Syzkaller (and 32× more programs compared to

Buzzer, an eBPF fuzzer released recently from Google). Moreover, eBPF programs generated by BRF are much

more expressive than Syzkaller’s. As a result, BRF achieves 101% higher code coverage. Finally, BRF has so far

managed to �nd 6 vulnerabilities (2 of them have been assigned CVE numbers) in the eBPF runtime, proving

its e�ectiveness.
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1 INTRODUCTION

Extended Berkeley Packet Filter (eBPF) is a rapidly evolving technology in the Linux kernel that
enables generic programmability in the kernel space. Originally, the Classic Berkeley Packet Filter
(cBPF) was developed speci�cally for �ltering network packets. It allowed user-supplied programs
to be loaded and executed in the kernel space to inspect packets and decide whether to allow or
reject them. A virtual machine in the kernel interpreted the simple cBPF bytecode of the program.
In 2014, with new instructions and an enhanced virtual machine, eBPF was introduced [23]. As a
result of the greater generic programmability and persistent data storage (i.e., maps) [22], it has
quickly gained traction in di�erent domains in the kernel. Not only is it widely adopted in di�erent
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places in the networking stack, it is also integrated with kernel tracing, debugging, and auditing
frameworks.

While eBPF brings extensibility and performance to the Linux kernel, it also introduces risks as
user-supplied programs run in the kernel. To ensure that an eBPF program, potentially supplied by
attackers, can run safely in the kernel space, the eBPF veri�er checks the program before loading it
to make sure it will not execute inde�nitely or access invalid memory. Obviously, the correctness
of the veri�er is critical to the safety of kernel. Therefore, many recent works [1, 8, 11, 12, 14–
16, 19, 25, 27, 28] have proposed di�erent ways to test or verify it.

However, we note that eBPF has a signi�cant footprint in the kernel beyond the veri�er, i.e., the
eBPF runtime, which executes an eBPF program after it passes the veri�er. The runtime components
mainly consist of the execution environment (i.e., the interpreter or the just-in-time (JIT) compiler)
and functionality that cannot be realized using only eBPF bytecode (e.g., helper functions and
maps). Therefore, it is critical to �nd and �x the vulnerabilities in the eBPF runtime to prevent
exploits.
Fuzzing is a promising technique to �nd such vulnerabilities. Unfortunately, our experiments

with the state-of-the-art kernel fuzzer, Syzkaller, show that it cannot e�ectively fuzz the eBPF
runtime for two reasons. First, the aforementioned eBPF veri�er rejects many fuzzing inputs because
(1) they do not comply with its required semantics or (2) they miss some dependencies, i.e., other
syscalls that need to be issued before the program is loaded. Second, Syzkaller fails to attach and
trigger the execution of eBPF programs most of the times. We brie�y discuss these issues here.
Program semantics. Similar to other language processors, inputs to the eBPF subsystem (i.e., eBPF
programs) pass through both syntax and semantic checks, and are then converted into low-level
machine code (if JIT is enabled). More speci�cally, input eBPF bytecode �rst go through a series
of checks in the veri�er. Not only does the bytecode have to conform to the eBPF instruction set
format (i.e., syntax), the control and data �ow also need to conform to requirements imposed by
the veri�er to safeguard the kernel (semantics).
Program dependencies. In eBPF, a series of preparatory syscalls are often needed to be made in
order to correctly load the bytecode into the kernel. The sequence and arguments of these syscalls
may depend on the eBPF program. For instance, loading a program that uses maps requires making
syscalls to create compatible eBPF maps in the kernel in the �rst place. The program also needs
to be rewritten to refer to the external resources such as the created maps, which is referred as
relocation in eBPF.
Program execution. Finally, loaded eBPF programs need additional syscalls to be executed. Since
eBPF programs are triggered by kernel events, they �rst need to be correctly attached to the entry
points. Then, corresponding events need to be created to trigger the execution of the programs.
To demonstrate Syzkaller’s ine�ectiveness in fuzzing the eBPF runtime, we perform an experi-

ment. During 48-hour fuzzing sessions, only 19.5% of BPF_PROG_LOAD syscalls succeed in passing
the veri�er. And the programs that pass the veri�er are simple. For example, the average number of
instructions in a program is 4.86, showing that 50% of the successfully loaded programs e�ectively
contain less than 4 instructions to fuzz the runtime (the last instruction must be a BPF_EXIT). An-
other eBPF fuzzer recently released by Google, Buzzer [20], also shows to be ine�ective in fuzzing
runtime components. Only 0.1% of eBPF programs generated by the fuzzer’s pointer arithmetic
fuzzing strategy pass the veri�er.
In this work, we set out to tackle these challenges to e�ectively fuzz the eBPF runtime. Our

solution is BRF1, a fuzzer which is able to generate fuzzing inputs that, on the one hand, satisfy
both the eBPF semantic constraints and eBPF program dependencies, and on the other hand, are

1We have open sourced BRF at https://github.com/trusslab/brf.
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expressive enough to explore di�erent execution paths within the runtime. Moreover, BRF attempts
to attach and execute the successfully loaded programs.
BRF incorporates three novel solutions. First, BRF produces semantic-correct eBPF programs

e�ciently by using an iterative error message-driven incorporation of semantic rules as well as source-
code level program generation/mutation. By generating/mutating eBPF programs at the source-code
level and compiling them into actual fuzzing inputs, the compiler automatically takes care of
the basic semantics of a program. For example, a branch instruction will not jump to invalid
locations, or an instruction will not access invalid stack memory unless we explicitly perform
pointer arithmetics. To further comply with additional semantics imposed by the eBPF veri�er, we
use the error messages of the veri�er in an iterative process to extract the rules and integrate them
with the program generation/mutation logic. Second, to tackle the challenge of syscall dependencies
to eBPF programs, we study the relationship between the preparatory syscalls and eBPF programs,
and then, in addition to random syscalls, we also generate preparatory syscalls with constrained
arguments. Finally, we generate syscalls to attach and trigger the eBPF programs.

Using extensive experiments, we show that 97.6% of the fuzzing inputs generated by BRF succeed
in passing the veri�er while only 19.5% and 0.1% of the fuzzing inputs generated by Syzkaller and
Buzzer pass the veri�er, respectively. Moreover, in BRF, a large percentage of these programs are
successfully attached to corresponding entry points and subsequently executed. Overall, in 48-hour
fuzzing sessions, BRF manages to execute 8× and 32× more eBPF programs than Syzkaller and
Buzzer, respectively. Furthermore, the programs successfully loaded by BRF are more expressive
compared to programs successfully loaded by Syzkaller, i.e., they include 3.4× more instructions,
27.4× more calls to helper functions, and 17.1× more use of maps. The programs are also more
expressive compared to Buzzer as the fuzzing strategy only uses a single type of helper function and
map with �xed argument. As a result, BRF can cover 101% more basic blocks in the eBPF runtime
when compared with Syzkaller. Finally, BRF has so far managed to �nd 6 new vulnerabilities
(2 of which are assigned CVE numbers), proving its capability in �nding vulnerabilities in the
heavily-shielded runtime components.

Wemake the following contributions in this work. (1)We show that existing fuzzers are ine�cient
in fuzzing the eBPF runtime components due to weaknesses in three major aspects: 1) generating
semantic-correct eBPF programs 2) meeting the syscall dependency to load programs 3) attaching
and executing the loaded programs. (2) We generate semantic-correct eBPF programs using an
iterative error message-driven incorporation of semantic rules (which uses automation as much as
possible) as well as source-code level program generation/mutation. (3) We develop a dependency-
aware input generation by collecting the dependency information with the help of automation
whenever possible. (4) We provide an extensive quantitative and qualitative comparison of BRF
and key related work and show that fuzzing inputs generated by BRF can better cover the eBPF
runtime components.

