
Hora: High Assurance Periodic Availability Guarantee
for Life-Critical Applications on Smartphones
Dylan Zueck
dzueck@uci.edu

University of California, Irvine
Irvine, California, USA

Nathaniel Atallah
atallahn@uci.edu

University of California, Irvine
Irvine, California, USA

Ian Do
iydo@uci.edu

University of California, Irvine
Irvine, California, USA

Zhihao Yao
zhihao.yao@njit.edu
New Jersey Institute of

Technology
Newark, New Jersey, USA

Ardalan Amiri Sani
ardalan@uci.edu

University of California, Irvine
Irvine, California, USA

ABSTRACT
Body-worn medical devices benefit from having a compan-
ion mobile application to monitor them and even program
them. For example, the companion application for an insulin
pump can be used to automatically monitor blood sugar level
throughout the day and administer insulin without user in-
put [1]. Unfortunately, the operating systems of modern
smartphones cannot provide adequate security guarantees
for these applications. Existing Trusted Execution Environ-
ment (TEE) solutions aim to alleviate these problems by
removing the system software (and even most of the hard-
ware [19]) from the TCB. However, no existing TEE solution
provides a critical guarantee needed for these applications:
periodic availability. This is needed to ensure that the appli-
cation is executed according to a requested schedule, e.g.,
multiple times a day to read the patient’s blood sugar and
administer insulin. We present our ongoing work on Hora1,
a high assurance TEE solution for smartphones that guaran-
tees periodic availability of CPU and I/O with a minimal and
formally-verified scheduler. We present the design of Hora
as well as its scheduler, which is implemented fully in Rust
(in 1583 lines of code) and (partially) formally verified using
the Kani model checker [7].

1Spanish word meaning “hour”, pronounced as ’oRa.

This work is licensed under a Creative Commons Attribution International
4.0 License.
APSys ’24, September 4–5, 2024, Kyoto, Japan
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1105-3/24/09
https://doi.org/10.1145/3678015.3680486

CCS CONCEPTS
• Security and privacy → Trusted computing; Mobile
platform security;Denial-of-service attacks; • Software
and its engineering→ Software verification.

KEYWORDS
Availability, TEE, Mobile computing, Verification

ACM Reference Format:
Dylan Zueck, Nathaniel Atallah, Ian Do, Zhihao Yao, and Ardalan
Amiri Sani. 2024. Hora: High Assurance Periodic Availability Guar-
antee for Life-Critical Applications on Smartphones. In 15th ACM
SIGOPS Asia-Pacific Workshop on Systems (APSys ’24), September
4–5, 2024, Kyoto, Japan. ACM, New York, NY, USA, 7 pages. https:
//doi.org/10.1145/3678015.3680486

1 INTRODUCTION
The ubiquity of modern smartphones makes them an at-
tractive option for hosting a variety of applications. More
specifically, body-worn medical devices benefit from hav-
ing a companion mobile application to monitor them and
even program them. For example, the companion application
for an insulin pump can be used to automatically monitor
blood sugar levels throughout the day and administer insulin
without user input [1]. We refer to such an application as
life-critical since it can result in grave consequences to the
user if its execution is tampered with in any form.

Today, modern smartphone operating systems cannot pro-
vide an adequate level of security for executing life-critical
applications [18]. Mobile operating systems are ridden with
vulnerabilities as evidenced by Android having 1422 CVEs
reported in 2023 and 1223 in 2022 [3]. The high stakes nature
of life-critical application deployment makes it difficult and
dangerous to rely on operating systems to withstand the
threat of malicious applications.

