Exact Inference Algorithms Bucket-elimination

COMPSCI 276, Spring 2013 Class 5: Rina Dechter

(Reading: class notes chapter 4, Darwiche chapter 6)

P (lung cancer=yes | smoking=no, dyspnoea=yes) = ?

A Bayesian Network

A	Θ_A
true	.6
false	.4

Α	В	$\Theta_{B A}$
true	true	.2
true	false	.8
false	true	.75
false	false	.25

A	С	$\Theta_{C A}$
true	true	.8
true	false	.2
false	true	.1
false	false	.9

В	С	D	$\Theta_{D BC}$
true	true	true	.95
true	true	false	.05
true	false	true	.9
true	false	false	.1
false	true	true	.8
false	true	false	.2
false	false	true	0
false	false	false	1

	-	
С	E	$\Theta_{E C}$
true	true	.7
true	false	.3
false	true	0
false	false	1

Probabilistic Inference Tasks

Belief updating: E is a subset {X1,...,Xn}, Y subset X-E, P(Y=y|E=e)
 P(e)? BEL(X_i) = P(X_i = x_i | evidence)

Finding most probable explanation (MPE) $\overline{\mathbf{x}}^* = \underset{\overline{\mathbf{x}}}{\operatorname{argmax}} \mathbf{P}(\overline{\mathbf{x}}, \mathbf{e})$

- Finding maximum a-posteriory hypothesis $(a_1^*,...,a_k^*) = \arg\max_{\overline{a}} \sum_{X/A} P(\overline{x},e)$ $A \subseteq X:$ hypothesis variables
- Finding maximum-expected-utility (MEU) decision $(\mathbf{d}_{1}^{*},...,\mathbf{d}_{k}^{*}) = \arg\max_{\mathbf{d}} \sum_{\mathbf{X}/\mathbf{D}} \mathbf{P}(\overline{\mathbf{X}},\mathbf{e})\mathbf{U}(\overline{\mathbf{X}})$ $D \subseteq X : \text{ decision variables} U(\overline{\mathbf{x}}) : \text{ utility function}$

Belief updating is NP-hard

- Each sat formula can be mapped to a Bayesian network query.
- Example: (u,~v,w) and (~u,~w,y) sat?

- How can we compute P(D)?, P(D|A=0)? P(A|D=0)?
- Brute force O(k^4)
- Maybe O(4k^2)

Elimination as a Basis for Inference

		А	В	$\Theta_{B A}$	В	С	$\Theta_{C B}$
А	$\Theta_{\mathcal{A}}$	true	true	.9	true	true	.3
true	.6	true	false	.1	true	false	.7
false	.4	false	true	.2	false	true	.5
		false	false	.8	false	false	.5

000

To compute the prior marginal on variable C, Pr(C)

we first eliminate variable A and then variable B

Elimination as a Basis for Inference

- There are two factors that mention variable A, Θ_A and $\Theta_{B|A}$
- We multiply these factors first and then sum out variable A from the resulting factor.
- Multiplying Θ_A and $\Theta_{B|A}$:

А	В	$\Theta_A \Theta_{B A}$
true	true	.54
true	false	.06
false	true	.08
false	false	.32

• Summing out variable A:

В	$\sum_{A} \Theta_{A} \Theta_{B A}$
true	.62 = .54 + .08
false	.38 = .06 + .32

Elimination as a Basis for Inference

- We now have two factors, ∑_A Θ_AΘ_{B|A} and Θ_{C|B}, and we want to eliminate variable B
- Since B appears in both factors, we must multiply them first and then sum out B from the result.
- Multiplying:

В	С	$\Theta_{C B} \sum_{A} \Theta_{A} \Theta_{B A}$
true	true	.186
true	false	.434
false	true	.190
false	false	.190

Summing out:

С	$\sum_{B} \Theta_{C B} \sum_{A} \Theta_{A} \Theta_{B A}$
true	.376
false	.624

Belief updating: P(X|evidence)=?

.