2 BACKGROUND

2.1 Workflow of eBPF

We have witnessed a wide and rapid adoption of eBPF in areas such networking, tracing, and secu-
rity [6]. For di�erent use cases, there exist corresponding program types (e.g., BPF_PROG_TYPE_SO-
CKET_FILTER for �ltering packets and BPF_PROG_TYPE_LIRC_MODE2 for decoding infrared signals).
The program types limit the resources they can access (e.g., BPF_PROG_TYPE_LIRC_MODE2 should
not be able to access network packets). We further break down the work�ow into three phases:
loading, attaching, and execution.
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Loading. An eBPF program that a user wants to execute �rst needs to be loaded into the kernel.
This involves loading BPF type format (BTF) information, creating eBPF maps, relocating the eBPF
program and �nally loading the program. First, since an eBPF program may point to some variables
in the kernel, BTF information is needed to resolve the references. Next, eBPF maps used in the
eBPF program need to be created by calling BPF syscalls. Then, an eBPF program with instructions
referring to external resources (i.e., kernel variables, maps) needs to be rewritten to point to the
actual resources, which is also known as relocation. Finally, the eBPF veri�er checks the program
for safety. After that, it will be compiled by the JIT compiler if enabled. The kernel will return a �le
descriptor of the loaded program on success.
Attaching. Once the eBPF program is loaded, the user can attach it using the aforementioned �le
descriptor to hooks in the kernel, which will be the entry points of the program. The hooks can be
functions in the network stacks, kernel functions, security hook, etc.
Execution. Once the aforementioned hooks are triggered in the kernel, the attached program
is executed either by an interpreter or natively if the in-kernel eBPF JIT compiler is enabled.
Depending on the hook, di�erent data will be passed to a program as the argument, which is
called context. During execution, the eBPF program can store or read data in eBPF maps. It can also
interact with the kernel through a prede�ned set of helper functions in the kernel, which allow a
program to, for example, access maps, retrieve kernel information, or print messages. Finally, an
eBPF program may return an integer value, which will be interpreted by the kernel according to
the program type. For example, a socket �lter program may return 0 to instruct the kernel to drop
the packet.

2.2 eBPF Verifier

To ensure programs supplied by user space programs can be safely executed in the kernel, eBPF ver-
i�er statically checks them during loading. It mainly prevents unbounded execution, invalid jump,
invalid memory access, and leak of sensitive kernel data. To do so, the veri�er �rst checks if a pro-
gram contains loops in the control �ow. Then, it walks through the instructions and performs checks
speci�c to the type of instruction. As it traverses the program, the veri�er keeps track of the register
state, which includes the potential ranges and types of values in the registers. Some examples of the
value types are normal scalar values (SCALAR_VALUE), pointers to program context (PTR_TO_CTX),
pointers to map (CONST_PTR_TO_MAP), and pointers to stack memory (PTR_TO_STACK). As a result,
the veri�er is able to determine whether a pointer dereference is safe. For example, an instruction
will only access the valid �elds in the context with correct permission, or only pointers to valid
stack memory can be dereferenced. In addition, since the veri�er can track the propagation of
pointer values, leaking them to the user space (e.g., directly or indirectly through helper functions
and return values) can be prevented. We will discuss the veri�er rules in more depth in §4.

2.3 eBPF Runtime

We de�ne the eBPF runtime components as the parts of the eBPF subsystem that are executed once
an eBPF program passes the safety checks of the veri�er. We identify four major components: JIT
compiler, interpreter, eBPF maps, and helper functions.
JIT compiler. In systems running on supported architectures (e.g., x86 and ARM), veri�ed eBPF
programs can be further compiled into native machine code by the JIT compiler built into the
kernel to speed up the performance.
Interpreter. If JIT is disabled or not supported by the architecture, the eBPF interpreter will be in
charge of execution of programs, i.e., decoding eBPF bytecodes on the �y and executing them.
eBPF maps. One signi�cant improvement of eBPF over cBPF is persistent storage that preserves
data even after programs terminate. There are 31 di�erent types of eBPF maps provided in Linux
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v6.1. In general, they are key-value stores but di�er in the underlying data structure (e.g., hash
table, array, or ring bu�er) or the type of elements being stored, e.g., generic data type, socket, or
control group (cgroup). In addition to eBPF programs, maps can also be accessed by user space
programs using BPF syscalls.
Helper functions. eBPF programs can interact with the kernel through helper functions, which
are a prede�ned set of functions hard-coded in the kernel. There are 213 helper functions in
Linux v6.1. A major portion of the helpers are used for accessing or manipulating eBPF maps.
For example, bpf_map_lookup_elem, bpf_map_update_elem, and bpf_map_delete_elem are
used for retrieving, modifying, and deleting an element in a map. Some examples for other helper
functions include printing debug messages, getting the task_struct of the current task, and
redirecting a packet to another network device. Note that the availability of helper functions
depends on the program type as their usages only make sense under certain scenarios and privileges.
Also, unlike eBPF maps, helper functions can only be invoked by eBPF programs.

We design BRF to fuzz all these runtime components. We speci�cally think that having the
ability to fuzz eBPF maps and helper functions is important since as the eBPF technology �nds new
applications in the kernel, the number of eBPF maps and helper functions will for sure continue to
grow. Indeed, the number of helper functions went up from 90 in 2019 [2] to 213 in 2022 [4].

3 OVERVIEW

3.1 Goals

In this work, we aim to fuzz the eBPF runtime components. The runtime primarily consists of the
JIT compiler, the interpreter, the eBPF maps, and helper functions. To achieve this, we have three
goals.
Goal I: Generating semantic-correct eBPF programs. Since most of the runtime components
in the kernel space are only accessible through eBPF programs (except maps) instead of BPF
syscalls from user space programs, we need to generate eBPF programs and let them test these
components. Because the eBPF veri�er enforces additional semantics in addition to C semantics
on eBPF programs for safety reasons and reject incorrect programs, the randomly generated eBPF
programs need to be semantic-correct in order to pass the heavy scrutiny of the veri�er.
Goal II: Generating fuzzing inputs that meet syscall dependencies. A fuzzing input gener-
ated by a fuzzer is a program consisting of an eBPF program and some syscalls. For the randomly
generated eBPF programs, to pass the veri�er to be loaded into the kernel, a series of syscalls need
to be made. The sequence and arguments of syscalls depend on the eBPF program. Therefore, to
e�ectively test the runtime, a fuzzing input should at least contain these syscalls that satisfy the
eBPF program dependencies.
Goal III: Generating syscalls that attach and trigger eBPF programs. After eBPF programs
pass the veri�er, to execute them, they �rst need to be attached to the hooks. Then, events corre-
sponding to the hooks need to be generated in order to trigger them. Thus, a fuzzing input should
also include syscalls that can attach eBPF programs and trigger the execution.

3.2 Design

Fig 1 shows the high-level idea of BRF. We �rst extract the eBPF domain knowledge, which includes
the eBPF semantics and the syscall dependencies, through manual study of the source code and
scripts that automatically parse the source code. Then, during the fuzzing phase, by leveraging
the extracted domain knowledge, BRF is able to generate semantic-correct eBPF programs. It then
generates the fuzzing input, which includes not only the eBPF program, but also the required
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syscalls to correctly load, attach, and execute the eBPF programs. This way, BRF can reach deeply
behind the eBPF veri�er and e�ectively fuzz the BPF runtime.

