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Abstract

The performance of backtracking algorithms for solving �nite-domain constraint sat-
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are terminated by dead-ends. Look-ahead techniques use constraint propagation al-

gorithms to avoid such dead-ends altogether. This survey describes a number of

look-back variants including backjumping and constraint recording which recognize
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dynamic variable ordering, and discusses their combination with backjumping.
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1 Introduction

The constraint paradigm is a useful and well-studied framework for express-

ing many problems of interest in Arti�cial Intelligence. Constraint networks

have proven successful in modeling mundane cognitive tasks such as vision,

language comprehension, default reasoning, and abduction, as well as spe-

cialized reasoning tasks including diagnosis, design, and temporal and spatial

reasoning.

This paper presents a survey of backtacking search for solving constraint sat-

isfaction problems, with an emphasis on look-back enhancements. We provide

a detailed exposition of each algorithm, its theoretical underpinnings, and its

relationships with similar algorithms. Worst-case bounds on time and space

usage are developed for each algorithm. The look-back backjumping schemes

are given a fresh exposition through comparison of the three primary vari-

ants: Gaschnig's backjumping, graph-based backjumping, and con
ict-directed

backjumping. The complexity of several algorithms as a function of parame-

ters of the constraint graph are explicated. These include the complexity of

backjumping as a function of the depth of the DFS traversal of the constraint

graph, the complexity of learning algorithms as a function of the induced

width, and the complexity of look-ahead methods such as partial-lookahead

as a function of the size of the cycle-cutset of the constraint graph.

The remainder of the paper is organized as follows. Section 2 de�nes the con-

straint framework and provides an overview of the basic algorithms for solving

constraint satisfaction problems. The exposition is applicable to the general

non-binary CSP de�nition. In Section 3 we present the backtracking algorithm.

Sections 4 and 5 survey and analyze look-back methods such as backjumping

and learning schemes while Section 6 surveys look-ahead methods. Section 7

describes how look-back and look-ahead approaches can be integrated, and

provides a comparison of selected algorithms and heuristics the paper covers.

Finally, in Section 8 we present a brief historical review of the �eld. Previous

surveys on constraint processing as well as on backtracking algorithms can be

found in [18,49,46,77,45]; more recent relevant overviews are [13,56,55].

2 The constraint framework

2.1 De�nitions

A constraint satisfaction problem (CSP) or constraint network P = (X;D;C)

consists of a set of n variablesX = fx1; : : : ; xng, a set of n �nite value domains
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Unary constraint

DT4 = f1:00, 3:00g
Binary constraints

RfT1;T2g: f(1:00,2:00), (1:00,3:00), (2:00,1:00),
(2:00,3:00), (3:00,1:00), (3:00,2:00)g

RfT1;T3g: f(2:00,1:00), (3:00,1:00), (3:00,2:00)g
RfT2;T4g: f(1:00,2:00), (1:00,3:00), (2:00,1:00),

(2:00,3:00), (3:00,1:00), (3:00,2:00)g
RfT3;T4g: f(1:00,2:00), (1:00,3:00), (2:00,3:00)g
RfT3;T5g: f(2:00,1:00), (3:00,1:00), (3:00,2:00)g

Fig. 1. The constraint graph and constraint relations of the scheduling problem in

Example 1.

D = fD1; : : : ; Dng, and a set of c constraints or relations C = fR1; : : : ; Rcg.
Each value domain is a �nite set of values, one of which must be assigned

to the corresponding variable. A constraint is a relation, de�ned on a unique

subset of the variables, called the constraint's scope. Each tuple in the relation

denotes a legal combinations of values to the variables. Thus a constraint RS

with scope S � X is a subset of the Cartesian product of the domains of the

variables in S. Constraints can also be described by mathematical expressions

or by computable procedures that indicate valid and invalid assignments. A

constraint's arity is the number of variables in its scope: a unary constraint

applies to a single variable; a binary constraint has arity two. In a binary CSP

all constraints are unary or binary. A constraint graph associates a vertex

with each variable and has an edge between any two vertices whose associated

variables appear in the same constraint's scope.

Example 1. The constraint framework is useful for expressing and solving

scheduling problems. Consider the problem of scheduling 5 tasks T1, T2, T3,

T4, T5, each of which takes 1 hour to complete. The tasks may start at 1:00,

2:00, or 3:00. Any number of tasks can be executed simultaneously, subject

to the restrictions that T1 must start after T3, T3 must start before T4 and

after T5, T2 cannot execute at the same time as T1 or T4, and T4 cannot

start at 2:00.

With �ve tasks and three time slots, we can model the scheduling problem by

creating �ve variables, one for each task, and giving each variable the domain

f1:00, 2:00, 3:00g. Another equally valid approach is to create three variables,

one for each starting time, and to give each of these variables a domain which

is the power set of fT1, T2, T3, T4, T5g. Adopting the �rst approach, the

problem's constraint graph is shown in Figure 1. In this case the problem has

only unary and binary constraints. The constraint relations are shown on the

right of the �gure. For example, the tuple (1:00, 2:00) of constraint RfT1;T2g

indicates that starting task T1 at 1:00 and task T2 at 2:00 is permitted by
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the de�nition of the relation between these tasks.

A variable is called instantiated when it has been assigned a value from its

domain; otherwise it is uninstantiated. By xi = a or by (xi; a) we denote that

variable xi has been instantiated with value a from its domain. When describ-

ing an algorithm, xi  a indicates the act of assigning value a to variable xi. A

partial instantiation or partial assignment to a subset fx1; : : : ; xig � X is a tu-

ple of ordered pairs ((x1; a1); :::; (xi; ai)), frequently abbreviated to (a1; ::::; ai).

We also use ~ai to denote a consecutive set of instantiated variables from x1
to xi, and ~a to denote an assignment to an arbitrary subset of variables. The

notations can be mixed, e.g., (~ai; xj = b; xk = c), where j; k > i.

Let Y be a set of variables, and let ~a be an instantiation of the variables in

Y . Let RS be a constraint with scope S � Y . We denote by ~aS the tuple

consisting of the values in ~a assigned to variables that are in S. ~a satis�es RS

i� ~aS 2 RS; otherwise RS is violated by ~a. ~a is consistent if ~a satis�es all the

applicable constraints, namely, all constraints RT ; T � Y . A consistent partial

instantiation is also called a partial solution. A solution is a consistent instan-

tiation of all the variables. A nogood is an assignment of values to an arbitrary

subset of variables that is not part of any solution (see also De�nition 3). An

assignment xk = a con
icts with a partial solution ~ai if (~ai; xk = a) is not

consistent (see also De�nition 1).

Example 2. Refering again to the CSP in Figure 1, (T1=2:00, T2=3:00,

T3=1:00) is a partial solution, since the relevant constraints (between T1 and

T2 and between T1 and T3) are not violated by this partial instantiation.

However, this partial solution cannot be extended to include T4. T4=2:00 vi-

olates T4's unary constraint, and the other two values con
ict with the partial

solution: T4=1:00 violates the constraint between T3 and T4 and T4=3:00

violates the constraint between T2 and T4. (T1=3:00, T2=1:00, T3=2:00,

T4=3:00, T5=1:00) is a solution to the problem.

2.2 Constraint algorithms

Once a problem of interest has been formulated as a constraint satisfaction

problem, a solution can be found with a general purpose constraint algorithm.

Constraint satisfaction problems are NP-complete [32]. Many CSP algorithms

are based on the principles of search and deduction. In this section we brie
y

summarize the �eld of CSP algorithms.
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2.2.1 Search based backtracking

The term search is used to characterize a large category of algorithms which

solve problems by guessing an operation to perform or an action to take,

possibly with the aid of a heuristic [62,64]. A good guess results in a new state

that is nearer to a goal. If the operation does not result in progress towards the

goal (which may not be apparent until later in the search), then the operation

can be retracted and another guess made.

For CSPs, search is exempli�ed by the backtracking algorithm. Backtracking

search uses the operation of assigning a value to an uninstantiated variable,

thereby extending the current partial solution. It explores the search space

in a depth-�rst manner. If no acceptable value can be found, the previous

assignment is retracted, which is called a backtrack. In the worst case the

backtracking algorithm requires exponential time in the number of variables,

but only linear space. The backtracking algorithm was �rst described more

than a century ago, and since then has been reintroduced several times [10].

2.2.2 Deduction based constraint propagation

To solve a problem by deduction is to apply reasoning that transforms the

problem into an equivalent but more explicit form. In the CSP framework the

most frequently used type of deduction is known as constraint propagation

or as consistency enforcing algorithms [59,48,25]. These procedures transform

a constraint network by deducing new constraints, tightening existing con-

straints, and removing values from variable domains. In general, a consistency

enforcing algorithmwill make some partial solution of a subnetwork extendible

to some surrounding network by guaranteeing a certain degree of local consis-

tency, de�ned as follows.

A constraint network is 1-consistent if the values in the domain of each variable

satisfy the network's unary constraints. A network is k-consistent, k � 2,

i� given any consistent partial instantiation of any k � 1 distinct variables,

there exists a consistent instantiation of any single additional variable [24].

The terms node-, arc-, and path-consistency [48] correspond to 1-, 2-, and 3-

consistency, respectively. Given an ordering of the variables, the network is

directional k-consistent i� any subset of k� 1 variables is k-consistent relative
to every single variable that succeeds the k � 1 variables in the ordering [20].

A problem that is k-consistent for all k is called globally consistent.

A variety of algorithms have been developed for enforcing di�erent levels of

local consistency, which is also called constraint propagation [50,58,14,79,8,20].

For example, arc-consistency algorithms can delete values from the domains of

variables, to ensure that each value in the domain of each variable is consistent

with at least one value in the domain of each other variable. Path-consistency
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is achieved by introducing new constraints or nogoods which disallow certain

pairs of values. Relational-based consistency enforcing algorithms allow 
exi-

ble extensions of consistency algorithms that are constraint based rather than

variable based [22].

Constraint propagation can be used as a CSP solution procedure. If a problem

can be made k-consistent, for all k from 1 to n�1, then solutions can easily be
found in the transformed problem, without backtracking. However, enforcing

k-consistency requires in general exponential time and exponential space in k

[14], and so in practice only bounded local consistency enforcing algorithms

with k � 3 are used.

