
ProvCam: A Camera Module with Self-Contained TCB
for Producing Verifiable Videos

Yuxin (Myles) Liu
yuxin.liu@uci.edu

University of California, Irvine
Irvine, California, USA

Zhihao Yao
zhihao.yao@njit.edu
New Jersey Institute of

Technology
Newark, New Jersey, USA

Mingyi Chen
mingyi.chen@uci.edu

University of California, Irvine
Irvine, California, USA

Ardalan Amiri Sani
ardalan@uci.edu

University of California, Irvine
Irvine, California, USA

Sharad Agarwal
Sharad.Agarwal@microsoft.com

Microsoft
Redmond, Washington, USA

Gene Tsudik
gene.tsudik@uci.edu

University of California, Irvine
Irvine, California, USA

Abstract
Our perception of reality is under constant threat from ever-
improving video manipulation techniques, including deep-
fakes and generative AI. Therefore, proving authenticity of
videos is increasingly important, especially in legal and news
contexts. However, it is very challenging to prove it based
on post-factum video content analysis.

In this work, we take a preventative stance and construct
ProvCam, a novel camera module that generates a crypto-
graphic proof of video authenticity. Our solution greatly
reduces the size of Trusted Computing Base (TCB) to in-
clude the module itself. Moreover, it mitigates tampering
during the numerous processing steps between video cap-
ture by the camera sensor and generation of the digital video
output. To confirm its practicality, we present a complete
prototype of ProvCam on a Xilinx FPGA evaluation board.
As experiments show, ProvCam incurs a negligible perfor-
mance overhead (latency and throughput) and small energy
consumption overhead when recording a video. It imposes a
moderate hardware cost but is relatively small compared to
other major components such as SoC. Moreover, it does not
change the existing camera software stack and thus can be
easily integrated with various camera-bearing devices, such
as smartphones.

MobiCom ’24, November 18-22, 2024, Washington, D.C., USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0489-5/24/09
https://doi.org/10.1145/3636534.3649383

CCS Concepts
• Security and privacy→Hardware security implemen-
tation;Mobile platform security.

Keywords
Video provenance, Deepfakes, Secure camera

ACM Reference Format:
Yuxin (Myles) Liu, Zhihao Yao, Mingyi Chen, Ardalan Amiri Sani,
Sharad Agarwal, and Gene Tsudik. 2024. ProvCam: A Camera
Module with Self-Contained TCB for Producing Verifiable Videos.
In The 30th Annual International Conference On Mobile Comput-
ing And Networking (MobiCom ’24), September 30-October 4, 2024,
Washington, D.C., USA. ACM, New York, NY, USA, 15 pages. https:
//doi.org/10.1145/3636534.3649383

1 Introduction
The importance of videos in modern society has grown
tremendously. Prior to the appearance of affordable and ubiq-
uitous cameras and smartphones, videos had a high barrier
to entry, i.e., production studios, licensing, broadcast means
and rights, etc. Whereas now, any camera-equipped personal
device can produce videos and they are mostly watched on
various social media platforms. However, videos still serve
very important societal functions, such as observing law en-
forcement actions, legal proceedings, citizen journalism, or
government negotiations. Indeed, user-generated videos are
increasingly popular: 26% of U.S. adults get their news from
YouTube, though 42% of the most popular news channels
on YouTube are not associated with any news or journal-
ism agency [1]. Video is also used for evidential purposes
in courts. Around 80% of all crimes involve some video evi-
dence [2].
In all of these use cases, although video authenticity is

very important, it is not guaranteed today. Consumers of
videos have no reliable means of verifying how the video

588

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://doi.org/10.1145/3636534.3649383
https://doi.org/10.1145/3636534.3649383
https://doi.org/10.1145/3636534.3649383
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3636534.3649383&domain=pdf&date_stamp=2024-05-29


was captured and what modifications (if any) were made
to it. Worse yet, given impressive advances in deepfake [3]
and generative AI technologies, consumers cannot even de-
termine whether a video is synthetic or was captured by
a real camera. Deepfake technology can alter arbitrary ele-
ments in an existing video or turn a picture into a video, e.g.,
swap people’s faces, synchronize the movement of some-
one’s lips with an arbitrary audio piece, and change the
background or an object in video frames [4–6]. By analyzing
existing videos in a training set and producing new frames
that mimic existing ones, deepfake methods can fabricate
videos of events that never happened [7–9]. One notable
example is a manipulated video of the president of Ukraine,
Volodymyr Zelenskyy, discussing the war between Russia
and Ukraine [10]. Another well-known deepfake example is
the video of the Speaker of the U.S. House of Representatives,
Nancy Pelosi, which widely circulated on social media [11].
Deepfake technology has been abused to spread disinforma-
tion, and perpetrators are producing increasingly convincing
videos with constantly improving tools [12].

There are two technical1 mitigation approaches: detection-
and prevention-based.
The former detects known flaws in manipulated and fab-

ricated videos [13–18]. Although human eyes can not easily
identify various nuances, machine learning algorithms can
analyze video frames and detect certain known inconsis-
tencies, such as unnatural body movement, lighting, and
texture. Unfortunately, deepfake technology is advancing
rapidly, thus making detection increasingly difficult [12].
This results in the usual (and potentially never-ending) “arms
race” between attackers and defenders. Perhaps fighting AI
with AI is futile since the deepfake technology can contin-
uously learn and improve, based on advances in detection
algorithms [19].
The prevention-based approach focuses on video prove-

nance based on cryptographic methods. [20–23]. It involves
authenticating to the consumer the source of video and all fil-
ters applied to it during post-processing. For example, Vroni-
cle employs provenance information to attest both the source
camera and post-processing filters [20], while TruePic [23]
utilizes a Trusted Execution Environment (TEE) and special-
ized hardware for frame provenance information. This line of
work is more promising than detection (which yields proba-
bilistic outcomes) since it provides strong assurance to video
consumers. However, based on our review of state-of-the-art
prevention techniques, security of the camera device is the
weakest link. In other words, an attacker can compromise
the camera device in order to fabricate provenance informa-
tion for a fake video. This is especially problematic since the

1There are, of course, legal means of mitigating deepfakes as well.

owner of the camera device is the adversary, i.e., the party
trying to generate fake videos.
In this paper, we tackle this problem by construct-

ing ProvCam– a camera module for generating verifiable
videos.2 Compared with the large TCB (both hardware and
software) of TEE-based solutions (which we discuss in detail
in Section 2.2), the key contribution of ProvCam is its tiny
TCB that contains only the camera module. It remains secure
even against a powerful adversary that owns the device and
can physically attack hardware buses! Moreover, because
ProvCam does not depend on any TEE or any other CPU fea-
ture, ProvCam can be easily adopted by commercial mobile
and camera devices.
ProvCam provides strong isolation when recording, and

generating provenance of, a video. Specifically, the module
fully isolates itself from untrusted device components to pre-
vent compromise until the video is fully recorded. It captures
video frames, processes them, encodes the final video, and
generates a provenance report containing a signed hash of
the entire video – all within the camera module itself. It is
worth noting that ProvCam focuses on producing videos in
a trustworthy manner; further post-processing of videos (i.e.,
applying filters) could be handled securely by other systems
such as Vronicle [20].

We addressed six tough technical challenges encountered
in ProvCam design: some in the design of the module hard-
ware and others – in its corresponding software stack:

(1) Raw frames of videos can be fairly large, requiring a
substantial amount of memory to buffer them in the
module. To avoid this cost, we find a way to instead
securely use untrusted memory.

(2) Camera hardware data transactions tend to be bursty
and unpredictable, complicating hardware hashers,
which require a fixed input stream throughput. To
address this, we use an asynchronous hashing tech-
nique.

(3) To verify the hash of the video in the presence of in-
complete frames, we design a frame-based hashing
technique.

(4) To achieve strong isolation, we introduce a replay-
based bare-bones driver, allowing us to run the com-
plete, yet heavily shrunken, camera stack inside cam-
era module.

(5) To be compatible with the existing software stack in
the untrusted OS, we add a replay layer to the OS to
mimic camera hardware.

(6) Finally, for backward compatibility with normal cam-
era usage, we introduce Trusted Capture Session (TCS)

2We open source the prototype for the benefit of users and researchers at:
https://github.com/trusslab/provcam

2

589

https://github.com/trusslab/provcam


– a software abstraction in conjunction with the Prov-
Cam hardware module, that allows the camera module
to operate in either secure or normal mode.

To demonstrate its viability and practicality, we prototyped
ProvCam (both hardware and software) on a Xilinx Ultra-
Scale+ MPSoC FPGA board (ZCU106). The hardware part
of the prototype encompasses: IMX274 camera sensor, ISP,
video encoder, crypto hardware components, andMicroBlaze
microcontroller. The software part includes trusted compo-
nents running on the aforementioned microcontroller and
untrusted ones running on a commodity OS (PetaLinux) on a
separate ARMCortext A53 CPU. The ProvCam prototype can
record high-definition (720p) high-framerate (60fps) videos
with negligible performance overhead (latency and through-
put), moderate hardware cost (≈ 53.8M transistors), and
minor energy consumption overhead (< 1Watt).
Overall, we believe that this work makes the following

contributions:
• Design of ProvCam– a novel camera module with a
small self-contained TCB that generates encoded high-
definition videos with cryptographic proofs of prove-
nance.

• Successful solutions to six difficult design challenges
(see above).

• Fully functional ProvCam prototype (both hardware
and software) on a Xilinx FPGA board.

• Thorough evaluation of ProvCam prototype, including
its: hardware cost, performance overhead, and energy
consumption.

2 Threat Model & Motivation
Video provenance is a popular and promising approach for
mitigating fake videos [20–23]. The goal is to generate a
cryptographic proof that can be authenticated by the con-
sumer of the video. This proof is tied to the camera that
captured the video and the set of post-processing modifica-
tions/filters applied to the video. The weakest security link
in such provenance systems is the camera device itself. While
post-processing can be protected, e.g., using TEEs [20] or
zero-knowledge proofs [21], protecting the camera against
attacks is very challenging. This is especially concerning
since it is in physical possession of the prospective attacker
(its owner/operator), who may try to compromise the camera
in order to generate verifiable provenance information for a
fake video. Below, we discuss some current techniques for
protecting the camera device and highlight their limitations.
Before that, we summarize the threat model.