The bucket elimination Process:

$$bucket(B) = P(e|b, c), P(d|a, b), P(b|a)$$

$$bucket(C) = P(c|a) || \lambda_B(a, d, c, e)$$

$$bucket(D) = || \lambda_C(a, d, e)$$

$$bucket(E) = e = 0 || \lambda_D(a, e)$$

$$bucket(A) = P(a) || \lambda_D(a, e = 0)$$

Using a different

Ordering: a, b, c, d, e $P(a) \sum_{b} P(b|a) \sum_{c} P(c|a) \sum_{d} P(d|b,a) \sum_{e=0} P(e|b,c)$ $= P(a) \sum_{b} P(b|a) \sum_{c} P(c|a) P(e = 0|b,c) \sum_{d} P(d|b,a)$ $= P(a) \sum_{b} P(b|a) \lambda_D(a,b) \sum_{c} P(c|a) P(e = 0|b,c)$ $= P(a) \sum_{b} P(b|a) \lambda_D(a,b) \lambda_C(a,b)$ $= P(a) \lambda_B(a)$

The Bucket elimination process:

bucket(E) = P(e|b,c), e = 0 bucket(D) = P(d|a,b) bucket(C) = P(c|a) bucket(B) = P(b|a)bucket(A) = P(a)

Bucket Elimination and Induced Width

Ordering: a, b, c, d, e

Ordering: a, e, d, c, b

bucket(B) = P(e|b, c), P(d|a, b), P(b|a) $bucket(C) = P(c|a) || \lambda_B(a, c, d, e)$ $bucket(D) = || \lambda_C(a, d, e)$ $bucket(E) = e = 0 || \lambda_D(a, c)$ $bucket(A) = P(a) || \lambda_E(a)$

Factors: Sum-Out Operation

The result of summing out variable X from factor $f(\mathbf{X})$

is another factor over variables $\mathbf{Y} = \mathbf{X} \setminus \{X\}$:

$$\left(\sum_{X} f\right)(\mathbf{y}) \stackrel{def}{=} \sum_{X} f(X, \mathbf{y})$$

В	С	D	f_1
true	true	true	.95
true	true	false	.05
true	false	true	.9
true	false	false	.1
false	true	true	.8
false	true	false	.2
false	false	true	0
false	false	false	1

В	С	$\sum_{D} f_1$
true	true	1
true	false	1
false	true	1
false	false	1

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで

Factors: Sum-Out Operation

The sum-out operation is commutative

$$\sum_{Y} \sum_{X} f = \sum_{X} \sum_{Y} f$$

No need to specify the order in which variables are summed out.

If a factor f is defined over disjoint variables X and Y

then $\sum_{\mathbf{X}} f$ is said to marginalize variables **X**

If a factor f is defined over disjoint variables **X** and **Y**

then $\sum_{\mathbf{X}} f$ is called the result of projecting f on variables \mathbf{Y}

Factors: Multiplication Operation

В	С	D	f_1
true	true	true	.95
true	true	false	.05
true	false	true	.9
true	false	false	.1
false	true	true	.8
false	true	false	.2
false	false	true	0
false	false	false	1

D	Ε	f_2
true	true	0.448
true	false	0.192
false	true	0.112
false	false	0.248

The result of multiplying the above factors:

В	С	D	Ε	$f_1(B, C, D)f_2(D, E)$		
true	true	true	true	0.4256 = (.95)(.448)		
true	true	true	false	0.1824 = (.95)(.192)		
true	true	false	true	0.0056 = (.05)(.112)		
÷	:	:	÷	:		
false	false	false	false	0.2480 = (1)(.248)	Ξ	- 200

The result of multiplying factors $f_1(X)$ and $f_2(Y)$

is another factor over variables $\mathbf{Z} = \mathbf{X} \cup \mathbf{Y}$:

$$(f_1f_2)(\mathbf{z}) \stackrel{def}{=} f_1(\mathbf{x})f_2(\mathbf{y}),$$

where x and y are compatible with z; that is, $x \sim z$ and $y \sim z$

Factor multiplication is commutative and associative

It is meaningful to talk about multiplying a number of factors without specifying the order of this multiplication process.