Example 3. In Example 1, enforcing 1-consistency on the network will result

in the value 2:00 being removed from the domain of T4, since that value is

incompatible with a unary constraint. Enforcing 2-consistency will cause sev-

eral other domain values to be removed. For instance, the constraint between

T1 and T3 implies that if T1 is scheduled for 1:00, there is no possible time

for T3, since it must occur before T1. Therefore, an arc-consistency algorithm

will, among other actions, remove 1:00 from the domain of T1.

Algorithms that enforce local consistency can be performed as a preprocessing

step in advance of a search algorithm. In most cases, backtracking will work

more eÆciently on representations that are as explicit as possible, that is,

those having a high level of local consistency. As an extreme preprocessing

alternative, adaptive-consistency [20] is a technique that adjusts the level of

enforced consistency on a node by node basis. An ordered constraint graph

processed by adaptive-consistency can be solved without backtracking search.

The space and time complexity of adaptive-consistency is exponential in a

parameter of the ordered graph called w�
d
(see De�nition 12). The value of w�

d

can be computed in advance in linear time for a given ordering d. The value of

the tradeo� between the e�ort spent on pre-processing and the reduced e�ort

spent on search has to be assessed experimentally, and is dependent on the

character of the problem instance being solved [19].

Varying levels of consistency-enforcing can also be interleaved with the search

process. Indeed, this is the primary way consistency enforcing techniques are

incorporated into backtracking search and into constraint programming lan-

guages [42,70].

2.2.3 Other constraint algorithms

Structure-driven algorithms, which may employ both search and consistency-

enforcing components, emerge from studying the topology of constraint prob-

lems that are tractable. Tractable classes of constraint networks are generally
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recognized by realizing that for some problems, enforcing low-level consistency

(in polynomial time) guarantees global consistency and therefore a solution to

the problem. The basic graph structure that supports tractability is a tree [50].

In particular, enforcing 2-consistency on a tree-structured binary CSP network

ensures a solution with no dead-ends along some recognizable ordering of the

variables.

A popular class of incomplete algorithms are stochastic methods which typ-

ically move in a hill-climbing manner augmented with random steps in the

space of complete instantiations [57]. Such techniques are not guaranteed to

solve a problem instance. In the CSP community interest in stochastic ap-

proaches was sparked by the success of the GSAT algorithm [73] and its vari-

ants.

3 Backtracking

3.1 The backtracking algorithm

Backtracking is the primary search algorithm for constraint problems. It tra-

verses the search space of partial instantiations in a depth-�rst manner. The

algorithm maintains a partial solution that denotes a state in the search space.

Backtracking has two phases: a forward phase in which the next variable is

selected and the current partial solution is extended by assigning a consis-

tent value, if one exists for the next variable; and a backward phase in which,

when no consistent solution exists for the current variable, focus returns to the

previous variable assigned. Figure 2 describes a basic backtracking algorithm.

In this description, backtracking repeatedly calls the selectValue sub-

procedure to �nd a value for the current variable, xi, that is consistent with

the current partial instantiation, ~ai�i. selectValue, in turn, relies on the

consistent subprocedure, which returns true only if current partial solu-

tion is consistent with the candidate assignment to the next variable. If se-

lectValue succeeds in �nding a value, backtracking proceeds to the next

variable, xi+1. If selectValue cannot �nd a consistent value for xi, then a

dead-end occurs, and backtracking looks for a new value for the previous

variable, xi�1. The algorithm terminates when all variables have assignments,

or when it has proven that all values of x1 do not lead to a solution, and thus

that the problem is unsolvable. Our presentation of backtracking stops af-

ter a single solution has been found, but it could easily be modi�ed to return

all solutions, or a desired number.

The backtracking procedure employs a series of mutable value domains

D0
i
such that each D0

i
� Di. D

0
i
holds the subset of Di that has not yet been
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procedure backtracking

Input: A constraint network P = (X;D;C).

Output: Either a solution, or noti�cation that the network is inconsistent.

i 1 (initialize variable counter)

D0
i
 Di (copy domain)

while 1 � i � n

instantiate xi  selectValue

if xi is null (no value was returned)

i i� 1 (backtrack)

else

i i+ 1 (step forward)

D0
i
 Di

end while

if i = 0

return \inconsistent"

else

return instantiated values of fx1; : : : ; xng
end procedure

subprocedure selectValue (return a value inD0
i
consistent with ~ai�1)

while D0
i
is not empty

select an arbitrary element a 2 D0
i
, and remove a from D0

i

if consistent(~ai�1; xi = a)

return a

end while

return null (no consistent value)

end procedure

Fig. 2. The backtracking algorithm.

examined under the current partial instantiation of earlier variables. The D0

sets are not needed if the values can be mapped to a contiguous set of integers

that are always considered in ascending order; in this case a single integer can

be used as a marker to divide values that have been considered from those that

have not. We use the D0 sets to describe backtracking for increased generality

and to be consistent with the portrayal of more complex algorithms later in

the paper.

The selectValue and consistent subprocedures are separated from the

main backtracking routine for clarity. Both have access to the local vari-

ables and parameters of the main procedure. consistent handles general

binary and non-binary constraints; its implementation, which we do not spec-

ify, depends on how constraints are represented by the computer program.

The same consistent subprocedure is used later in the description of other

algorithms.
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Example 4. Consider the coloring problem in Figure 3. Assume backtracking

search for a solution using two possible orderings: d1 = x1; x2; x3; x4; x5; x6; x7
and d2 = x1; x7; x4; x5; x6; x3; x2. The search spaces along orderings d1 and

d2, as well as those portions explicated by backtracking from left to right,

are depicted in Figure 4(a) and 4(b), respectively. Only legal states, namely

partial solutions, are depicted in the �gure.

The complexity of consistent and of selectValue can be determined,

based on the premise that the constraints are stored in tables. Let c be the

number of constraints in the problem, and let t be the maximum number of

tuples in a constraint. Let m be the maximum size of any domain in D. If the

maximum constraint arity is r then t � mr. The constraints can be organized

to permit �nding a tuple of a given constraint in worst-case logarithmic time:

log t � r logm � n logm. Since a variable may participate in up to c con-

straints, the worst-case time complexity of consistent is O(c log t) which is

also bounded by O(c r logm). selectValuemay invoke consistent up tom

times so the worst-case time complexity of selectValue is O(cm r logm), or

O(cm log t). For the special case of a binary CSP, it can be practical to store

the constraints as a table of boolean values, indexed by the two variables and

their values. The tentative instantiation (xi; a) must then be checked with at

most n earlier variables, e�ectively yielding O(n) complexity for consistent

and O(nm) complexity for selectValue. If consistent performs compu-

tations other than table lookups, its complexity is of course dependent on the

nature of these computations. In summary,

Proposition 1 For general CSPs with constraints stored in tables, having n

variables, c constraints, with constraint arity bounded by r, the number of tu-

ples in a constraint bounded by t, and at most m values for a variable, the time

complexity of consistent is O(c log t) or O(c r logm), and the time complex-

ity of selectValue is O(cm r logm) or O(cm log t). For binary CSPs, the

complexity of selectValue is O(nm).

3.2 Improvements to backtracking

Much of the work in constraint satisfaction during the last decade has been

devoted to improving the performance of backtracking search. Backtracking

usually su�ers from thrashing, namely, rediscovering the same inconsistencies

and same partial successes during search.

The performance of backtracking can be improved by reducing the size of the

search space, which is determined by the algorithm's control strategy, by the

constraints' inherent level of local consistency, by the order of variable instan-

tiation, and, when a single solution suÆces, by the order in which values are
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Fig. 3. A coloring problem with variables (x1; x2; : : : ; x7). The domain of each vari-

able is written inside the corresponding node. Each arc represents the constraint

that the two variables it connects must be assigned di�erent colors.

assigned to each variable. Addressing these factors, researchers have developed

procedures of two types: those employed before performing the search, thus

bounding the size of the underlying search space; and those used dynamically

during the search, which decide which parts of the search space will not be vis-

ited. Commonly used pre-processing techniques are arc- and path-consistency

algorithms, and heuristic approaches for determining a �xed variable ordering

[41,25,21].

Procedures for dynamically improving the pruning power of backtracking can

be conveniently classi�ed as look-back schemes and look-ahead schemes, in

accordance with backtracking's two main phases of going forward to assemble

a solution and going back in case of a dead-end.

Look-back schemes are invoked when the algorithm is preparing to backtrack

after encountering a dead-end. These schemes perform two functions:

(1) Deciding how far to backtrack. By analyzing the reasons for the dead-

end, irrelevant backtrack points can often be avoided so that the algo-

rithm goes back directly to the source of failure, instead of just to the

immediately preceding variable in the ordering. This procedure is often

referred to as backjumping.

(2) Recording the reasons for the dead-end in the form of new constraints, so

that the same con
icts will not arise again later in the search. The terms

used to describe this function are constraint recording and learning.

Look-ahead schemes can be invoked whenever the algorithm is preparing to

assign a value to the next variable. Frequently these schemes discover, from a

restricted amount of constraint propagation, how the current decisions about

variable and value selection will impact future search. This information is used

in two ways.
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Fig. 4. Backtracking search for the orderings (a) d1 = x1; x2; x3; x4; x5; x6; x7 and

(b) d2 = x1; x7; x4; x5; x6; x3; x2 on the example instance in Figure 3. Intermediate

states are indicated by �lled ovals, dead-ends by �lled rectangles, and solutions by

empty ovals. The colors are considered in order (blue, green, red, teal), and are

abbreviated by their �rst letters. Thick lines denote the portion of the search space

explored by backtracking when stopping after the �rst solution.

(1) Decide which variable to instantiate next, if the order is not predeter-

mined. Generally, it is advantageous to �rst instantiate variables that

maximally constrain the rest of the search space. Selecting the variable

with least number of values in its domain (after constraint propagation)

tends to minimize the size of the search tree [41].

(2) Decide which value to assign to the next variable. Generally, when search-

ing for a single solution an attempt is made to assign a value that maxi-

mizes the number of options available for future assignments.

