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Probabilistic Inference Tasks 
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1998 roadmap 



Agenda 
n  From bucket-elimination (BE) to bucket-tree elimination (BTE) 

n  From BTE to CTE, the join-tree algorithm 

n  Belief-propagation on acyclic probabilistic networks (poly-trees) 

n  The role of induced-width/tree-width 

n  Conditioning with elimination 
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A Bayesian Network 
 Processed by BE 

5 Complexity exponential in w*_d 



From Bucket Elimination to Bucket-Tree 
Elimination 
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What if we want the marginal on B? 

Observation 1: BE is  a message propagation down a bucket-tree 



From Bucket Elimination to Bucket-Tree 
Elimination 
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What If we want the marginal on B? 
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Bucket G:  P(G|F)  

Bucket F:  P(F|B,C)  

Bucket D: P(D|A,B) 

Bucket C: P(C|A)  

Bucket B: P(B|A)  

Bucket A: P(A) 
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From Bucket Elimination to 
Bucket-Tree Elimination 
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If we want the marginal on D? 
Imagine combining B and A, D 
d = ({A,D,B},C,F,G) 



From Bucket Elimination to Bucket-
Tree Elimination 
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F If we want the marginal on D? 
Imagine combining B and A, D 
d = ({A,D,B},C,F,G) 



Idea of BTE 
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BTE: Allows Messages Both Ways 

Bucket G:  P(G|F)  

Bucket F:  P(F|B,C)  

Bucket D: P(D|A,B) 

Bucket C: P(C|A)  
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Bucket A: P(A) 
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A Bucket Tree of a Bayesian Network 

n  The bucket-tree is the bucket-structure 
connected into a tree: 
n  Nodes are the buckets. Each has functions 

(assigned initially) and variables: itself+ induced-
parents 

n  There is an arc from 𝐵↓𝑖  to 𝐵↓𝑗  iff the function 
created at bucket 𝐵↓𝑖    is placed at bucket 𝐵↓𝑗   

n  We have a separator and eliminator between two 
adjacent buckets 

 



Bucket-tree Generation from the Graph 

1.  Pick a (good) variable ordering, d. 
2.  Generate the induced ordered graph 
3.  From top to bottom, each bucket of X is 

mapped to (variables,functions) pairs 
4.  The variables are the clique of X, the 

functions are those placed in the bucket 
5.  Connect Bucket of X to earlier bucket of Y if 

Y is closest node connected to X 



BTE 
Theorem: When BTE 
terminates The product of 
functions in each bucket is the 
beliefs of the variables joint 
with the evidence. 



Query answering 
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BTE: Allows messages both ways 

class3 huji 
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Explicit functions 
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Properties of BTE 
n  Theorem (correctness) 6.1.4 Algorithm BTE when applied to a Bayesian 

or Markov network is sound. Namely, in each bucket we can exactly 
compute the exact joint function of every subset of variables and the 
evidence. 

n  (follows from imapness of trees) 
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• Theorem 6.1.5 (Complexity of BTE) Let w* be the induced width of G 
along ordering d, let r be the number of functions and k the maximum 
size of a domain of a variable. The time complexity of BTE is O(r deg 
k^{w*+1}), where deg is the maximum degree in the bucket-tree. 
The space complexity of BTE is O(n  k^w*.) 



Asynchronous BTE: 
Bucket-tree Propagation (BTP) 



Complexity of BTE 
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Agenda 
n  From bucket-elimination (BE) to bucket-tree elimination (BTE) 

n  From BTE to CTE, the join-tree algorithm 

n  Belief-propagation on acyclic probabilistic networks (poly-trees) 

n  The role of induced-width/tree-width 
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From buckets to superbucket 
to clusters 
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A super-bucket-tree is an i-map of the Bayesian network 

