Exact inference and learning for cumulative distribution functions on loopy graphs

Jim C. Huang, Nebojsa Jojic and Christopher Meek

NIPS 2010

Presented by Jenny Lam

Previous work

- Cumulative distribution networks and the derivative-sumproduct algorithm. Huang and Frey, 2008. UAI.
- Cumulative distribution networks: Inference, estimation and applications of graphical models for cumulative distribution functions. Huang, 2009. Ph.D. Thesis.
- Maximum-likelihood learning of cumulative distribution functions on graphs. Huang and Jojic, 2010. Journal of ML research.

Cumulative Distribution Network: definition

A CDN \mathcal{G} is a bipartite graph (V, S, E) where

- V is the set of variable nodes,
- S is the set of function nodes, with $\phi: \mathbf{R}^{|N(\phi)|} \rightarrow[0,1]$ is a CDF,
- E is the set of edges, connecting functions to their variables.

The joint CDF of this CDN is $F(x)=\prod_{\phi \in S} \phi$.

CDNs: what are they for?

- PDF models must enforce a normalization constraint.
- PDFs are made more tractable by restricting to, e.g., Gaussians.
- Many non-Gaussian distributions are conveniently parametrized as CDFs.
- CDNs can be used to model heavy-tailed distributions, which are important in climatology and epidemiology.

Inference from joint CDF

Conditional CDF

$$
F\left(\mathbf{x}_{B} \mid \mathbf{x}_{A}\right)=\frac{\partial_{\mathbf{x}_{A}} F\left(\mathbf{x}_{A}, \mathbf{x}_{B}\right)}{\partial_{\mathbf{x}_{A}} F\left(\mathbf{x}_{A}\right)}
$$

Likelihood

$$
P(\mathbf{x} \mid \theta)=\partial_{\mathbf{x}} F(\mathbf{x} \mid \theta)
$$

For MLE, need gradient of log likelihood

$$
\nabla_{\theta} \log P(\mathbf{x} \mid \theta)=\frac{1}{P(\mathbf{x} \mid \theta)} \nabla_{\theta} P(\mathbf{x} \mid \theta)
$$

Mixed derivative of a product

$$
\partial_{\mathbf{x}}[f \cdot g]=\sum_{U \subseteq x} \partial_{U} f \cdot \partial_{\bar{U}} g
$$

which has $2^{|x|}$ terms. More generally,

$$
\partial_{\times} \prod_{i=1}^{k} f_{i}=\sum_{U_{1}, \ldots, U_{k}} \prod_{i=1}^{k} \partial_{U_{i}} f_{i}
$$

where we sum over all partitions $U_{1}, \ldots U_{k}$ of \mathbf{x} into k subsets. There are $k^{|x|}$ terms in this sum.

Mixed derivative over a separation

Partition the functions of a CDN into M_{1} and M_{2}

- with variable sets C_{1} and C_{2} and $S_{1,2}=C_{1} \cap C_{2}$
- and G_{1} and G_{2} the products of functions in M_{1} and M_{2}.

Then

$$
\partial_{\mathbf{x}}\left[G_{1} G_{2}\right]=\sum_{A \subseteq S_{1,2}}\left[\partial_{\mathbf{x}_{C_{1} \backslash S_{1,2}}} \partial_{\mathbf{x}_{A}} G_{1}\right]\left[\partial_{\mathbf{x}_{C_{2} \backslash s_{1,2}}} \partial_{\mathbf{x}_{1,2} \backslash A} G_{2}\right]
$$

Junction Tree: definition

Let $\mathcal{G}=(V, S, E)$ be a CDN.
A tree $\mathcal{T}=(\mathcal{C}, \mathcal{E})$ is a junction tree for \mathcal{G} if