In sections 4 and 5 we will describe in detail several principle look-back

schemes, and section 6 will provide an overview of look-ahead methods, in-

cluding a combination of look-ahead with look-back methods.
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4 Backjumping

Backjumping schemes are one of the primary tools for reducing backtracking's

undesirable tendency to rediscover the same dead-ends. If a value cannot be

found for variable xi, backtracking returns to xi�1. Suppose a new value

for xi�1 exists but there is no constraint between xi and xi�1. A dead-end

will be encountered at xi for each value of xi�1 until all values of xi�1 have

been exhausted. For instance, the problem in Figure 3 will have a dead-end

at x7 given the assignment (x1 = red; x2 = blue; x3 = blue; x4 = blue; x5 =

green; x6=red). Backtracking will then return to x6 and instantiate it as x6 =

teal, but the same dead-end will be encountered at x7. Instead, backjumping

algorithms can identify the culprit variable responsible for the dead-end and

then \jump" back immediately to reinstantiate the culprit variable, instead of

instantiating the chronologically previous variable repeatedly. Identi�cation of

a culprit variable is based on the notion of con
ict sets.

4.1 Con
ict sets

A dead-end state at level i of the search tree indicates that a current partial

instantiation ~ai = (a1; :::; ai) con
icts with all values of xi+1. (a1; :::; ai) is

called a dead-end state and xi+1 is called a dead-end variable. The subtuple

~ai�1 = (a1; :::; ai�1) may also be in con
ict with xi+1, and therefore going back

to xi and changing its value will not always resolve the dead-end at variable

xi+1. In general, a tuple ~ai that is a dead-end may contain many subtuples

that are in con
ict with xi+1. Any such partial instantiation will not be part

of any solution. Backtracking's control strategy may retreat to a subtuple ~aj
(alternately, to variable xj) without resolving all or even any of these con
ict

sets. As a result, a dead-end at xi+1 is guaranteed to recur. Therefore, rather

than going to the previous variable, the algorithm should jump back from the

dead-end state at ~ai = (a1; : : : ; ai) to the most recent variable xb such that

~ab�1 = (a1; : : : ; ab�1) contains no con
ict sets of the dead-end variable xi+1.

As it turns out, identifying this culprit variable is fairly easy.

De�nition 1 (con
ict set) Let ~a = (ai1 ; : : : ; aik) be a consistent instanti-

ation of an arbitrary subset of variables, and let x be a variable not yet in-

stantiated. If there is no value b in the domain of x such that (~a; x = b) is

consistent, we say that ~a is a con
ict set of x, or that ~a con
icts with variable

x. If, in addition, ~a does not contain a subtuple that con
icts with x, ~a is

called a minimal con
ict set of x.

De�nition 2 (leaf dead-end) Given a variable ordering d = (x1; :::; xn), let

~ai = (a1; :::; ai) be a tuple that is consistent. If ~ai is in con
ict with xi+1 it is
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called a leaf dead-end.

De�nition 3 (nogood) Given a problem P = (X;D;C), any partial instan-

tiation ~a that does not appear in any solution of P is called a nogood. Minimal

nogoods have no nogood subtuples.

A con
ict set is clearly a nogood, but there are nogoods that are not con-


ict sets of any single variable. Namely, they may con
ict with two or more

variables simultaneously.

Example 5. Consider the CSP from Figure 3, with the variable ordering

(x1; x5; x4; x7; x2; x3; x6). The partial instantiation (x1 = blue; x5 = blue) is

not a dead-end, and is not a con
ict set of any later variable. However, (x1 =

blue; x5 = blue) is a nogood, since there is no instantiation of both x4 and x7
consistent with these values of x1 and x5.

Whenever backjumping discovers a dead-end, it should jump as far back as

possible without skipping potential solutions. Intuitively, these two issues of

safety in jumping and maximality in the magnitude of a jump need to be

de�ned relative to the information recorded by a given algorithm. What is

safe and maximal for one style of backjumping may not be safe and maximal

for another, especially if they are engaged in di�erent levels of information

gathering. Next, we will discuss two styles of backjumping, Gaschnig's back-

jumping and graph-based backjumping, that lead to di�erent notions of safety

and maximality.

De�nition 4 (safe jump) Let ~ai = (a1; :::; ai) be a leaf dead-end state. We

say that jumping to xj, where j � i, is safe if the partial instantiation ~aj =

(a1; : : : ; aj) is a nogood, namely, it cannot be extended to a solution.

In other words, we know that if xj's value is changed no solution will be

missed.

De�nition 5 (culprit variable) Let ~ai = (a1; : : : ; ai) be a leaf dead-end.

The culprit index relative to ~ai is de�ned by b = minfj � i j ~aj con
icts with xi+1g.
We de�ne the culprit variable of ~ai to be xb.

We use the notions of culprit tuple ~ab and culprit variable xb interchangeably.

By de�nition, ~ab is a con
ict set that is minimal relative to pre�x tuples,

namely, those associated with a pre�x subset of the ordered variables. We

claim that jumping back to xb is both safe and maximal: safe in that ~ab cannot

be extended to a solution; maximal in that jumping back to an earlier node

risks missing a solution.

Proposition 2 If ~ai is a leaf dead-end discovered by backtracking, and xb is
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the culprit variable, then ~ab, is a safe backjump destination, and ~au; u < b, is

not.

Proof: By de�nition of a culprit, ~ab is a con
ict set of xi+1 and therefore

is a nogood. Consequently, jumping to xb and changing the value ab of xb
to another consistent value of xb (if one exists) will not result in skipping a

potential solution. To prove maximality, observe that jumping farther back to

an earlier node risks skipping potential solutions. Speci�cally, if the algorithm

jumps to xu; u < b, then by the de�nition of culprit variable ~au is not a con
ict

set of xi+1, and therefore it may be part of a solution. Note that ~au may or

may not be a nogood of the original problem, but it is not a nogood of the

subproblem de�ned on fx1 : : : xig, and therefore the backjumping algorithm

cannot determine whether it is safe, given the information it has. 2

Next we present three variants of backjumping. Gaschnig's backjumping im-

plements the idea of jumping back to the culprit variable only at leaf dead-

ends. Graph-based backjumping extracts information about irrelevant back-

track points exclusively from the constraint graph. It introduces the notion

of jumping back at internal dead-ends as well as leaf dead-ends. Con
ict-

directed backjumping combines maximal backjumps at both leaf and internal

dead-ends.

4.2 Gaschnig's backjumping

Rather than wait for a dead-end ~ai to occur, Gaschnig's backjumping [34]

records some information while generating ~ai, and uses this information to de-

termine the dead-end's culprit variable xb. Gaschnig's backjumping algorithm

is presented in Figure 5; the subprocedure selectValue-gbj identi�es and

records the culprit variable. As originally described by Gaschnig, the algo-

rithm handled binary CSPs. Our version makes a straight-forward extension

to high-arity constraints. Each variable xi has an associated number latesti,

which points, when xi is a dead-end variable, to the latest predecessor tested

for incompatibility with some possible instantiation of xi. With a binary CSP,

we can say more concretely that, letting latesti = b, there is a binary constraint

prohibiting the current instantiation of xb and (xi; a
0), for some a0 2 Di, while

(xi; a
0) is consistent with ~ab�1. If xi does have at least one consistent value,

relative to ~ai�1, then xi is not a dead-end variable, and latesti is assigned the

value i� 1. gaschnig's-backjumping jumps from a leaf dead-end ~ai that is

inconsistent with xi+1, back to xlatesti+1 , the culprit since the dead-end variable

is xi+1.

Proposition 3 Gaschnig's backjumping implements only safe and maximal

backjumps in leaf dead-ends.
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procedure gaschnig's-backjumping

Input: A constraint network P = (X;D;C).

Output: Either a solution, or a decision that the network is inconsistent.

i 1 (initialize variable counter)

D0
i
 Di (copy domain)

latesti  0 (initialize pointer to latest)

while 1 � i � n

instantiate xi  selectValue-gbj

if xi is null (no value was returned)

i latesti (backjump)

else

i i+ 1

D0
i
 Di

latesti  0

end while

if i = 0

return \inconsistent"

else

return instantiated values of fx1; : : : ; xng
end procedure

subprocedure selectValue-gbj

while D0
i
is not empty

select an arbitrary element a 2 D0
i
, and remove a from D0

i

consistent  true

k 1

while k < i and consistent

if k > latesti (latesti records the latest)

latesti  k (variable checked for consistency)

if consistent(~ak; xi = a)

k k + 1

else

consistent  false

end while

if consistent

return a

end while

return null (no consistent value)

end procedure

Fig. 5. Gaschnig's backjumping algorithm.

15



Proof: Whenever there is a leaf dead-end ~ai�1, the algorithm has a partial

instantiation ~ai�1 = (a1; : : : ; ai�1). Let j = latesti. The algorithm jumps back

to xj, namely, to the tuple ~aj. Clearly, ~aj is in con
ict with xi, so we only

have to show that ~aj is minimal. Since j = latesti when the domain of xi is

exhausted, and since a dead-end did not happen previously, any earlier ~ak for

k < j is not a con
ict set of xi, and therefore xj is the culprit variable, as

de�ned in De�nition 5. From Proposition 2, it follows that this algorithm is

safe and maximal. 2

Example 6. For the problem in Figure 3, at the dead-end for x7 (x1 =

red; x2 = blue; x3 = blue; x4 = blue; x5 = green; x6 = red), latest7 = 3,

because x7 = red was ruled out by x1 = red, blue was ruled out by x3 = blue,

and no later variable had to be examined. On returning to x3, the algorithm

�nds no further values to try (D0
3 = ;). Since latest3 = 2, the next variable

examined will be x2. This demonstrate the algorithm's ability to backjump on

leaf dead-ends. On subsequent dead-ends (at x3) it goes back to its preceding

variable only.

In Gaschnig's backjumping, a jump is made only at a leaf dead-end. If all the

children of a node in the search tree lead to dead-ends, as happens with x3 =

red under x2 = green in Figure 4 (a), the node is called an internal dead-end.

Algorithm graph-based backjumping implements jumps at internal dead-ends

as well as at leaf dead-ends.