115

https://doi.org/10.1145/3678015.3680486
https://doi.org/10.1145/3678015.3680486
https://doi.org/10.1145/3678015.3680486
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3678015.3680486&domain=pdf&date_stamp=2024-09-04

APSys ’24, September 4–5, 2024, Kyoto, Japan Dylan Zueck, Nathaniel Atallah, Ian Do, Zhihao Yao, and Ardalan Amiri Sani

Mobile Trusted Execution Environment (TEE) solutions
such as ArmTrustZone, ArmConfidential Compute Architec-
ture [11], and the split-trust hardware [19] provide enhanced
security guarantees by reducing the size of the Trusted Com-
puting Base (TCB). However, no existing TEE provides a crit-
ical guarantee needed by life-critical applications: periodic
availability. More specifically, these applications may require
system resources on a strict schedule to perform life-critical
operations. For example, the companion application of an
insulin pump may need periodic access (e.g., every hour)
to a secure execution environment as well as the Bluetooth
interface to interact with and/or program a glucose moni-
tor and an insulin pump. Without availability guarantees,
companion applications on personal smartphones cannot be
trusted to perform their critical actions.

Due to the inadequate security of smartphones, today, we
have two options. The first option is to use a locked-down,
dedicated smartphone for these programs [4, 18]. This option
is inconvenient and expensive for users as it requires buying
and carrying a second smartphone.
The second option is to execute these life-critical tasks

on medical devices themselves [5]. This option however has
several disadvantages. First, it introduces unnecessary hard-
ware and software complexity in medical devices, which
can enlarge the attack surface of the device, increase its
cost, and decrease its battery life. Increased cost is an im-
portant problem as some devices are intended for one-time
use and are disposable [4]. Second, medical devices do not
have as much computing power as smartphones. The extra
computing power enables advanced algorithms. For exam-
ple, algorithms for administering insulin have proven to be
more complicated than a one-size-fits-all solution [16]. The
variation in individual responses to insulin has led to incor-
porating a user’s historical blood sugar levels with predictive
neural network models. Third, medical devices have no or
inferior user interfaces (UI) compared to smartphones. A
better UI helps keep the user more informed and involved in
treatment decisions.
The objective of this paper is to present a high assur-

ance TEE system that enables running life-critical applica-
tions alongside untrusted applications on the user’s personal
smartphone. To achieve this goal, we propose Hora, which
is designed to guarantee periodic availability. That is, Hora
periodically provides these applications with a TEE to run
while simultaneously giving them guaranteed and exclusive
access to all necessary I/O system resources. We present our
ongoing efforts to formally verify Hora’s scheduler in order
to guarantee the periodic availability of system resources
after it accepts a request from an application. Towards that
goal, we have written the scheduler fully in Rust and (par-
tially) verified it using the Kani model checker [7] along with
utilizing the Rust ownership system for static verification.

Kani allows us to build proofs that can analyze the sched-
uler’s behavior in all possible states. In these proofs, we
utilize stubbing to directly examine the actions of the sched-
uler’s executor to ensure Hora interacts with the hardware
such that it upholds its promised schedules. To ensure Hora
makes no mutually-exclusive schedule promises, we also
leverage the Rust ownership system to statically prove exclu-
sive ownership of system resources needed for each schedule.
Overall, we implemented Hora’s scheduler in 1583 lines

of Rust code. Moreover, as a proof of concept of Hora’s ef-
fectiveness, we implemented a life-critical application that
periodically takes control of a TEE and the Bluetooth Low
Energy domain. This application can then be used to com-
mand an Omnipod DASH [4] insulin pump, which we have
also ported successfully.

2 BACKGROUND
We build Hora on top of the split-trust hardware [19], which
provides physically-isolated TEEs for security-critical appli-
cations on smartphones and supports secure I/O for these
applications, all with a minimal and formally-verified TCB.
Each TEE and I/O device leverages its own physically-isolated
hardware domain consisting of statically-partitioned CPU
and memory. Domains are connected via mailboxes, which
facilitates communication between them.
A security-critical application running in a TEE domain

can request exclusive access to an I/O domain (to access I/O
resources) by sending a request to the scheduler (i.e., the
Resource Manager domain). The scheduler can approve or
deny the request. Upon approval, the scheduler resets the
requested domain to a clean state, and then delegates corre-
sponding mailboxes to the requesting domain for a specified
session duration. The split-trust hardware mailbox’s design
ensures that once a mailbox is delegated, the requesting do-
main has exclusive access (at the hardware level) to that
mailbox for the requested duration.