3.3 Workflow

BRF is a coverage guided fuzzer as shown in Fig 2. In the main fuzzing loop, it generates a fuzzing
input (which, as mentioned, consists of an eBPF program and a series of required syscalls.) This
is done in two steps. First, BRF’s scheduler generates a new eBPF program, or mutates an eBPF
program in the corpus. Then, BRF generates di�erent syscalls to form a fuzzing input. Next, we
discuss these two steps in more detail.

In the �rst step, to generate a new semantic-correct eBPF program, BRF �rst randomly chooses
a program type and a target helper function since helper functions are one of the key runtime
components that we want to test. Then, it tries to generate the arguments of the helper function.
For each argument, it generates the value based on the type. In general, there are three ways to
generate a speci�c type of argument: First, some types of arguments can be generated by directly
passing di�erent values into the argument. Examples are scalar values or pointers to stack memory.
Second, accessing di�erent �elds of the program context sometimes can result in di�erent types of
values. For instance, a socket �lter eBPF program has struct sk_buff as the context. Accessing
the �eld sk in this structure yields a PTR_TO_SOCK_COMMON value. Lastly, helper functions can
return di�erent types of values. Therefore, BRF may generate other helper function calls and their
arguments recursively. Note that the generation logic is constrained based on the rules enforced
by the veri�er (§4) so that the resulting eBPF program will not contain incorrect semantics. The
generated eBPF program source code will be compiled into eBPF bytecode and also serialized and
stored into the corpus.
In the second step, BRF generates a user space program with di�erent syscalls (i.e., fuzzing

input). It generates syscalls necessary to load, attach and execute the eBPF program. It generates
the arguments of these syscalls according to the eBPF program so that they are compatible (§6). It
then generates and appends other random BPF syscalls to the fuzzing input as they can also access
some runtime components.
After the eBPF program and the syscalls, serving as a fuzzing input, are generated, it will be

executed. During the execution, BRF gathers coverage information to guide the fuzzing. That is, if
a fuzzing input triggers new coverage, it adds the input to the corpus and mutates it to facilitate
exploring di�erent execution paths.

If the scheduler chooses to mutate a fuzzing input from the corpus, it may decide to mutate the
eBPF program or the syscalls. To mutate an eBPF program, BRF �rst randomly selects an argument
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Table 1. Types of error messages in the eBPF verifier.

Type of error msg. Syntax Semantic Veri�er error Other

# error msg. 34 226 38 20

of a helper function call. Then, it randomly generates the argument again using the same logic
for input generation. It then compiles the mutated source code to form the new mutated eBPF
program. Since maps may be inserted or removed from the mutated eBPF program during this
process, BRF needs to modify the syscalls associated with the eBPF program accordingly so that
it can still load the eBPF program correctly. On the other hand, if the scheduler decides to only
mutate the syscalls, only the randomly generated syscalls and their arguments can be mutated to
ensure the eBPF program can still be loaded after the mutation.

4 GENERATING SEMANTIC-CORRECT eBPF PROGRAMS

To improve the e�ectiveness of the fuzzer in testing runtime components, generating semantic-
correct eBPF programs is critical. Although eBPF programs can be written in C and compiled into
executable using LLVM, the veri�er imposes many additional semantics to ensure they can be
executed in the kernel space safely. Not only are there many semantic checks, but they are also
mostly path sensitive, making the veri�er logic very complex. In the Linux kernel v5.15 source code,
the main �le that contains veri�er logic has about 14,000 line of code, not to mention many of other
program-speci�c or map-speci�c logic scattered elsewhere in the kernel.
Key approach 1: iterative error message-driven incorporation of semantic rules. Studying
the veri�er in order to identify all the semantic checks is a daunting task. Fortunately, we have
two observations that allowed us to systematically tackle this challenge. More speci�cally, we
noticed that whenever errors occur in the veri�er, corresponding error messages are printed. As
shown in Table 1, the error messages mainly include instructions with incorrect syntax, semantic
violations, and veri�er internal errors. Therefore, our �rst key approach is to use the error messages
to enumerate all the semantic rules in the veri�er.
We aim to only �nd the rules that prevent us from e�ectively fuzzing the runtime and then

constrain our eBPF program generation logic according to these rules. We �rst annotate the veri�er
error messages with line numbers and start running the fuzzer without implementing constraints.
That is, the fuzzer randomly generates helper functions and their arguments. Then, during the
development of the fuzzer, we add a constraint associated with a veri�er rule if the rules is triggered
more than once per hour by the eBPF programs generated by the fuzzer. Note that, syntax rules are
automatically satis�ed by compiling the source code into eBPF bytecode.
By studying the 226 semantic rules, we are able to constrain the generation and mutation

processes of the fuzzer. We explicitly incorporate constrains for 82 semantic rules into the fuzzer;
most of the rest are implicitly taken care of by the compiler and the construct of the program
we use. For example, the program will not contain unreachable code, unbounded loops, and the
read-only frame pointer will not be written.
Key approach 2: source-code level program generation/mutation. We noticed that many
semantic rules are not violated if the eBPF program is generated by a compiler from source code
with normal construct. For instance, a normal program does not jump to an invalid address, indexing
variable on the stack beyond valid range, or modifying the stack frame of another function without
complex code that deliberately performs the operations. Therefore, our second key approach that
further makes generating semantic-correct eBPF programs easier is source-code level program
generation. Generating semantic-correct programs can be rather challenging for inputs generated

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 52. Publication date: July 2024.



52:8 Hsin-Wei Hung and Ardalan Amiri Sani

1 static const struct bpf_func_proto *

2 kprobe_prog_func_proto(enum bpf_func_id func_id

3 {

4 switch (func_id) {

5 case BPF_FUNC_perf_event_output:

6 return &bpf_perf_event_output_proto;

7 ...

8 default:

9 return bpf_tracing_func_proto(func_id, prog);

10 }

11 }

Fig. 3. Simplified code showing how the verifier

checks if a helper is available to kprobe eBPF pro-

grams.

1 static const struct bpf_reg_types

2 scalar_types = { .types = { SCALAR_VALUE } };

3 ...

4 static const struct bpf_reg_types *

5 compatible_reg_types[__BPF_ARG_TYPE_MAX] = {

6 [ARG_CONST_SIZE] = &scalar_types,

7 ...

8 }

Fig. 4. Simplified code showing how the verifier

checks if a helper is available to kprobe eBPF pro-

grams.

by a bytecode-level fuzzer. Take generating a random jump instruction as an example. A bytecode-
level fuzzer not only needs to make sure the target is within the function, it also needs to keep
track of the control �ow of all basic blocks so that the jump does not introduce a loop or at the end
leave some basic block never reached (i.e., dead code). In contrast, without using goto and loop in
the source code, jump instructions are always valid.
We next discuss some important rules that we have dealt with. These examples show how we

automate our solutions as much as possible. Although manual e�ort is inevitable in studying the
rules and building the semantic awareness, we think it should be a one-time e�ort given that the
semantics of eBPF should remain mostly the same.