4.3 Graph-based backjumping

Graph-based backjumping extracts knowledge about possible con
ict sets from

the constraint graph exclusively. (The graph need not represent a binary CSP.)

Whenever a dead-end occurs and a partial solution cannot be extended to

the next variable x, the algorithm jumps back to the most recent variable

y adjacent to x in the constraint graph; if y has no more values (namely, it

is an internal dead-end), the algorithm jumps back again, this time to the

most recent variable z connected to x or y; and so on. The second and any

further jumps are jumps at internal dead-ends. By using the precompiled

information encoded in the graph, the algorithm avoids computing latesti for

each consistency test. Graph-based backjumping uses the subset of earlier

variables adjacent to xi+1 in the constraint graph as an approximation of

the minimal con
ict set of xi+1. Even when a constraint exists between two

variables xh and xi+1, the particular value currently assigned to xh may not

con
ict with any potential value of xi+1.

The importance of graph-based backjumping is that studying algorithms with
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procedure graph-based-backjumping

Input: A constraint network P = (X;D;C).

Output: Either a solution, or a decision that the network is inconsistent.

compute anc(xi) for each xi (see De�nition 6 in text)

i 1 (initialize variable counter)

D0
i
 Di (copy domain)

Ii  anc(xi) (initialize induced ancestor set)

while 1 � i � n

instantiate xi  selectValue

if xi is null (no value was returned)

iprev  i

i latest in Ii (backjump)

Ii  Ii [ Iiprev � fxig(merge to update Ii)

else

i i+ 1

D0
i
 Di

Ii  anc(xi)

end while

if i = 0

return \inconsistent"

else

return instantiated values of fx1; : : : ; xng
end procedure

subprocedure selectValue (same as backtracking's)

while D0
i
is not empty

select an arbitrary element a 2 D0
i
, and remove a from D0

i

if consistent(~ai�1; xi = a)

return a

end while

return null (no consistent value)

end procedure

Fig. 6. The graph-based backjumping algorithm.

performance tied to the constraint graph leads to graph-theoretic complexity

bounds and thus to graph-based heuristics aimed at reducing these bounds.

Such bounds are also applicable to algorithms that use re�ned run-time infor-

mation such as Gaschnig's backjumping and con
ict-directed backjumping. In

particular, we will show that when using a depth-�rst search ordering of the

variables, graph-based backjumping is simple to implement and allows a com-

plexity bound as a function of the depth of the constraint graph's depth-�rst

search spanning tree.

We now introduce some graph terminology which will be used ahead.
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Fig. 7. Ordered constraint graphs on the problem in Figure 3: (a)

d1 = x1; x2; x3; x4; x5; x6; x7; (b) the induced graph along d1; (c)

d2 = x1; x7; x4; x5; x6; x2; x3; (d) a DFS spanning tree along ordering d2.

De�nition 6 (ancestors, parent) Given a constraint graph and an order-

ing of the nodes d, the ancestor set of variable x, denoted anc(x), is the subset

of the variables that precede and are connected to x. The parent of x, denoted

p(x), is the most recent (or latest) variable in anc(x). If ~ai = (a1; : : : ; ai) is a

leaf dead-end, we equate anc(~ai) with anc(xi+1), and p(~ai) with p(xi+1).

Example 7. Consider the ordered graph in Figure 7a along the ordering

d1 = x1; : : : ; x7. In this example, anc(x7) = fx1; x3; x4; x5g and p(x7) = x5.

The parent of the leaf dead-end ~a6 = (blue; green; red; red; blue; red) is x5,

which is the parent of x7.

It is easy to show that if ~ai is a leaf dead-end, jumping back to p(~ai) is safe.

Moreover, if only graph-based information is utilized, and culprit variables are

not computed as in Gaschnig's backjumping, it is unsafe to jump back any

further. When facing an internal dead-end at ~ai, however, it may not be safe

to jump to its parent p(~ai), as the next example demonstrates.
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Example 8. Consider again the constraint network in Figure 3 with ordering

d1 = x1; : : : ; x7. In this ordering, x1 is the parent of x4. Assume that a dead-

end occurs at node x5 and that the algorithm returns to x4. If x4 has no more

values to try, it will be perfectly safe to jump back to its parent x1. Now let us

consider a di�erent scenario. The algorithm encounters a dead-end leaf at x7,

so it jumps back to x5. If x5 is an internal dead-end, control is returned to x4.

If x4 is also an internal dead-end, then jumping to x1 is unsafe now, since if we

change the value of x3 perhaps we could undo the dead-end at x7 that started

this latest retreat. If, however, the dead-end variable that initiated this latest

retreat was x6, it would be safe to jump as far back as x2 upon encountering

an internal dead-end at x4.

Clearly, when encountering an internal dead-end, it matters which node ini-

tiated the retreat. As we will show, the graph-based culprit variable is deter-

mined by the induced ancestor set in the current session.

De�nition 7 (session) We say that backtracking invisits xi if it processes

xi coming from a variable earlier in the ordering. A session of xi starts upon

invisiting xi and ends when retracting to a variable that precedes xi. Given

a constraint network that is being searched by a backtracking or backjumping

algorithm, the current session of xi is the set of variables invisited by the

algorithm since the latest invisit to xi.

De�nition 8 (induced ancestors, induced parent) Let xi be a variable

that is an internal dead-end. Let Y be a subset of the variables consisting of all

the dead-ends in the current session of xi. We denote anc(Y ) = [y2Y anc(y).
The induced ancestor set of xi relative to Y , Ii(Y ), is the union of all Y 's

ancestors, restricted to variables that precede xi. Formally,

Ii(Y ) = anc(Y ) \ fx1; :::; xi�1g

The induced parent of xi relative to Y , Pi(Y ), is the latest variable in Ii(Y ).

Theorem 1 Let ~ai be a dead-end (leaf or internal), and let Y be the set of

dead-end variables (leaf or internal) in the current session of xi. If only graph

information is used, xj = Pi(Y ) is the earliest safe variable to jump to.

Proof: By de�nition of xj, all the variables between xj and xi+1 do not par-

ticipate in any constraint with any of the dead-end variables Y in xi's current

session. Consequently, any change of value to any of these variables will not

perturb any of the nogoods that caused the dead-end in ~ai, and so they can

be skipped.

We next show that if the algorithm jumped to a variable earlier than xj, some

solutions might be skipped. Let yi be the �rst dead-end variable in Y that is
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connected to xj. We argue that there is no way, based on graph information

only, to rule out the possibility that there exists an alternative value of xj
that may lead to a solution. Let xi be assigned the value ai at the moment

a dead-end at yi occurred. Variable yi is either a leaf dead-end or an internal

dead-end. If yi is a leaf dead-end, and since xj is an ancestor of yi, there might

be a constraint R, whose scope S contains xj and yi, such that the current

assignment ~ai restricted to S cannot be extended to a legal value of yi. Clearly,

had the value of xj been changed, the current assignment may be extendible

to a legal tuple and the dead-end at yi may have not occurred. Therefore the

possibility of a solution with an alternative value to xj was not ruled out. In

the case that yi is an internal dead-end, it means that there were no values of

yi that were both consistent with ~aj and that could be extended to a solution.

It is not ruled out (when using the graph only), however, that di�erent values

of xj, if attempted, could permit new values of yi for which a solution might

exist. 2

Example 9. Consider again the ordered graph in Figure 7a, and let x4 be a

dead-end variable. If x4 is a leaf dead-end, then Y = fg, and x1 is the sole

member in its induced ancestor set I4(Y ). The algorithm may jump safely

to x1. If x4 is an internal dead-end with Y = fx5; x6g, the induced ancestor

set of x4 is I4(fx5; x6g) = fx1; x2g, and the algorithm can safely jump to x2.

However, if Y = fx5; x7g, the corresponding induced parent set I4(fx5; x7g) =
fx1; x3g, and upon encountering a dead-end at x4, the algorithm should retract

to x3. If x3 is also an internal dead-end the algorithm retracts to x1 since

I3(fx4; x5; x7g) = fx1g. If, however, Y = fx5; x6; x7g, when a dead-end at x4
is encountered (we could have a dead-end at x7, jump back to x5, go forward

and jump back again at x6, and another jump at x5) then I4(fx5; x6; x7g) =
fx1; x2; x3g, the algorithm retracts to x3, and if it is a dead-end it will retract

further to x2, since I3(fx4; x5; x6; x7g) = fx1; x2g.

Algorithm graph-based-backjumping in Figure 6 implements the prin-

ciples of graph-based backjumping. It jumps to maximal culprit variables at

both leaf and internal dead-ends. For each variable xi, the algorithm maintains

xi's induced ancestor set Ii relative to the dead-ends in xi's current session.

4.4 Con
ict-directed backjumping

The two ideas, jumping back to a variable that, as instantiated, is in con
ict

with the current variable, and jumping back at internal dead-ends, can be

integrated into a single algorithm, the con
ict-directed backjumping algorithm

[67]. This algorithm uses the scheme we have outlined for graph-based back-

jumping but, rather than relying on graph information, exploits information
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gathered during search. For each variable, the algorithm maintains an induced

jumpback set. Given a dead-end tuple ~ai, we de�ne next the jumpback set of ~ai
(or of xi+1) as the variables participating in ~ai's earliest minimal con
ict set.

We �rst de�ne an ordering between constraints. Let scope(R) denote the scope

of constraint R.

De�nition 9 (earlier constraint) Given an ordering of the variables in a

constraint problem, we say that constraint R is earlier than constraint Q if the

latest variable in scope(R)�scope(Q) precedes the latest variable in scope(Q)�
scope(R).

For instance, under the variable ordering (x1; x2; : : :), if the scope of constraint

R1 is (x3; x5; x8; x9) and the scope of constraint R2 is (x2; x6; x8; x9), then R1 is

earlier than R2 because x5 precedes x6. Given an ordering of all the variables

in X, the earlier relation de�nes a total ordering on the constraints in C.