 $P(a,g=1) = \sum_{c,b,e,d,g=1} P(a,b,c,d,e,g) = \sum_{c,b,f,d,g=1} P(g|f)P(f|b,c)P(d|a,b)P(c|a)P(b|a)P(a).$

$$P(a, g = 1) = P(a) \sum_{c} P(c|a) \sum_{b} P(b|a) \sum_{f} P(f|b, c) \sum_{d} P(d|b, a) \sum_{g=1} P(g|f).$$
(4.1)

$$P(a, g = 1) = P(a) \sum_{c} P(c|a) \sum_{b} P(b|a) \sum_{f} P(f|b, c)\lambda_{G}(f) \sum_{d} P(d|b, a).$$
(4.2)

$$P(a, g = 1) = P(a) \sum_{c} P(c|a) \sum_{b} P(b|a)\lambda_{D}(a, b) \sum_{f} P(f|b, c)\lambda_{G}(f)$$
(4.3)

$$P(a, g = 1) = P(a) \sum_{c} P(c|a) \sum_{b} P(b|a)\lambda_{D}(a, b)\lambda_{F}(b, c)$$
(4.4)

$$P(a, g = 1) = P(a) \sum_{c} P(c|a)\lambda_{B}(a, c)$$
(4.5)

20

A Bayesian network ordering: C,B,E,D,G

Figure 4.2: Bucket elimination along ordering $d_1 = A, C, B, F, D, G$.

A different ordering

$$\begin{split} P(a,g=1) &= P(a) \sum_{f} \sum_{d} \sum_{c} P(c|a) \sum_{b} P(b|a) \ P(d|a,b) P(f|b,c) \sum_{g=1} P(g|f) \\ &= P(a) \sum_{f} \lambda_{G}(f) \sum_{d} \sum_{c} P(c|a) \sum_{b} P(b|a) \ P(d|a,b) P(f|b,c) \\ &= P(a) \sum_{f} \lambda_{G}(f) \sum_{d} \sum_{c} P(c|a) \lambda_{B}(a,d,c,f) \\ &= P(a) \sum_{f} \lambda_{G}(f) \sum_{d} \lambda_{C}(a,d,f) \\ &= P(a) \sum_{f} \lambda_{G}(f) \lambda_{D}(a,f) \underbrace{\sum_{Bucket G: P(G|F) \ G=1}}_{Bucket G: P(G|F) \ G=1} \end{split}$$

Figure 4.3: The bucket's output when processing along $d_2 = A, F, D, C, B, G$

Figure 4.2: Bucket elimination along ordering $d_1 = A, C, B, F, D, G$.

Input: A belief network {P₁,...,P_n}, d,e.
Output: belief of X₁ given e.
1. Initialize:
2. Process buckets from p = n to 1 for matrices λ₁, λ₂, ..., λ_j in bucket_p do

If (observed variable) X_p = x_p assign X_p = x_p to each λ_i.
Else, (multiply and sum) λ_p = Σ_{Xp} Π^j_{i=1}λ_i. Add λ_p to its bucket.

3. Return Bel(x₁) = αP(x₁) · Π_iλ_i(x₁) Algorithm BE-bel

Input: A belief network $\mathcal{B} = \langle \mathcal{X}, \mathcal{D}, \mathcal{G}, \mathcal{P} \rangle$, an ordering $d = (x_1, \ldots, x_n)$; evidence e**output:** The belief $P(x_1|e)$ and probability of evidence P(e)

- 1. Partition the input functions (CPTs) into $bucket_1, \ldots, bucket_n$ as follows: for $i \leftarrow n$ downto 1, put in $bucket_i$ all unplaced functions mentioning x_i . Put each observed variable in its bucket. Denote by ψ_i the product of input functions in $bucket_i$.
- 2. backward: for $p \leftarrow n$ downto 1 do

3. for all the functions
$$\psi_{S_0}, \lambda_{S_1}, \ldots, \lambda_{S_j}$$
 in bucket_p do

If (observed variable) $X_p = x_p$ appears in *bucket*_p,

assign $X_p = x_p$ to each function in *bucket*_p and then

put each resulting function in the bucket of the *closest* variable in its scope. else,

$$S_p \leftarrow scope(\psi_p) \cup \bigcup_{i=0}^j scope(\lambda_i) - \{X_p\}$$

5.