4.1 Helper Function Availability

The helper functions available to each type of eBPF programs are di�erent. This makes sense
as di�erent program types have di�erent use cases and require di�erent privileges. For example,
for a socket �lter eBPF program that requires almost no special privilege to be loaded, it should
not be able to read arbitrary kernel memory using bpf_probe_read_kernel. Therefore, when
the veri�er encounters an eBPF call instruction to a helper function, it calls get_func_proto, a
member function of the program type, to retrieve the function pointer to the helper function. An
example is shown in Fig 3, which is the get_func_proto of kprobe eBPF programs. If the helper
function is not available, the program will be rejected.
To deal with this, BRF �rst parses the source code of the Linux kernel and looks for the

de�nition of get_func_proto for every program type. Sometimes, the get_func_proto of a
program type may recursively call the get_func_proto of another program type. For example,
bpf_tracing_func_proto shown in Fig 3 is the get_func_proto of the tracing type eBPF pro-
grams. Therefore, after BRF gathers all get_func_proto of every program type, those containing
other get_func_protos are recursively substituted to produce the complete helper availability
information. Then, during fuzzing, when BRF wants to insert a helper function, it only chooses
randomly from the ones available to the program types.

4.2 Helper Function Arguments

eBPF veri�er poses strict type checking on variables in the program. One such checks happens
when passing them to helper functions. As opposed to the C semantics, where one can pass almost
any type of variables to function arguments and implicit type conversion happens under the hood,
variables passed to arguments of helper functions have to be of compatible types. For example, as
Fig 4 shows, a constant size type argument only accepts scalar type variables. This suggests that a
variable of any pointer type can never be passed to the argument because it not only makes no
logical sense, but also creates a path to leak kernel pointers to user space.
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To generate eBPF programs conforming to these semantic constraints, we �rst extract the compati-
bility information between variable types and argument types stored in the compatible_reg_types.
Besides, BRF automatically parses the kernel source code to extract helper function prototypes,
which include the type of arguments. Then, when generating an argument for a helper function,
it randomly chooses a compatible type of variable according to the argument type declared in
the prototype by directly creating one, calling another helper function, or accessing the program
context.

4.3 Variable Safety Checks

To prevent unsafe memory accesses commonly seen in programs written in the C language, such
as null pointer dereference or out-of-bound access, pointer type variables in eBPF need to be
checked before being dereferenced. By comparing a pointer variable to a known value or range,
the veri�er (which is tracking the possible values of variables stored in the register state) is able to
determine whether a pointer dereference is safe. Any unsafe pointer dereference causes the veri�er
to reject the eBPF program. The safety constraint not only applies to normal expressions but also
to arguments of helper functions as pointers can be passed to them and then dereferenced in the
kernel.

In detail, there are three di�erent types of checks that are required to safely use di�erent types
of variables when passing them as helper function arguments.
Pointer. In the eBPF veri�er, there are types of pointers that point to external resources, such as
map values, sockets, memory locations or bu�ers. To make sure null pointer dereference will not
happen in helper functions, these pointers need to be compared with nullptr before passing them
as arguments.
Size.When a helper function takes a pointer to an external memory region as an argument, the
argument following the pointer is the size, which is used in the helper function to access the
memory. The size needs to be compared with a constant value that is smaller than the valid range
of the memory to make sure out-of-bound memory access will not happen. Also, it might need to
be compared with zero when the argument does not allow a zero-size access.
Packet. For a pointer to an external packet, it needs to be compared with pointers to the start and
end of the packet to make sure the access is limited within the packet.
To satisfy these constraints, BRF keeps track of the valid values of pointers. Then, the safety

checks are generated before using them as arguments in helper functions.
More speci�cally, when BRF tries to generate a helper function, it �rst generates its arguments,

which could come from the return value of another helper function, the program context or
direct allocation. Then, an if condition block wrapping the helper function call is generated. The
predicates are �lled with the safety checks of the variables passing to the arguments anded together,
so that only when all arguments are safe to use, the helper function can be invoked.

For example, when a pointer to a map value is returned from a helper function, BRF knows that
the valid size of the pointer should be the size of the value of the map. Therefore, when passing
the pointer to another helper function that takes a pointer to a memory region argument and a
size argument specifying the size of the memory that will be accessed in the helper function, two
checks are added. First, BRF adds a check to make sure the pointer returned by another helper
is not a nullptr. Second, the size argument is compared to the size of the map value, so that if
another random value is passed to the size argument and is larger than the size of map value, the
function will not be invoked.
Note that to prevent over-constraining (i.e., putting unnecessary checks on arguments), not

all pointer arguments need to be checked. When tracking pointer values, BRF records whether
a pointer can potentially be nullptr as some helper functions always return non-null pointers
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according to the return value annotated in the prototype. Then, BRF generates a nullptr check
only if a pointer argument does not allow nullptr and the pointer can potentially be a nullptr.

4.4 Program Context Access

eBPF programs are invoked with program contexts as arguments. Most of these are pointers to
di�erent structures depending of the type of the program and where they are attached. Not all
members within the structure may be read or written, and the accesses to the contexts are checked
by the veri�er by calling is_valid_access to make sure they are not only within the structure,
but also with the right permission.
We extract the permission and de�nition of contexts in di�erent is_valid_accesss, and use

this information to generate random but valid context accesses. When generating a variable for an
argument by accessing contexts, BRF �rst determines if the argument is going to be read or written.
This depends on if the argument is of ARG_PTR_TO_UNINIT_MAP_VALUE type, which suggests the
pointer will be accessed in raw mode and could be written. Then, only the �elds with the correct
permission are used for random selection.
Note that unlike other variables that are declared and assigned right before the helper, there

should be only one variable that accesses a speci�c �eld. Otherwise, the compiler optimization
would introduce pointer arithmetic on the pointer to context, which violates another veri�er rule.
Therefore, variables generated by BRF using context accesses are inserted at the beginning of the
program and then reused when needed.

4.5 Reference

eBPF programs have the ability to acquire references to some kernel resources through helper
functions (e.g., acquiring a reference to a socket interface). Therefore, it is important that when a
program terminates, references to resources are relinquished.
In BRF, in order to generate eBPF programs that satisfy the reference rules, a �x-up process is

performed after an eBPF program is generated. More speci�cally, BRF goes through the helper
functions in a program. If a reference acquired by a helper function never gets released by another
helper function, a new reference-releasing helper function is generated and inserted into the
program. On the other hand, when a reference-releasing helper function tries to release a variable
that is not produced by a reference-acquiring helper function, BRF adds a helper function that
returns a reference and then substitutes the original argument.
When developing BRF for this rule, we notice some false positives of the veri�er. That is, an

eBPF program conforming to the safety requirement is rejected due to the limitation of the veri�er
implementation. An example is shown in Fig 5. In line 2, bpf_ringbuf_reserve acquires a reference
to an entry in a ring bu�er, and therefore must be released before the program’s exit. Although
bpf_ringbuf_submit is called to release the reference in line 8 after checking if the reservation
succeeds in line 7 (which is a necessary safety check), the veri�er determines that there is reference
leak if v4 is null. Therefore, instead of releasing references before the program’s exit, we generate
reference releasing functions right after the use, which in this case is after line 4.

5 eBPF PROGRAM DEPENDENCIES

Being semantic-correct alone does not guarantee that an eBPF programwill be successfully accepted
by the veri�er. It is also necessary for the program to have the correct preparatory syscalls to be
called beforehand in order to load it into the kernel. These syscalls include BPF syscalls and other
generic syscalls and depend on the eBPF program to be loaded. More speci�cally, in the loading
process, these syscalls need to create compatible eBPF maps and relocate the eBPF program. Here
we describe these syscalls and their dependencies to the eBPF program.
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1 ...

2 v4 = bpf_ringbuf_reserve(&map_1, v2, v3);

3 if (v4)

4 v5 = bpf_ringbuf_query(&map_1, v4);

5 ...

6 if (v4)

7 bpf_ringbuf_submit(v4, 0);

8 return 1;

9 }

Fig. 5. An example semantic-correct eBPF program rejected by the

verifier.

