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Abstract
Mobile devices, such as smartphones and tablets, use notifi-
cations to inform their users of events. Some security- and
privacy-related events are time-sensitive: the user must be
notified immediately. In this paper, we perform a user study
with 40 participants to understand the properties of such
time-sensitive notifications. We specifically focus on sensor
notifications that notify the users when one of the sensitive
sensors, such as camera, microphone, or location is being
accessed. We show that none of the notification channels
available on mobile devices, i.e., LED, vibration, sound, and
display, can grab the user’s attention in more than 24% of
the time. Among them, vibration achieves the best success
rates on average. Moreover, our results show that less intru-
sive channels, e.g., display, can achieve significantly better
results if the device’s physical context, i.e., ambient light
intensity, is considered. Based on our findings, we suggest
that display notification is the best option for camera while
different vibration patterns are best options for microphone
and location sensor.

CCS Concepts
•Human-centered computing → User studies; Smart-
phones; •Security and privacy → Privacy protec-
tions; Social aspects of security and privacy; Usabil-
ity in security and privacy;
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1. INTRODUCTION
Mobile devices use notifications to inform users of events,

e.g., phone calls. Some security- and privacy-related notifi-
cations are time-sensitive: the user must be notified imme-
diately. Examples are sensor notifications that inform the
user of access to sensitive sensors (e.g., camera, microphone,
and location) and AMBER alerts. In this paper, we set out
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Figure 1: Sensor notifications in iOS and Android:
(a) Location notification in iOS (the notification
strip below the status bar on top of the screen, (b)
location notification in Android (the icon in the top
left corner), (c) microphone notification by the Sam-
sung Voice Recorder application in Android (the
icon in the top left corner).

to understand the properties of such notifications, i.e., time-
sensitive notifications, through a user study. We perform
the study in the context of sensor notifications but most of
the results are applicable to other forms of time-sensitive
notifications as well. Computers communicating with hu-
mans is one of the most fundamental aspects of computing.
In this paper, we hope to understand how effectively a mo-
bile device can grab its owner’s attention using the means
available to it. In an analogy to human-to-human communi-
cation, this is similar to one person seeking another person’s
attention in case of potential danger.

We focus on sensor notifications due to their increasing
importance. Mobile devices incorporate a set of privacy-
sensitive sensors, most importantly, camera, microphone,
and location (i.e., GPS or cellular network-based sensing).
These sensors can capture sensitive information of the user
including photos, videos, conversations, and locations. A
prior study has shown that most users consider this infor-
mation to be private and sensitive [9]. Unfortunately, there
have been several incidents where attackers have attempted
to access these sensors without user’s knowledge, e.g., to
capture unauthorized video or audio of the user or to track
her whereabouts [2–4]. And tools are available for attack-
ers to remotely control infected device’s camera and micro-
phone [1]. To address this problem, sensor notifications are
used, which use some notification channel, such as LED and



display, to notify the user whenever one of these sensors is
being used. For example, mobile operating systems, such
as Android and iOS, show some form of notification on the
screen when a location sensor is accessed (Figure 1 (a) and
(b)). Moreover, some applications inform the user when
they record audio in the background (Figure 1 (c)).

The rationale for sensor notifications is that users can
distinguish between legitimate and illegitimate accesses to
these sensors. For example, if the user is using a photog-
raphy application, s/he expects the camera to be on. But
when the user is watching a video, s/he expects the camera
to be off. Therefore, a notification about the use of camera
in the latter scenario is likely to indicate malicious activity.

We identify three important requirements for a sensor no-
tification. First, it must be able to attract the user’s atten-
tion successfully at all times and as fast as possible. This is
important as it will minimize the window of vulnerability,
i.e., the period of time that malware can access the sensor
without user’s knowledge. Second, it must be unambiguous.
The user must be able to quickly understand the meaning
of the notification and differentiate it from other sensor no-
tifications and other notifications in the system, e.g., phone
calls or application updates. Third, it should not cause an-
noyance to the user. This last property is indeed important
because notifications are triggered whenever the sensor is
accessed, even if the access is legitimate, e.g., user taking a
photo with the camera.

