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Graphical Model Inference
● Underlying graph structure encodes 

conditional independencies
● Exploited in many inference algorithms:

● Junction Tree (JT) [Lauritzen & Spiegelhalter 88]

Bucket Elimination (BE) [Dechter 99]

● Generalized BP [Yedidia, Freeman, & Weiss 05]

AND/OR Sampling [Gogate & Dechter 08]

● Complexity highly dependent on a given variable 
ordering and its (tree)width.

● O(kw) – k domain size, w treewidth



Problem Decomposition
● Captured by elimination/variable ordering

● Eliminate variable and connect neighbors, repeat
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C1={ x1, x2, x3, x4, x5 }
C2={ x2, x3, x4, x5}
C3={ x3, x4, x5 }
C4={ x4, x5 }
C5={ x5 }
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C2={ x1, x3, x5 }
C3={ x3, x1, x4 }
C4={ x1, x4 }
C5={ x1 }
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∣C i∣−1=2



Computing “good” orderings
● Finding minimal order is NP-hard [Arnborg et al. 87]

● Many anytime and approximate algorithms
● B&B: [Gogate & Dechter 04] [Bachoore & Bodlaender 06]

● Tabu Search: [Clautiaux et al. 04]

● Simulated Annealing: [Kjaerulff 92]

● Greedy schemes are effective and popular
● Not yet pushed to their limits
● Preview: n=15,319, domain size k=5

● w = 36 / 19 TB  →  w = 30 / 41 GB



Key Contributions
● Present comprehensive overview
● Develop unifying algorithm IGVO

● Algorithmic enhancements:
● Randomization through pooling
● Early termination
● Optimized data structures
● Parallelization

● Perform extensive empirical evaluation
● Obtain significant improvements



Greedy Variable Ordering
● Algorithm: GVO 

●

●

●

● Cost functions to consider:
● Min-Fill: number of fill edges added
● Min-Degree: degree of node in current graph
● Min-Complexity: cost of variable elimination

For i=1  to number of variables

π(i)←  variable with smallest elimination cost 

Eliminate π(i)



Empirical Observation
● “Smallest cost” leads to many ties

● Large variance in quality of resulting orders
● 20K Min-Fill iterations, random tie breaking:



Iterative GVO (IGVO)
● Break ties randomly and repeat! [Fishelson & Geiger 03]

● Algorithm: Iterative GVO (IGVO)
●

●

●

● Possible complexity objectives:
● Width:
● State space: 

For n=1  to number of iterations

πn←GVO(G) with random tie breaking

If C (πn ,G)  < C (π∗,G) , then π∗←πn

C (π ,G)≡width(π ,G)

C (π ,G)≡s(π ,G)=∑i
s(π(i) ,G i)



Pooling & Early Termination
● Pooling with parameters p and e :

● Select node π(i) from pool T of size p 
● Can include nodes with non-minimal cost

● Non-uniform sampling distribution over T:
●

● Similar in [Fishelson & Geiger 03]

● Early Termination:
● Abort iteration if cost of new ordering exceeds 

current optimum.

Sample node v  with probability p(v )=VC (v)e /∑t∈T
VC (t)e



Optimized Data Structures

1) Adding fill edges has complexity
● Sorting adjacency lists reduces this to

2) Updating Min-Fill costs when eliminating x
● Full reevaluation of N[x] and N[N[x]] expensive
● Instead, start from previous Min-Fill costs:

●

●

●

O(deg3)

O(2⋅deg 2)

If (w ,u)∈E ,(u , x )∈E  and (w , x )∉E  subtract 1 from u

∀fill-edges,(u , v ) if (w ,u)∈E  and (w ,v )∉E  add 1 to u

∀fill-edges (u , v ) if (w ,u)∈E  and (w ,v )∈E
      not added as fill-edge, subtract 1 from w



Experiments
● Large set of real-world benchmarks:

● “largeFam”, 242 problems, haplotype queries
● 2000-6000 variables, domain size 2-6

● “type4”, 82 problems, genetic linkage analysis
● Up to 15,000 variables, domain size 2-5

● “protein”, 138 problems, side-chain prediction
● Up to 2000 variables, max. domain size k=81

● Compare against baseline implementation
● Standard Min-Fill with tie breaking



Comparing Ranking Functions 
● Cumulative IGVO results (1 hour, largeFam)

● 242 problems, 2000-6000 variables, k = 6



Effect of Randomization
● Comparing pool sizes (30 minutes, largeFam)

● 242 problems, 2000-6000 variables, k = 6

zoom



Effect of Randomization
● Comparing pool sizes (30 minutes, largeFam)

● 242 problems, 2000-6000 variables, k = 6



Effect of Parallelization
● Single- vs. 12-threaded (30 minutes, type4)

● 82 problems, up to 15,000 variables, k = 5



Effect of Parallelization
● Select results (30 minutes, type4)



Pushing Feasibility
● BEEM: Bucket Elimination with External 

Memory [Kask, Gelfand, & Dechter 10]

● Utilizes hard drive storage to store tables
● Four previously infeasible instances now solvable



Summary
● Iterative Greedy Variable Ordering (IGVO):

● Unifying framework for finding orderings
● Flexible yet simple and easily parallelizable
● Implementation engineered for efficiency, 

algorithmic optimizations
● Often yields significantly better orderings

● Allowed solving previously infeasible instances
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