5.1 Creating Compatible Maps

Among the preparatory syscalls, BPF_MAP_CREATE syscalls need to be �rst called to create eBPF
maps referred by eBPF programs. The arguments of the syscall decide the attributes (i.e., the type of
the map, type of the key, type of the value, the maximum number of entries and the �ag describing
other properties) of the map to be created. Creating a compatible map can be done in two steps: (1)
selecting a compatible type of map and (2) generating valid attributes for the map. The compatibility
of the type of map depends on the type of the program and the helper function that takes the map
as the argument. The attributes of a map are constrained by the type of the map in addition to the
program type and helper functions. Failing to meet the constraints can result in the failure of map
creation. In some cases, even if the map creation succeeds, the veri�er later will reject the program
during load time. We further describe the constraints (i.e., the dependencies between programs and
maps) and how BRF satis�es them.
Helper function. During fuzzing input generation, an eBPF map is �rst generated when a
helper function wants to use it as an argument. A helper function may only be compatible
with a certain type of maps. An obvious example is that bpf_ringbuf_output only accepts
BPF_MAP_TYPE_RINGBUF type of maps.

Thus, when selecting the type of map to be generated, BRF randomly chooses a compatible one
using the compatibility information extracted from the veri�er in the function check_map_func_co-
mpatibility.
Map type. For di�erent types of maps, the attributes have di�erent constraints and will be checked
during the creation. For example, since a BPF_MAP_TYPE_CGROUP_STORAGEmap only holds an entry
local to a cgroup and is indexed by a 64-bit cgroup ID or struct bpf_cgroup_storage_key, the
key size can only be 64 bits or the size of the key structure. Besides, since the number of entries is
not con�gurable, the number of max entries in the arguments should be zero.

Therefore, tomake sure BPF_MAP_CREATE syscalls succeed, BRF generates the attributes according
to the constraints of di�erent map types. There are four attributes; and the constraints we extract
from the map_alloc and map_alloc_check functions of di�erent map types can be generally
described as followed: For the size of keys and the size of values, the constraints are the minimum
size, maximum size and the alignment. For the �ags, valid �ags for a speci�c map are �rst separated
into groups, where only one �ag can be selected in each group. Then, these selected �ags are or-ed
together to form the �nal �ag value. Finally, the constraint of the max entries is a single value that
limits the upper bound of the random generated value.
Program type. The type of a program may also a�ect the types of maps that can be used (i.e.,
certain maps are not compatible with certain program types). For example, a tracing type program
that will be attached to hooks that may sleep during execution can only use some basic hash
and array maps. The type of program may also a�ect the �ags of the map. For instance, the
memory should be pre-allocated for perf event type eBPF programs, BPF_PROG_TYPE_PERF_EVENT.
Therefore, the �ag, BPF_F_NO_PREALLOC, shall not be used.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 52. Publication date: July 2024.



52:12 Hsin-Wei Hung and Ardalan Amiri Sani

When generating a map, BRF �rst only selects from types of maps that can be used under the
current program type, which is similar to how the compatibility of maps with helper functions is
handled. Then, attributes are generated based on the constraints coming from the map type. For
the attribute constraints introduced by the program types, BRF tries to �x the �ags after all the
attributes are generated depending on the programs type.

5.2 Relocating eBPF Programs

eBPF programs need to be relocated when they call other eBPF programs or there are instructions
that refer to maps, external symbols, or global variables. In such a case, a user space program that
wants to load the program �rst needs to create the maps or programs or resolve the reference.
Then, the references in the instructions need to be updated.

BRF addresses the problem by inserting correct and immutable syscalls into the fuzzing inputs.
To generate the correct syscalls, we leverage an eBPF utility library, libbpf. We directly invoke
the API of libbpf that makes syscalls to load an eBPF program after parsing eBPF bytecode and
other sections in the ELF �le of the program. Note that these preparatory syscalls in the fuzzing
inputs will not be mutated. As a result, instead of randomly generating these syscalls and hoping
they are su�cient for loading an eBPF program, we can make sure an eBPF program will be loaded
successfully in each fuzzing input.

6 EXECUTING eBPF PROGRAMS

To execute the eBPF programs generated by BRF, two steps need to be done by fuzzing inputs.
eBPF programs supplied by user space programs will not be automatically executed after being
successfully loaded into the kernel. They �rst need to be attached to hooks in the kernel. Then,
when the events corresponding to the hooks happen, they will be executed.

6.1 Program A�achment

For some eBPF program types, the entry point information (i.e., where the program should hook to)
is contained within the binary and therefore can be directly attached by calling BPF_PROG_ATTACH
without specifying them in the arguments. A customized section in the ELF binary of a program
is used to specify the type of the program. Sometimes, it may also contain the entry points. For
instance, an eBPF program with an ELF section named kprobe/sys_nanosleep not only tells the
user space programs loading it that it is a kprobe/eBPF program, it also says that the program
should be attached to the entry point of the syscall, nanosleep. In this case, BRF uses a �xed hook
for every program type when generating the binary.
However, for some types of programs, for �exibility reasons, the entry point information is

not speci�ed in the binaries. Instead, it is provided during attachment using the arguments of the
syscall. An example is BPF_PROG_TYPE_LIRC_MODE2, which enables decoding infrared signal using
eBPF programs. When attaching an LIRC eBPF program, an opened instance of the LIRC driver
should be passed to the attach syscall to indicate from which devices the signal should be decoded
by the program. Therefore, to properly attach these types of eBPF programs, BRF further generates
syscalls required to create and open the resources, and then uses it for the attachment.

6.2 Triggering the Hooks

After the eBPF programs are attached, besides letting them get triggered opportunistically by
random events in the kernel, BRF uses two methods to increase the probability of their execution.
First, BRF generates syscalls to trigger 7 types of eBPF programs (4 tracing-related, 2 network-

related, and LIRC). For tracing type eBPF programs, we explicitly attach to events that happen
frequently (e.g., tracepoints in the kernel scheduler, syscall entry points, or events signaled by
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hardware periodically). For the two network-related programs, we call recv on a socket that we
created and write data to the socket as well to trigger the execution. For LIRC programs, after
attaching to the LIRC device, BRF generates syscalls that write signals to the device, so that the
program will be invoked to decode the infrared signal.
Secondly, BRF leverages the BPF syscall BPF_PROG_TEST_RUN to deal with eBPF programs as-

sociated with subsystems that are hard to set up and test due to their complexity. Introduced for
this exact same purpose, BPF_PROG_TSET_RUN facilitates testing of a subset of program types by
building a simulated environment in the kernel and then test-running the eBPF programs. Therefore,
BRF always generates a BPF_PROG_TEST_RUN syscall after loading and attaching programs.

7 IMPLEMENTATION

We implement BRF on top of Syzkaller in Go and C++ with 3000 LoC. We extracted the constraints
from Linux v5.15 by manually studying the veri�er and partially parsing the source code automati-
cally. Finally, to collect coverage of eBPF programs for guiding the fuzzing, we extend the coverage
collecting framework in the Linux kernel, kcov, and instrument the kernel.

7.1 Collecting Coverage of eBPF Programs

While Syzkaller already collects coverage information of the fuzzer process to guide the fuzzing, it
does not include the coverage of eBPF programs. If not taken care of, eBPF programs that actually
trigger new execution paths will not be prioritized, leading to sub-optimal fuzzing.
To collect coverage information of syscalls issued from the fuzzer process, Syzkaller leverages

kcov in the Linux kernel. Through compiler instrumentation, a kcov function will be invoked for
every edge in the kernel. For every thread that opens and enables kcov, the coverage information
is then stored to a thread-speci�c memory region. In other words, only coverage of syscalls from
user space processes are collected.