The split-trust hardware ensures session availability, mean-
ing that once a resource request is approved, the resource
will remain available until the session ends. A hardware re-
set guard ensures that the scheduler cannot reset a domain
(either a TEE or I/O domain) that has an active session.

Applications can verify the correctness and freshness of
a domain through the Trusted Platform Module (TPM) at-
testation protocol. As a result, the scheduler does not need
to be trusted by security-critical applications to provide se-
cure and exclusive access to domains, or to ensure session
availability guarantees.

The split-trust hardware solution, however, cannot ensure
periodic availability since the untrusted scheduler can simply
refuse to execute an application or give it the I/O resources
that it needs. This is the problem that we try to address in
this work.

116

Hora: High Assurance Periodic Availability Guarantee for Life-Critical Applications on Smartphones APSys ’24, September 4–5, 2024, Kyoto, Japan

TEE domain 1 TEE domain 2Untrusted domain

Hora’s
scheduler

Other I/O
domain

Bluetooth
domain

Bluetooth
HW

I/O
device
HW

Life-Critical
trustlet

Other sec.-crit.
programCommodity OS

Normal
program

Normal
program

Delegate

Reset

Syscall

Secure
Storage

Reset
Reset
guard

Reset
guard

Interconnect
with

delegated,
isolated

channels

Figure 1: Hora’s architecture. We show a life-critical
trustlet running with exclusive access to a TEE do-
main and the Bluetooth domain. Red and green repre-
sent untrusted and trusted components, respectively,
for the trustlet.

3 ARCHITECTURE
Hora is a high assurance TEE system for smartphones that
ensures the availability of system resources for life-critical
applications. Hora’s scheduler receives syscalls from the
various TEE domains, which can request one-time or periodic
access to system resources. Hora reserves the right to accept
or reject any such request in order to better utilize resources.
But once it approves a periodic access request, it guarantees
to fulfill it. Figure 1 shows the architecture of Hora.
Trustlets are minimal-sized companion applications that

implement the crucial functionalities of their primary life-
critical applications. Trustlets should be minimal in size be-
cause, in case of periodic execution, their images along with
any other vital images must be kept in a non-volatile secure
storage, which is small to reduce hardware costs. Vital im-
ages include any drivers for I/O domains that the scheduled
trustlets rely on as well as the trustlet images themselves.
The secure storage is necessary to ensure the availability
of vital images without trust in the main system storage.
Additionally, the secure storage allows Hora to keep track
of any approved schedules after losing power.

A trustlet can issue a schedule request, which is for periodic
and indefinite execution of the trustlet including a list of I/O
domains that the trustlet will need, how long the trustlet
will need to run, and at what frequency. If the scheduler ap-
proves the request, it assigns the trustlet periodic execution
windows. At the start of every execution window, the sched-
uler guarantees to reset a TEE domain and all requested I/O
domains, run the trustlet in the TEE domain, and delegate all
requested I/O domains to the TEE domain for the duration
of time it promised. During this period of time, the trustlet

has exclusive access to the TEE domain as well as all I/O
resources it requested with the guarantee that they are not
contaminated by other malicious applications.

In order to follow the schedule, restrictions on when Hora
can accept temporary (i.e., one-time) and schedule (i.e., pe-
riodic) requests must exist. Due to the inability to revoke
access to a domain once delegated, Hora must never accept
a temporary request that overlaps with existing schedules.
Additionally, Hora must never accept a schedule request that
overlaps with another schedule. To achieve high assurance,
we formally verify all these properties to ensure the system
will accurately follow all promised schedules.

Currently, once scheduled, only the trustlet itself is able
to revoke its schedule. We are however designing a secure
solution to enable the user to revoke a schedule as well (in
order to prevent poorly-implemented trustlets from getting
scheduled executions forever).