2.1 Threat Model
The ProvCam threat model involves two entities that interact
with a video: producer (camera owner/user/operator) and
consumer (video viewer). We assume the former to be the

adversary who might try to alter or fabricate videos in order
to deceive the latter who is not malicious. The adversary
can perform the following attacks (assuming a TrustZone-
based [24, 25] camera device):
(1) Create arbitrary fake videos.
(2) Modify videos generated by a camera device, e.g., in-

sert/drop/crop frames, and apply arbitrary filters to
them.

(3) Modify provenance info of videos.
(4) Compromise the TrustZone normal world software

stack of the camera device, including OS and hypervi-
sor.

(5) Compromise the TrustZone secure world software
stack of the camera device, including the secure world
OS.

(6) Replace the camera sensor with a malicious gadget for
generating fake video data.

(7) Perform active bus tapping physical attacks in order
to modify data transmitted on buses (e.g., from the
camera to the SoC or between the SoC and main mem-
ory) [26, 27].

Although the assumed adversary is quite powerful, we be-
lieve that it is realistic given that similar attacks were suc-
cessful in the past [28, 29] including active bus tapping at-
tacks [30–34]. Given that fake videos could be used in high
impact scenarios such as political and legal contexts, we be-
lieve that our adversary is motivated to conduct such difficult
attacks. Therefore, we believe it is essential to assume such
a powerful adversary and protect against it.
Out-of-Scope Attacks: We assume that the adversary can-
not perform chip attacks [27], which are the most sophisti-
cated forms of physical attacks used to access the internals
of a secure package, e.g., of the SoC or the camera module
discussed in §4. We also do not consider attacks on crypto-
graphic primitives, i.e., hashing and signing algorithms.
We assume that the camera module manufacturer is

trusted and assume that it is capable of securely embedding a
cryptographic key pair in the camera module and recording
the I/O commands correctly. Finally, ensuring availability
of the camera device and recorded video as well as video
confidentiality is out of scope as well.

2.2 Current Techniques
We now overview some current techniques for generating
secure provenance information.
Approach 1: Generate provenance information in the
camera app. Techniques such as AMP [22] and Alethia [35]
use an application (e.g., a mobile app) to record the video and
then generate cryptographic provenance information in the
app. This approach entails a very large TCB. Many hardware
and software components have access to the video before

3

590



it is signed and can alter, or even generate, it. We therefore
conclude that this does not provide strong assurance.
Approach 2: Generate provenance information in
TrustZone. In order to reduce the TCB size, TrustZone (the
secure world) on the camera device can be used instead to
securely generate provenance information in the camera
device [20, 23]. TrustZone and other TEEs have gained pop-
ularity in recent years, particularly in smartphones. This is
because they reduce the TCB size by making the OS and
hypervisor untrusted.

Although this approach is a significant improvement over
the previous one and represents the state-of-the-art, it still
does not protect against some important attacks (5-7 in our
threat model – §2.1). Obviously, the adversary capable of
attack 5 (compromising TrustZone secure world) can defeat
this method. TrustZone secure world has a large software
TCB including an OS, drivers (including drivers for the ISP,
encoder, and the camera sensor), and apps, and it has been
compromised in the past [28, 36–38]. Attack 6 can defeat this
solution as well. Here, the adversary could disconnect the
original camera sensor from the device and instead connect
its own malicious gadget in order to generate fake data and
pass them to the SoC. Defeating this attack requires the SoC
to continuously authenticate the camera sensor. To the best
of our knowledge, some Apple devices perform some form
of camera sensor authentication [39], but not other mobile
devices. An adversary capable of attack 7 (active bus tapping
attack) can defeat this solution as well. This is because cur-
rent TEEs (including TrustZone) can not contain the entirety
of the camera pipeline within the SoC chip. The video data
is generated by the camera sensor, which is outside the SoC.
The data are transferred over a peripheral bus to the SoC.
Moreover, during processing by ISP and encoder, the data
is transferred from the SoC to the main memory chip. The
adversary can therefore modify the data on either of these
buses, although tapping on the low-frequency peripheral bus
is easier than the memory bus. Defeating this attack requires
the use of memory encryption engines with support for data
integrity and replay protection for both the camera sensor
and the SoC, which, to the best of our knowledge, are not
currently available.

In addition to these security weaknesses, Approach 2 has
another practical shortcoming: TEEs are not widely available
on SoCs of all types of portable camera devices, especially,
non-smartphones devices, e.g., car dashcams, and law en-
forcement bodycams.

3 Background
We now briefly describe key components of the pipeline in a
typical digital camera: sensor, ISP, and encoder. In most mod-
ern mobile devices, ISP and encoder are integrated into the

Operating System

 SoC

Hypervisor

CPU

Storage RAM

Camera
Sensor

Existing Solution #1

GPU

ISP Codec

Trusted

Untrusted

Operating 
System

 SoC

Hypervisor

CPU

Storage RAM

Camera
Sensor

Existing Solution #2

GPU

ISP Codec

TrustZone
Secure
World

Sign

Hash

Process

Capture

Encode

Operating System

 SoC

Hypervisor

CPU

Storage RAM

ProvCam
Module

ProvCam

GPU

ISP Codec

Buses Buses Buses

Figure 1: Comparison between two current approaches
and ProvCam’s TCBs. Detailed flow inside ProvCam
camera module is shown in Figure 3.

SoC. Given familiarity with these components, this section
can be skipped.
Digital camera sensor. The prevalent type of camera sensor
in modern mobile and embedded devices is the Complemen-
tary Metal-Oxide-Semiconductor (CMOS) image sensor [40].
The popularity of CMOS sensors is due to their small hard-
ware footprint. The sensor’s photodiodes (pixels) respond to
the intensity (brightness) of light rather than the wavelength
(color). To make color imaging possible, an array of tiny
color filters (Color Filter Array – CFA) overlays each pixel.
The most widely adopted CFA is the Bayer filter [41]. Each
filter within the array only permits a specific color (for Bayer
filters, it is red, green, or blue) to pass through to the underly-
ing pixels [42]. Individual pixels only capture one color, and
the missing color information is then estimated through de-
mosaicing, which involves interpolating the missing colors
based on its adjacent pixels’ color information.
NOTE: Although ProvCam is constructed around CMOS
sensors and their processing pipelines, it can accommodate
other types of image sensors with little or no modification.
Image Signal Processor (ISP). ISP is a specialized hardware
component used for processing of image sensor outputs. It
performs a range of image processing tasks in a serialized
manner, including demosaicing, light and color corrections,
noise reduction, sharpening, and possibly other optimization
algorithms.
Video encoder. Each raw frame output from an ISP con-
stitutes a substantial amount of data, and a compression
algorithm is needed to make video storage and sharing prac-
tical. Advanced Video Coding (AVC, a.k.a., H.264), is a video
compression standard widely adopted by modern camera
devices [43]. There are other modern coding standards such
as High Efficiency Video Coding (HEVC, a.k.a, H.265) [44]
and AOMedia Video 1 (AV1) [45]. While we focus on H.264 in
this paper, ProvCam design can be modified to also support
such alternative codecs.

4

591



Package and lens

Camera sensor

Custom ICs

Base board

Connector

Figure 2: 3D-stacked secure packaging of ProvCam’s
camera module.

4 Design
We now present the design of ProvCam. It is carefully crafted
to reduce the TCB of the camera device for generation of
video provenance information. ProvCam is a camera module
that captures, processes, encodes, hashes, and signs the video,
all in a single integrated circuit package. The signature, along
with the camera module certificate, acts as the provenance in-
formation, allowing the consumer to authenticate the source
camera and verify video integrity. The self-contained cam-
era module facilitates a tiny TCB. Figure 1 shows the TCB
comparison of two current approaches discussed in §2.2 and
ProvCam, as well as a high-level overview of how ProvCam
is integrated into a mobile device.

Within the module, a sensor unit actively processes light
information, and passes the information to an ISP and subse-
quently an encoder. After the encoder outputs an encoded
stream of frames, a hasher calculates a rolling hash (which
is based on frame data output by the encoder), and a signer
signs the final hash.
To protect against attacks from untrusted hardware and

software on a mobile device, ProvCam strongly isolates it-
self when capturing a video and generating its provenance
information. It starts by a hardware reset, which flushes
any residual/transient state which might be the result of
untrusted usage of the ISP and encoder. (As discussed later
in §6.3, ProvCam camera module also supports normal and
untrusted usage.) The module blocks all commands from the
CPU, and uses a simple internal Camera Control Unit (CCU)
to fully control the camera pipeline. This strong isolation
continues until the OS sends a termination request to the
module, at which point the camera module finalizes the video
and generates the provenance information.

All hardware components of ProvCam need to be housed
in secure packaging in order to protect against physical at-
tacks by the camera user, as discussed in §2.1. Since we rely
on current methods to secure the hardware package against
physical attacks, we are not concerned with the specific
integrated circuit packaging format of ProvCam’s camera
module [46, 47].

However, to give an idea of what the module might look
like, we illustrate one possibility. Figure 2 shows the use of
3D-stacked packaging for producing an ASIC-based camera
module. Each layer of the camera is stacked and connected,
leaving no pins exposed, thus preventing tapping on the
internal data buses. Furthermore, the use of a tamperproof
enclosure for the package makes it difficult to break into
the package without damaging any internal components.
In fact, 3D-stacked packaging is known to provide security
benefits [48, 49], and there has been at least one proposal for
applying such technology to CMOS camera sensors [50].

5 Hardware Design Challenges

5.1 The Use of Untrusted Main Memory
As illustrated in Figure 3 (a), in a conventional video pipeline,
a camera sensor streams data into an ISP for processing.
Then, the ISP generates and stores the frames in system
memory. Subsequently, a video encoder reads the frames
from memory, encodes them into a compressed video stream,
which it then stores in memory.

Since ProvCam’s primary goal is to generate the final
provenance report fully within the module, the output frame
from the ISP can not be stored in the untrusted main memory.
Thus, in our original design, we used a secure buffer within
the camera module, as shown in Figure 3 (b). However, a raw
frame coming out the ISP can be large, e.g., a high-resolution
frame can reach 10 megabytes. Therefore, the use of the
secure buffer significantly increases the hardware cost of
camera module (as we will empirically show in §9.1).