However, eBPF programs are triggered by di�erent events depending on the program types and
the hooks. Therefore, they normally execute in contexts di�erent from the original fuzzer process
that loads and attaches the eBPF programs, for example, kernel threads or interrupt contexts. As a
result, even when a new helper function is invoked in an eBPF program, the eBPF program may
not be prioritized since no positive feedback is generated.
Fortunately, Syzkaller supports collecting extra coverage information for other fuzzer-related

processes by utilizing the remote coverage feature of kcov. This allows us to collect a kernel thread’s
coverage and then associate it with a user process. It requires manually instrumenting the source
code, which involves three steps. First, the handle of the user space thread needs to be installed to
the kernel thread of interest. We do so when a user space program loads an eBPF program into the
kernel space. The handle is stored into struct bpf_prog. Second, in the kernel thread, we annotate
when to start recording the coverage by calling kcov_remote_start with a handle. This is done at
the beginning of the function bpf_prog_run, with the handle we store in the struct bpf_prog.
Therefore, the coverage can be associated with the user space program regardless of where the
eBPF program is executed. Finally, we call kcov_remote_stop to stop recording coverage when
the execution of the thread leaves the area of interest, which is the end of bpf_prog_run.
We further extend the kcov remote coverage API to make tracing eBPF program coverage

possible. Since the original remote coverage API allocates a large memory area for storing coverage
in kcov_remote_start using vmalloc, it can only be invoked in context where sleep is permitted.
However, this is not the case for most of the eBPF program entry points. Therefore, we create a
preallocated version of the remote coverage API, which takes preallocated memory as argument
when starting coverage collection. Then, for every eBPF program, we allocate a memory region
during loading.
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Table 2. Comparison of programs loaded, a�ached, and triggered by Syzkaller and BRF under 48-hour fuzzing

sessions. The numbers are the average followed by the standard deviation. *# success keeps track of whether

any eBPF programs referenced in a fuzzing input are executed. Therefore, it may contain duplicated eBPF

programs. **Only the number of unique eBPF programs that are executed are counted, which is not available

in Syzkaller.

Program loading syscall Program attaching syscall Program execution

Total # Success Success rate Total # Success Success rate # Success* Success rate**

Syzkaller 176k ± 14k 34k ± 7k 19.5% ± 3.8% 60k ± 17k 16k ± 5k 26.5% ± 0.7% 12k ± 1k na
Buzzer 4,543k ± 289k 3k ± 0.2k 0.1% ± 0.0% 3k ± 0.3k 3k ± 0.3k 100.0% ± 0.0% 3k ± 0.3k 100.0% ± 0.0%
BRF 176k ± 9k 172k ± 10k 97.6% ± 0.8% 160k ± 8k 145k ± 8k 89.9% ± 1.2% 97k ± 8k 66.8% ± 3.7%

8 EVALUATION

8.1 Fuzzing E�ectiveness

To evaluate the e�ectiveness of BRF in fuzzing the runtime components of the eBPF subsystem,
we compare it with two open source eBPF fuzzers, Syzkaller and Buzzer [20]. Buzzer, developed
by Google, aims to provide a generic fuzzing framework for users to explore di�erent fuzzing
strategies. While BPF fuzzer [1] is also open source, it has not been updated since 2019 and we can
only build it successfully with Linux v4.2. Since eBPF has gone through substantial development
in recent years, we would like to use Linux kernel v5.15 as a better fuzzing target. As a result, we
decided not to include it in the comparison.
In the evaluation, we assign the same amount of resources to the three fuzzers, which are �ve

virtual machines, each with eight fuzzer processes. Besides, since we are only interested in fuzzing
the eBPF subsystem, only BPF related syscalls are enabled. To have a fair comparison, we enable all
BPF-related syscalls for Syzkaller so that it is able to create the necessary resources for attaching
programs and triggering the execution. For example, socket and setsockopt are enabled so that if
a BPF_PROG_TYPE_SOCKET_FILTER eBPF program is generated, there are syscalls to create a socket
and attach the program to the socket. For Buzzer, we enable the built-in fuzzing strategy that
has successfully discovered a bug and generates more expressive inputs, pointer arithmetic [20].
For BRF, we only enable core eBPF syscalls as the fuzzer generates the necessary syscalls. In
addition, since the JIT compiler is enabled by default on x86 for performance reasons, we report
the fuzzing statistics under this con�guration. However, when running fuzzing experiments to
�nd vulnerabilities, we try both kernels with and without JIT compiler so that we can also test the
interpreter. We run the fuzzer on a machine with Intel Xeon E5-2697 v4 CPU for 48 hours for �ve
times and compare the results. Since all fuzzers evaluated are generator-based, we do not provide
initial corpus. Besides, the corpus accumulated throughout a run is removed before starting the
next to make sure each run is statistically independent.
Reaching the runtime components. First, we look at the three critical stages in the work�ow
of eBPF that will a�ect the fuzzing e�ectiveness: eBPF program loading, attaching and execution.
Since many of the runtime components, such as the interpreter, JIT compiler, and helper functions,
can only be accessed by eBPF programs, to achieve high fuzzing e�ectiveness, it is essential �rst
for the programs to pass the veri�er during the load time. As shown in Table 2, 97.6% of eBPF
programs generated by BRF are able to pass the checks of the veri�er, showing that these fuzzing
inputs are both semantic-correct and meet syscall dependencies. Since we do not cover all semantic
rules, there are still a small portion of fuzzing inputs that fail to pass the veri�er. On the other
hand, with only syntax-awareness and little knowledge of syscall dependencies, only 19.5% of
programs generated by Syzkaller pass the veri�er. For Buzzer, the pointer arithmetic fuzzing strategy
generates random alu and jump instructions in the program. The fuzzing strategy has some degree
of semantic awareness (e.g., the register values used need to be initialized). However, due to a �aw
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in the implementation, all of the programs are rejected due to invalid shift immediate values. After
we �xed the bug, 0.1% of programs generated are able to pass the veri�er. Therefore, although it is
able to generate 26× more programs than BRF, BRF loads 57× more programs in 48 hours.

Here we report �ve most violated veri�er rules (>100 violations in 48 hour) that bottleneck the
fuzzing of the runtime for Syzkaller: 1) calling into invalid destination 2) not having jmp or exit as
the last instruction 3) calling into a btf_id which is not a kernel function 4) jumping out of range
5) calling a kernel function from non-GPL eBPF program. Note that these bottlenecks are relatively
simple. The reason is that the semantic checks are layered and therefore the complex ones are still
masked by the simple ones.

After eBPF programs pass the veri�er, they will be compiled by the JIT compiler if enabled, and
the JIT compiler will be fuzzed. Then, to exercise the interpreter (when JIT is disabled), helper
functions and maps, programs �rst need to be attached. For Syzkaller, due to the fact that only a
few eBPF programs are loaded successfully, the program attaching syscall has few valid program
fds to start with. Since Syzkaller only generates program attaching syscalls by chance, only 26.5%
of these syscalls succeed. Note that, these successfully attached programs of Syzkaller could be
the same eBPF programs. Since Syzkaller generates syscalls randomly, it is possible that a fuzzing
input retrieves an already loaded program pinned in BPF virtual �le system. This also explains
why the number of attached programs is larger than loaded programs for Syzkaller. While in BRF,
we only count unique eBPF programs that are loaded. In contrast, since BRF generates program
attaching syscalls for every fuzzing input, 89.9% of its attaching syscalls succeed. For Buzzer, it only
generates one type of program and always uses the same function to attach and execute programs.
Therefore, it is able to attach and execute programs successfully. Finally, BRF manages to trigger
66.8% of the attached programs. Whereas for Syzkaller, we are only able to collect the total number
of eBPF programs executed with the possibility of duplication. All and all, the advantages of BRF in
loading, attaching, and triggering eBPF programs result in BRF executing 8× more programs than
Syzkaller and 32× more programs than Buzzer.