4 THREAT MODEL
The goal of the adversary is to prevent Hora from fulfilling
its schedule promises and/or compromise the trustlet. We
assume the adversary to have control of any application run-
ning on any of the TEE or untrusted domains, other than the
trustlet that we aim to protect. The adversary can compro-
mise any I/O domain they use, although their control over an
I/O domain is lost once the domain is reset. We also assume
that the adversary is not able to compromise Hora’s sched-
uler. Since Hora is built on top of the split-trust hardware,
most hardware side channels are mitigated [19]. We assume
remote network attacks on the trustlet are mitigated by the
trustlet using a secure channel to communicate to authen-
ticated servers only. Hardware modifications and physical
attacks are out of scope.

5 PERIODIC AVAILABILITY
Hora provides and guarantees periodic availability, which en-
sures that a trustlet is executed repeatedly with a consistent
interval between executions. Scheduled trustlets may con-
tinue to run periodically indefinitely. Therefore, care must
taken to ensure that conflicting schedules are not approved.
To be able to verify that two given requested schedules will
never overlap at any point in the future, we assign trustlets to
time slots within a fixed repeating period, SCHEDULE_PERIOD.
This exact value is not an inherent restriction and can be
expanded, as discussed in (§9).
More specifically, the schedules are represented by time

slot tables on a per-domain basis, which together represent
one SCHEDULE_PERIOD of the system schedule. Figure 2 illus-
trates an example. For Hora to make any delegations, it must
first acquire exclusive ownership of slots in the schedule. To
that end, we utilize Rust’s ownership system to statically

117

APSys ’24, September 4–5, 2024, Kyoto, Japan Dylan Zueck, Nathaniel Atallah, Ian Do, Zhihao Yao, and Ardalan Amiri Sani

TEE domain 2

IO domain 1

IO domain 2

15 minute slots

Period = 2h

TEE domain 1

Trustlet
1

Trustlet
1

Trustlet
20

1

2

3

D
om

ai
n

Trustlet
3

Trustlet
3

Trustlet
3

Trustlet
3

Trustlet
1

Trustlet
1

Trustlet
2

Figure 2: An example of Hora’s schedule configured
with SCHEDULE_PERIOD = 2ℎ and NUM_SLOTS = 8. All
scheduled trustlets have contiguous slots.
ensure exclusive ownership of time slots. This is done by
owning an OwnedSlots struct for both the requesting TEE
domain and the requested I/O domain. Since OwnedSlots
does not implement the Copy or Clone trait, ownership of
the struct can only be moved, but not copied or cloned. Us-
ing this exclusive ownership combined with some additional
proofs (§6), we can ensure that owning this struct repre-
sents mutually exclusive ownership of the set of contiguous
slots indicated by the struct.

While we ensure that no future temporary delegation will
overlap with a schedule once promised, we make no such
guarantee for previous temporary delegations. This may
sound like it violates our guarantees, but it does not and is
actually desirable. Since contentious resources may be tem-
porarily delegated for a majority of time, it may be difficult to
establish a schedule on such resources. If we allow promised
schedules to overlap with previous temporary delegations
and limit temporary delegations to have a maximum time
of SCHEDULE_PERIOD (as we do), then we can still guarantee
that a promised schedule will start to execute (as defined in
table 1) within two SCHEDULE_PERIODs.

6 FORMAL VERIFICATION
6.1 Theorems
To formally verify that Hora will accurately follow all ac-
cepted schedules, there are a few theorems we must prove,
which can be seen in Table 1. These theorems are for our cur-
rent design where all schedules have a period of SCHEDULE_
PERIOD and there is no way to remove an approved schedule.
We start by combining our first 3 theorems to show that

each schedule will be executed periodically with a period
of SCHEDULE_PERIOD. First, we demonstrate that approved
schedules will be executed periodically if the executor func-
tion is called NUM_SLOTS times periodically. Theorem 1 and 2
demonstrate this through induction. Theorem 1 establishes
the base case by showing an approved schedule request is
first executed within NUM_SLOTS calls of the executor func-
tion. Theorem 2 then demonstrates that given the base case,

Hora will continue to execute the approved schedule every
NUM_SLOTS calls to the executor function.