To address this issue, we instead securely use the untrusted
camera device’s main memory, as shown in Figure 3 (c). The
key idea is to compute and compare: (1) hash of the frame
going from ISP to main memory, and (2) hash of the frame
going from main memory to encoder. If they match, it must
mean that the frame has not been modified, despite residing
in main memory. It it worth noting that this set of hashes is
different from the set of hashes ProvCam uses to describe
the final recorded video. After attempting this approach, we
soon realized that the two hashes do not match, even if the
frame was not modified! A further investigation showed that
this occurs because ISP and encoder have different frame-
access patterns. A high-level example of data transactions in
Figure 4 (a) illustrates the problem. In writing a processed
raw frame to memory ISP transfers 4 pixels linearly in each
transaction. Whereas, while reading an ISP-processed raw
frame from memory, encoder transfers 4 pixels in a block-
like fashion. Different frame-access patterns result in data
being written to memory in the different order from when it
is read from memory. Thus, the two hashes do not match.

We observe that, despite different access patterns, ISP and
encoder both access a few rows of the frame at a time. That

5

592



ISP Device
Memory

ISP Secure
Buffer

Encoder

Device
Memory

E_Hasher CCU
(Signer)

Device
Memory

ISP
E_Hash

er
1st

R_Hasher

Device Memory

Encoder

E_Hasher CCU
(Signer)

(a) Traditional
Dataflow

(b) ProvCam with
Secure Buffer

Dataflow

(c) ProvCam
Dataflow

Untrusted

Frame
Data

Crypto
Data

Camera
Sensor

Camera
Sensor

Reorder
Buffer

Camera
ModuleCamera

Sensor

Trusted

Encoder2nd

R_Hasher

Figure 3: Comparisons between a typical video capture pipeline and ProvCam’s secure pipelines.

Write to Reorder Buffer

Transaction
Sequence

ISP Write Encoder Read

(b) Reorder Buffer
Access Pattern Read by 2nd R_hasher

(a) Memory
Access Pattern

Figure 4: Comparison between how ISP and encoder
write/read raw frames and how the secure reorder buffer
addresses it.

is, ISP outputs a few rows before moving on to the next set
of rows. Similarly, encoder reads these few rows fully before
reading the next ones. In the example of Figure 4 (a), the
first two rows of pixels generated by ISP match those read
by encoder. Therefore, we can create a secure reorder buffer
with the smallest possible size between main memory and
encoder to reorder the data in the same pattern as ISP writes
into the main memory.
Figure 3 (c) illustrates the dataflow of ProvCam with the

use of untrusted main memory and secure reorder buffer. It
shows two hashers (called the first and second r_hashers,
where r means raw). They compute hashes of outgoing and
incoming frames, respectively. Each time encoder reads a
4-pixel block from main memory, this block is stored in the
buffer with awareness of frame structure, where block pixels
are stored in their corresponding locations across the buffer.

As illustrated in Figure 4 (b), when both lines of pixels are
filled up, the reorder buffer starts feeding the second r_hasher
in the same pattern as ISP writes to main memory, which is
also how the first r_hasher gets its data. This ensures that,
iff the frame does not change in main memory, the outputs
of the two hashers match.
Note that we need to carefully take care of frame syn-

chronization. The video capture pipeline is typically loosely
synchronized, where ISP could have processed more than
one frame before encoder finishes hashing even the first
frame. This means that the first r_hasher can produce more
than one hash before the second r_hasher has a chance to fin-
ish reading the first frame. To address this, we implemented
a small FIFO queue to hold all hashes generated by the first
r_hasher. Whenever the second r_hasher finishes hashing
a frame, it compares it with the hash from the head of the
queue; If they do not match, a flag is raised in the second
r_hasher, which will ultimately result in ProvCam refusing
to sign the final video.

Finally, we note that the size of the reorder buffer is much
smaller than that of the secure buffer in our original design.
For example, at 720p resolution, the reorder buffer is 45 times
smaller than the secure buffer. This allows us, as intended,
to significantly lower the hardware cost.

5.2 Asynchronous Hashing
The data stream that serves as input for r_hashers comes
in at a very high rate. In contrast, incoming data stream for
e_hasher (where e refers to encoded) is bursty. These aspects
create challenges for the hardware hashers.

6

593



First, although a hardware hash engine can achieve rel-
atively high throughput, it might not keep up with the in-
coming video frames when a high-resolution camera sensor
is used (as in our prototype). And high-resolution camera
sensors are increasingly common. For example, rapid ad-
vancements in camera technology for mobile devices yielded
smartphones with 8K cameras [51].
Second, both ISP and encoder generate/read data in a

bursty fashion. The bus protocol commonly adopted by mo-
bile systems (and by our prototype), AMBA AXI (Advanced
eXtensible Interface), is bursty. In a burst transaction, two
AXI-enabled components transfer a pre-negotiated amount
of data without the overhead of initiating and terminating
transfers [52].
Based on the above, ProvCam hashers can not always

satisfy the rate of the incoming data. Throttling the data rate
at any point of the pipeline is not an option because it would
unavoidably degrade overall camera performance. Indeed,
we tried to halt the pipeline for e_hasher to catch up with the
encoder. This caused AXI and other hardware components
to time out, rendering the camera system unusable.
In the end, we opted to integrate a small cache into both

e_hasher and r_hasher hardware to allow fast access. Hashers
use the cache to digest burst transaction data asynchronously,
resulting in a consistent hash rate even if the incoming data
arrive too fast.

To determine minimum cache size, we consider various pa-
rameters, illustrated with an example: Assume that encoder
writes 128 bits/cycle for 16 clock cycles in a burst transaction,
resulting in 2048 bits of data to be hashed by the e_hasher.
We also assume a hardware hash module digests 512 bits (one
block) every 16 cycles, where it has to wait for 4 cycles for
the data to reach a block size. While it takes over 60 cycles
to hash the first block, all residual data must be transferred
simultaneously. Therefore, in this example, a cache size of
1536 = 2048−512 bits is needed for the corresponding hasher
to catch up with the burst transaction.
Our asynchronous hashing strategy introduces average

theoretical latency of 2 clock cycles for all ProvCam hashers.
This small latency is because data need to be copied to either
a cache or an intermediate register within the hasher.

5.3 Video Frame-Based Hashing
In the original design, we kept feeding the e_hasher with
encoded bitstream generated by the encoder. Whenever the
entire pipeline halted, we would ask the e_hasher to finalize
the hash with the size of all the encoded bitstream. How-
ever, we soon realized that such approach would create a
vulnerability due to the fact that the encoder may be stopped
at an arbitrary time. Specifically, there is a chance that ISP
has already written a complete frame into memory, where
the first r_hasher has this frame’s hash. On the other hand,

Frame 1

Hash #1

Frame 2

SHA 256 SHA 256

Hash #2

Frame 3

Hash #3

Corrupted Frame 4

SHA 256 SHA 256

No Hash

Cached Hash
#1

Cached Hash
#2

Cached Hash
#3

Final Hash

Figure 5: How frame-based hashing works in ProvCam.

encoder is still compressing this frame, where parts of this
frame are already encoded and fed into the e_hasher. If the
pipeline halts at this moment, the second r_hasher would
never have a chance to compute this frame’s hash, meaning
that this frame is never verified (as untampered in untrusted
memory) though some of its parts are encoded into the final
video and used to produce the final hash thereof. An attacker
can use this vulnerability to insert malicious data into the
last frame of the video in order to facilitate a hash collision
with the final hash.

Admittedly, this is a difficult attack since the attacker can
only control less than a frame worth of data. However, we
opt to address this: instead of hashing the encoded bitstream
blindly, we take a frame-based hashing approach in e_hasher.
Figure 5 illustrates this scheme. First, we make e_hasher
capable of detecting slices (sub-frames), where it automat-
ically finalizes the hash for each frame. Second, e_hasher
uses a hash chain to link hashes of all the frames into one
final hash. Finally, e_hasher always keeps the latest available
hash, generated by the last finished frame. This way we can
safely discard any incomplete encoded data at the end of a
recording session and still verify the final hash.
In this frame-based hashing approach we could alterna-

tively use a Merkle Hash Tree (MHT), instead of a hash chain.
Each leaf node in an MHT would correspond to the hash of
one of the frames. On advantage of using MHT is that it al-
lows the consumer to authenticate a video segment, without
having access to the entire video. Although this would be
useful if only part of the video is shared. we postpone this
to future work.

6 Software Stack Design Challenges

6.1 Replay-Based Bare-Bones Driver
With the design of camera module, we now have confidence
that the data plane for video capturing is secure. However,
all of the hardware components in the camera module need

7

594



to be properly configured by software drivers for each cap-
ture session. These drivers, forming the control plane of the
module, normally run on the device OS, which is untrusted.

Our goal is to contain our TCB within the camera module.
Therefore, the control plane must be moved to the module
as well. To achieve this, we move the control plane to run
on the microcontroller in camera module, which is also used
for generating provenance report of the video. We refer to
this microcontroller as the CCU.

Porting all the drivers and media frameworks to the CCU
is not a viable solution due to the limited resources at the
microcontroller, and is against our principle of tiny TCB.
On the other hand, it is not possible to distill a minimal set
of codes from the drivers because they are all designed to
be used in a video-capturing pipeline commanded by the
hierarchical kernel and user-space media frameworks.
Fortunately, we observe that I/O transactions (i.e.,

writes/reads to/from hardware registers as well as interrupts)
issued by the video-capturing pipeline are typically fixed (e.g.,
during initialization) or have fixed patterns (e.g., when han-
dling an interrupt). Therefore, we use a record-and-replay
strategy to address this problem.

First, we record all I/O transactions for three sets of trans-
actions for each driver: initialization, start, and stop. For each
transaction, we record the type (write/read/interrupt), target
address, data size, and data content. (Note that in practice the
recording process must be conducted by the camera device
manufacturer in a safe environment, where drivers running
on the device OS can be trusted.)
We then provide the recorded logs to the CCU to replay

when needed. (We currently add them to the CCU’s source
code, but could use a ROM as well.) Upon boot, the CCU re-
plays the initialization presets for all hardware components
inside of camera module. Upon receiving a command for
starting a capture session from the device OS, the CCU re-
plays all start presets of that configuration. During a capture
session, when the CCU receives the stop command from the
device OS, it proceeds to replay all stop presets, generate a
signed report, write the report to the device’s main memory.
Dealing with interrupts requires special care. We clas-

sify interrupts into two categories: deterministic and non-
deterministic. Deterministic interrupts are the ones that
are raised at known times and with a known frequency.
This means that we can include them as part of the record-
and-replay solution. On the other hand, there are non-
deterministic interrupts, which could be raised at any given
time. And depending on the length of the capture session,
they may be raised multiple times. In addition, some of these
non-deterministic interrupts require a read into the corre-
sponding interrupt status register and perform a certain

High-frequency 
CPU used for 

Recording

Register Value
in the Log

Low-frequency 
Microcontroller
used to Replay

1

t10 0

Access register ONLY 
at rising edge

10 0 0 0 0 0 0

0 0

Half-filled
FIFO 0 Empty

FIFO

Delayed
Read!