Table 3. Expressiveness of eBPF program gener-

ated and successfully loaded by Syzkaller and BRF,

where M. denotes max.

# Instructions # Helpers # Maps

Avg. M. Avg. M. Avg. M.

Syzkaller 4.9 ± 0.1 16 0.4 ± 0.1 4 0.3 ± 0.0 4
Buzzer 493.6 ± 3.5 731 2.0 ± 0.0 2 1.0 ± 0.0 1
BRF 16.4 ± 0.1 314 11.0 ± 1.2 66 5.6 ± 0.7 18
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Expressiveness of eBPF programs. Beside the success rate of loading, attaching, and executing
eBPF programs, the expressiveness of the eBPF programs can also a�ect the fuzzing e�ectiveness.
Therefore, we quantify the expressiveness of the generated eBPF programs by measuring the
average number of eBPF instructions, average number of calls to helper functions, and the average
number of usage of maps within successfully loaded eBPF programs. Our results, shown in Table 3,
show that, on average, a program successfully loaded by BRF contains 3.4×more instructions, 27.4×
more calls to helper functions, and 17.1× more use of maps, compared to a program successfully
loaded by Syzkaller. For Buzzer, since it generated �xed instructions that log execution result,
the programs generated always contain a map and two helper functions of the same type with
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Table 4. Summary of vulnerabilities discovered by BRF.

Veri�er
Runtime components

New Type of vulnerability
JIT Interpreter Helpers Maps

CVE-2022-2905 ✓ ✓ ✓ Out-of-bound access, info. leak
CVE-2023-0160 ✓ ✓ ✓ Deadlock
Vulnerability 3 ✓ ✓ Deadlock, API misuse
Vulnerability 4 ✓ ✓ ✓ Deadlock
Vulnerability 5 ✓ ✓ ✓ Memory leak
Vulnerability 6 ✓ ✓ ✓ Deadlock

�xed arguments. Therefore, although programs generated by Buzzer on average contains 493.6
instruction as opposed to 16.4 by BRF, the variable part only contains jump and alu. As a result,
they cannot fuzz the eBPF maps and helper functions. The largest program generated by BRF
can contain 66 helper functions and 18 maps. The higher e�ectiveness of BRF in both generating
semantic-correct and expressive eBPF programs helps it reach broader and deeper in the eBPF
runtime.
eBPF runtime coverage. We measure the ability of BRF and Syzkaller in covering di�erent types
of helper functions. eBPF programs generated by BRF use 155 di�erent helper functions, while
the ones generated by Syzkaller can only uses 134. Since the fuzzing strategy only focuses on
the pointer arithmetic logic in the veri�er, Buzzer uses only 1 type of helper function with �xed
arguments. Therefore, this fuzzing strategy cannot fuzz eBPF maps and helper functions.
Code coverage. To see how the aforementioned key metrics in the fuzzing e�ectiveness translate
into the ability of exploring more execution paths, we record the coverage of Syzkaller and BRF
in the eBPF runtime components. (Since Buzzer only provides line coverage and has no coverage
�lter, we do not include its coverage into the comparison. But we think it is safe to assume that
with only one type of map and helper function, it should have signi�cantly less coverage in the
runtime components.) We do so by only including the basic blocks in �les that implement the eBPF
runtime: JIT compiler, interpreter, helper functions and maps. Therefore, the BPF syscalls, veri�er
and glue code that connects eBPF subsystem with other subsystems are not included. The result is
shown in Fig 6, where we �nd that during the 48-hour fuzzing sessions, BRF is able to continuously
discover new paths. In contrast, the coverage of Syzkaller plateaus after 5 hours into the fuzzing.
At the end of the session, BRF is able to explore 101% more basic blocks in the runtime components,
showing its better ability in fuzzing the eBPF runtime.

8.2 Discovered Vulnerabilities

To �nd vulnerabilities, BRF relies on the same sanitizers in the kernel (e.g., KASAN, KMEMLEAK
and lockdep) as Syzkaller. In our experiment, we do not encounter any false positive albeit some
kernel sanitizers may produce. For false negatives, which happens when some kernel code is not
covered, BRF tries to reduce it by improving the coverage. This is demonstrated in the experiment
that shows BRF is able to catch vulnerabilities in the stable kernel that has been fuzzed by Syzkaller.

Table 4 lists the vulnerabilities found by BRF. We responsibly report vulnerabilities as we discover
them. We reported the �rst two vulnerabilities and received CVEs. We reported vulnerability 3 to
both the Linux kernel and vendor mailing lists. We went through a lengthy discussion and �xing
process, which involved eBPF maintainers and even Linus Torvald. Eventually, the vendor did not
assign a CVE after the �x was upstreamed. We have reported vulnerabilities 4 and 5 very recently.
Therefore, we do not know if they will be assigned CVEs or not. We have not reported vulnerability
6 yet since we discovered a few days before this submission.
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Table 5. Comparison of eBPF fuzzers. The program correctness is the percentage of programs generated that

pass the verifier. *The fuzzer can generate syntax-incorrect programs a�er mutation. **The fuzzer has limited

semantic awareness according to the fuzzing strategies implemented.

BRF Syzkaller [3] Buzzer [20] [1] [15] [19] [11] [16]

Open source ✓ ✓ ✓ ✓

Syntax-aware ✓ ✓ ✓ * * ✓ ✓ ✓

Semantic-aware ✓ ** ** **
Program correctness 97.6% 19.5% 0.1% na na 0.77% na na
Fuzzing target by design runtime subsystem veri�er veri�er subsystem JIT rBPF veri�er+JIT

9 DISCUSSIONS ON FUTURE MAINTENANCE OF BRF

In BRF, we build the semantic-correct program generation/mutation logic by studying the veri�er
as well as automatically extracting information (e.g., helper function de�nitions) needed by the
logic. Therefore, as the eBPF subsystem evolves, a question we ask ourselves is how BRF will adapt
to changes in the eBPF subsystem, and more speci�cally, whether the process will require hefty
manual e�orts. Fortunately, we think it requires moderate e�ort to keep it updated. Since we have
already studied and incorporated many essential semantic rules, the fuzzer only needs update in
two cases: (1) When there are new eBPF program types, helper functions and maps. (2) When there
are new semantic rules enforced by the veri�er. Updating the fuzzer for new programs, helpers and
maps is straightforward and will need very little time/e�ort. Respecting newly introduced semantic
rules requires more work as the new semantics needed to be added to the fuzzer. According to
our measurement, the growth rate of eBPF semantic rules has been 15% year-over-year across 5
most recent LTS (long-term support) versions in 5 years. But note that not all rules need explicit
support in the fuzzer as some may be satis�ed automatically by the compiler. Moreover, as the
eBPF technology matures, we think the growth in semantics rules will slow down.