Sincewe know that calling the executor function NUM_SLOTS
times will repeat approved schedules, we now must create a
link between a number of calls and a real world amount of
time passing. If we can show that the executor function is
called NUM_SLOTS times in SCHEDULE_PERIOD, then we can
say that the executor executes approved schedules periodi-
cally with a period of SCHEDULE_PERIOD. This is what Theo-
rem 3 demonstrates. Theorem 3 shows that the executor func-
tion is called periodicallywith a period of SCHEDULE_PERIOD/
NUM_SLOTSwhichmeans if called NUM_SLOTS times, SCHEDULE
_PERIOD time has passed. We do note that Theorem 3 allows
for a small bounded delay, which allows time for Hora to
make scheduling decisions while not being long enough to
impact the majority of applications.
While we know that the executor will take the correct

actions, we must also show that these actions will not fail.
There are two ways a schedule could fail to execute success-
fully. First, a necessary domain may already be delegated
which would result in the split-trust hardware blocking the
domain reset or delegation. To demonstrate that the split-
trust hardware will not block necessary actions, Theorem 4
demonstrates the lack of overlapping promises, which would
necessarily be blocked. Second, the necessary images to run
the trustlet or reset a domain could be lost or corrupted.
Theorem 5 ensures the availability of all necessary images
such as the trustlet itself and the domain images. Combining
all these theorems, we can prove that Hora will execute all
approved schedules indefinitely.

6.2 Proof Techniques
We perform our proofs using a combination of the Kani
model checker [7] and static checking from the Rust own-
ership system. Model checking works well for Hora as its
design is stateful and it typically has to accommodate a small
and limited number of approved schedules at any given time
(due to the small number of existing life-critical applications
that a user needs to use) limiting the state space and hence
avoiding state explosion. So far, we have been able to prove
Theorems 1, 2, and 4. For these, we will discuss the tech-
niques used to prove them. For Theorems 3 and 5, we discuss
the unique challenges involved in proving them.

Kani allows us to build our proofs directly in Rust. It pro-
vides the ability to assign variables to kani::any(), which
allows Kani to reason about these variables in all possible
valid states. We use assert! statements in our proofs to
check that a property we are trying to prove holds in all
valid states. Additionally, Kani will automatically fail if there
is any path that leads to a panic, automatically proving the
lack of panics.

118

Hora: High Assurance Periodic Availability Guarantee for Life-Critical Applications on Smartphones APSys ’24, September 4–5, 2024, Kyoto, Japan

Table 1: The theorems we must prove to formally verify Hora. “Executing a schedule” refers to taking all actions
necessary for an approved schedule request such as resetting all requested domains and running the trustlet.

Theorem Proven

1 If Hora approves a schedule request, the approved schedule will be executed within NUM_SLOTS calls of the
executor function Y

2 An action taken by the executor function is repeated on the NUM_SLOTS-th preceding call Y

3 The executor function is called periodically (with an allowed bounded delay) with a period of
SCHEDULE_PERIOD/NUM_SLOTS N

4 No two approved schedules overlap and no temporary delegation overlaps with a currently approved
schedule Y

5 Scheduled trustlet and domain images for approved schedules are available N
For Theorems 1 and 2, we also utilized the technique of

stubbing. Stubbing is the ability to swap out certain code for
other code that mimics the original code’s behavior. Since our
implementation is currently for the split-trust hardware em-
ulator (§7), we use stubbing to avoid verifying the emulator
specific code including any interactions with the split-trust
hardware such as mailbox delegations. Importantly, when
we transition to the hardware prototype, these actions can
then be formally verified for properties such as correctness
and lack of panicking. In order to keep proofs relying on
these stubs sound, any response from split-trust hardware is
assumed to be possible. Unfortunately, this does mean our
proofs for these theorems do not currently cover our imple-
mentation of our interactions with the split-trust hardware
and therefore must be assumed to be correct.

We were also able to prove Theorem 4. This theorem relies
on both Kani and static checking from Rust as described in
(§5). Kani is utilized to prove that OwnedSlots represents
contiguous time slots. Rust’s ownership system is used to
statically verify that ownership of this struct represents ex-
clusive ownership of those time slots.