6.

8.

4.

 $\lambda_p \leftarrow \sum_{X_p} \psi_p \cdot \prod_{i=1}^j \lambda_{S_i}$ add λ_p to the bucket of the latest variable in S_p , return $P(e) = \alpha = \sum_{X_1} \psi_1 \cdot \prod_{\lambda \in bucket_1} \lambda$

return:
$$P(x_1|e) = \frac{1}{\alpha}\psi_1 \cdot \prod_{\lambda \in bucket_1} \lambda_{\lambda \in bucket_1}$$

Figure 4.4: BE-bel: a sum-product bucket-elimination algorithm

Student Network example

Bucket Elimination and Induced Width

Ordering: a, b, c, d, e

Ordering: a, e, d, c, b

bucket(B) = P(e|b, c), P(d|a, b), P(b|a) $bucket(C) = P(c|a) || \lambda_B(a, c, d, e)$ $bucket(D) = || \lambda_C(a, d, e)$ $bucket(E) = e = 0 || \lambda_D(a, c)$ $bucket(A) = P(a) || \lambda_E(a)$

Complexity of elimination

$O(n \exp(w^*(d)))$

 $w^*(d)$ – the induced width of moral graph along ordering d

The effect of the ordering:

Complexity of bucket elimination

Theorem

Given a belief network having n variables, observations e, the complexity of **BE-BEL**

along d, is time and space

 $O(n \cdot exp(w * (d)))$

where w * (d) is the induced width of the moral graph whose edges connecting evidence to earlier nodes, were deleted.

More accurately: $O(r \exp(w^*(d)))$ where r is the number of cpts. For Bayesian networks r=n. For Markov networks?

Handling Observations

Observing b = 1

Ordering: a, e, d, c, b bucket(B) = P(e|b, c), P(d|a, b), P(b|a), b = 1 bucket(C) = P(c|a), || P(e|b = 1, c) bucket(D) = || P(d|a, b = 1) $bucket(E) = e = 0 || \lambda_C(e, a)$ $bucket(A) = P(a), || P(b = 1|a) \lambda_D(a), \lambda_E(e, a)$

Ordering: a, b, c, d, e

bucket(E) =	P(e b,c), e = 0
bucket(D) =	P(d a, b)
bucket(C) =	$P(c a) \mid\mid \lambda_E(b,c)$
bucket(B) =	$P(b a), b = 1 \mid \lambda_D(a,b), \lambda_C(a,b)$
bucket(A) =	$P(a) \mid\mid \lambda_B(a)$

The impact of observations

Buckets that sum to 1 are irrelevant. Identification: no evidence, no new functions.

Recursive recognition : (bel(a|e))

bucket(E) = P(e|b,c), e = 0 bucket(D) = P(d|a,b),...skipable bucket bucket(C) = P(c|a) bucket(B) = P(b|a)bucket(A) = P(a)

Complexity: Use induced width in moral graph without irrelevant nodes, then update for evidence arcs.

Use the ancestral graph only

Given a Bayesian network ${\mathfrak N}$ and query $({\mathbf Q},{\mathbf e})$

one can remove any leaf node (with its CPT) from the network as long as it does not belong to variables $\mathbf{Q} \cup \mathbf{E}$, yet not affect the ability of the network to answer the query correctly.

If $\mathcal{N}' = \operatorname{pruneNodes}(\mathcal{N}, \mathbf{Q} \cup \mathsf{E})$

then $Pr(\mathbf{Q}, \mathbf{e}) = Pr'(\mathbf{Q}, \mathbf{e})$, where Pr and Pr' are the probability distributions induced by networks \mathcal{N} and \mathcal{N}' , respectively.