De�nition 10 (earliest minimal con
ict set) For a problem P = (X;D;C)

with an ordering of the variables d, let ~ai be a dead-end tuple whose dead-end

variable is xi+1. The earliest minimal con
ict set of ~ai, denoted emc(~ai), can be

generated as follows. Consider the constraints in C = fR1; : : : ; Rcg with scopes

fS1; : : : ; Scg, in order as de�ned in De�nition 9. For j = 1 to c, if there exists

b 2 Di+1 such that Rj is violated by (~ai; xi+1 = b), but no constraint earlier

than Rj is violated by (~ai; xi+1 = b), then var-emc(~ai)  var-emc(~ai) [ Sj.

emc(~ai) is the subtuple of ~ai containing just the variable-value pairs where the

variable is in var-emc(~ai).

De�nition 11 (jumpback set) The jumpback set Ji of a dead-end ~ai is

de�ned to include the var-emc(~aj) of all the dead-ends ~aj, j � i, that occurred

in the current session of xi. Formally,

Ji =
[
fvar-emc(~aj) j ~aj is a dead-end in xi's sessiong

var-emc(~ai) plays the role of ancestors in the graphical scheme while Ji plays

the role of induced ancestors. However, rather than being elicited from the

graph, they are dependent on the particular value instantiation and can be

uncovered during search. The set of variables in var-emc(~ai) is a subset of

the set of graph-based variables in anc(xi+1). The variables in the graph-

based anc(xi+1) that are not included in var-emc(~ai), either participate only

in irrelevant constraints (do not exclude any value of xi+1) relative to the

current instantiation ~ai or, even if relevant, are super
uous, as they rule out

values of xi+1 that were eliminated by earlier constraints. Consequently, using

similar arguments as in the graph-based case, it is possible to show that:

Proposition 4 Given a dead-end tuple ~ai, the latest variable in its jumpback
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set Ji is the earliest variable to which it is safe to jump. 2

Proof (sketch): Let xj be the latest variable in the jumpback set Ji of a

dead-end ~ai. As in the graph-based case, jumping back to a variable later

than xj will not remove some of the nogoods that were active in causing this

dead-end, and therefore the same dead-end will recur. To show that we cannot

jump back any earlier than xj we need to show that because we generate the

var-emc set by looking at earliest constraints �rst, it is not possible that there

exists an alternative set of constraints for which ~ai is a dead-end and for which

the jumpback set yields an earlier culprit variable. Therefore, it is possible that

changing the value of xj will yield a solution, and this solution could be missed

if we jumped to an earlier variable. 2

Algorithm conflict-directed-backjumping is presented in Figure 8. It

computes the jumpback sets for each variable, and uses them to determine

the variable to which it returns after a dead-end. Therefore,

Proposition 5 Algorithm con
ict-directed backjumping jumps back to the lat-

est variable in the dead-end's jumpback set, and is therefore safe and maximal.

2.

Example 10. Consider the problem of Figure 3 using ordering d1 = (x1; : : : ; x7).

Given the dead-end at x7 and the assignment ~a6 = (blue; green; red; red; blue; red),

the emc set is ((x1; blue); (x3; red)) since it accounts for eliminating all the

values of x7. Therefore, algorithm con
ict-directed backjumping jumps to x3.

Since x3 is an internal dead-end whose own var-emc set is fx1g, the jumpback

set of x3 includes just x1, and the algorithm jumps again, this time back to

x1.

4.5 Complexity of backjumping

We will now return to graph-based backjumping and show how graph informa-

tion can yield graph-based complexity bounds that are relevant to all variants

of backjumping.

Although the implementation of graph-based backjumping requires, in general,

careful maintenance of each variable's induced ancestor set, some orderings

facilitate a particularly simple rule for determining the variable to jump to.

Given a graph, a depth-�rst search (DFS) ordering is one that is generated

by a DFS traversal of the graph. This traversal ordering results also in a DFS

spanning tree of the graph which includes all and only the arcs in the graph

that were traversed in a forward manner. The depth of a DFS spanning tree is

the number of levels in that tree created by the DFS traversal (see [23]). The
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procedure conflict-directed-backjumping

Input: A constraint network P = (X;D;C).

Output: Either a solution, or a decision that the network is inconsistent.

i 1 (initialize variable counter)

D0
i
 Di (copy domain)

Ji  ; (initialize con
ict set)

while 1 � i � n

instantiate xi  selectValue-cbj

if xi is null (no value was returned)

iprev  i

i index of last variable in Ji (backjump)

Ji  Ji [ Jiprev � fxig(merge con
ict sets)

else

i i+ 1 (step forward)

D0
i
 Di (reset mutable domain)

Ji  ; (reset con
ict set)

end while

if i = 0

return \inconsistent"

else

return instantiated values of fx1; : : : ; xng
end procedure

subprocedure selectValue-cbj

while D0
i
is not empty

select an arbitrary element a 2 D0
i
, and remove a from D0

i

consistent  true

k 1

while k < i and consistent

if consistent(~ak; xi = a)

k k + 1

else

let RS be the earliest constraint causing the con
ict

add the variables in RS's scope S, but not xi, to Ji
consistent  false

end while

if consistent

return a

end while

return null (no consistent value)

end procedure

Fig. 8. The con
ict-directed backjumping algorithm.

23



arcs in a DFS spanning tree are directed towards the higher indexed node. For

each node, its neighbor in the DFS tree preceding it in the ordering is called

its DFS parent.

If we use graph-based backjumping on a DFS ordering of the constraint graph,

�nding the maximal graph-based back-jump destination requires following a

very simple rule: if a dead-end (leaf or internal) occurs at variable x, go back

to the DFS parent of x.

Example 11. Consider, once again, the CSP in Figure 3. A DFS ordering

d2 = (x1; x7; x4; x5; x6; x2; x3) and its corresponding DFS spanning tree are

given in Figure 7c,d. If a dead-end occurs at node x3, the algorithm retreats

to its DFS parent, which is x7.

In summary,

Theorem 2 Given a DFS ordering of the constraint graph, if f(x) denotes

the DFS parent of x, then, upon a dead-end at x, f(x) is x's graph-based

culprit variable for both leaf and internal dead-ends.

Proof: Given a DFS ordering and a corresponding DFS tree we will show that

if there is a dead-end at x (internal or leaf) f(x) is the latest amongst all the

induced ancestors of x. Clearly, f(x) always appear in the induced ancestor

set of x since it is connected to x and since it precedes x in the ordering. It

is also the most recent one since all the variables that appear in x's session

must be its descendents in the DFS subtree rooted at x. Let y be a dead-end

variable in the session of x. It is easy to see that y's ancestors that precede

x must lie on the path from the root to x and therefore they either coincide

with f(x), or appear before f(x). 2

We can now present the �rst of two graph-related bounds on the complexity

of backjumping.

Theorem 3 When graph-based backjumping is performed on a DFS ordering

of the constraint graph, its complexity is O(bmkm+1) steps, where b bounds the

branching degree of the DFS tree associated with that ordering, m is its depth

and k is the domain size.

Proof: Let xi be a node in the DFS spanning tree whose DFS subtree has

depth of m. Let Ti stands for the maximal number of nodes in the search-tree

rooted at xi, namely, Ti is the maximum number of nodes visited in any session

of xi. Since any assignment of a value to xi generates at most b subtrees of

depth m� 1 or less that can be solved independently, Ti obeys the following

recurrence:
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Ti= k � b � Ti�1
T0= k

Solving this recurrence yields Ti = bmkm+1. Thus, the worst-case time com-

plexity of graph-based backjumping in terms of number of nodes visited is

O(bmkm+1). Notice that when the tree is balanced (namely, each internal node

has exactly two child nodes) the bound can be improved to Ti = O((n=b)km+1),

since n = O(bm+1). 2

The bound suggests a graph-based ordering heuristic: use a DFS ordering

having a minimal depth. Unfortunately, �nding a minimal depth DFS tree is

NP-hard. Nevertheless, knowing what we should be minimizing may lead to

useful heuristics.

It can be shown that graph-based backjumping can be bounded for a larger

class of variable orderings, not onlyDFS ones. To do so a few more graph-based

concepts have to be introduced.

De�nition 12 (width, tree-width) Given a graph G over nodesX = fx1; : : : ; xng,
and an ordering d = x1; : : : ; xn, the width of a node in the ordered graph is the

number of its earlier neighbors. The width of an ordering is the maximal width

of all its nodes along the ordering, and the width of the graph is the minimum

width over all its orderings. The induced ordered graph of G, denoted G�
o
is

the ordered graph obtained by connecting all earlier neighbors of xi going in

reverse order of o. The induced width of this ordered graph, denoted w�(o), is

the maximal number of earlier neighbors each node has in G�
o
. The minimal

induced width over all the graph's orderings is the induced width w�. A related

well known parameter, called the tree-width [1] of the graph, is identical to the

induced width. For more information, see [20].

Example 12. Consider the graph in Figure 7a ordered along d1 = x1; : : : ; x7.

The width of this ordering is 4 since this is the width of node x7. On the other

hand the width of x7 in the ordering d2 = x1; x7; x4; x5; x6; x2; x3 is just 1 and

the width of ordering d2 is just 2 (Figure 7c). The induced graph along d1 is

given in Figure 7b. The added arcs, connecting earlier neighbors while going

from x7 towards x1, are denoted by broken lines. Note that the induced width

of node x5 changes from 1 to 4. The induced width of ordering d1 remains 4.

It can be shown that DFS orderings of induced graphs also allow bounding

backjumping's complexity as a function of the depth of a corresponding DFS

tree. Let d be an ordering that is also a DFS ordering of its induced graph G�
d

and let m�
d
be the DFS tree depth.

Theorem 4 Let m�
d
be the depth of a DFS tree traversal of the induced graph
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G�
d
of G. If d is a DFS ordering of G�

d
, then the complexity of graph-based

backjumping using ordering d is O(exp(m�
d
)).

A proof, that uses somewhat di�erent terminology and derivation, is given in

[5].

The virtue of Theorem 4 is in allowing a larger set of orderings, each yielding

a bound on backjumping's performance as a function of its DFS tree-depth,

to be considered. Since every DFS ordering of G is also a DFS ordering of

its induced graph along d, G�
d
(the added induced arcs are back arcs of the

DFS tree), DFS orderings of G are a subset of all DFS orderings of all of G's

induced graphs. Thus, this may lead to better orderings having better bounds

for backjumping.