Theorem 3 may present the most difficult challenge. It re-
lies on proving the real-time characteristics of Hora, which is
historically difficult for software [15]. To tackle this theorem,
we plan on transitioning to a hardware prototype on the
Xilinx Zynq UltraScale+ MPSoC ZCU102 FPGA board. This
board includes a dual-core Cortex-R5F real-time processor,
which we plan to use to run the scheduler and calculate a
bounded running time for it. This is further complicated by
the need to reset domains and run applications, which may
also be challenging to find a bounded time for. Even with
these challenges, we should be able to determine a maximum
runtime due to the bounded size of images combined with
the exclusive access from split-trust hardware ensuring no
contention while sending images.

Proving Theorem 5 will require us to prove the correctness
of a simple file system for our secure storage. Primarily, we
need to be able to prove the availability and integrity of
certain vital images that are actively in use by any promised
schedules.

7 IMPLEMENTATION
Hora is implemented on top of the existing split-trust hard-
ware emulator [2]. Hora mainly replaces the scheduler (i.e.,
Resource Manager), which previously was untrusted.

As a proof of concept, we are implementing an Omnipod
Dash controller application, which is a minimal port of An-
droidAPS [1]. AndroidAPS is an open source project, which
has reverse engineered many diabetes pumps and contin-
uous glucose monitors (CGM) to allow these devices to be
used in an artificial pancreas system (APS). APS is a system
in which little to no user input is required to manage insulin
levels. Typically, these are implemented by introducing a
Continuous Glucose Monitor (CGM), which can frequently
report blood sugar levels throughout the day. The frequent
blood sugar data can then be used to make predictions about
future blood sugar levels applying insulin as necessary.

We have developed a trustlet that successfully uses Hora
to get periodic access to a TEE domain and the Bluetooth Low
Energy (BLE) domain needed to interact with the omnipod.
We have also managed to port the Omnipod DASH driver
from the AndroidAPS application to show the feasibility of
implementing such an application using the Hora system.

To better understand how Hora can be used to implement
a fully-featured application, we present the potential work-
flow for Omnipod devices. First, the user downloads the
manufacture’s application and runs it. Upon running, the ap-
plication proves to the user that it is the correct application
through its preferred method. Once the application is trusted
by the user, it attempts to install its trustlet, which is re-
sponsible for communicating with the Omnipod. If rejected,
the application will not be able to control the pod safely. If
accepted, the application will be confident in its ability to
consistently control the Omnipod and communicate with the
CGM. The application then informs the user that it is now
safe to pair with the Omnipod. Once paired and applied to
the body, the trustlet can periodically (e.g. every 5 minutes)
read the blood sugar level and update the Omnipod insulin
delivery appropriately. Even if the main application is never
able to be accessed again (e.g., due to some malware blocking

119

APSys ’24, September 4–5, 2024, Kyoto, Japan Dylan Zueck, Nathaniel Atallah, Ian Do, Zhihao Yao, and Ardalan Amiri Sani

it), the trustlet will be able to run in the background safely
controlling insulin levels.

8 TCB ANALYSIS
The key component of the TCB is the scheduler. The sched-
uler consists of 1583 lines of Rust code, which has no unsafe
sections (except emulator specific code) and uses #no_std
disallowing the standard library.

In addition, the TCB includes the secure storage required
by the scheduler. Proofs add 976 lines of Rust code and cur-
rently cover the scheduling behavior of Hora. Of course, the
trustlet itself and the TCB of the split-trust hardware are
also included in the TCB including the split-trust hardware’s
formally verified hardware and root of trust. But we note
that the split-trust hardware is shown to have a minimal
and formally-verified TCB [19]. Additionally, the Kani model
checker and Rust compiler are included in the TCB.

9 ONGOING AND FUTUREWORK
In addition to completing the proofs (discussed in §6), there
are several improvements to be made to Hora. First, the
current design only allows schedule requests for periods that
are equal to SCHEDULE_PERIOD. Removing this restriction is
important as some applications may only need to run once a
day, while others such as closed loop systems may need to
run as often as every 5 minutes.