1. \mathcal{C} is a cover for V :
each $C_{j} \in \mathcal{C}$ is a subset of V and $\bigcup_{j} C_{j}=V$
2. family preservation holds:
for each $\phi \in S$, there is a $C_{j} \in \mathcal{C}$ such that $\operatorname{scope}(\phi) \subseteq C_{j}$
3. running intersection property holds:
if $C_{i} \in \mathcal{C}$ is on the path between C_{j} and C_{k}, then $C_{j} \cap C_{k} \subseteq C_{i}$

Junction Tree: example

Construction of the junction tree

In implementation

- greedily eliminate the variables with the minimal fill-in algorithm
- construct elimination subsets for nodes in the junction tree using the MATLAB Bayes Net Toolbox (Murphy, 2001)

Decomposition of the joint CDF

Partitioning function of S into M_{j}, the joint CDF is

$$
F(\mathbf{x})=\prod_{C_{j} \in \mathcal{C}} \psi_{j}\left(\mathbf{x}_{C_{j}}\right), \quad \text { where } \psi_{j} \equiv \prod_{\phi \in M_{j}} \phi
$$

Let r be a chosen root of the joint tree. Then

$$
F(\mathbf{x})=\psi_{r}\left(\mathbf{x}_{C_{r}}\right) \prod_{k \in \mathcal{E}_{r}} T_{k}^{r}(\mathbf{x})
$$

where

$$
T_{k}^{r}(\mathbf{x})=\prod_{j \in \tau_{k}^{r}} \psi_{j}\left(\mathbf{x}_{c_{j}}\right)
$$

and τ_{k}^{r} is the subtree rooted at k.

Derivative of the joint CDF

$$
\begin{aligned}
\partial_{\mathbf{x}} F(\mathbf{x}) & =\partial_{\mathbf{x}}\left[\psi_{r}\left(\mathbf{x}_{C_{r}}\right) \prod_{k \in \mathcal{E}_{r}} T_{k}^{r}(\mathbf{x})\right] \\
& =\partial_{\mathbf{x}_{\mathbf{C}_{r}}} \partial_{\mathbf{x}_{\bar{C}_{r}}}\left[\psi_{r}\left(\mathbf{x}_{C_{r}}\right) \prod_{k \in \mathcal{E}_{r}} T_{k}^{r}(\mathbf{x})\right] \\
& =\partial_{\mathbf{x}_{C_{r}}}\left[\psi_{r}\left(\mathbf{x}_{C_{r}}\right) \partial_{\mathbf{x}_{\bar{C}_{\mathbf{r}}}} \prod_{k \in \mathcal{E}_{r}} T_{k}^{r}(\mathbf{x})\right] \\
& =\partial_{\mathbf{x} C_{r}}\left[\psi_{r}\left(\mathbf{x}_{C_{r}}\right) \prod_{k \in \mathcal{E}_{r}} \partial_{\mathbf{x}_{\tau_{k}} \backslash C_{r}} T_{k}^{r}(\mathbf{x})\right]
\end{aligned}
$$

the last equality follows from the running intersection property

Messages to the root of the junction tree

Message from children k to root r, where $A \subseteq C_{r}$

$$
m_{k \rightarrow r}(A) \equiv \partial_{\mathbf{x}_{A}}\left[\partial_{\mathbf{x}_{\tau_{k}} \backslash c_{r}} T_{k}^{r}(\mathbf{x})\right]
$$

In particular

$$
m_{k \rightarrow r}(\varnothing)=\partial_{\mathbf{x}_{\tau_{k}} \backslash c_{r}} T_{k}^{r}(\mathbf{x})
$$

At the root, if $U_{r} \subseteq \mathcal{E}_{r}$, and $A \subseteq C_{r}$

$$
m_{r}\left(A, U_{r}\right) \equiv \partial_{\mathbf{x}_{A}}\left[\psi_{r}\left(\mathbf{x}_{C_{r}}\right) \prod_{k \in \mathcal{E}_{r}} m_{k \rightarrow r}(\varnothing)\right]
$$