Figure 6: An example of mismatched I/O read of a FIFO’s
status register.

interrupt service routine (ISR). Therefore, to support non-
deterministic interrupts, we port their ISRs from the corre-
sponding drivers.
In our design, interrupts all go to our CCU, and not the

untrusted OS. However, one interrupt is still needed by the
device OS. More specifically, the device OS needs to be no-
tified whenever there is a new encoded frame ready for it
to read. Therefore, the CCU forwards this interrupt to the
device SoC/OS. Moreover, this specific interrupt forwarding
is a one-way communication: the CCU does not wait for the
untrusted OS to clear the interrupt. This is mainly to ensure
that this solution does not enlarge our attack surface. This
should not cause any issues for the untrusted OS, which
needs to keep track of all the interrupts/frames. This is be-
cause the device SoC is running at a much higher frequency
than our camera module and therefore the OS has ample time
to read one frame before the next one is written to memory.
Finally, it is worth mentioning how we addressed a tim-

ing challenge in this design. More specifically, CCU runs at
a drastically different frequency compared with the device
SoC, which is used for recording the logs in the first place.
This means that I/O transactions could be issued at a differ-
ent rate, and interrupts could also be handled at a different
relative time during record and replay. This creates some un-
certainty when CCU replays the recorded command presets.
In ordinary drivers, I/O reads are typically used to get the
state of a hardware component. However, at the moment
CCU performs an I/O read, the same hardware component
may be in a different state. For some register reads, we may
order CCU to keep reading the register until the desired state
is reached. On the other hand, it is also possible that the hard-
ware component has already transitioned past the desired
state. For example, as illustrated in Figure 6, there could be a
FIFO presented in a hardware component, where a register
read shows if the FIFO is empty or not. The recorded I/O read
value may indicate a half-filled FIFO, whereas CCU’s I/O read
value indicates an empty FIFO. To solve this, we scan through
all status indication registers, locate all bits representing non-
deterministic states, and ignore these bits throughout the

8

595



command replaying phase. We also make sure that none of
these bits can lead to potential vulnerabilities, where at best,
an attacker may launch a Denial-of-Service (DoS) attack, as
no custom command is allowed to pass through CCU during
the replay phase.

6.2 Double Replay for a
Backward-Compatible Software Stack

Our goal is for ProvCam to be compatible with existing cam-
era devices. Therefore, we do not want to introduce a com-
pletely new software stack to the OS just for ProvCam, in
which case each type of camera device needs to modify its en-
tire software hierarchy to adopt ProvCam. Instead, we would
like to share the exact same camera drivers/libraries, media
servers/frameworks, and applications with existing video-
capturing pipelines, which means that all camera-related
drivers’ functions are executed normally during a capture
session. However, in ProvCam, all I/O commands andmost of
the interrupts of camera-related components are performed
within the module itself.

To solve this problem, we introduce double replaying: just
like how we replay recorded commands in the CCU to all
camera-related hardware components, we also replay the
exact same chosen command presets in the device OS. More
specifically, when a driver performs a read transaction, we
return the read value from the recorded logs. And we silently
ignore write transactions (since the actual write transactions
are being performed within the camera module itself).

6.3 Trusted Capture Session
Capturing video with a modern mobile camera device is a
highly customizable process, where users can not only select
their desired frame rate and resolution, but also settings
such as camera exposure, encoded format, and even some
ML-based enhancing algorithms. Unfortunately, supporting
all these features requires a significant amount of recorded
logs in ProvCam, increasing the storage hardware cost within
the module.

Our observation is that not all videos need to be verifiable.
Therefore, we introduce the Trusted Capture Session (TCS)
abstraction, which empowers our camera module to work
both as a new type of trusted camera sensor and a traditional
camera sensor. In other words, ProvCam can either operate as
a secure camera to capture a verifiable video (i.e., TCS mode),
or can be used as a normal camera (i.e., non-TCS mode).
In the TCS mode, we only support a single pre-determined
configuration (requiring less than 200 kB of log storage in
our prototype). In the non-TCS mode, all configurations are
allowed.
We have so far discussed how secure capture (i.e., TCS)

works in ProvCam. During a normal video-capturing ses-
sion (i.e., non-TCS), the OS running on top of the device’s

CPU gains full control of the camera sensor, ISP, and encoder
within the camera module, while the hashers and their assis-
tant components (i.e., buffering modules) remain dormant.
The camera module can operate in two modes in a normal
capture session. First, the CCU can work as a middleman
that forwards all I/O transactions between camera module’s
hardware components and the device OS, allowing all kinds
of configurations to be used across these hardware compo-
nents. Second, in most modern mobile camera devices, there
exists more powerful ISP and encoder in the device SoC. In
this case, our camera module can work as an ordinary cam-
era sensor, without ever making use of its internal ISP or
encoder.

The CCU always boots in TCS mode, where all other cam-
era module hardware components are reset and initialized
securely. After booting, the CCU is ready to accept com-
mands from the device OS. If the very first command is for
the TCS mode, the CCU continues to run in the TCS mode,
and cannot switch to non-TCS mode before a reset. In con-
trast, if the very first command is for the non-TCS mode, the
CCU switches to non-TCS mode, and cannot switch to TCS
mode before a reset.
ProvCam ensures that all hardware is reset when tran-

sitioning between the modes. To enforce a reset from the
TCS mode to the non-TCS mode, after generating the report
in the TCS mode, ProvCam puts itself in an unusable state
until it is reset. To enforce a reset from the non-TCS mode to
the TCS mode, ProvCam uses a simple hardware flag. Any
commands passing to the CCU in the non-TCS mode causes
the flag to be set. A set flag prevents the use of the CCU in
the TCS mode. The only way to clear this flag is to reset the
CCU, which triggers a full reset of the entire camera module.

7 Prototype
We have built a prototype of ProvCam on a Xilinx Zynq
Ultrascale+ MPSoC ZCU106 FPGA board with a Leopard
IMX274MIPI-FMC camera sensor. We treat the ARM Cortex-
A53-based processor, its DDR RAM, codes running on top
of them (including the PetaLinux OS), all of its connected
buses, and all their connected components except the camera
module as untrusted. ProvCam’s TCB is the camera module,
which (with the exception of the camera sensor) we have
implemented in the programming logic (PL) of the board,
including MIPI CSI lanes, ISP, video codec unit (VCU), Prov-
Cam hashing IP, a Microblaze based soft core working as
the microcontroller (CCU), codes running on the microcon-
troller, memory (Block RAM for Microblaze and UltraRAM
as secure/reorder buffer), and AXI buses connecting these
components within the module.

Overall, the binary executable we generate for the micro-
controller is around 450 kB (including 200 kB of recorded
logs, which is equivalent to 6k 4-byte commands).

9

596



8 Security Analysis

We analyze and evaluate the security of our solution against
various attacks in the adversary’s arsenal (§2.1).

Attack 1 (generating a fake video) fails as the adversary
does not have access to the cryptographic key and thus can-
not produce provenance info for the video to prove its authen-
ticity. Attacks 2 and 3 (modifying an existing video and/or its
provenance info) fail since the consumer will not be able to
verify the authenticity of the video given its provenance info.
Attacks 4 and 5 (compromising the TrustZone normal world
and/or secure world software stacks such as OS, hypervisor,
and the secure world OS) fail since the camera module is
fully isolated from these software components and generates
the video and its provenance fully within the module. Attack
6 (replacing the camera sensor/module) fails too because the
adversary cannot access the sensor within the module due to
secure packing. Moreover, replacing the module altogether is
useless since the provenance of the video is produced inside
the module itself. Attack 7 (active bus tapping) fails too since
(1) the buses inside the module are protected by the secure
packaging and (2) all data coming out of the camera module
is already protected using cryptographic measures.
Therefore, our solution defeats the strong adversary dis-

cussed in our threat model.
One additional attack vector is noteworthy. The adver-

sary could use ProvCam to record a video of a fake video
played on a screen in front of it. In this case, ProvCam gener-
ates verifiable provenance info for this fake video. We leave
addressing this attack vector to future work. But here we
discuss some possible solutions. First, similar to the proposed
solution in Vronicle [20], a more advanced (and hence more
expensive) ProvCam could incorporate a depth camera and
include the depth information in the signed video file. Al-
ternatively, a cheaper option would be to include a flash
in ProvCam and use that to extract depth information [53].
Second, recording off a screen could potentially create side
effects in the recorded video, which could be detected post-
factum, although we have not tested this hypothesis yet.

9 Prototype Evaluation

Weperform all evaluations and experiments on our prototype
reported previously. In addition to the ProvCam’s prototype
(which implements the design in Figure 3 (c)), we develop two
other prorotypes in order to compare with ProvCam. One
is the baseline which only captures, processes, and encodes
videos (Figure 3 (a)). The other is a prototype of ProvCam
with the use of a secure buffer inside the module (Figure 3
(b)). We build the latter in order to be able to evaluate the
benefits and potential overheads of our solution of using the
untrusted memory (§5.1).

Design Resource type Count
Expected
transistor
count

ProvCam with
secure buffer

Look-up table 38,256 1,377,216
Flip flop 48,393 1,161,432
SRAM
(buffer)

22,118,400
(bits) 132,710,400

SRAM
(others)

7,741,440
(bits) 46,448,640

Total Transistors: 181,697,688

ProvCam

Look-up table 45,576 1,640,736
Flip flop 58,838 1,412,112
SRAM
(buffer)

62,464
(bits) 2,998,272

SRAM
(others)

7,953,408
(bits) 47,720,448

Total Transistors: 53,771,568
Table 1: Extra hardware cost in both hardware proto-
types.

We evaluate hardware cost, performance, and energy con-
sumption. All camera pipeline related IPs run at 200MHz,
except the MicroBlaze-based microcontroller (CCU) running
at 100MHz. The quad-core ARM Cortex-A53 based appli-
cation processor, used to implement the untrusted part of
a camera device, runs at 1.2 GHz. For reference, Apple’s
A16 processor runs at 3.46 GHz [54], and Qualcomm’s Snap-
dragon 8 Gen 2 processor runs at 3.36 GHz [55]. Therefore,
we believe that our camera module, if implemented in ASIC,
would achieve even higher performance and lower power
consumption compared to what we report here. For all of
the following experiments, our encoder uses H.264 intra-
prediction mode, with 8-bit color, 720p resolution, and 60
fps.