F 

B,C 

G,F 

A,B,C 

D,B,A F,B,C 

(B) Allows time and 
space tradeoff 



From a bucket-tree to a join-tree 

n  Merge non-maximal buckets into maximal clusters. 
n  Connect  clusters into a tree: each cluster to one with 

which it shares a largest subset of variables. 
n  Separators are the intersection of variables on the 

arcs of the tree. 
n  The cluster-tree is an i-map. 
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Tree-decompositions 
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Examples 
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The general Message Passing 
on a general tree-decomposition 
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Cluster-Tree Elimination 
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Generating tree-decomposition 
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Examples of tree-clustering 



Tree-clustering and message-passing 
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Cluster-Tree Elimination - 
Properties 

n  Correctness and completeness: Algorithm CTE is correct, i.e. it 
computes the exact joint probability of a single variable and the 
evidence. 

n  Time complexity:   
n  O ( deg × (n+N) × d w*+1 ) 

n  Space complexity:  O ( N × d sep) 
  where  deg = the maximum degree of a node 
   n = number of variables (= number of CPTs) 
   N = number of nodes in the tree decomposition 
   d = the maximum domain size of a variable 
   w* = the induced width 
   sep = the separator size 

class3 huji 



Example 
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Example 

38 



Example 
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Example  
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CTE: Cluster Tree Elimination 
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For each cluster P(X|e) is computed, also P(e) 



Agenda 
n  From bucket-elimination (BE) to bucket-tree elimination (BTE) 

n  From BTE to CTE, the join-tree algorithm 

n  Belief-propagation on acyclic probabilistic networks (poly-trees) 

n  The role of induced-width/tree-width 
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Acyclic-Networks: 
Belief Propagation is  easy on 
P(E) 
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Polytrees and Acyclic networks  
n  Polytree: a BN whose undirected skeleton is a tree 
n  Acyclic network: A network is acyclic if it has a tree-

decomposition where each node has a single original CPT. 
n  Dual network: each scope-cpt is a node and each arc is 

denoted by intersection. 
n  Acylic network (alternative definition): when the dual 

graph has a join-tree 
n  BP is exact on an acyclic network. 
n  Tree-clustering converts a network into an acyclic one. 
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A Glimpse into Pearl’s BP 











Belief propagation is easy on polytree: 
Pearl’s  Belief Propagation 
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A polytree: a tree with 
Larger families 

A polytree decomposition 

P(z1|u1) P(z2|u2) P(z3|u3) 

P(u3) P(u1) P(u2) 

P(X1|,u1,1,u2,u3) 

P(y1|x1) 

Running CTE = running Pearl’s BP over the dual graph 
Dual-graph: nodes are cpts, arcs connect non-empty 
 intersections. 
BP is Time and space linear  



From exact to approximate: 
Iterative Belief Propagation 

n  Belief propagation is exact for poly-trees 
n  IBP - applying BP iteratively to cyclic networks 

n  No guarantees for convergence 
n  Works well for many coding networks 
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Dual graphs, join-graphs 
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Dual join-graphs examples 
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Iterative Belief propagation 



Agenda 
n  From bucket-elimination (BE) to bucket-tree elimination (BTE) 

n  From BTE to CTE, the join-tree algorithm 

n  Belief-propagation on acyclic probabilistic networks (poly-trees) 

n  The role of induced-width/tree-width 

n  Conditioning with elimination (Chapter 4, class notes) 
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The Idea of Cutset-Conditioning 
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We observed  that when variables are assigned connectivity reduces. 
The magnitude of saving is reflected through the “conditioned-induced graph” 

Cutset-conditioning exploit this in a systematic way:  
Select a subset of variables, assign them values, and solve the conditionined 
problem by elimination.  
Repeat for all assignments to the cutset. 
 
Algorithm VEC 
 



Exact Reasoning by Search 

n  Enumeration in VEC can be done by dfs 
n  In the extreme we can do only search 
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The Principle of Cutset Conditioning 
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Enumeration in VEC can be done by dfs 
In the extreme we can do only search, we 

For example, we can compute expression below for the probability of evidence in 
the network of Figure 2.4 by traversing the search-tree in Figure 4.18 along the 
ordering, from first variable to last variable. 