Messages in the rest of the junction tree

$$
m_{i}\left(A, U_{i}\right) \equiv \partial_{\mathbf{x}_{A}}\left[\psi_{i}\left(\mathbf{x}_{c_{i}}\right) \prod_{j \in U_{i}} m_{j \rightarrow i}(\varnothing)\right]
$$

where $A \subseteq C_{i}$ and $U_{i} \subseteq \mathcal{E}_{i}$.

$$
m_{j \rightarrow i}(A) \equiv \partial_{\mathbf{x}_{A}}\left[\partial_{\mathbf{x}_{\tau_{j}} \backslash s_{i, j}} T_{j}^{i}(\mathbf{x})\right]
$$

where $A \subseteq S_{i, j}$.

Messages in the rest of the junction tree

In terms of messages

$$
\begin{aligned}
m_{i}\left(A, U_{i}\right) & =\partial_{\mathbf{x}_{A}}\left[\psi_{i}\left(\mathbf{x}_{C_{i}}\right) m_{k \rightarrow i}(\varnothing) \prod_{j \in U_{i} \backslash\{k\}} m_{j \rightarrow i}(\varnothing)\right] \\
& =\sum_{B \subseteq A \cap S_{i, k}} m_{k \rightarrow i}(B) m_{i}\left(A \backslash B, U_{i} \backslash\{k\}\right) \\
m_{j \rightarrow i}(A) & =\partial_{\mathbf{x}_{A, C_{j} \backslash S_{i, j}}}\left[\psi_{j}\left(\mathbf{x}_{C_{j}}\right) \prod_{l \in \mathcal{E}_{j} \backslash\{i\}} T_{l}^{j}(\mathbf{x})\right] \\
& =m_{j}\left(A \cup\left(C_{j} \backslash S_{i, j}\right), \mathcal{E}_{j} \backslash\{i\}\right)
\end{aligned}
$$

Gradient of the likelihood

Likelihood

$$
P(\mathbf{x} \mid \theta)=\partial_{\mathbf{x}}[F(\mathbf{x} \mid \theta)]=m_{r}\left(C_{r}, \mathcal{E}_{r}\right)
$$

Gradient likelihood

$$
\nabla_{\theta} m_{r}\left(C_{r}, \mathcal{E}_{r}\right)
$$

decomposed similarly to $m_{r}\left(C_{r}, \mathcal{E}_{r}\right)$ in the junction tree:

- $\mathbf{g}_{i} \equiv \nabla_{\theta} m_{i}$
$-\mathbf{g}_{j \rightarrow i} \equiv \nabla_{\theta} m_{j \rightarrow i}$

JDiff algorithm: outline

for each cluster (from leaf to root):

1. compute derivative within cluster
2. compute messages from children
3. send messages to parent
foreach Node $j \in \mathcal{C}$ do

$$
U_{j} \leftarrow \emptyset ; \psi_{j} \leftarrow \prod_{s \in M_{j}} \phi_{s} ;
$$

1 foreach Subset $A \subseteq C_{j}$ do

$$
\begin{aligned}
& \quad m_{j}(A, \emptyset) \leftarrow \partial_{\mathbf{x}_{A}}\left[\psi_{j}\right] ; \\
& \mathbf{g}_{j}(A, \emptyset) \leftarrow \nabla_{\boldsymbol{\theta}} \partial_{\mathbf{x}_{A}}\left[\psi_{j}\right] ; \\
& \text { end } \\
& \text { foreach Neighbor } k \in \mathcal{E}_{j} \cap \tau_{k}^{j} \text { do }
\end{aligned}
$$

$$
S_{j, k} \leftarrow C_{j} \cap C_{k}
$$

$$
\text { foreach Subset } A \subseteq C_{j} \text { do }
$$

$$
m_{j}\left(A, U_{j} \bigcup k\right) \leftarrow \sum_{B \subseteq A \cap S_{j, k}} m_{k \rightarrow j}(B) m_{j}\left(A \backslash B, U_{j}\right)
$$