We ask: which one of existing notification channels, i.e.,
LED, vibration, sound, and display, best satisfy these re-
quirements? We answer this question with a user study
performed on 40 participants1. To perform the user study,
we first designed and implemented various types of sensor
notifications for camera, microphone, and location, in the
Android operating system (§2). We then deployed our mod-
ified operating system on Google Nexus 5X smartphones and
distributed them to the participants to use as their primary
device for one week. In addition, we installed an application
on the smartphone that emulates malware by using these
sensors in the background a couple of times a day, which
would result in a notification to the user by the operating
system. We then asked the participants to log the sensor
that was illegitimately used as soon as they spotted the cor-
responding notification. This allows us to assess the first two
requirements mentioned earlier. To assess the third require-
ment, we asked the participants to fill out a questionnaire
right after the study. We have made the data collected in
the study publicly available2.

To better understand the notifications, we decided to eval-
uate the impact of the device’s physical context, i.e., ambient
light intensity and ambient noise, on the effectiveness of the
notifications. To do this, we collected these physical context
measurements whenever a notification was triggered.

We present several important findings about sensor noti-
fications. First, on average, none of the existing channels
achieve a success rate (in capturing user’s attention) higher
than 24%. Second, vibration achieves the best success rates
at 24%, and LED achieves the worst at 4%. Third, we find
that sound is almost always a bad choice as it incurs sig-
nificant annoyance to the user, while being outperformed by
vibration and even display notification. Fourth, we find that,

1User study approved by UC Irvine’s Office of Research,
Human Research Protection, under IRB HS# 2016-3100.
2http://www.ics.uci.edu/~ardalan/notifdata.html

quite counterintuitively, existing android notifications that
only rely on textual content to convey their meaning are the
hardest for users to recognize in a timely manner. Finally,
we realize that physical context has important impact on
the effectiveness of notifications. For example, we find that
our new display notification (which turns on the display and
shows a strip on top of the screen with textual content in
it) can be very effective in light environments. Based on
our findings, we suggest to use this display notification for
camera since it is effective in light environments, which is
where malicious access to the camera can be effective. For
microphone and location sensor, we suggest to use different
vibration patterns since vibration achieves high success rate
and its different patterns are easy for users to recognize.

2. SENSOR NOTIFICATION DESIGN
We designed and implemented the notifications using An-

droid services (Android version 6.0.1, CyanogenMod version
13.0). The implementation of a sensor notification has two
components: (i) detecting when a sensor is being accessed,
and (ii) triggering a notification using one of the channels.

Detecting the Sensor Access. We implement the no-
tifications for three sensors: microphone, camera, and loca-
tion. We detect the access to the first two in the MediaSer-

vice, which is part of the stack that implements the API
used by applications to use these two sensors. For location,
we use the LocationManagerService, which implements the
API for applications to acquire location information.

With this implementation, we can reliably detect most ap-
plication’s use of these three sensors, except for two cases:
First, we cannot detect the use of microphone for cellular
phone calls since the modem does not use the microphone
through the aforementioned API. Second, we cannot detect
the use of Google Play location API, which some apps use
(instead of LocationManagerService API) to acquire loca-
tion information. In the study, since malicious accesses to
sensors is emulated by an application designed by us (§3.1),
this limitation does not have major effect on most of the re-
sults. It might only limit the extent to which we can assess
user’s annoyance with notifications when apps legitimately
use a sensor. To mitigate this, we asked them to mainly use
Skype for voice calls (rather than phone calls) and use Waze
for navigation (rather than Google maps), both of which use
standard audio and location API and hence are detected by
our implementation.

Triggering Notifications. Once we detect that a sen-
sor is being accessed, we trigger the notification for it using
one of the five different notification channels supported in
our prototype. The channels are as follows: blinking white
LED (0.67 Hz blinking frequency with 67% duty cycle), vi-
bration (1 second constant vibration), sound (3 second audio
segment), and two notifications based on the display: one
designed by us, which turns on the display (if off) and shows
a strip on top of the screen with a text that mentions the
name of the sensor being used (similar to iOS location noti-
fication in Figure 1 (a)), and one using existing notification
supported by Android (which shows up in the pull-down no-
tification bar, and which does not turn on the display if it
is off). Thereafter, we refer to these last two notification
channels as display and Android notifications, respectively.