9.1 Hardware Cost
We report the expected number of extra transistors needed
for realizing ProvCam. We estimate it by measuring the num-
ber of additional look-up tables, flip flops, and SRAMs (includ-
ing both UltraRAM and Block RAM) used by all additional
(compared to the baseline) IPs and buses for connecting them.
For conversion to transistor count, we assume each look-up
table is composed of 6 NAND gates [56], each of which re-
quires 6 transistors [57], bringing it to a total of 36 transistors
for each look-up table. We assume each flip-flop requires 24
transistors [58]. Lastly, we assume each SRAM cell (bit) uses
the 6-transistor design [59].
Table 1 shows the breakdown cost of ProvCam (main de-

sign and the design with the secure buffer). Our calculations
reveal that ProvCam requires an additional (compared to the
baseline) 53.8 M transistors. Moreover, they show that our
use of the untrusted memory significantly reduces the hard-
ware cost. More specifically, ProvCam with secure buffer

10

597



480p
(SD)

720p
(HD)

1080p
(FHD)

2160p
(UHD)

Secure Buffer 44.2 M 132.7 M 298.6 M 1194.4 M
Reorder Buffer 1.5 M 3 M 4.4 M 8.9 M

Ratio 30× 45× 67.5× 135×
Table 2: Comparisons of the amount of transistors
needed for different resolutions between secure buffer
and reorder buffer for untrusted memory.

Base ProvCam ProvCam
w/ secure

buffer

10−3

10−1

101

Ti
m

e
(m

s)

(a) I/O Latency
(Non-TCS)

Write
Read

ProvCam ProvCam
w/ secure

buffer

0

1

2

Ti
m

e
(s

)
(b) ProvCam Tasks Latency

(TCS)
Init
Report

Base ProvCam ProvCam
w/ secure

buffer

0.00

0.05

0.10

Ti
m

e
(s

)

(c) Camera Usage Latency
(TCS)

Start
Stop

Base ProvCamProvCam
w/ secure

buffer

0

500

1000

1500

T
hr

ou
gh

pu
t(

K
iB

/s
)

(d) Throughput
(TCS)

Figure 7: Performance evaluations of ProvCam. The his-
tograms show the average. The error bars show the stan-
dard deviation.

requires an additional (compared to the baseline) 181.7 M
transistors. This means that our use of the untrusted mem-
ory results in 70.4% reduction in the additional (compared to
the baseline) transistors needed by ProvCam. The saving is
because this design avoids using the large secure buffer in
the module.
In fact, this saving will become more significant as the

resolution of the video increases. This is because the size
of secure buffer grows linearly with the number of pixels,
whereas the size of reorder buffer for untrusted memory only
grows logarithmically. Table 2 shows the expected number
of transistors needed for both designs for higher resolutions.
It shows that our use of untrusted memory can lower the
required transistors by 95.2% for the UHD resolution.
Finally, we note that the overall hardware cost of our

camera module is trivial if compared with the amount of
transistors used by the modern mobile SoC’s. For example,
both Apple A16 and Qualcomm Snapdragon 8 Gen 2 have
around 16 B transistors [60].

9.2 Software TCB
Software-wise, ProvCam only trusts codes running on the
microcontroller. Here we report LoCs of ProvCam’s codes
running in the TCB: ~4k for drivers, ~4k for bare-metal li-
braries, and ~60k for C runtime library. It is noteworthy that
not all 60k lines of codes of the C runtime library are com-
piled into the final binary. In comparison, we also report our
estimated LoCs of a TEE-based alternative implemented with
OPTEE [61]. There are ~100k for drivers, 231k+ for media
API frameworks (e.g., GStreamer and V4L2) that are required
by camera/video pipeline drivers, and ~350k for OPTEE. To
summarize it, ProvCam achieves at least 10 times smaller
software TCB compared to its TEE alternative.

9.3 Performance
We evaluate latency and throughput, with two types of ex-
periments: microbenchmarks and macrobenchmarks. For mi-
crobenchmarks, as shown in 7 (a), we measure the amount
of time needed for I/O transactions in the non-TCS mode,
since in this mode, the transactions need to be forwarded by
the microcontroller. In addition, in 7 (b), we show latencies
of various tasks’ performed by the microcontroller in TCS
mode, where the report generation time does not necessarily
block the pipeline, and can be done in the background.

For macrobenchmarks, we present the latency of starting
and stopping the video capturing pipeline in 7 (c). We also
measure and report the throughput in 7 (d). Throughput here
refers to the throughput of generated encoded bitstream.
Our macrobenchmark results show that both our hard-

ware prototypes perform similarly compared to the baseline.
We would like to highlight that our throughput experiment
shows that ProvCam can sustain a high resolution (720p)
at a high framerate (60fps). Moreover, this shows that the
r_hashers in the module manage to sustain a much higher
throughput (i.e., 82.9 MiB/s) since they operate on raw data.

Overall, we conclude that although ProvCam brings mod-
erate overhead in microbenchmarks, the impact on mac-
robenchmarks is negligible.

9.4 Energy Consumption
We estimate the energy consumption using the power report
of our hardware prototypes generated by the Xilinx Vivado
software [62]. We set the ambient temperature to be 25.0 °C
(77.0 °F), with no heatsink expected on a target board size of
JEDEC 2S2P. Moreover, we run the power report multiple
times with maximum possible load on all IPs to always mea-
sure the worst-case power consumption results. Our baseline
design, which has a typical modern video recording pipeline,
running at a typical load with the same configuration above,
consumes 5.274 watts of power. Note that all numbers we
report below are additional amount of energy needed by
ProvCam camera module. There are a total of three fixed

11

598

~
~
~
~
~


tasks performed by ProvCam camera module: starting the
pipeline, ending the pipeline, and generating provenance re-
port, where they last for a fixed amount of time during each
recording session. For starting the pipeline, ProvCam with
secure buffer consumes 0.028 ±0.0003 joules, where Prov-
Cam consumes 0.035 ±0.0005 joules. For ending the pipeline,
ProvCam with secure buffer consumes 0.057 ±0.0018 joules,
where ProvCam consumes 0.071 ±0.0007 joules. For prove-
nance report generating, which is solely executed by the
microcontroller, ProvCam with secure buffer consumes 0.616
±0 joules, where ProvCam consumes 0.613 ±0 joules. In to-
tal, ProvCam with secure buffer needs 0.701 ±0.0021 joules
to handle all three fixed tasks in each recording session,
where ProvCam needs 0.719 ±0.0012 joules. On the other
hand, video recording time varies among different videos;
therefore, we also report both hardware prototypes’ power
consumption rates, which can be multiplied with expected
recording duration time to get the total energy consump-
tion for a recording session. ProvCam with secure buffer
uses 0.476 watts, where ProvCam uses 0.587 watts. Both
prototypes show that ProvCam introduces tolerable energy
consumption overhead compared to the baseline video cap-
turing pipeline. Moreover, this consumption is insignificant
compared with the large capacity of batteries on modern
camera devices, such as Apple iPhone 14 Pro Max, which has
a 16.75 Wh (60300 joules) battery [63], and Samsung Galaxy
S23 Ultra, which has a 18.5 Wh (66600 joules) battery [64].

9.5 Programming Effort
As there are various models of camera sensors, ISPs, and
encoders, we expect different combinations of them to be
used for making a ProvCam-based camera module. We ex-
pect a small amount of effort when adapting our system.
We measure the potential amount of codes that need to be
changed in the drivers.
First, the driver needs to include our provided record-

ing, replaying, and TCS libraries. Calling into these libraries
needs around 20 to 50 lines of code. Second, in case the dri-
ver has any dynamic (unpredictable) interrupt handling, the
corresponding handler codes need to be moved to the CCU
for TCS mode. Also, any interrupt that requires forwarding
in either TCS or non-TCS mode needs to have a CCU’s GPIO
interrupt registered in the OS device tree.
Overall, we expect a small amount of effort to be spent

on adapting ProvCam to use different hardware components
inside the module.

10 Discussions & Future Work

10.1 Trusted and Normal Videos
We have mentioned in Section 6.3 that we allow both the
secure and normal video capture pipelines to operate at the

same time on a mobile device, generating two videos using
raw frames captured by the same camera sensor: one trusted
but with relatively low image quality, and one with high
image quality but untrusted. We envision some use cases
of this capability. For example, users can store the trusted
video locally and share the high-quality one with others. In
the future, if needed (e.g., if the video is found to be used as
evidence in a court case), the user can present the trusted
video for verification. The challenge here is to verify that
the two videos have captured the same content. Machine
learning and fuzzy hashing are two possible approaches that
can be used to address this challenge. However, as they are
likely to have different resolutions, FPS, color space and so
on, where details preserved in one video could be almost
completely lost in the other one, we can at best hope for an
approximation-based solution (e.g. giving a confidence score
to the normal video based on its similarity with the trusted
video).

10.2 Privacy and Identity
In ProvCam’s current design, each camera module is given a
fixed ECDSA key pair at manufacturing time, and it uses this
key to sign all videos it captures. This raises a privacy issue:
videos captured by the same user can be linked together,
potentially revealing their identity. This might be problem-
atic as some users might not want to reveal their identi-
ties when sharing a video. One could use a group signature
scheme such as Direct Anonymous Attestation (DAA) [69]
and lattice-based group signature [70], similar to the one
used in modern TEEs, to provide full anonymity. However,
this solution might not be ideal either as users may want to
reveal their identities for some of the videos they capture.
For example, a citizen journalist may want to reveal their
identity in order to receive credit for a video they capture.We
leave finding a desirable solution to this problem to future
work.

10.3 Key Revocation
As mentioned above, each camera module is equipped with
a fixed ECDSA key pair at manufacturing time, which is
later used to sign captured videos. Although we put the
entire camera module into ProvCam’s TCB, it is still possible
that the camera module and/or its embedded key pair is
compromised by attackers. In this case, a key revocation
process is necessary. We believe existing key revocation
solutions should be applicable here as well.

11 Related Work
Securing Camera by Provenance. Several previous works
have used provenance to secure videos [22, 35, 68, 71–
73], such as by watermarking, hashing, signing, and chain-
ing. Other works provide provenance for photos only.