Pruning Nodes: Example

network structure

joint on *B*, *E*

joint on B

Pruning Edges: Example

A	В	$\Theta_{B A}$
true	true	.2
true	false	.8
false	true	.75
false	false	.25

Α	С	$\Theta_{C A}$
true	true	.8
true	false	.2
false	true	.1
false	false	.9

		В	D	$\sum_{C} \Theta_{D BC}^{C=\text{false}}$		
A	Θ_A	true	true	.9	Ε	$\sum_{C} \Theta_{E C}^{C=\text{false}}$
true	.6	true	false	.1	true	0
false	.4	false	true	0	false	1
		false	false	1		

Evidence \mathbf{e} : C = false

Pruning Nodes and Edges: Example

Query $\mathbf{Q} = \{D\}$ and $\mathbf{e} : A = \text{true}, C = \text{false}$

Probabilistic Inference Tasks

Belief updating:

 $BEL(X_i) = P(X_i = x_i | evidence)$

- Finding most probable explanation (MPE)
 x
 x
 x
 = argmax P(x,e)
- Finding maximum a-posteriory hypothesis $(a_1^*,...,a_k^*) = \arg\max_{\overline{a}} \sum_{X/A} P(\overline{x},e)$ $A \subseteq X:$ hypothesis variables

Generating the MPE-tuple

- 5. b' = arg max P(b | a')× ×P(d' | b, a')×P(e' | b, c')
- 4. c' = arg max P(c / a')× × h^B (a', d[°], c, e')
- 3. $d' = \arg \max_{d} h^{c}(a', d, e')$
- *2. e'* = *0*

- B: P(bla) P(dlb,a) P(elb,c)
- C: P(c|a) $h^{B}(a, d, c, e)$
- D: *h^c (a, d, e)*
- E: e=0 *h^D(a,e)*
- 1. $a' = arg \max P(a) \cdot h^{E}(a)$ A: P(a) $h^{E}(a)$

Return (a',b',c',d',e')

Algorithm BE-mpe

Input: A belief network $\mathcal{B} = \langle X, D, G, \mathcal{P} \rangle$, where $\mathcal{P} = \{P_1, ..., P_n\}$; an ordering of the variables, $d = X_1, ..., X_n$; observations e.

Output: The most probable assignment given the evidence.

1. Initialize: Generate an ordered partition of the conditional probability function, $bucket_1, \ldots, bucket_n$, where $bucket_i$ contains all functions whose highest variable is X_i . Put each observed variable in its bucket. Let ψ_i be the input function in a bucket and let h_i be the messages in the bucket.

2. Backward: For $p \leftarrow n$ downto 1, do for all the functions $h_1, h_2, ..., h_j$ in $bucket_p$, do

- If (observed variable) $bucket_p$ contains $X_p = x_p$, assign $X_p = x_p$ to each function and put each in appropriate bucket.
- else, $S_p \leftarrow \bigcup_{i=1}^j scope(h_i) \cup scope(\psi_p) \{X_p\}$. Generate functions $h_p \Leftarrow \max_{X_p} \psi_p \cdot \prod_{i=1}^j h_i$ Add h_p to the bucket of the largest-index variable in S_p .

8. Forward:

- Generate the mpe cost by maximizing over X_1 , the product in *bucket*₁.
- (generate an mpe tuple) For i = 1 to n along d do: Given $\overline{x}_{i-1} = (x_1, ..., x_{i-1})$ Choose $x_i = argmax_{X_i}\psi_i \cdot \prod_{\{h_j \in bucket_i\}} h_j(\overline{x}_{i-1})$

(An optimization task)

Variables A and B are the hypothesis variables. **Ordering:** a, b, c, d, e $max_{a,b}P(a, b, e = 0) = max_{a,b}\sum_{c,d,e=0} P(a, b, c, d, e)$ $= max_a P(a) max_b P(b|a) \sum_c P(c|a) \sum_d P(d|b, a)$ $\sum_{e=0} P(e|b, c)$

Ordering: a, e, d, c, b illegal ordering $\max_{a,b} P(a, e, e = 0) = \max_{a,b} \sum_{P} (a, b, c, d, e)$ $\max_{a,b} P(a, b, e = 0) = \max_{a} P(a) \max_{b} P(b|a) \sum_{d} \cdots$ $\max_{c} P(c|a) P(d|a, b) P(e = 0|b, c)$