Conditioning generates  
the probability tree 
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Complexity of conditioning: exponential time, linear space 



Algorithm VEC (Variable-elimination with conditioning) 
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Conditioning+Elimination 
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Idea: conditioning until        of a (sub)problem gets small *w



Loop-cutset decomposition 

n  You condition until you get a polytree 
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Loop-cutset method is time exp in loop-cutset size 
and linear space. For each cutset we can do BP 



Conditioning and Cycle cutset 
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Search over the Cutset (cont) 
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A 

C 

B K 

G 

L 
D 

F 
H 

M 

J 

E 

Graph 
Coloring 
problem 



Variable elimination with conditioning; 
w-cutset algorithms 

n  VEC-bel: 
n  Identify a w-cutset, c_w,  of the network 
n  For each assignment to the cutset solve by 

CTE or BE  the conditioned sub-problem 
n  Aggregate the solutions over all cutset 

assignments. 
n  Time complexity: exp(|C_w|+w) 
n  Space complexity: exp(w) 
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Time vs Space for w-cutset 
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•  Random Graphs (50 nodes, 200 edges, average degree 8, w*≈23)!

Branch and bound!

Bucket !
elimination!
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(Dechter and El-Fatah, 2000) 
(Larrosa and Dechter, 2001) 
(Rish and Dechter 2000) 
 

W-cutset time O(exp(w+cutset-size)) 
Space O(exp(w)) 



Hybrid of Variable-elimination and 
conditioning-Search 

n  Tradeoff space and time 
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Search Basic Step: 
Conditioning 
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Search Basic Step: 
Conditioning 
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X1!

X3!

X5!X4!

X2!•  Select a variable!



Search Basic Step: 
Conditioning 
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Search Basic Step:  
Variable Branching by Conditioning 
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General principle: 
Condition until tractable 
Then solve sub-problems 
efficiently 



Search Basic Step:  
Variable Branching by Conditioning 
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Example: solve subproblem 
by inference, BE(i=2) 



The Cycle-Cutset Scheme: 
Condition Until Treeness 
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•  Cycle-cutset 
•  i-cutset 
•  C(i)-size of i-cutset 

Space: exp(i), Time: O(exp(i+c(i)) 



Eliminate First 
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Eliminate First 
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Eliminate First 
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Solve the rest of the problem 
by any means 



 Hybrids Variants 

n  Condition, condition, condition … and then 
only eliminate (w-cutset, cycle-cutset) 

n  Eliminate, eliminate, eliminate … and then 
only search 

n  Interleave conditioning and elimination (elim-
cond(i), VE+C) 
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Interleaving Conditioning and Elimination 
(Larrosa & Dechter, CP’02) 
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Interleaving Conditioning and Elimination 
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Interleaving Conditioning and Elimination 
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Interleaving Conditioning and Elimination 
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Interleaving Conditioning and Elimination 
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Interleaving Conditioning and Elimination 
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Interleaving Conditioning and Elimination 
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...!

...!



What hybrid should we use? 

n  w=1? (loop-cutset?) 
n  w=0? (Full search?) 
n  w=w* (Full inference)? 
n  w in between? 
n  depends… on the graph 
n  What is relation between cycle-cutset 

and the induced-width? 
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Properties of conditioning
+elimination 
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Tradeoff between cutset and elimination 
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Time vs Space for w-cutset 
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•  Random Graphs (50 nodes, 200 edges, average degree 8, w*≈23)!

Branch and bound!

Bucket !
elimination!
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(Dechter and El-Fatah, 2000) 
(Larrosa and Dechter, 2001) 
(Rish and Dechter 2000) 
 

W-cutset time O(exp(w+cutset-size)) 
Space O(exp(w)) 