12

599



Approach Performance Videos? Vulnerable to attacks
(Refer to §2.1) TCB

Aletheia [35] Digital Signature No measurement Yes 4,5,6,7 OS

PhotoProof [21] Zero Knowledge Proof 673.5 secs for 1 frame
at 128x128 No 4,5,6,7 OS

YouProve [65] Image Understanding 28 secs for 1 frame
at 1296x792 No 4,5,6,7 OS

TrustEYE.M4 [66] TPM 11 fps at 320x240 Yes 6,7 TEE + others
TrustCAM [67] TPM 25 fps at 640x480 Yes 6,7 TEE + others
FrameProv [68] TEE No prototype Yes 5,6,7 TEE + others
Vronicle [20] TEE Native Yes 5,6,7 TEE
ProvCam Secure Camera Module Native Yes None Tiny

Table 3: Comparison with related work. Note that TEE + others means the system TCB includes not only TEE, but
also other (potentially less trustworthy) components

Photoproof [21] makes use of zero-knowledge proof to
cryptographically show that the photo is edited properly.
YouProve [65] performs analysis on the photo to study
changes. Vronicle [20] generates fine-grained provenance
information and use it to keep track of all processing his-
tory of the video throughout its lifespan. In addition, there
are industrial efforts to secure the camera-captured content.
Canon made an attempt in trustworthy photographing by
developing its Original Data Security Kit [74] for proving
image originality, which was later found as flawed [75]. Re-
cent efforts include Truepic [23] and Serelay [76], which
use TEEs to secure photos. Moreover, Adobe’s Content Au-
thenticity Initiative (CAI) [77] currently has 52 participating
members, including the above-mentioned two and others
such as Microsoft. There has also been some research effort
on securing the camera sensor using TEE. TrustCAM [67]
and TrustEYE.M4 [66] make use of the Trusted Platform
Module (TPM) for signing frames produced by the camera
sensor.
However, to the best of our knowledge, ProvCam is the

first solution for securing the entire camera pipeline that can
be adapted by all kinds of camera devices, and has adequate
performance for capturing high-resolution videos. Table 3
compares ProvCam against other key related works.
Secure Sensors. Saroiu et al. utilize Intel Trusted eXecu-
tion Technology for authenticating sensors’ readings such
as camera and GPS’s data [78, 79]. Shahid et al. introduce
a QR-code based solution for securing speech audio in live
recordings [80]. CamShield [81] also provides a system-wide
solution for securing a camera device by shielding it with
a trusted camera device. These solutions, however, do not
address the authenticty of recorded video.
Replay-based I/O. Some works also secure I/O using record-
and-replay. Both RT-TEE [82] and driverlets [83] use Trust-
Zone to run their debloated replay-based drivers for con-
trolling sensors, where RT-TEE aims to provide flexibility

close to the ordinary drivers, allowing parameters to be dy-
namically configured into presets. GPUReplay [84] is also
a middleman running in a secure world such as TrustZone
that replays presets of commands, and it is built for securely
controlling GPU to perform machine learning workloads. It
aims to replace the massive GPU stack existing in typical
ML work and can handle more complex jobs for GPU. These
three works, however, can only support either simple sensors
or a specific hardware device; they cannot secure the video
capture process, which has a complex processing pipeline
that needs seamless coordination with other hardware com-
ponents.

12 Conclusions
ProvCam ensures the authenticity of videos by protecting
camera capture, image processing and video encoding in a
tiny TCB and hardware design that defends against sophisti-
cated attackers. The cryptographic proof from our system,
possibly combined with proofs from other systems that ver-
ify subsequent stages of video post-processing, can finally
give the viewer the assurance that what they are seeing hap-
pened in reality. This assurance is becoming more urgent in
an age of deepfakes, generative AI, and AI embedded inside
smartphone camera pipelines. The implications span many
important parts of society, including justice and news. We
expect the technology will be applicable even beyond smart-
phones and body cameras, to eventually include security
cameras, cameras on autonomous vehicles and robots, and
remote tele-medicine.

Acknowledgments
The work of UCI authors was supported in part by the NSF
Awards #1763172, #1953932, #1956393, and #2247880 as well
as NSA Awards #H98230-20-1-0345 and #H98230-22-1-0308.
The authors thank the anonymous shepherd and reviewers
for their insightful comments.

13

600



References
[1] G. Stocking, P. Van Kessel, M. Barthel, K. Eva Matsa, and

M. Khuzam. Many Americans Get News on YouTube, Where
News Organizations and Independent Producers Thrive Side by
Side. https://www.pewresearch.org/journalism/2020/09/28/many-
americans-get-news-on-youtube-where-news-organizations-and-
independent-producers-thrive-side-by-side/, 2020.

[2] D. Garrison. Advanced Video Forensics, 2014.
https://www.oceansystems.com/newsroom/documents/
201407ETMAdvancedForensicVideoAnalysis_000.pdf.

[3] M. Westerlund. The Emergence of Deepfake Technology: A Review.
2019. http://doi.org/10.22215/timreview/1282.

[4] I. Perov, D. Gao, N. Chervoniy, K. Liu, S. Marangonda, C. Umé, Mr.
Dpfks, C. Facenheim, L. RP, J. Jiang, S. Zhang, P. Wu, B. Zhou, and
W. Zhang. Deepfacelab: Integrated, Flexible and Extensible Face-
Swapping Framework. https://arxiv.org/abs/2005.05535, 2021.

[5] K. Prajwal, R. Mukhopadhyay, V. Namboodiri, and C. Jawahar. A Lip
Sync Expert Is All You Need for Speech to Lip Generation In The Wild.
https://arxiv.org/abs/2008.10010, 2020.

[6] L. Kant. Image-Background-Removal-And-Replacement-Using-Ml-
And-Ai. https://github.com/laxmimerit/image-background-removal-
and-replacement-using-ml-and-ai, 2023.

[7] Synthesia: Create Videos from Plain Text in Minutes. https://
www.synthesia.io/, 2017.

[8] Imagen Video. https://imagen.research.google/video/, 2022.
[9] Make-A-Video. https://makeavideo.studio/?fbclid=

IwAR0KjiiCmLKNhPs7S6RLCLG3U7_5yex0NHP8-
6DfABUtf6SBpKgMkVykEcU, 2022.

[10] S. Cole. Hacked News Channel and Deepfake of Ze-
lenskyy Surrendering Is Causing Chaos Online. https:
//www.vice.com/en/article/93bmda/hacked-news-channel-and-
deepfake-of-zelenskyy-surrendering-is-causing-chaos-online.

[11] Distorted Videos of Nancy Pelosi Spread on Facebook and Twitter,
Helped by Trump. https://www.nytimes.com/2019/05/24/us/politics/
pelosi-doctored-video.html.

[12] A. Satariano and P. Mozur. The People Onscreen Are Fake. The Dis-
information Is Real. 2023. https://www.nytimes.com/2023/02/07/
technology/artificial-intelligence-training-deepfake.html.

[13] Y. Li, M. Chang, and S. Lyu. Ictu Oculi: Exposing AI Created Fake
Videos by Detecting Eye Blinking. In Proc. IEEE International Workshop
on Information Forensics and Security (WIFS), 2018.

[14] Y. Li and S. Lyu. Exposing Deepfake Videos by Detecting FaceWarping
Artifacts. In Proc. IEEE Conference on Computer Vision and Pattern
Recognition Workshops (CVPRW), 2019.

[15] S. McCloskey and M. Albright. Detecting GAN-generated Imagery
using Color Cues. CoRR, abs/1812.08247, 2018.

[16] X. Yang, Y. Li, and S. Lyu. Exposing Deep Fakes using Inconsistent
Head Poses. In Proc. IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), 2019.

[17] P. Korshunov and S. Marcel. DeepFakes: a New Threat to Face Recog-
nition? Assessment and Detection. CoRR, abs/1812.08685, 2018.

[18] A. Rossler, D. Cozzolino, L. Verdoliva, C. Riess, J. Thies, and M. Nießner.
Faceforensics++: Learning to Detect Manipulated Facial Images. In
Proc. IEEE International Conference on Computer Vision, 2019.

[19] J. MacGillis. Fighting AI with AI: The Battle against Deepfakes. https://
thewalrus.ca/fighting-ai-with-ai-the-battle-against-deepfakes/, 2022.

[20] Y. Liu, Y. Nakatsuka, A. Amiri Sani, S. Agarwal, and G. Tsudik. Vronicle:
Verifiable provenance for videos from mobile devices. MobiSys ’22,
2022.

[21] A. Naveh and E. Tromer. PhotoProof: Cryptographic Image Authen-
tication for Any Set of Permissible Transformations. In Proc. IEEE
Symposium on Security and Privacy (S&P), 2016.

[22] P. England, H. S. Malvar, E. Horvitz, J. W. Stokes, C. Fournet, R. Burke-
Aguero, A. Chamayou, S. Clebsch, M. Costa, J. Deutscher, S. Erfani,
M. Gaylor, A. Jenks, K. Kane, E. Redmiles, A. Shamis, I. Sharma,
S. Wenker, and A. Zaman. AMP: Authentication of Media via Prove-
nance. 2020.

[23] Truepic: Photo and Video Verification You Can Trust. https://
truepic.com/, 2019.

[24] TrustZone: Integrated Hardware and Software Security: Enabling
Trusted Computing in Embedded Systems. In ARM White Paper, 2004.

[25] ARM Security Technology, Building a Secure System us-
ing TrustZone Technology. http://infocenter.arm.com/
help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-
009492C_trustzone_security_whitepaper.pdf, 2004.

[26] A. Delorenzo. Hardware Hacking 101: Interfacing with SPI. https:
//riverloopsecurity.com/blog/2020/02/hw-101-spi/, 2020.

[27] V. Costan and S. Devadas. Intel sgx explained. IACR Cryptology ePrint
Archive, 2016(086):1–118, 2016.

[28] D. Cerdeira, N. Santos, P. Fonseca, and S. Pinto. SoK: Understanding the
Prevailing Security Vulnerabilities in Trustzone-assisted TEE Systems.
In Proc. IEEE Symposium on Security and Privacy (S&P), 2020.

[29] CVE Details. Op-tee: Vulnerability Statistics. https:
//www.cvedetails.com/product/56969/Linaro-Op-tee.html,
https://www.cvedetails.com/product/42749/Linaro-Op-tee.html,
https://www.cvedetails.com/product/36161/Op-tee-Op-tee-Os.html,
2021.