Additionally, it would be more efficient to allow each I/O
domain to be acquired at different times throughout execu-
tion as well as for different amounts of time. For example, an
application may request to run for 5 minutes, where it has
network access for the first 3 and storage for the last 2.
Furthermore, secure storage is important for many life-

critical applications, For example, our proof-of-concept ap-
plication needs to be able to store communication details
such as encryption keys. We plan to achieve this by allowing
trustlets to utilize a small partition of our secure storage.

Finally, we need to consider how Hora should handle low
power and power-off scenarios given that smartphones are
battery powered. This includes deciding how Hora should
resume schedule once the device is powered back on.

10 RELATEDWORK
To our knowledge, the only prior works that provide simi-
lar guarantees are Aion and the work of Masti et al. [8, 13].
They provide CPU availability through trusted scheduling on
embedded systems. While both can provide guaranteed ac-
cess to I/O resources, neither can provide protection against
other applications compromising needed drivers. Addition-
ally, they place a high burden on these drivers to correctly fa-
cilitate mutually distrusting applications that share resources
with additional limitations on atomic execution. Neither are

formally verified, and the latter does not provide isolation
needed for mutually distrustful applications.

Another notable attempt that may be able to mix availabil-
ity with formal verification is the seL4 microkernel [10]. seL4
was formally verified by utilizing Isabelle/HOL [14] to create
a series of refinement proofs to demonstrate that its C code
accurately follows its high level specification. While seL4
at base does not provide availability guarantees, it has been
shown to be usable as a base to provide similar guaranties
as Aion in mixed criticality systems [12]. However, since it
would provide similar guarantees, it also shares the same is-
sues of reliance on drivers, and can only provide guarantees
for the highest criticality threads.
Other system verification work exists that can formally

verify security properties of systems. Sigurbjarnarson et
al. [17] describes a framework for automatically verifying
file system implementations with push button verification.
Realms [11] introduced novel techniques to verify concur-
rent and interlanguage code to verify their firmware for their
secure execution environment. Jitk was able to formally ver-
ify the correctness of a kernel interpreter using the Coq proof
assistant [6]. However, to the best of our knowledge, no other
work has formally verified the same periodic availability and
security guaranties that we can utilizing a minimal TCB with
formal verification.
Real time operating systems [9] can generally provide

CPU availability or latency guarantees. However, guaran-
tees are often given based on task criticality at the cost of
other less critical tasks. Additionally, guarantees are often
focused on latency and little consideration is given towards
security/isolation especially strong TEE-grade isolation.

11 CONCLUSION
We presented Hora, a TEE solution for smartphones that
can provide high assurance periodic and simultaneous ac-
cess to CPU and I/O system resources. These assurances
can be used to enable the creation and use of life-critical
applications to run alongside mutually distrustful applica-
tions on smartphones. We provided these guarantees using
a minimal TCB, in which the scheduler consists of only 1583
lines of Rust code and a small amount of secure storage. We
also presented our on-going efforts to formally verify Hora’s
scheduler. Moreover, we presented a proof-of-concept appli-
cation on top of Hora that can get exclusive control of a TEE
and BLE domain according to a schedule.

ACKNOWLEDGMENTS
The work was supported in part by NSF Awards #1846230,
and #1953932.

120

Hora: High Assurance Periodic Availability Guarantee for Life-Critical Applications on Smartphones APSys ’24, September 4–5, 2024, Kyoto, Japan

REFERENCES
[1] 2022. AndroidAPS app documentation. http://wiki.aaps.app/en/latest/.
[2] 2022. Source code for the split-trust hardware and its OS, Octo-

pOS. https://github.com/trusslab/octopos_hardware, https://github.
com/trusslab/octopos.

[3] 2024. Google » Android (Operating system): Product Details, Threats
and Statistics. https://www.cvedetails.com/product/19997/Google-
Android.html.

[4] 2024. Simplicity Starts With Omnipod DASH®. https://www.omnipod.
com/what-is-omnipod/omnipod-dash.

[5] 2024. Simplify Life® With Omnipod® 5 Tubeless, Automated Insulin
Delivery. https://www.omnipod.com/what-is-omnipod/omnipod-5.