It is important to note that the LED, display, and Android
notifications stay on as long as the sensor is being used. On
the other hand, vibration and sound notifications only run



for a fixed period of time (i.e., 1 and 3 seconds, respec-
tively), in order not to significantly disturb the user. One
might wonder why we do not leave the first group of notifica-
tions (LED, display, and Android) on indefinitely until it is
noticed and cleared by the user, very similar to what many
applications’ notifications do. This is because our goal is to
assess the effectiveness of time-sensitive notifications, where
it is critical for the user to be notified when the event is
happening. Leaving the notification on even after the event
will increase the odds of user’s noticing the notification, but
not necessarily in a timely manner. Therefore, to control
this factor in the study, we clear the notification once the
sensor is not accessed anymore.

3. USER STUDY
In this section, we describe the user study that we con-

ducted to evaluate sensor notifications.

3.1 Recruitment and Study Logistics
We recruited 40 participants. Each participant was given

a Nexus 5X smartphone with our instrumented Android op-
erating system and was asked to use the smartphone for
one whole week. 33 of participants were undergraduate stu-
dents and 7 of them were graduate students, mostly ma-
joring in computer science. Moreover, 14 of them were fe-
male. Our participants hence represent a more technically-
advanced portion of the population. We compensated each
participant with a $20 gift card.

We asked the participants to use our smartphone as their
main smartphone during the study. To facilitate this, we
helped them set up their Google accounts on the smartphone
and transfer their SIM cards from their own phones to the
study smartphone, if possible. Due to SIM incompatibility,
we managed to successfully perform the SIM card transfer
only for about 10 of the participants. The other 30 still used
our phone as their primary one but carried their own phone
just for phone calls. We also asked the participants to regu-
larly use apps that use camera, microphone, and location, in
order to be able to provide us with feedback on the annoy-
ance of the notifications. We installed Skype, Waze, and a
camera application on the smartphones to facilitate the use
of these applications for the participants.

In addition, we developed and installed an application,
called NotifTest, on the phone, which plays two roles in
the study. First, it emulates malware by accessing the sen-
sors illegitimately in the background. To do this, the app
uses these sensors in the background roughly 5 times a day
at random times between 10 A.M. and 9 P.M. We limited
the use of sensors to this time interval in order not to disturb
the participants at night time. Each time, the app uses the
sensor for 5 seconds. We chose this number since it is long
enough for malware to gain useful information from the sen-
sors and also it is short enough to challenge the notification
mechanism in quickly grabbing the user’s attention. At re-
cruit time, we instructed the participants about the meaning
of each notifications, e.g., blinking white LED notifications
means that the camera is being used. Moreover, the No-

tifTest app allows the participants to check the notification
for each sensor, if they forget, which helps them more easily
remember the meaning of each notification. We also asked
the participants to avoid lowering the system volume and
disabling the vibration for extended periods of time, which
would otherwise render these notifications useless. Our anal-

ysis of user study data shows that participants’ phone was
on high volume (higher half of the volume range) in 52% of
the time and the vibration was on in 94% of the time.

Second, the app provides a mechanism for the participants
to report the sensor accesses that they spot by logging it.
More specifically, we asked the participants to open the No-

tifTest app and record the name of the sensor that is being
illegitimately used as soon as they noticed the corresponding
notification. Illegitimate use refers to the use of sensors in
the background, one that the participant does not expect.
Note that we assume our NotifTest app to be the only
source of illegitimate access to sensors. We believe that this
is a reasonable assumption as the operating system image
on the smartphone is freshly installed; one that is not in-
fected with malware. There are, however, some applications
that legitimately use the location sensor in the background
as well (e.g., navigation apps), which will result in the par-
ticipants noticing some unexpected legitimate notifications,
resulting in additional reports. In the analysis of the data,
we can filter out these cases as there will be no records of the
triggered notifications in our logs before the reports. Note
that this legitimate background access to the location sensor
makes its notification less effective in case of illegitimate ac-
cesses (compared to camera and microphone) since it makes
it difficult for the user to distinguish. However, addressing
this issue is out of the scope of this paper.