10 RELATED WORK

Fuzzing the eBPF subsystem. There are a couple of solutions for fuzzing the eBPF subsystem [1,
11, 15, 16, 19]. BPF fuzzer [1] aims to test the eBPF veri�er by leveraging LLVM fuzzer and sanitizer
available in the user space. To do so, it compiles the veri�er in the user space and lets the LLVM
fuzzer perform mutation-based coverage-guided fuzzing. Overall, it manages to �nd one bug.
Unfortunately, this approach cannot be applied if the fuzzing target it the runtime components
as they are tightly integrated with the Linux kernel (e.g., the network stack and the tracing
infrastructure) and recompiling them to run in the user space is impossible.
[15] is a syntax-aware fuzzer targeting the eBPF subsystem in the Linux kernel based on An-

gora [9], a mutation-based fuzzer that requires a set of initial inputs. Similar to [1], it also uses
the sample eBPF programs in the Linux kernel source tree. It tracks interesting bytes that trigger
new execution paths and then use gradient descent to guide the mutation. Based on the fact that
it only found bugs in the libbpf in the user space, we think it has limited ability in generating
semantic-correct fuzzing inputs. In addition, since the mutation logic is not syntax-aware nor
semantic-aware, we expect the program to be less likely to be accepted by the veri�er.

[19] is a bytecode-level semantic-aware fuzzer targeting the JIT compiler. It works by generating
bytecode with some awareness about the semantics imposed on the register states. The generated
eBPF program will �rst be checked by the veri�er compiled in the user space using the approach
in [1]. If the program is deemed valid by the veri�er, it will be loaded into the kernel and JITed to
see if it can trigger bugs. The experiment shows only 0.77% of generated eBPF programs are valid
due to the limited semantics awareness, and the fuzzer manages to �nd one bug in the JIT compiler.
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Another BPF fuzzer by Crump [11] is a syntax-aware di�erential fuzzer. By feeding the generated
eBPF programs to two di�erent execution environments (i.e., native execution of JITed code and
executed by the interpreter) and comparing the results, BPF fuzzer can detect bugs in the runtime
if the outputs are di�erent. By using BPF fuzzer on RBPF, a user space BPF runtime implemented
in Rust, it found two vulnerabilities. This approach requires the existence of two implementations
(JIT and interpreter in this case) serving the same purpose (executing eBPF programs), which is
not available for eBPF maps and code associated with di�erent eBPF programs.

[16] is another eBPF fuzzer aiming to generate semantic-correct inputs on bytecode level. How-
ever, since it only focuses on ALU-related issues in the veri�er, it does not generate helper calls or
use maps, missing a signi�cant portion of the runtime. As a result, the fuzzing only managed to
trigger two previously discovered vulnerabilities in the veri�er.
Compared to previous work, BRF is a semantic-aware and dependency-aware generator-based

fuzzer that is able to generate eBPF programs that pass the veri�er e�ciently. Combining with
e�orts to attach and trigger the eBPF programs, BRF is able to reach deeply into the runtime and
discover 6 new vulnerabilities. More important (and to the best of our knowledge), BRF is the �rst
work that covers all major eBPF runtime components. Table 5 summarizes the comparison of BRF
with these existing fuzzers.
Formal veri�cation of the eBPF subsystem. In addition to fuzzing, formal veri�cation is another
approach used to improve the safety of eBPF subsystem by verifying the correctness of components
in the eBPF subsystem or implementing the components with proven correctness [8, 12, 14, 27, 28].
Prevail [12] is an e�ort in implementing an alternative eBPF veri�er in the user space with

greater precision, which is adopted by eBPF for Windows [5]. JitK [28] implements an interpreter
for cBPF with proven correctness. JitSynth [25] develops a tool that synthesizes eBPF bytecode into
veri�ed native RISC-V instructions. Jitterbug[14] models the eBPF JIT compiler in Rosette [24] and
then uses it to verify the correctness of JIT compiler implementation of di�erent architectures in
the Linux kernel. [8] and [27] try to verify the range analysis mechanism (i.e., tnum) using formal
veri�cation methods. Interestingly, CVE-2022-2905 discovered by BRF is due to a �aw in tnum.

We believe that fuzzing the eBPF runtime is orthogonal to the veri�cation of eBPF. Even in
the future, when the veri�er, JIT compiler and the interpreter can be implemented with proved
correctness, we believe the rest of the runtime components are less likely to be veri�ed due to their
diverse functionality and increasing number.
Fuzzing language processors.Many e�orts have been invested in improving fuzzing language
processors [7, 9, 10, 13, 17, 18, 21, 26, 29], software that translate source code in high-level languages
into lower-level languages. Examples are compilers, JIT runtimes, and interpreters. As mentioned
earlier, eBPF is also a language processor.
These approaches can be categorized into mutation-based and generator-based. For mutation-

based fuzzers, initial inputs are required to generate new fuzzing inputs, which often suggests that
the fuzzers have limited knowledge about the syntax and semantics. For generator-based fuzzers,
with some knowledge about the syntax or semantics, they are able to generate new inputs by
themselves.

CSmith [29] is a C compiler fuzzer that performs di�erential testing. C code is randomly generated
according to the grammar and then fed to di�erent compilers. After compilation and execution, the
results are compared to determine if there are bugs in the compilers. LangFuzz [13] is a mutation-
based blackbox fuzzer that generates and mutates code fragments in the fragment pool, which is
constructed by parsing codebases and test suites using a language-speci�c parser. IFuzzer [26] is a
mutation-based fuzzer that try to generate new inputs using genetic programming. Angora [9]
aims to improve the branch coverage by introducing several techniques that facilitate constraint
solving without using symbolic execution. The techniques are context-sensitive branch coverage,
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scalable byte-level taint tracking, search based on gradient descent, type and shape inference, and
input length exploration. Nautilus [7] is a grammar-based fuzzer that does not rely on corpus. It
combines coverage-guided feedback to achieve higher fuzzing performance. PolyGlot [10] improves
the generic applicability of a semantic-aware fuzzer by performing mutation and analyses in IR
level. It �rst generates an IR translator using the BNF grammar of the language. Then, inputs
selected from corpus are lifted using the IR translator. Constraints mutation will produce syntax-
correct inputs and a semantic validator will further �x semantic errors. Zest [17] facilitates fuzzing
of the semantic-stage of language processors by preserving the validity of syntax of inputs and
using the validity feedback as guidance in addition to code coverage. [18] is a JavaScript fuzzer
that introduces aspect-preserving mutation that avoids destroying the semantic of corpus. By
stochastically preserving structures and types in corpus, it has a better chance in generating syntax-
correct and semantic-correct inputs. Gramatron [21] improves the e�ciency of semantic-aware
fuzzers by addressing two shortcomings of traditional parse tree-base fuzzer. It uses grammar
automaton to avoid biased sampling and aggressive mutation to avoid small-scale mutation.
BRF adopts the generator-based approach with the guidance of code coverage. Besides, due to

the complex eBPF semantics imposed by the veri�er due to security reasons, we extract semantic
rules from the veri�er to make BRF semantic-aware, so that the fuzzing inputs are able to reach
eBPF runtime e�ciently.

11 CONCLUSIONS

This paper introduced the BPF Runtime Fuzzer (BRF), a fuzzer that can satisfy the semantics and
dependencies required by the veri�er and the eBPF subsystem. We addressed three important
challenges in BRF: (1) generating semantic-correct eBPF programs, (2) generating syscall depen-
dencies of eBPF programs, and (3) generate syscalls to attach and trigger eBPF programs. Our
experiments showed, in 48-hour fuzzing sessions, BRF can successfully execute 8× more eBPF
programs compared to Syzkaller and 32× compared to Buzzer. Moreover, eBPF programs generated
by BRF are much more expressive than Syzkaller’s and Buzzer’s. As a result, BRF achieves 101%
higher code coverage. Finally, BRF has so far managed to �nd 6 vulnerabilities (2 of them have
been assigned CVE numbers) in the eBPF runtime, proving its e�ectiveness.
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