Pushing the Power of Stochastic Greedy Ordering Schemes for Inference in Graphical Models

Kalev Kask, Andrew Gelfand, Lars Otten, Rina Dechter Dept. of Computer Science, UC Irvine

> AAAI 2011 - San Francisco, CA Tuesday, August 9th 2011

UNIVERSITY of CALIFORNIA O IRVINE

Graphical Model Inference

- Underlying graph structure encodes conditional independencies
 - Exploited in many inference algorithms:
 - Junction Tree (JT) [Lauritzen & Spiegelhalter 88] Bucket Elimination (BE) [Dechter 99]
 - Generalized BP [Yedidia, Freeman, & Weiss 05] AND/OR Sampling [Gogate & Dechter 08]
 - Complexity highly dependent on a given variable ordering and its (tree)width.
 - $O(k^w) k$ domain size, w treewidth

Problem Decomposition

- Captured by elimination/variable ordering
 - Eliminate variable and connect neighbors, repeat

Computing "good" orderings

- Finding minimal order is NP-hard [Arnborg et al. 87]
 - Many anytime and approximate algorithms
 - B&B: [Gogate & Dechter 04] [Bachoore & Bodlaender 06]
 - Tabu Search: [Clautiaux et al. 04]
 - Simulated Annealing: [Kjaerulff 92]
- Greedy schemes are effective and popular
 - Not yet pushed to their limits
 - Preview: n=15,319, domain size k=5

• $w = 36 / \underline{19 \text{ TB}} \rightarrow w = 30 / \underline{41 \text{ GB}}$

Key Contributions

- Present comprehensive overview
- Develop unifying algorithm *IGVO*
 - Algorithmic enhancements:
 - Randomization through pooling
 - Early termination
 - Optimized data structures
 - Parallelization
- Perform extensive empirical evaluation
 - Obtain significant improvements

Greedy Variable Ordering

- <u>Algorithm</u>: **GVO**
 - For i=1 to number of variables
 - $\pi(i) \leftarrow$ variable with smallest elimination cost
 - Eliminate π(*i*)
- Cost functions to consider:
 - *Min-Fill:* number of fill edges added
 - *Min-Degree:* degree of node in current graph
 - *Min-Complexity:* cost of variable elimination

Empirical Observation

- "Smallest cost" leads to many ties
 - Large variance in quality of resulting orders
- 20K Min-Fill iterations, random tie breaking:

Iterative GVO (IGVO)

- Break ties randomly and repeat! [Fishelson & Geiger 03]
- <u>Algorithm</u>: **Iterative GVO (IGVO)**
 - For *n*=1 to number of iterations
 - $\pi_n \leftarrow \text{GVO}(G)$ with random tie breaking
 - If $C(\pi_n, G) < C(\pi^*, G)$, then $\pi^* \leftarrow \pi_n$
- Possible complexity objectives:
 - Width: $C(\pi, G) \equiv width(\pi, G)$
 - State space: $C(\pi, G) \equiv s(\pi, G) = \sum_{i} s(\pi(i), G_{i})$

Pooling & Early Termination

- **Pooling** with parameters *p* and *e* :
 - Select node $\pi(i)$ from pool *T* of size *p*
 - Can include nodes with non-minimal cost
 - Non-uniform sampling distribution over *T*:
 - Sample node v with probability $p(v) = VC(v)^e / \sum_{t \in T} VC(t)^e$
 - Similar in [Fishelson & Geiger 03]
- Early Termination:
 - Abort iteration if cost of new ordering exceeds current optimum.

Optimized Data Structures

- 1) Adding fill edges has complexity $O(deg^3)$
 - Sorting adjacency lists reduces this to $O(2 \cdot deg^2)$
- 2) Updating Min-Fill costs when eliminating x
 - Full reevaluation of *N*[*x*] and *N*[*N*[*x*]] expensive
 - Instead, start from previous Min-Fill costs:
 - If $(w, u) \in E$, $(u, x) \in E$ and $(w, x) \notin E$ subtract 1 from u
 - \forall fill-edges, (u, v) if $(w, u) \in E$ and $(w, v) \notin E$ add 1 to u
 - ∀ fill-edges (u, v) if (w, u)∈E and (w, v)∈E not added as fill-edge, subtract 1 from w

Experiments

- Large set of real-world benchmarks:
 - "largeFam", 242 problems, haplotype queries
 - 2000-6000 variables, domain size 2-6
 - "type4", 82 problems, genetic linkage analysis
 - Up to 15,000 variables, domain size 2-5
 - "protein", 138 problems, side-chain prediction
 - Up to 2000 variables, max. domain size *k*=81
- Compare against baseline implementation
 - Standard Min-Fill with tie breaking

Comparing Ranking Functions

- Cumulative IGVO results (1 hour, *largeFam*)
 - 242 problems, 2000-6000 variables, *k* = 6

Effect of Randomization

- Comparing pool sizes (30 minutes, *largeFam*)
 - 242 problems, 2000-6000 variables, *k* = 6

Effect of Randomization

- Comparing pool sizes (30 minutes, *largeFam*)
 - 242 problems, 2000-6000 variables, *k* = 6

Effect of Parallelization

- Single- vs. 12-threaded (30 minutes, type4)
 - 82 problems, up to 15,000 variables, *k* = 5

Effect of Parallelization

• Select results (30 minutes, *type4*)

	st		ard	IGVO(1)		IGVO(12)		
instance	n	iter	w	iter	w	iter	w	spd
100-18	7,435	6,430	51	26,689	48	324,664	48	12.2
110-19	7,303	3,852	54	13,005	52	158,806	51	12.2
120-18	8,656	6,594	47	17,604	45	211,830	44	12.0
120-25	9,171	3,789	57	14,576	56	176,156	54	12.1
130-20	9,328	3,167	60	12,541	58	154,647	57	12.3
130-22	10,271	3,747	56	13,107	52	168,635	52	12.9
140-23	10,998	2,318	61	7,654	60	91,576	57	12.0
150-22	11,799	2,636	57	8,423	54	99,949	53	11.9
170-18	12,186	2,202	59	6,913	55	82,756	55	12.0
170-22	14,641	2,795	58	8,147	56	97,423	54	12.0
190-19	15,433	3,044	56	6,473	54	77,287	52	11.9
190-21	15,125	5,284	43	9,545	42	115,048	40	12.1

Pushing Feasibility

- BEEM: Bucket Elimination with External Memory [Kask, Gelfand, & Dechter 10]
 - Utilizes hard drive storage to store tables
 - Four previously infeasible instances now solvable

			pr	evious	new		
instance	n	k	w	space	w	space	
110-21	7,675	5	37	16 TB	33	215 GB	
140-20	9,355	5	35	10 TB	28	4 GB	
180-21	14,157	5	38	9 TB	31	67 GB	
200-18	15,319	5	36	19 TB	30	41 GB	

Summary

- Iterative Greedy Variable Ordering (IGVO):
 - Unifying framework for finding orderings
 - Flexible yet simple and easily parallelizable
 - Implementation engineered for efficiency, algorithmic optimizations
- Often yields significantly better orderings
 - Allowed solving previously infeasible instances