A.1	Algorithm BE-map
Algorithm	Input: A Bayesian network $\mathcal{B} = \langle X, D, G, \mathcal{P} \rangle P = \{P_1,, P_n\}$; a subset of
/ agonann	hypothesis variables $A = \{A_1,, A_k\}$; an ordering of the variables, d, in which
RE_MAD	the A's are first in the ordering; observations e. ψ_i is the input function in the
	bucket of X_i .
	Output: A most probable assignment $A = a$.
	1. Initialize: Generate an ordered partition of the conditional probability func-
	tions, $bucket_1, \ldots, bucket_n$, where $bucket_i$ contains all functions whose highest
	variable is X_i .
	2. Backwards For $p \leftarrow n$ downto 1, do
	for all the message functions $\beta_1, \beta_2,, \beta_j$ in $bucket_p$ and for ψ_p do
	• If (observed variable) $bucket_p$ contains the observation $X_p = x_p$, assign $X_p = x_p$ to each β_i and ψ_p and put each in appropriate bucket.
	• else, $S_p \leftarrow scope(\psi_p) \cup \bigcup_{i=1}^j scope(\beta_i) - \{X_p\}$. If X_p is not in A , then $\beta_p \leftarrow \sum_{X_p} \psi_p \cdot \prod_{i=1}^j \beta_i;$
	else, $(X_p \in A), \beta_p \Leftarrow \max_{X_p} \psi_p \cdot \prod_{i=1}^j \beta_i$
Marialda and a barr	Place β_p in the bucket of the largest-index variable in S_p .
Variable ordering: Restricted: Max buckets should Be processed after sum buckets	3. Forward: Assign values, in the ordering $d = A_1,, A_k$, using the information
De processeu arter sum Duckets	recorded in each bucket in a similar way to the forward pass in BE-mpe.

Theorem 4.2.3 Algorithm BE-map is complete for the map task for orderings started by the hypothesis variables. Its time and space complexity are are $O(r \cdot k^{w_d^*(E)+1})$ and $O(n \cdot k^{w_d^*(E)})$, respectively, where n is the number of variables in graph, k bounds the domain size and $w_d^*(E)$ is the conditioned induced width of its moral graph along d. (prove as an exercise.) \Box

BE for Markov networks queries

53

Complexity of bucket elimination

Theorem

Given a belief network having n variables, observations e, the complexity of elim-mpe, elimbel, elim-map along d, is time and space

O(nexp(w*+1)) and O(n exp(w*)), respectively

where w * (d) is the induced width of the moral graph whose edges connecting evidence to earlier nodes, were deleted.

More accurately: $O(r \exp(w^*(d)))$ where r is the number of cpts. For Bayesian networks r=n. For Markov networks?

Finding small induced-width

- NP-complete
- A tree has induced-width of ?
- Greedy algorithms:
 - Min width
 - Min induced-width
 - Max-cardinality
 - Fill-in (thought as the best)
 - See anytime min-width (Gogate and Dechter)

Figure 5.1: (a)Hyper, (b)Primal, (c)Dual and (d)Join-tree of a graphical model having scopes ABC, AEF, CDE and ACE. (e) the factor graph

The induced width

Definition 5.2.1 (width) Given an undirected graph G = (V, E), an ordered graph is a pair (G, d), where $V = \{v_1, ..., v_n\}$ is the set of nodes, E is a set of arcs over V, and $d = (v_1, ..., v_n)$ is an ordering of the nodes. The nodes adjacent to v that precede it in the ordering are called its parents. The width of a node in an ordered graph is its number of parents. The width of an ordering d of G, denoted $w_d(G)$ (or w_d for short) is the maximum width over all nodes. The width of a graph is the minimum width over all the orderings of the graph.