4.6 i-Backjumping

The notion of a con
ict set is based on a simple restriction: we identify con
icts

of a single variable only. What if we lift this restriction so that we can look

a little further ahead? For example, when backtracking instantiates variables

in its forward phase, what happens if it instantiates two variables at the same

time?

In Section 6, we will discuss various techniques for looking ahead. However, at

this point, we wish to mention a very restricted type of look-ahead that can

be incorporated naturally into backjumping. We de�ne a set of parameterized

backjumping algorithms, called i-backjumping algorithms, where i indexes the

number of variables consulted in the forward phase. All algorithms jump back

maximally at both leaf and internal dead-ends, as follows. Given an ordering

of the variables, instantiate them one at a time as does con
ict-directed back-

jumping; note that con
ict-directed backjumping is 1-backjumping. However,

when selecting a new value for the next variable, make sure the new value

is both consistent with past instantiation, and consistently extendable by the

next i � 1 variables. This computation will be performed at every node and

can be exploited to generate more re�ned con
ict sets than in 1-backjumping,

namely, con
ict sets whose nogoods con
ict with i future variables. This leads

to the concept of level-i con
ict sets. A tuple ~aj is a level-i con
ict set if

it is not consistently extendable by the next i variables. Once a dead-end is

identi�ed by i-backjumping, its associated con
ict set is a level-i con
ict set.

The algorithm can assemble the earliest level-i con
ict set and jump to the

latest variable in this set exactly as done in 1-backjumping. The balance be-

tween computation overhead at each node and the savings on node generation

should, of course, be studied empirically.
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5 Learning Algorithms

The earliest minimal con
ict set of De�nition 10 is a nogood explicated by

search and used to guide backjumping. However, this same nogood may be

rediscovered again and again as the algorithm explores di�erent paths in the

search space. By making this nogood explicit, in the form of a new constraint,

we can make sure that the algorithm will not rediscover it. Doing so may

prune the remaining search space. This technique, called constraint recording

or learning, is behind the learning algorithms described in this section [17].

An opportunity to learn new constraints is presented whenever the backtrack-

ing algorithm encounters a dead-end, namely, when the current instantiation

~ai = (a1; : : : ; ai) is a con
ict set of xi+1. Had the problem included an explicit

constraint prohibiting this con
ict set, the dead-end would never have been

reached. The learning procedure records a new constraint that makes explicit

an incompatibility that already existed implicitly in a given set of variable

assignments. There is no point, however, in recording at this stage the con
ict

set ~ai itself as a constraint, because under the backtracking control strategy

the current state will not recur. 2 If ~ai contains one or more subsets that are

in con
ict with xi+1, recording these smaller con
ict sets as constraints may

prove useful in the continued search; future states may contain these con
ict

sets, and they exclude larger con
ict sets as well.

With the goal of speeding up search, the target of learning is to identify con-


ict sets that are as small as possible, namely, minimal. As noted above, one

obvious candidate is the earliest minimal con
ict set, which is identi�ed any-

way for con
ict-directed backjumping. Alternatively, if only graph information

is used, the graph-based con
ict set could be identi�ed and recorded. Another

(extreme) option is to learn and record all the minimal con
ict sets associated

with the current dead-end.

In learning algorithms, the savings from possibly reducing the amount of

search by �nding out earlier that a given path cannot lead to a solution must

be balanced against the costs of processing at each node generation a more

extensive database of constraints. 3

Learning algorithms may be characterized by the way they identify smaller

con
ict sets. Learning can be deep or shallow. Deep learning records only

the minimal con
ict sets. Shallow learning allows nonminimal con
ict sets to

2 Recording this constraint may be useful if the same initial set of constraints is

expected to be queried in the future.
3 We make the assumption that the computer program represents constraints in-

ternally by storing the invalid combinations. Thus, increasing the number of stored

nogoods increases the size of the data structure and slows down retrieval.
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be recorded as well. Learning algorithms may also be characterized by how

they bound the arity of the constraints recorded. Constraints involving many

variables are less frequently applicable, require additional memory to store,

and are more expensive to consult than constraints having fewer variables.

The algorithm may record a single nogood or multiple nogoods per dead-end,

and it may allow learning at leaf dead-ends only or at internal dead-ends as

well.

We present three types of learning: graph-based learning, deep learning, and

jumpback learning. Each of these can be further restricted by bounding the

scope size of the constraints recorded, referred to as bounded learning. These

algorithms exemplify the main alternatives, although there are numerous pos-

sible variations.

5.1 Graph-based learning

Graph-based learning uses the same methods as graph-based backjumping to

identify a nogood, namely, information on con
icts is derived from the con-

straint graph alone. Given a leaf dead-end (a1; : : : ; ai), the values assigned to

the ancestors of xi+1 in the graph are identi�ed and included in the con
ict

set that is recorded.

Example 13. Consider the problem from Figure 3, when searching for all

solutions. Figure 9 presents the search space explicated by naive backtracking

and by backtracking augmented with graph-based learning. Branches below

the cut lines in Figure 9 are generated by the former but not by the latter. Leaf

dead-ends are numbered (1) through (10) (only dead-end that appear in the

search with learning are numbered). At each dead-end, search with learning

can record a new constraint. At dead-end (1), no consistent value exists for x1.

The ancestor set of x1 is fx2; x3; x4; x7g, so graph-based learning records the

nogood (x2= green; x3= blue; x4= blue; x7= red). This nogood reappears later

in the search, under the subtree rooted at x6= teal, and it can be used to prune

the search at the dead-end numbered (9). The dead-ends labeled (2) and (4)

occur because no consistent value is found for x7, which has the ancestor set

fx3; x4g. The nogoods (x3=blue; x4=red) and (x3=red; x4=blue) are therefore

recorded by graph-based learning, in e�ect creating an \equality" constraint

between x3 and x4. (The dead-ends at (3) and (5) involve the same nogoods;

if graph-based backjumping is used instead of backtracking, these dead-ends

will be avoided.) This learned constraint prunes the remaining search four

times. The following additional nogoods are recorded by graph-based learning

at the indicated dead-ends: (6): (x2 = green; x3 = red; x4 = red; x7 = blue);

(7): (x4 = blue; x6 = green; x7 = red); (8): (x4 = red; x6 = green; x7 = blue);

(9): (x2 = green; x3 = blue; x4 = blue); (10): (x2 = green; x3 = red; x4 = red).
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Fig. 9. The search space explicated by backtracking on the CSP from Figure 3,

using the variable ordering (x6; x3; x4; x2; x7; x1; x5) and the value ordering (blue,

red, green, teal). Part (a) shows the constraint graph; part (b) illustrates the search

space. The cut lines in (b) indicate branches not explored when graph-based learning

is used.

Note that dead-ends (9) and (10) occur at x2 with learning, and at x7 without

learning.

The complexity of learning at each dead-end, with graph-based learning, is

O(n), since each variable is connected to at most n � 1 earlier variables. To

augment graph-based backjumping with graph-based learning, we need only

add a line (in bold face) to graph-based-backjumping from Fig. 6 after a

dead-end is encountered:

instantiate xi  selectValue

if xi is null (no value was returned)

record a constraint prohibiting Ii and corresponding values

iprev  i

(algorithm continues as in Fig. 6)

Recording a new constraint may require adding a new relation Rc+1 to the list

of constraints C. If a constraint with scope Ii already exists, it may only be

necessary to remove a value tuple from this constraint.
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5.2 Deep learning

Identifying and recording only minimal con
ict sets constitutes deep learning.

Discovering all minimal con
ict sets means acquiring all the possible informa-

tion out of a dead-end. For the problem and ordering of Example 13 at the �rst

dead-end, deep learning will record the minimal con
ict set (x2=green; x3=

blue; x7 = red) (or perhaps (x2 = green; x4 = blue; x7 = red), or both), instead

of the non-minimal con
ict set including both x3 and x4 that is recorded by

graph-based learning. Although deep learning is the most informative, its cost

is prohibitive if we want all minimal con
ict sets, and in the worst case, ex-

ponential in the size of the initial con
ict set. If r is the cardinality of the

graph-based con
ict set, we can envision a worst case where all the subsets

of size r=2 are minimal con
ict sets of the dead-end variable. The number of

such minimal con
ict sets will be
�

r

r=2

�
�= 2r; which amounts to exponential

time and space complexity at each dead-end. Discovering all minimal con
ict

sets can be implemented by enumeration: �rst, recognize all con
ict sets of

one element; then, all those of two elements; and so on.

In general, graph-based learning records the largest size constraints, and deep

learning records the smallest ones. As noted for backjumping, the virtues

of graph-based learning are mainly theoretical (see Section 5.6); we do not

advocate using this algorithm in practice since jumpback learning is always

superior. Neither do we recommend using deep learning, because its cost is

usually prohibitive.

5.3 Jumpback learning

To avoid the explosion in time and space of full deep learning one may settle

for identifying just one con
ict set, minimal relative to pre�x con
ict sets. The

obvious candidate is the jumpback set for leaf and internal dead-ends as it was

explicated by con
ict-directed backjumping. Jumpback learning [27] uses this

jumpback set, with the values assigned to the variables, as the con
ict set to be

learned. Because the con
ict set is calculated by the underlying backjumping

algorithm, the time complexity, at a dead-end, of jumpback learning is only

that of storing the con
ict set. As with graph-based learning, the modi�cation

required to augment conflict-directed-backjumping into a learning al-

gorithm is minor: specifying that the con
ict set is recorded as a nogood after

each dead-end.
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instantiate xi  selectValue-cbj

if xi is null (no value was returned)

record a constraint prohibiting Ji and corresponding values

iprev  i

(algorithm continues as in Fig. 8)

Example 14. For the problem and ordering of Example 13 at the �rst dead-

end, jumpback learning will record the nogood (x2=green; x3=blue; x7=red),

since that tuple includes the variables in the jumpback set of x1.