[30] M. Khelif, J. Lorandel, O. Romain, M. Regnery, D. Baheux, and G. Barbu.
Toward a Hardware Man-In-The-Middle Attack on Pcie Bus. Micro-
processors and Microsystems, 2020.

[31] G. Hotz. PS3 Glitch Hack. https://www.blogger.com/
blogin.g?blogspotURL=http://geohotps3.blogspot.com/2010/01/
hello-hypervisor-im-geohot.html&type=blog, 2010.

[32] N. Lawson. How the PS3 Hypervisor Was Hacked. https:
//rdist.root.org/2010/01/27/how-the-ps3-hypervisor-was-hacked/,
2010.

[33] A. Huang. Hacking the Xbox: an Introduction to Reverse Engineering.
https://hackingthexbox.com/, 2003.

[34] J. Boone. TPM Genie: Interposer Attacks Against the Trusted Platform
Module Serial Bus. https://research.nccgroup.com/2018/03/09/tpm-
genie-interposer-attacks-against-the-trusted-platform-module-
serial-bus/, 2018.

[35] Aletheia: Fight Fake News by Signing Your Files. https://
danielquinn.github.io/aletheia/, 2020.

[36] CVE Details. Op-tee: Vulnerability Statistics. https:
//www.cvedetails.com/product/56969/Linaro-Op-tee.html and
https://www.cvedetails.com/product/42749/Linaro-Op-tee.html and
https://www.cvedetails.com/product/36161/Op-teeOp-tee-Os.html,
2021.

[37] Quarklab. BREAKING SAMSUNG’S ARM TRUSTZONE.
https://i.blackhat.com/USA-19/Thursday/us-19-Peterlin-Breaking-
Samsungs-ARM-
TrustZone.pdf, 2019.

[38] NIST. CVE-2015-6639 Detail. https://nvd.nist.gov/vuln/detail/CVE-
2015-6639, 2016.

[39] Apple. Importance of Service by Trained Technicians Using Genuine
Apple Cameras. https://support.apple.com/en-us/HT212002#:~:text=
With%20iPhone%2012%20models%20and,Apple%20Part%22%20next%
20to%20Camera., 2022.

[40] IC Insights. CMOS Image Sensor Sales Stay On Record-Breaking
Pace. https://electroiq.com/files/blog/2018/05/cmos-image-sensor-
sales-stay-on-record-breaking-pace/, 2022.

[41] Russ Palum. Image Sampling with the Bayer Color Filter Array. In
PICS, pages 239–245, 2001.

14

601

https://www.pewresearch.org/journalism/2020/09/28/many-americans-get-news-on-youtube-where-news-organizations-and-independent-producers-thrive-side-by-side/
https://www.pewresearch.org/journalism/2020/09/28/many-americans-get-news-on-youtube-where-news-organizations-and-independent-producers-thrive-side-by-side/
https://www.pewresearch.org/journalism/2020/09/28/many-americans-get-news-on-youtube-where-news-organizations-and-independent-producers-thrive-side-by-side/
https://www.oceansystems.com/newsroom/documents/201407ETMAdvancedForensicVideoAnalysis_000.pdf
https://www.oceansystems.com/newsroom/documents/201407ETMAdvancedForensicVideoAnalysis_000.pdf
http://doi.org/10.22215/timreview/1282
https://arxiv.org/abs/2005.05535
https://arxiv.org/abs/2008.10010
https://github.com/laxmimerit/image-background-removal-and-replacement-using-ml-and-ai
https://github.com/laxmimerit/image-background-removal-and-replacement-using-ml-and-ai
https://www.synthesia.io/
https://www.synthesia.io/
https://imagen.research.google/video/
https://makeavideo.studio/?fbclid=IwAR0KjiiCmLKNhPs7S6RLCLG3U7_5yex0NHP8-6DfABUtf6SBpKgMkVykEcU
https://makeavideo.studio/?fbclid=IwAR0KjiiCmLKNhPs7S6RLCLG3U7_5yex0NHP8-6DfABUtf6SBpKgMkVykEcU
https://makeavideo.studio/?fbclid=IwAR0KjiiCmLKNhPs7S6RLCLG3U7_5yex0NHP8-6DfABUtf6SBpKgMkVykEcU
https://www.vice.com/en/article/93bmda/hacked-news-channel-and-deepfake-of-zelenskyy-surrendering-is-causing-chaos-online
https://www.vice.com/en/article/93bmda/hacked-news-channel-and-deepfake-of-zelenskyy-surrendering-is-causing-chaos-online
https://www.vice.com/en/article/93bmda/hacked-news-channel-and-deepfake-of-zelenskyy-surrendering-is-causing-chaos-online
https://www.nytimes.com/2019/05/24/us/politics/pelosi-doctored-video.html
https://www.nytimes.com/2019/05/24/us/politics/pelosi-doctored-video.html
https://www.nytimes.com/2023/02/07/technology/artificial-intelligence-training-deepfake.html
https://www.nytimes.com/2023/02/07/technology/artificial-intelligence-training-deepfake.html
https://thewalrus.ca/fighting-ai-with-ai-the-battle-against-deepfakes/
https://thewalrus.ca/fighting-ai-with-ai-the-battle-against-deepfakes/
https://truepic.com/
https://truepic.com/
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
https://riverloopsecurity.com/blog/2020/02/hw-101-spi/
https://riverloopsecurity.com/blog/2020/02/hw-101-spi/
https://www.cvedetails.com/product/56969/Linaro-Op-tee.html
https://www.cvedetails.com/product/56969/Linaro-Op-tee.html
https://www.cvedetails.com/product/42749/Linaro-Op-tee.html
https://www.cvedetails.com/product/36161/Op-tee-Op-tee-Os.html
https://www.blogger.com/blogin.g?blogspotURL=http://geohotps3.blogspot.com/2010/01/hello-hypervisor-im-geohot.html&type=blog
https://www.blogger.com/blogin.g?blogspotURL=http://geohotps3.blogspot.com/2010/01/hello-hypervisor-im-geohot.html&type=blog
https://www.blogger.com/blogin.g?blogspotURL=http://geohotps3.blogspot.com/2010/01/hello-hypervisor-im-geohot.html&type=blog
https://rdist.root.org/2010/01/27/how-the-ps3-hypervisor-was-hacked/
https://rdist.root.org/2010/01/27/how-the-ps3-hypervisor-was-hacked/
https://hackingthexbox.com/
https://research.nccgroup.com/2018/03/09/tpm-genie-interposer-attacks-against-the-trusted-platform-module-serial-bus/
https://research.nccgroup.com/2018/03/09/tpm-genie-interposer-attacks-against-the-trusted-platform-module-serial-bus/
https://research.nccgroup.com/2018/03/09/tpm-genie-interposer-attacks-against-the-trusted-platform-module-serial-bus/
https://danielquinn.github.io/aletheia/
https://danielquinn.github.io/aletheia/
https://www.cvedetails.com/product/56969/Linaro-Op-tee.html
https://www.cvedetails.com/product/56969/Linaro-Op-tee.html
https://www.cvedetails.com/product/42749/Linaro-Op-tee.html
https://www.cvedetails.com/product/36161/Op-teeOp-tee-Os.html
https://i.blackhat.com/USA-19/Thursday/us-19-Peterlin-Breaking-Samsungs-ARM-
https://i.blackhat.com/USA-19/Thursday/us-19-Peterlin-Breaking-Samsungs-ARM-
TrustZone.pdf
https://nvd.nist.gov/vuln/detail/CVE-2015-6639
https://nvd.nist.gov/vuln/detail/CVE-2015-6639
https://support.apple.com/en-us/HT212002#:~:text=With%20iPhone%2012%20models%20and,Apple%20Part%22%20next%20to%20Camera.
https://support.apple.com/en-us/HT212002#:~:text=With%20iPhone%2012%20models%20and,Apple%20Part%22%20next%20to%20Camera.
https://support.apple.com/en-us/HT212002#:~:text=With%20iPhone%2012%20models%20and,Apple%20Part%22%20next%20to%20Camera.


[42] Color filter array - Glossary. https://www.digitizationguidelines.gov/
term.php?term=colorfilterarray, 2023.

[43] T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. Luthra. Overview of
the H. 264/Avc Video Coding Standard. IEEE Transactions on circuits
and systems for video technology, 13(7):560–576, 2003.

[44] G. Sullivan, J. Ohm, W. Han, and T. Wiegand. Overview of the High Ef-
ficiency Video Coding (HEVC) Standard. IEEE Transactions on Circuits
and Systems for Video Technology, 2012.

[45] J. Han, B. Li, D. Mukherjee, C. Chiang, A. Grange, C. Chen, H. Su,
S. Parker, S. Deng, U. Joshi, Y. Chen, Y. Wang, P. Wilkins, Y. Xu, and
J. Bankoski. A Technical Overview of AV1. Proceedings of the IEEE,
2021.

[46] S. Borel, L. Duperrex, E. Deschaseaux, J. Charbonnier, J. Cledière,
R. Wacquez, J. Fournier, J. C. Souriau, G. Simon, and A. Merle. A Novel
Structure for Backside Protection against Physical Attacks on Secure
Chips or Sip. In 2018 IEEE 68th Electronic Components and Technology
Conference (ECTC), pages 515–520. IEEE, 2018.

[47] Does Your Package Size Affect Security. https://cerberus-
laboratories.com/blog/package_size_matters/, 2021.

[48] F. Imeson, A. Emtenan, S. Garg, and M. Tripunitara. Securing Com-
puter Hardware Using 3D Integrated Circuit (IC) Technology and Split
Manufacturing for Obfuscation. In 22nd USENIX Security Symposium
(USENIX Security 13). USENIX Association, 2013.

[49] Tezzaron. 3D-ICs and Integrated Circuit Security. 2008. https://
tezzaron.com/media/3D-ICs_and_Integrated_Circuit_Security.pdf.

[50] J. Knechtel, O. Sinanoglu, I. Elfadel, J. Lienig, and C. Sze. Large-Scale
3D Chips: Challenges and Solutions for Design Automation, Testing,
and Trustworthy Integration. IPSJ Transactions on System and LSI
Design Methodology, 2017.

[51] M. Wales. The Best 8K Phones in 2023. https:
//filmora.wondershare.com/8k/best-8k-resolution-phones.html,
2023.

[52] AMBA AXI and ACE Protocol Specification Version E.
https://developer.arm.com/documentation/ihi0022/e/AMBA-
AXI3-and-AXI4-Protocol-Specification, 2023.