As discussed, we attempt to understand whether users
can correctly associate a notification with the event that it
represents. We use two mechanisms to answer this ques-
tion. First, we measure the correctness of user reports of
notifications. This shows whether they can associate the
notification channel with its corresponding sensor. Second,
for about 2 to 3 times a day, we trigger fake notifications
that use a variation of the notification mechanism in order
to assess the user’s ability to differentiate it with an authen-
tic notification. We have designed fake notifications for all
of the channels. For LED, we turn on the LED with a differ-
ent color, i.e., blue, but with the same blinking pattern. For
vibrator, we use a different vibrating pattern, i.e., on/off vi-
bration for 1.9 seconds at a frequency 1.4 Hz and 71% duty
cycle. For sound, we play a 2 second audio segment, which
is different from the authentic sound notification (i.e., dif-
ferent tune). For display and Android notifications, we use
a different text in the notification. For display notification,
we also use a different color in the strip. For Android notifi-
cation, we use the same icon, relying on the user to read the
text. At recruit time, we explicitly instructed the partici-
pants that they should look for the exact form of notification
associated with the sensors, e.g., by paying attention to the
color of LED. However, we did not tell them that our app
would trigger these fake notifications in order not to affect
the result of the study.

Also, as mentioned before, we are interested in under-
standing the effect of physical context on the effectiveness
of the notifications. Therefore, right before and after each
sensor access, the NotifTest app records some context mea-
surements. More specifically, for 5 seconds before and af-
ter each access, it records the ambient noise level using the
Android MediaRecorder API (i.e., getMaxAmplitude()) and
the ambient light intensity using the light sensor. We dis-
able the microphone’s notification when microphone is used
by our own system to measure the ambient noise.
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Figure 2: (a) Notification channels’ success rate in
capturing the participants’ attention. (b) Partici-
pants’ delay in reporting the notifications.

At the end of the study, we asked the participants fill out a
questionnaire about their experience with the notifications.
Specifically, we asked them about the annoyance caused to
them by each notification channel.

3.2 Notification Assignment
As mentioned previously, we support notifications for three

sensors, i.e., camera, microphone, and location, and five no-
tification channels, i.e., LED, vibration, sound, display, and
Android notifications. Therefore, there are 15 combinations
of (sensor, notification) pairs. We deploy all 15 pairs in our
user study. Each user can test three of these combinations
(since there are three sensors). Therefore, all combinations
can be tested with five participants. As a result, since we
recruited 40 participants, every combination is tested by 8
different participants.

4. RESULTS
We use the data collected in the user study to answer

several questions about sensor notifications. We present ev-
ery measured metric as an average (along with maximum
and minimum shown using error-bars in figures) over all the
participants who qualified for that metric (e.g., vibration
success rate is shown as average among all users who were
assigned the vibration channel for one of the sensors). More-
over, we only considered the participants who had at least
3 data points for the metric (e.g., three vibration notifica-
tions) and made sure that at least 3 participants qualify for
the metric in order to have statistically reliable results.
Q1. How effective is each notification channel in attracting
the user’s attention?

We define effectiveness in terms of success rate and report
delay. More specifically, we measure the percentage of times
that the user reported a sensor usage after a notification
was triggered using a specific channel. We also measure
the delay of the report. Note that we put an upper bound
of 5 minutes on the delay. That is, if the report comes
after this upper bound, we do not consider it as a successful
report. This is because, as mentioned in §2, notifications
might be triggered by existing applications, and therefore
user’s report might be as a response to those triggers. In the
recruitment, we tell the participants to report a notification
as soon as possible. Therefore, we believe that this simple
filtering method provides good accuracy.
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Figure 3: (a) The accuracy of associating notifica-
tion channels with sensors. (b) The success of fake
notifications in fooling the participants.

Figures 2 (a) and (b) show the success rate and report
delay for different channels, respectively. We have the fol-
lowing findings.
Finding 1. All of the existing notification channels in mo-
bile devices today achieve relatively low success rate on aver-
age (less than 24%). This is a significant finding as it shows
that system and application designers cannot expect to be
able to grab the user’s attention quickly and successfully at
all times.
Finding 2. Vibrator achieve the highest success rate at
24%, whereas LED achieves the lowest at 4%. This result
is also significant since LED is commonly used for notifica-
tions in mobile devices these days. Our study shows that
LED notifications are largely ineffective for time-sensitive
notifications.
Finding 3. There is a reverse relationship between success
rate and report delay. We believe there are two reasons be-
hind this. First, notifications that are more successful in
grabbing the user’s attention, do so faster on average. Sec-
ond, vibration and sound achieve lower report delay since
they are more intrusive and cause the user to (maybe un-
knowingly) take action faster.
Q2. How unambiguous is each notification channel?