5.4 Bounded learning and relevance bounded learning

Each learning algorithm can be compounded with a restriction on the size of

the con
icts learned. When con
ict sets of size greater than i are ignored, the

result is i-order graph-based learning, i-order jumpback learning, or i-order

deep learning. When restricting the arity of the recorded constraint to i, the

bounded learning algorithm has an overhead complexity that is time and space

exponentially bounded by i.

An alternative to bounding the size of learned nogoods is to bound the learning

process by discarding nogoods that appear to be no longer relevant, by some

measure.

De�nition 13 (i-relevant) [5] A nogood is i-relevant if it di�ers from the

current partial assignment by at most i variable-value pairs.

De�nition 14 (i'th order relevance bounded learning) [5] An i'th or-

der relevance bounded learning scheme maintains only those learned nogoods

that are i-relevant.

The dynamic backtracking algorithm [38] employs a similar notion of retaining

only learned nogoods that are most likely to be consulted in the near future

search.

5.5 Nonsystematic randomized backtracking with learning

Learning can be used to make incomplete search algorithms complete, that

is, guaranteed to terminate with a solution or with proof that no solution

exists. Consider a backtracking-based algorithm that after a �xed number of
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dead-ends restarts, if it has not terminated normally, with a di�erent, ran-

domly selected, variable and value ordering. Study of this approach has been

motivated by observing the performance of incomplete greedy local search al-

gorithms that often outperform traditional backtacking-based algorithms. The

problem is that randomization makes the search algorithm incomplete.

Completeness is guaranteed even with randomization, however, when all no-

goods discovered are recorded and consulted subsequently in the search, in-

cluding after randomized restarts. Such randomized, learning-based algorithms

are complete because whenever they reach a dead-end they discover and record

a new con
ict-set. Since the number of con
ict-sets is �nite such algorithms

are complete: they are guaranteed to �nd a solution or prove that no solu-

tion exists. In the next subsection we use the same argument to bound the

complexity of learning-based algorithms.

5.6 Complexity of backtracking with learning

Graph-based learning yields a useful complexity bound on backtracking's per-

formance parameterized by the induced width w�, introduced in De�nition 12.

Graph-based learning is the most conservative learning algorithm (when ex-

cluding arity restrictions) so its complexity bound will be applicable to all the

corresponding variants of learning discussed here.

Theorem 5 Let d be an ordering of a constraint graph, and let w�(d) be its

induced width. Any backtracking algorithm using ordering d with graph-based

learning has a space complexity of O((nk)w
�(d)+1) and a time complexity of

O((2nm)w
�(d)+1), where n is the number of variables and m bounds the domain

sizes.

Proof: Graph-based learning has a one-to-one correspondence between dead-

ends and con
ict sets. Backtracking with graph-based learning along d records

con
ict sets of size w�(d) or less, because the dead-end variable will not be

connected to more than w�(d) earlier variables by both original constraints and

recorded ones. Therefore the number of dead-ends is bounded by the number

of possible nogoods of size w�(d) or less, yielding a space comlexity of

w�(d)X
i=1

 
n

i

!
ki = O((nk)w

�(d)+1):

Since deciding that a dead-end occurred requires testing all constraints de�ned

over the dead-end variable and at most w�(d) prior variables, at most O(2w
�(d))

constraints are checked per dead-end, yielding a time complexity bound of

O((2nk)w
�(d)+1). 2
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Recall that the time complexity of graph-based backjumping is bounded by

O(exp(m�
d
)), where m�

d
is the depth of a DFS tree of the corresponding ordered

induced graph, while the algorithm requires only linear space. Clearly, m�
d
�

w�(d). However, it can be shown [5] that for any graph m�
d
� logn � w�(d).

Therefore, to reduce the time bound of graph-based backjumping by a factor

of logn, we need to invest O(exp(w�(d)) in space, augmenting backjumping

with learning.

6 Look-ahead Strategies

We now turn our attention to look-ahead methods, which are designed to

improve the \forward" phase of backtracking-based algorithms.

6.1 Combining backtracking and constraint propagation

One way CSP search algorithms can combine backtracking and local con-

straint propagation is by applying a consistency enforcing procedure to the

current subproblem. This combination is known as \looking ahead" because

the decision to accept or reject a value for the current variable is based on

the impact that assignment has when constraint propagation is applied to the

set of uninstantiated \future" variables. A partial instantiation may induce

constraints on the remaining variables, and making these constraints explicit

may reveal useful information that can reduce the amount of backtracking

search subsequently required. Of course, actions conditioned on a partial in-

stantiation will have to be retracted if the partial instantiation becomes no

longer current due to backtracking.

Example 15. Consider the coloring problem in Figure 3, and assume that

variable x1 is �rst in the ordering and has been assigned the value red. A look-

ahead procedure can note that the value red in the domains of x3, x4, and x7
is incompatible with the partial instantiation, and provisionally remove those

values. A more extensive look-ahead procedure may then note that x3 and x7
are connected and are now left with incompatible values; each variable has the

domain fblueg and the problem, with x1 = red, is therefore not arc-consistent.

The implication is that assigning red to x1 will inevitably lead to a dead-end,

and thus this assignment should be rejected.

While look-ahead strategies incur an extra cost after each instantiation, they

can provide several bene�ts. First, by removing from each future variable's

domain all values that are not consistent with the partial instantiation, they
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procedure backtracking-with-lookahead

Input: A constraint network P = (X;D;C)

Output: Either a solution, or noti�cation that the network is inconsistent.

D0
i
 Di for 1 � i � n (copy all domains)

i 1 (initialize variable counter)

while 1 � i � n

instantiate xi  selectValue-xxx

if xi is null (no value was returned)

i i� 1 (backtrack)

reset each D0
k
; k > i, to its value before xi was last instantiated

remove any constraints added since xi was last instantiated

else

i i+ 1 (step forward)

end while

if i = 0

return \inconsistent"

else

return instantiated values of fx1; : : : ; xng
end procedure

Fig. 10. A common framework for several look-ahead based search algorithms. By

replacing selectValue-xxxwith selectValue-forward-checking the forward

checking algorithm is obtained. Similarly, using selectValue-arc-consistency

yields an algorithm that interleaves arc-consistency and search.

eliminate the need to test values of the current variable for consistency with

previous variables. A corollary bene�t is that if all values of an uninstan-

tiated variable are removed by the look-ahead procedure, then the current

instantiation cannot be part of a solution and the algorithm can backtrack.

Consequently, dead-ends occur earlier in the search, and much smaller search

spaces typically result when look-ahead is employed. In general, the stronger

the level of constraint propagation being used for look-ahead, the smaller the

search space explored and the higher the computational overhead. Another

bene�t of look-ahead is that the sizes of the uninstantiated variable domains

can be used to guide the selection of the variable and value to choose next;

we return to this topic later in the section.

6.2 Look-ahead algorithms

The algorithm backtracking-with-lookahead in Figure 10 presents a

framework for look-ahead algorithms that can be specialized based on the

level of constraint propagation, expressed in the speci�c selectValue sub-

procedure employed. backtracking-with-lookahead initially sets up all
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subprocedure selectValue-forward-checking

while D0
i
is not empty

select an arbitrary element a 2 D0
i
, and remove a from D0

i

empty-domain  false

for all k, i < k � n

for all values b in D0
k

if not consistent(~ai�1; xi=a; xk=b)

remove b from D0
k

end for

if D0
k
is empty (xi=a leads to a dead-end)

empty-domain  true

end for

if empty-domain (don't select a)

reset each D0
k
; i < k � n to status before a was selected

else

return a

end while

return null (no consistent value)

end procedure

Fig. 11. The selectValue subprocedure for the forward checking algorithm.

D0 sets to be equivalent to the D sets, and the selectValue subprocedure

propagates the current instantiation to remove values from the D0 sets. Upon

backtracking, backtracking-with-lookahead resets D0 sets in order to

rescind modi�cations that were contingent on no longer current partial instan-

tiations. (Because the look-ahead selectValue subprocedures we present

below will restore the future D0 sets after a leaf dead-end, it is only necessary

for backtracking-with-lookahead to perform its reset action after inter-

nal dead-ends.) Programmers usually use n copies of each D0 set, one for each

level in the search tree, to permit the reset action to be performed eÆciently.

6.3 Forward checking

Forward checking [41], which uses selectValue-forward-checking in Fig-

ure 11, does a limited form of constraint propagation. If variables x1 through

xi have been instantiated, then n� i subproblems can be created by combin-

ing the instantiated variables ~ai with one uninstantiated variable xu. The only

constraints of interest in each subproblem are those in C with a scope that

is a subset of fx1; : : : ; xig [ fxug. Enforcing consistency on each subproblem

is achieved by removing from xu's domain any values that con
ict with ~ai.

Forward checking treats these n� i subproblems independently of each other,

removing values from D0 sets as necessary. If the domain of one of the future
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variables becomes empty, then the partial instantiation ~ai cannot be extended

to that variable, and hence ~ai is not part of a solution. Another value for

xi, the current variable, is therefore considered. If the complexity of consis-

tent is O(c log t), where c is the number of constraints and t is the maximum

number of tuples per constraint, then selectValue-forward-checking's

complexity is O(nm2c log t), where n is the number of varibles and m is the

cardinality of the largest domain. The while loop can be executed up to m

times, and the outer and inner for loops are bounded by n andm, respectively.

An interesting relationship between forward checking and the simplest form

of backjumping is:

Proposition 6 [45] When using the same variable ordering, Gaschnig's back-

jumping always explores every node explored by forward checking. 2

6.4 Using more look-ahead than forward checking

More work is done at each instantiation by look-ahead algorithms that en-

force arc-consistency on the uninstantiated variables after each assignment of

a value to the current variable. If a variable's domain becomes empty during

the process of enforcing arc-consistency, then the current value is rejected.

selectValue-arc-consistency in Figure 12 implements this approach.

The repeat ... until loop in the subprocedure is essentially an arc-consistency

algorithm called AC-1 [48]. There is a long history of arc-consistency algo-

rithms, of which AC-1 is the earliest, perhaps the simplest, and certainly one of

the least eÆcient. Later and more eÆcient arc-consistency procedures, dubbed

AC-2 through AC-7 [48,58,79,65,8,9] can also be used within a selectValue

subprocedure. The optimal time complexity for any arc-consistency procedure

is O(emr), where e is the number of constraints in the subproblem, m is the

cardinality of the largest domain, and r is the largest arity of the constraints.