[6] 2024. The Coq Proof Assistant. https://coq.inria.fr/.
[7] 2024. The Kani Rust Verifier. https://model-checking.github.io/kani/.
[8] F. Alder, J. Van Bulck, F. Piessens, and Jan T. Mühlberg. 2021. Aion:

Enabling open systems through strong availability guarantees for
enclaves. In Proc. ACM CCS. 1357–1372.

[9] P. Hambarde, R. Varma, and S. Jha. 2014. The Survey of Real Time
Operating System: RTOS. In 2014 International Conference on Electronic
Systems, Signal Processing and Computing Technologies. 34–39. https:
//doi.org/10.1109/ICESC.2014.15

[10] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin,
D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish, et al. 2009. seL4:
Formal Verification of an OS Kernel. In SOSP. 207–220.

[11] X. Li, X. Li, C. Dall, R. Gu, J. Nieh, Y. Sait, and G. Stockwell. 2022. Design
and verification of the Arm Confidential Compute Architecture. In
Proc. USENIX OSDI. 465–484.

[12] A. Lyons and G. Heiser. 2014. Mixed-Criticality Support in a High-
Assurance, General-Purpose Microkernel. In Workshop on Mixed Criti-
cality Systems. 9–14.

[13] Ramya J. Masti, C. Marforio, A. Ranganathan, A. Francillon, and S.
Capkun. 2012. Enabling Trusted Scheduling in Embedded Systems. In
Proc. ACM ACSAC. 61–70.

[14] T. Nipkow, M. Wenzel, and Lawrence C. Paulson. 2002. Isabelle/HOL:
A Proof Assistant for Higher-Order Logic. Springer.

[15] P. Puschner and C. Koza. 1989. Calculating the Maximum Execution
Time of Real-Time Programs. Real-time systems 1, 2 (1989), 159–176.

[16] G. Quiroz. 2019. The Evolution of Control Algorithms in Artificial
Pancreas: A Historical Perspective. Annual Reviews in Control 48 (2019),
222–232.

[17] H. Sigurbjarnarson, J. Bornholt, E. Torlak, and X. Wang. 2016. Push-
Button Verification of File Systems via Crash Refinement. In Proc.
USENIX OSDI. 1–16.

[18] DiabetesMine Team. 2019. NEWS: OmniPod Tubeless Insulin Pump
to Offer Smartphone Control Soon. https://www.healthline.com/
diabetesmine/omnipod-smartphone-control-diabetes.

[19] Z. Yao, S. M. Seyed Talebi, M. Chen, A. Amiri Sani, and T. Anderson.
2023. Minimizing a Smartphone’s TCB for Security-Critical Programs
with Exclusively-Used, Physically-Isolated, Statically-PartitionedHard-
ware. In Proc. ACM MobiSys.

121

http://wiki.aaps.app/en/latest/
https://github.com/trusslab/octopos_hardware
https://github.com/trusslab/octopos
https://github.com/trusslab/octopos
https://www.cvedetails.com/product/19997/Google-Android.html
https://www.cvedetails.com/product/19997/Google-Android.html
https://www.omnipod.com/what-is-omnipod/omnipod-dash
https://www.omnipod.com/what-is-omnipod/omnipod-dash
https://www.omnipod.com/what-is-omnipod/omnipod-5
https://coq.inria.fr/
https://model-checking.github.io/kani/
https://doi.org/10.1109/ICESC.2014.15
https://doi.org/10.1109/ICESC.2014.15
https://www.healthline.com/diabetesmine/omnipod-smartphone-control-diabetes
https://www.healthline.com/diabetesmine/omnipod-smartphone-control-diabetes

	Abstract
	1 Introduction
	2 Background
	3 Architecture
	4 Threat Model
	5 Periodic Availability
	6 Formal Verification
	6.1 Theorems
	6.2 Proof Techniques

	7 Implementation
	8 TCB Analysis
	9 Ongoing and Future Work
	10 Related Work
	11 Conclusion
	References