As mentioned before, we attempt to understand whether
users can correctly associate the notification with the event
that it represents. We answer this question using two met-
rics. First, we measure the correctness of user reports of no-
tifications. That is, for notifications that successfully grab
the user’s attention, we measure how often the user reports
the accessed sensors correctly. Second, we measure the per-
centage of times that the user falls for fake (i.e., variations
of) notifications (§3.1).

Figures 3 (a) and (b) show these metrics, respectively.
Note that, in both figures, we only show the channels for
which we have enough data to make a statistically reliable
conclusion (§4). The missing results for LED and Android
notifications in Figure 3 (a) is because we do not have at
least 3 users, each with at least three successful reports for
these channels.

It is important to understand how we calculate the suc-
cess rate of fake notifications. One can simply report the
percentage of time that the user reports a sensor access af-
ter a fake notification is triggered. However, this number
would underestimate the success rate of fake notifications
because it is not clear whether the user did not report the
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Figure 4: Effects of (a) ambient light and (b) ambi-
ent noise on sensor notifications.

fake notification due to missing the notification or due to
understanding that it is not the right notification. There is
no way for us to directly measure this; therefore we use an
approximate approach. We use the success rate of the cor-
responding notification channel from Figure 2 (a) to adjust
the results for fake notifications. In this approximation, we
assume that the success rate of a notification (Figure 2) is
almost the same as the success rate of its variation (i.e., fake
notification) in capturing the user’s attention. With this as-
sumption, the percentage of fake notifications that caused a
report (out of all the triggered ones) divided by the success
rate of the corresponding channel gives us the percentage of
fake notifications that succeed in fooling the participant out
of those fake notifications that s/he notices. Due to approx-
imation, this approach can result in success rate of more
than 100%, in which case, we have capped the number to
100% in the Figure (the actual value of both capped bars is
about 200%). We have two important findings.
Finding 4. Users can correctly determine the notification
channel used for each sensor. This is either because they
remember the meaning of the notification or they check it
if they forget (§3.1). Indeed, we found that on average par-
ticipants did check the meaning of each notification channel
between 3.5 to 6.5 times in the span of one week study.
Finding 5. Fake notifications can fool the users in many
instances. More surprising, fake LED, display, Android no-
tifications have the highest success rate. For LED, this can
be due to difficulty of distinguishing the color (given the
small LED size). For display and Android notifications, this
can be due to the fact that these two notification channels
mainly rely on textual information to convey their meaning
(in contrast to sound and vibration that leverage different
patterns and audios). Given that notifications only last for 5
seconds (while sensor is being accessed), textual content end
up being harder to recognize in a timely manner. Indeed, in
the final questionnaire, one of the participants noted that:

“notification bar/pop-up window can be hard to remember
because sometime I’ll forget the content of notification”.

Another interesting observation is that display notification
is less ambiguous than the Android notification. We believe
that this is because fake display notification uses a different
color strip on the screen that can be easily detected by the
user (without the user having to read the text on it), whereas
the Android notification uses the same icon, relying on the
user to pull-down the menu and read the text. This implies
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Figure 5: (a) User’s annoyance. (b) Notification’s
effectiveness over time.

that if Android notifications are to be used, it is best to use
different icons and not merely rely on textual content.
Q3. Do notifications’ effectiveness depend on system’s phys-
ical context?

In the study, we record two contextual data whenever the
NotifTest triggers a notification, namely, the ambient light
and ambient noise. We categorize each context into two
groups: light and dark, and loud and quiet. We then in-
vestigate whether the notification’s effectiveness depend on
these factors. We choose 5 lux as the boundary between dark
and light environments since it represents the illuminance
at a moderately dark environment. Unfortunately, lack of
proper documentation on Android’s API did not allow us
to convert the ambient noise readings to decibel. Therefore,
for the boundary between loud and quiet, we performed ex-
periments and chose one that represents a modestly quiet
environment in an office environment. Figures 4 (a) and (b)
show the results. We have two important findings.
Finding 6. Ambient light is an important indicator for the
success of notifications. Most importantly, in light environ-
ments, LED, display, and Android notifications have much
better success rate. Indeed, the display notification sur-
passes the sound in these environments. Given that speaker
has high annoyance level (see Q4 below), the system must
use the display notification in light environments. Vibration
remains the best options in dark environments, which might
represent the device being in the user’s pocket. Note that
high ambient light might mean that the device is either be-
ing used by the user or sitting somewhere, e.g., on a desk.
We do not differentiate between these cases.
Finding 7. Against our intuition, even in quiet environ-
ments, vibrator achieves a better success rate than sound.
This finding shows that sound channel can be safely replaced
with vibration at all times without lowering the success rate
of notification.
Q4. How much annoyance does each notification channel
cause to the user?