$$
\mathbf{g}_{j}\left(A, U_{j} \bigcup k\right) \leftarrow \sum_{B \subseteq A \cap S_{j, k}} m_{k \rightarrow j}(B) \mathbf{g}_{j}\left(A \backslash B, U_{j}\right)+\mathbf{g}_{k \rightarrow j}(B) m_{j}\left(A \backslash B, U_{j}\right) ;
$$

 end
 \(U_{j} \leftarrow U_{j} \bigcup k ;\)
 end
 if \(j \neq r\) then
 \(k \leftarrow\left\{l \mid \mathcal{E}_{j} \bigcap \tau_{j}^{l} \neq \emptyset\right\} ; S_{j, k} \leftarrow C_{j} \bigcap C_{k} ;\)
 foreach Subset \(A \subseteq S_{j, k}\) do
 \(m_{j \rightarrow k}(A) \leftarrow m_{j}\left(A \cup C_{j} \backslash S_{j, k}, \mathcal{E}_{j} \backslash k\right) ;\)
 \(\mathbf{g}_{j \rightarrow k}(A) \leftarrow \mathbf{g}_{j}\left(A \bigcup C_{j} \backslash S_{j, k}, \mathcal{E}_{j} \backslash k\right) ;\)
 end
 else
 return \(\left(m_{r}\left(C_{r}, \mathcal{E}_{r}\right), \mathbf{g}_{r}\left(C_{r}, \mathcal{E}_{r}\right)\right)\)
 end
 end

Complexity of JDiff

O-notation of number of steps/terms in each inner loop for fixed j :

$$
\begin{aligned}
& \text { 1. } \sum_{k=1}^{\left|C_{j}\right|}\binom{\left|C_{j}\right|}{k}\left|M_{j}\right|^{k}=\left(\left|M_{j}\right|+1\right)^{\left|C_{j}\right|} \\
& \text { 2. }\left(\left|\mathcal{E}_{j}\right|-1\right) \max _{k \in \mathcal{E}_{j}} \sum_{l=0}^{\left|S_{j, k}\right|}\binom{\left|S_{j, k}\right|}{l} 2^{\left|C_{j} \backslash S_{j, k}\right|} 2^{\prime} \\
& \text { 3. } 2^{\left|S_{j, k}\right|}
\end{aligned}
$$

Total. Exponential in tree-width of graph

$$
O\left(\max _{j}\left(\left|M_{j}\right|+1\right)^{\left|C_{j}\right|}+\max _{(j, k) \in \mathcal{E}}\left(\left|\mathcal{E}_{j}\right|-1\right) 2^{\left|C_{j} \backslash S_{j, k}\right|} 3^{\left|S_{j, k}\right|}\right)
$$

Application: symbolic differentiation on graphs

Computation of $\partial_{\mathbf{x}} F(\mathbf{x})$ on CDNs

- Grids: 3×3 to 9×9
- Cycles: 10 to 20 nodes

	JDiff	Mathematica	D*
Grids	$1 \mathrm{~s} .-20 \mathrm{~min}$.	$6.2 \mathrm{~s} .-\infty$	$9.2 \mathrm{~s} .-\infty$
Cycles	$0.81 \mathrm{~s} .-2.83 \mathrm{~s}$.	$1.2 \mathrm{~s} .-580 \mathrm{~s}$.	$6.7 \mathrm{~s} .-12.7 \mathrm{~s}$.

Application: modeling heavy-tailed data

- Rainfall: 61 daily measurements of rainfall at 22 sites in China
- H1N1: 29 weekly mortality rates in 11 cities in the Northeastern US during the 2008-2009 epidemic

Application: modeling heavy-tailed data

Average test log-likelihoods on leave-one-out cross-validation

Future work

- Develop compact models (bounded treewidth) for applications in other areas (seismology)
- Study connection between CDNs and other copula-based algorithms
- Develop faster approximate algorithms