[53] H. Farrukh, R. M. Aburas, S. Cao, and H. Wang. FaceRevelio: A Face
Liveness Detection System for Smartphones with a Single Front Cam-
era. In Proc. ACM MobiCom, 2020.

[54] GSMARENA. IPhone 14 Pro Max with A16 Chipset Appears on
Geekbench with Minimal Performance Improvement, 2022. https:
//rb.gy/mz1un.

[55] Qualcomm. Snapdragon 8 gen 2 mobile platform, 2023.
https://www.qualcomm.com/products/mobile/snapdragon/
smartphones/snapdragon-8-series-mobile-platforms/snapdragon-8-
gen-2-mobile-platform.

[56] M. Posner. How Many Asic Gates Does It Take To Fill an
FPGA? https://blogs.synopsys.com/breakingthethreelaws/2015/02/
how-many-asic-gates-does-it-take-to-fill-an-fpga/, 2015.

[57] V. Strumpen. Introduction to Digital Circuits: Basic Dig-
ital Circuits. http://bibl.ica.jku.at/dc/build/html/basiccircuits/
basiccircuits.html, 2015.

[58] Y. Shizuku, T. Hirose, N. Kuroki, M. Numa, and M. Okada. A 24-
Transistor Static Flip-Flop Consisting of Nors and Inverters for Low-
Power Digital Vlsis. In 2014 IEEE 12th International New Circuits and
Systems Conference (NEWCAS), 2014.

[59] P. Athe and S. Dasgupta. A Comparative Study of 6T, 8T and 9T
Decanano Sram Cell. In IEEE Symposium on Industrial Electronics and
Applications, 2009.

[60] R. Cotta. Snapdragon 8 Gen 2 vs A16 Bionic Which Is the Better
Chip? https://www.videogamer.com/tech/smartphone/snapdragon-8-
gen-2-vs-a16-bionic/, 2023.

[61] Open Portable Trusted Execution Environment (OP-TEE). https://
www.op-tee.org/, 2018.

[62] Xilinx. Achieving an Accurate Power Analysis Using Vivado
Report Power. https://docs.xilinx.com/r/en-US/ug907-vivado-power-
analysis-optimization/Achieving-an-Accurate-Power-Analysis-
Using-Vivado-Report-Power, 2023.

[63] W. Gallagher. Apple’s iPhone 14 Battery Capacities Revealed in
Filing. https://appleinsider.com/articles/22/09/12/apples-iphone-14-
battery-capacities-revealed-in-filing, 2022.

[64] DXOMARK. Samsung Galaxy S23 Ultra Battery test. https://
www.dxomark.com/samsung-galaxy-s23-ultra-battery-test/, 2023.

[65] P. Gilbert, J. Jung, K. Lee, H. Qin, D. Sharkey, A. Sheth, and L. P. Cox.
YouProve: Authenticity and Fidelity in Mobile Sensing. In Proc. ACM
SenSys, 2011.

[66] T. Winkler, A. Erdélyi, and B. Rinner. TrustEYE.M4: Protecting the
Sensor – not the Camera. In Proc. IEEE International Conference on
Advanced Video and Signal Based Surveillance (AVSS), 2014.

[67] T. Winkler and B. Rinner. TrustCAM: Security and Privacy-Protection
for an Embedded Smart Camera Based on Trusted Computing. In
Proc. IEEE International Conference on Advanced Video and Signal Based
Surveillance (AVSS), 2010.

[68] M. Ahmed-Rengers. FrameProv: Towards End-to-End Video Prove-
nance. In Proc. ACM New Security Paradigms Workshop (NSPW), 2019.

[69] E. Brickell, J. Camenisch, and L. Chen. Direct Anonymous Attestation.
CCS ’04, 2004.

[70] S. Gordon, J. Katz, and V. Vaikuntanathan. A Group Signature Scheme
from Lattice Assumptions. Cryptology ePrint Archive, Paper 2011/060,
2011. https://eprint.iacr.org/2011/060.

[71] A. Gehani and U. Lindqvist. VEIL: A System for Certifying Video
Provenance. In Proc. IEEE International Symposium on Multimedia
(ISM), 2007.

[72] M. Sorell. Video Provenance by Motion Vector Analysis: A Feasibility
Study. In Proc. IEEE International Symposium on Communications,
Control and Signal Processing (ISCCSP), 2012.

[73] H. R. Hasan and K. Salah. Combating Deepfake Videos Using
Blockchain and Smart Contracts. IEEE Access, 7:41596–41606, 2019.

[74] Canon Original Data Security Kit. http://www.canon.co.jp/imaging/
osk/osk-e3/index.html, 2010.

[75] Canon Original Data Security System Compromised: Elcom-
Soft Discovers Vulnerability. https://www.elcomsoft.com/PR/
canon_101130_en.pdf, 2010.

[76] Serelay: Trusted Media Capture. https://www.serelay.com/, 2017.
[77] Content Authenticity Initiative. https://contentauthenticity.org/, 2019.
[78] H. Liu, S. Saroiu, A. Wolman, and H. Raj. Software Abstractions for

Trusted Sensors. In Proc. ACM MobiSys, 2012.
[79] S. Saroiu and A. Wolman. I Am a Sensor, and I Approve This Message.

In Proc. ACM Workshop on Mobile Computing Systems & Applications
(HotMobile), 2010.

[80] I. Shahid and N. Roy. "Is This My President Speaking?" Tamper-
Proofing Speech in Live Recordings. MobiSys ’23, 2023.

[81] Wang Z., Yan Y., Yan Y., Chen H., and Yang Z. CamShield: Securing
Smart Cameras through Physical Replication and Isolation. In 31st
USENIX Security Symposium (USENIX Security 22), 2022.

[82] J. Wang, A. Li, H. Li, C. Lu, and N. Zhang. RT-TEE: Real-time System
Availability for Cyber-physical Systems using ARM TrustZone. In
2022 IEEE Symposium on Security and Privacy (SP), 2022.

[83] L. Guo and F. Lin. Minimum Viable Device Drivers for ARM Trustzone.
EuroSys, 2022.

[84] H. Park and F. Lin. GPUReplay: A 50-KB GPU Stack for Client ML. In
Proceedings of the 27th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, 2022.

15

602

https://www.digitizationguidelines.gov/term.php?term=colorfilterarray
https://www.digitizationguidelines.gov/term.php?term=colorfilterarray
https://cerberus-laboratories.com/blog/package_size_matters/
https://cerberus-laboratories.com/blog/package_size_matters/
https://tezzaron.com/media/3D-ICs_and_Integrated_Circuit_Security.pdf
https://tezzaron.com/media/3D-ICs_and_Integrated_Circuit_Security.pdf
https://filmora.wondershare.com/8k/best-8k-resolution-phones.html
https://filmora.wondershare.com/8k/best-8k-resolution-phones.html
https://developer.arm.com/documentation/ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification
https://developer.arm.com/documentation/ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification
https://rb.gy/mz1un
https://rb.gy/mz1un
https://www.qualcomm.com/products/mobile/snapdragon/smartphones/snapdragon-8-series-mobile-platforms/snapdragon-8-gen-2-mobile-platform
https://www.qualcomm.com/products/mobile/snapdragon/smartphones/snapdragon-8-series-mobile-platforms/snapdragon-8-gen-2-mobile-platform
https://www.qualcomm.com/products/mobile/snapdragon/smartphones/snapdragon-8-series-mobile-platforms/snapdragon-8-gen-2-mobile-platform
https://blogs.synopsys.com/breakingthethreelaws/2015/02/how-many-asic-gates-does-it-take-to-fill-an-fpga/
https://blogs.synopsys.com/breakingthethreelaws/2015/02/how-many-asic-gates-does-it-take-to-fill-an-fpga/
http://bibl.ica.jku.at/dc/build/html/basiccircuits/basiccircuits.html
http://bibl.ica.jku.at/dc/build/html/basiccircuits/basiccircuits.html
https://www.videogamer.com/tech/smartphone/snapdragon-8-gen-2-vs-a16-bionic/
https://www.videogamer.com/tech/smartphone/snapdragon-8-gen-2-vs-a16-bionic/
https://www.op-tee.org/
https://www.op-tee.org/
https://docs.xilinx.com/r/en-US/ug907-vivado-power-analysis-optimization/Achieving-an-Accurate-Power-Analysis-Using-Vivado-Report-Power
https://docs.xilinx.com/r/en-US/ug907-vivado-power-analysis-optimization/Achieving-an-Accurate-Power-Analysis-Using-Vivado-Report-Power
https://docs.xilinx.com/r/en-US/ug907-vivado-power-analysis-optimization/Achieving-an-Accurate-Power-Analysis-Using-Vivado-Report-Power
https://appleinsider.com/articles/22/09/12/apples-iphone-14-battery-capacities-revealed-in-filing
https://appleinsider.com/articles/22/09/12/apples-iphone-14-battery-capacities-revealed-in-filing
https://www.dxomark.com/samsung-galaxy-s23-ultra-battery-test/
https://www.dxomark.com/samsung-galaxy-s23-ultra-battery-test/
https://eprint.iacr.org/2011/060
http://www.canon.co.jp/imaging/osk/osk-e3/index.html
http://www.canon.co.jp/imaging/osk/osk-e3/index.html
https://www.elcomsoft.com/PR/canon_101130_en.pdf
https://www.elcomsoft.com/PR/canon_101130_en.pdf
https://www.serelay.com/
https://contentauthenticity.org/

	Abstract
	1 Introduction
	2 Threat Model & Motivation
	2.1 Threat Model
	2.2 Current Techniques

	3 Background
	4 Design
	5 Hardware Design Challenges
	5.1 The Use of Untrusted Main Memory
	5.2 Asynchronous Hashing
	5.3 Video Frame-Based Hashing

	6 Software Stack Design Challenges
	6.1 Replay-Based Bare-Bones Driver
	6.2 Double Replay for a Backward-Compatible Software Stack
	6.3 Trusted Capture Session

	7 Prototype
	8 Security Analysis
	9 Prototype Evaluation
	9.1 Hardware Cost
	9.2 Software TCB
	9.3 Performance
	9.4 Energy Consumption
	9.5 Programming Effort

	10 Discussions & Future Work
	10.1 Trusted and Normal Videos
	10.2 Privacy and Identity
	10.3 Key Revocation

	11 Related Work
	12 Conclusions
	Acknowledgments
	References