We answer this question by studying the questionnaire
filled out by the users. Figure 5 (a) shows the results. We
have the following findings.
Finding 8. Sound results in the highest level of annoyance
to the participants followed by vibration. As mentioned,
given that vibration has higher success rate than sound (even
in quiet environments), this result means vibration must be
preferred over sound.



Finding 9. Vibration and sound are especially intolerable
for camera. We believe this is because these notifications
heavily interfere with user’s legitimate use of the camera.
Q5. Do sensor notifications’ effectiveness degrade over time?

We measure the success rate of notifications for the first
and second half of the study (i.e., first 3 days and last 4
days) and show the results in in Figure 5 (b).
Finding 10. We find that sensor notifications’ success rate
degrades over time. This poses a challenge for time-sensitive
notifications deployed to be used for extended periods of
time. Note that our user study spans one week only and
degradation can be worse after a longer period of time.

5. DISCUSSIONS
Based on our findings, we make suggestions for the choice

of sensor notifications. First, we suggest to use our new dis-
play notification (§2) for the camera. This notification chan-
nel achieves high success rate in light environments where
malicious access to camera can invade user’s privacy. More-
over, it causes low annoyance and does well in unambiguity.

Second, we suggest to use different vibration patterns (e.g.,
constant vs. chopped) for microphone and location sensor.
Vibration achieves the highest success rate in all environ-
ments, including dark environments, and causes less annoy-
ance compared to sound. Moreover, user can recognize dif-
ferent vibration patterns. For these two sensors, textual
Android notification on the display can be accompanied to
help the user recognize the notification even better.

As part of our future work, we plan to investigate the
impact of other context information, e.g., orientation, on
the effectiveness of notifications. Moreover, we plan to de-
sign new types of notifications, e.g., by combining existing
ones, using new channels such as a smartwatch, or by using
context information at runtime, and evaluate them in user
studies. We also plan to evaluate using the best channel for
all notifications followed by disambiguation on the display,
as suggested earlier.

6. RELATED WORK
Desktops’ and laptops’ webcams use sensor notifications

as well: they use an LED to notify the user when the webcam
is recording. In a user study, Portnoff et al. [14] found that
when the user is performing computer-based or paper-based
tasks, the LED notification succeeds in only 45% and 5%
of times, respectively. They also found that if a full-screen
glyph on the screen is used for the notification, the success
rates increase to 93% and 59%, respectively. Our study tries
to answer similar questions, but for mobile devices, which
have a different usage model and different notification chan-
nels from those of desktops and laptops.

Several existing works present solutions for better notifi-
cation systems for mobile applications [5–7,10,13,15]. These
solutions identify the best context (e.g., user’s activity, time,
and location) to send a notification to users in order to more
successfully reach them and to reduce their cognitive load.
These solutions are mainly for notifications by applications,
and hence can be safely delayed. In contrast, our study is for
time-sensitive notifications by the system, where it is critical
that the user is notified as soon as possible.

Patil et al. study the trade-offs between immediate and
delayed feedbacks to the users about privacy-sensitive events,
e.g., location sharing [11, 12]. Among others, they find that

immediate feedback increases the sense of privacy violation
in users. In our study, unlike theirs, we study the effective-
ness of channels for time-sensitive notifications.

Viola presented a system design for enforcing sensor noti-
fications in a trustworthy manner [8]. It uses the hypervisor
or the operating system kernel to insert formally verified
checks in order to guarantee that a sensor notification can-
not be disabled by malware. It, however, does not address
the choice of the notification channel. It does not present a
design for implementing the notifications either.

7. CONCLUSIONS
We presented the results of a 40-participant user study

conducted to understand sensor notifications on mobile de-
vices. Our study showed that none of the existing channels,
i.e., LED, vibration, sound, display, and Android notifica-
tions achieve more than 24% success rate in grabbing the
user’s attention. Moreover, it showed that device’s physi-
cal context has an important impact on the effectiveness of
the notification. Based on our findings, we suggested using
the display notification for camera and different vibration
patterns for microphone and location sensor.
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