Definition 5.2.3 (induced width) The induced width of an ordered graph (G, d), denoted w^*_d), is the width of the induced ordered graph along d obtained as follows: nodes are processed from last to first; when node v is processed, all its parents are connected. The induced width of a graph, denoted by w^* , is the minimal induced width over all its orderings. Formally

$$w^*(G) = \min_{d \in orderings} w^*_d(G)$$

Min-width ordering

MIN-WIDTH (MW)

input: a graph $G = (V, E), V = \{v_1, ..., v_n\}$ output: A min-width ordering of the nodes $d = (v_1, ..., v_n)$. 1. for j = n to 1 by -1 do 2. $r \leftarrow$ a node in G with smallest degree. 3. put r in position j and $G \leftarrow G - r$. (Delete from V node r and from E all its adjacent edges)

4. endfor

Proposition: algorithm min-width finds a min-width ordering of a graph

Greedy orderings heuristics

MIN-INDUCED-WIDTH (MIW)

input: a graph $G = (V, E), V = \{v_1, ..., v_n\}$

output: An ordering of the nodes $d = (v_1, ..., v_n)$.

- 1. for j = n to 1 by -1 do
- 2. $r \leftarrow$ a node in V with smallest degree.
- 3. put r in position j.
- 4. connect r's neighbors: $E \leftarrow E \cup \{(v_i, v_j) | (v_i, r) \in E, (v_j, r) \in E\},\$
- 5. remove r from the resulting graph: $V \leftarrow V \{r\}$.

Theorem: A graph is a tree iff it has both width and induced-width of 1.

MIN-FILL (MIN-FILL) input: a graph $G = (V, E), V = \{v_1, ..., v_n\}$ output: An ordering of the nodes $d = (v_1, ..., v_n)$. 1. for j = n to 1 by -1 do 2. $r \leftarrow a$ node in V with smallest fill edges for his parents. 3. put r in position j. 4. connect r's neighbors: $E \leftarrow E \cup \{(v_i, v_j) | (v_i, r) \in E, (v_j, r) \in E\},$ 5. remove r from the resulting graph: $V \leftarrow V - \{r\}$.

Induced-width for chordal graphs

- Definition: A graph is chordal if every cycle of length at least 4 has a chord
- Finding w* over chordal graph is easy using the maxcardinality ordering: order vertices from 1 to n, always assigning the next number to the node connected to a largest set of previously numbered nodes. Lets d be such an ordering
- A graph along max-cardinality order has no fill-in edges iff it is chordal.
- On chordal graphs width=induced-width.

Max-cardinality ordering

MAX-CARDINALITY (MC)

input: a graph $G = (V, E), V = \{v_1, ..., v_n\}$ **output:** An ordering of the nodes $d = (v_1, ..., v_n)$.

1. Place an arbitrary node in position 0.

2. for
$$j = 1$$
 to n do

3. $r \leftarrow$ a node in G that is connected to a largest subset of nodes in positions 1 to j - 1, breaking ties arbitrarily.

4. endfor

Proposition 5.3.3 [56] Given a graph G = (V, E) the complexity of max-cardinality search is O(n+m) when |V| = n and |E| = m.

What is the complexity of min-fill? Min-induced-width? $O(n^3)$

K-trees

Definition 5.3.4 (k-trees) A subclass of chordal graphs are k-trees. A k-tree is a chordal graph whose maximal cliques are of size k+1, and it can be defined recursively as follows: (1) A complete graph with k vertices is a k-tree. (2) A k-tree with r vertices can be extended to r + 1 vertices by connecting the new vertex to all the vertices in any clique of size k. A partial k-tree is a k-tree having some of its arcs removed. Namely it will clique of size smaller than k.

Which greedy algorithm is best?

MinFill, prefers a node who add the least number of fill-in arcs.

- Empirically, fill-in is the best among the greedy algorithms (MW,MIW,MF,MC)
- Complexity of greedy orderings?
 - MW is $O(n^2)$...maybe O(nlogn + m)?
 - MIW: O(0(n³),
 - MF (O(n³),
 - MC is O(m+n), m edges.

Recent work in my group

- Vibhav Gogate and Rina Dechter. "A Complete <u>Anytime</u> Algorithm for Treewidth". *In UAI 2004.*
- Andrew E. Gelfand, Kalev Kask, and Rina Dechter.
 "<u>Stopping</u> Rules for Randomized Greedy Triangulation Schemes" in *Proceedings of AAAI 2011.*
- Potential project