Two algorithms that do more work than forward checking and less work than

enforcing arc-consistency at each level in the search are full looking ahead

and partial looking ahead [41]. The full looking ahead algorithm makes a

single pass through the future variables; in e�ect the \repeat" and \un-

til" in selectValue-arc-consistency are removed. Partial looking ahead

does less work than full looking ahead: in addition to removing the repeat

loop from selectValue-arc-consistency, partial looking ahead replaces

\for all k; i < k � n" with \for all k; j < k � n". That is, future variables

are only compared with those following them.

Although applying arc-consistency was highly successful on a class of vision

instances [80], varieties of look-ahead which do more work than forward check-

ing have often been regarded as less useful. This may be due, in part, to the

36



subprocedure selectValue-arc-consistency

while D0
i
is not empty

select an arbitrary element a 2 D0
i
, and remove a from D0

i

repeat

removed-value  false

for all j; i < j � n

for all k; i < k � n

for each value b in D0
j

if there is no value c 2 D0
k
such that

consistent(~ai�1; xi=a; xj=b; xk=c)

remove b from D0
j

removed-value  true

end for

end for

end for

until removed-value = false

if any future domain is empty (don't select a)

reset each D0
j
; i < j � n, to value before a was selected

else

return a

end while

return null (no consistent value)

end procedure

Fig. 12. The selectValue subprocedure for arc-consistency, based on the AC-1

algorithm.

prematurely negative conclusions about full looking ahead reached in [41]:

\The checks of future with future units do not discover inconsistencies often

enough to justify the large number of tests required." Subsequent experimen-

tation with larger problems than those used in [41] have justi�ed the value of

interleaving arc-consistency enforcing procedures with search.

A search algorithm can also enforce a higher degree of consistency than arc-

consistency after each instantiation. Doing so will entail not only deleting

values from domains, but adding new constraints (which again may have to

be retracted). More recent work has shown that as larger and more diÆcult

problems are experimented with, higher levels of look-ahead become more

useful. The balance between overhead and pruning in constraint propagation

is studied in [29,71,4,31]. It is likely that as experiments are conducted with

larger and harder problems, look-ahead based on path-consistency will be

cost-e�ective.

We end this section by presenting a relationship between the structure of the
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subprocedure selectVariable

m mini�j�n jD
0
j
j (�nd size of smallest future domain)

select an arbitrary uninstantiated variable xk such that jD0
k
j = m

rearrange future variables so that xk is the ith variable

end subprocedure

Fig. 13. The subprocedure selectVariable, which employs a heuristic based on

the D
0 sets to choose the next variable to be instantiated.

constraint graph and some forms of look-aheads.

De�nition 15 (cycle-cutset) Given an undirected graph, a subset of nodes

in the graph is called a cycle-cutset if its removal results in a graph having no

cycles.

Proposition 7 A constraint problem whose graph has a cycle-cutset of size c

can be solved by the partial looking ahead algorithm in time of O((n�c) �kc+2).

Proof: Once a variable is instantiated, the 
ow of interaction through this

variable is terminated. This can be expressed graphically by deleting the cor-

responding variable from the constraint graph. Therefore, once a set of vari-

ables that forms a cycle-cutset is instantiated, the remaining problem can be

perceived as a tree. A tree can be solved by directional arc-consistency, and

therefore partial looking ahead performing directional arc-consistency at each

node is guaranteed to solve the problem if the cycle-cutset variables initiate

the search ordering. Since there are kc possible instantiations of the cutset

variables, and since each remaining tree is solved in (n � c)k2 consistency

checks, the complexity follows. For more details see [17]. 2

6.5 Using look-ahead for variable and value selection

Variable ordering has a tremendous e�ect on the size of the search space.

Empirical and theoretical studies have shown that there are several e�ective

static orderings that result in smaller search spaces [19]. When using a dy-

namic variable ordering (DVO), the usual objective, known as \fail �rst" [41],

is to select as the next variable the one that is predicted, by some heuris-

tic, to have the smallest search tree below it. All other factors being equal,

the variable with the smallest number of values in its (current) domain will

have the fewest subtrees rooted at those values, and therefore the smallest

search space below it. A common heuristic is to use the size of the D0 sets

to determine the next variable. An example is given in the selectVariable

subprocedure in Figure 13. This routine is particularly simple in that it relies

purely on the size of the smallest domain, and breaks ties arbitrarily. More

sophisticated DVO schemes have been proposed [37,36,74]. backtracking-
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with-lookahead can be modi�ed to employ dynamic variable ordering by

calling selectVariable after the initialization step \i  1" and after the

forward step \i  i + 1." The fc-cbj algorithm discussed below illustrates

how selectVariable should be invoked.

Example 16. Consider again the example in Figure 3. Initially, all variables

have domain size of two or three. Suppose the DVO scheme selects x2 with a

domain size of two, and the assigment x2 = green is made. Forward checking

propagation of this choice will remove green from the domains of x1 and

x6. Now all variables have domains of size two; suppose x7 is selected and

assigned blue. The impact is to restrict the domains of x1, x3; x4, and x5
to single values. Now DVO selects x3, and the only possible value, red, is

considered. Propagating this assignment to x1 results in an empty domain,

and so x3 = red is rejected, and the algorithm backtracks to x7.

The information gleaned during the look-ahead phase can also be used to guide

value selection [20,72,35,29]. Of course, all look-ahead algorithms perform a

coarse version of value selection when they reject values that are shown to

lead to a future dead-end, but a more re�ned approach that ranks the values

of the current variable has been shown to be useful.

The look-ahead value ordering (LVO) algorithm [29] is based on forward check-

ing. Instead of accepting the �rst value for the current variable that is not

shown to lead to a dead-end, LVO tentatively instantiates each value of the

current variable, and examines the e�ects of a forward checking style look-

ahead on the domains of future variables. (Each tentative instantiation and

its e�ects are retracted before the next instantiation is made.) LVO then uses

a heuristic function to transform this information into a ranking of the values.

Experimental results indicate that the cost of performing the additional look-

ahead is not justi�ed on smaller and easier problems, but can be extremely

useful on particularly hard problems [29].

7 Integration and comparison of algorithms

7.1 Integrating backjumping and look-ahead

Complementary enhancements to backtracking can be integrated into a sin-

gle procedure. The look-ahead strategies discussed above can be combined

with any of the backjumping variants described in Section 4. Additionally, a

combined algorithm can employ learning, and the dynamic variable and value

ordering heuristics based look-ahead information. One combination is con
ict-
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directed backjumping with forward checking level look-ahead and dynamic

variable ordering [27,31]. We present such an integrated algorithm, fc-cbj, in

Figures 14 and 15.

The main procedure of fc-cbj closely resembles conflict-directed-backjumping

(Figure 8). Recall that CBJ maintains a jumpback set J for each variable x.

selectValue-cbj adds earlier, instantiated variables to Ji. Upon reaching a

dead-end at xi, the algorithm jumps back to the latest variable in Ji. When

CBJ is combined with look-ahead, the J sets are used in the same way, but they

are built in a di�erent manner. While selecting a value for xi, selectValue-

fc-cbj puts xi (and possibly other variables that precede xi, when non-binary

constraints are present) into the J sets of future, uninstantiated variables that

have a value in con
ict with the value assigned to xi. On reaching a dead-end

at a variable xj that follows xi, xi will be in Jj if xi, as instantiated, was

identi�ed as partially responsible for the dead-end.

fc-cbj is derived from conflict-directed-backjumping by making two

modi�cations. The �rst is that the D0 sets are initialized and reset after a

dead-end in the same manner as in backtracking-with-lookahead (Fig-

ure 10). selectValue-fc-cbj is based on look-ahead and relies on the D0

being accurate and current. The second modi�cation is the call to select-

Variable (Figure 13) in the initialization phase and during each step forward.

These calls could be removed and the algorithm would revert without other

modi�cation to a static variable ordering. But given that look-ahead is being

performed for the purposes of rejecting inconsistent values, there is little ad-

ditional cost in performing selectVariable, and in practice this heuristic

has been found very e�ective in reducing the size of the search space.

7.2 Comparison of algorithms

Faced with a variety of backtracking based algorithms and associated heuris-

tics, it is natural to ask which ones are superior in performance. Performance

can be assessed by theoretical analysis of worst or average case behavior, or

experimentally using benchmark instances or suites of problems, possibly ran-

domly generated. Several criteria are frequently measured: CPU time, size of

generated search tree, calls to a common subroutine, such as consistent.

Figure 16 shows the relationships between several algorithms discussed in

this paper, based on worst case performance measured by the size of the

search space (which is equivalent to the number of calls to a selectValue

subprocedure).

Figure 17 summarizes the results of experimental comparisons of several back-

tracking based constraint algorithms. All algorithms here incorporate for-
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procedure fc-cbj

Input: A constraint network P = (X;D;C).

Output: Either a solution, or a decision that the network is inconsistent.

i 1 (initialize variable counter)

call selectVariable (determine �rst variable)

D0
i
 Di for 1 � i � n (copy all domains)

Ji  ; (initialize con
ict set)

while 1 � i � n

instantiate xi  selectValue-fc-cbj

if xi is null (no value was returned)

iprev  i

i highest index in Ji (backjump)

Ji  Ji [ Jiprev � fxig
reset each D0

k
; k > i, to its value before xi was last instantiated

else

i i+ 1 (step forward)

call selectVariable (determine next variable)

D0
i
 Di

Ji  ;
end while

if i = 0

return \inconsistent"

else

return instantiated values of fx1; : : : ; xng
end procedure

Fig. 14. The main procedure of the FC-CBJ algorithm.

ward checking level look-ahead and a dynamic variable ordering scheme sim-

ilar to that described in Figure 13. The names are abbreviated in the ta-

ble: \FC" refers to forward checking; \FC+AC" refers to forward checking

with arc-consistency enforced after each instantiation; \FC-CBJ" refers to

con
ict-directed backjumping with forward checking; \FC-CBJ+LVO" adds a

value ordering heuristic; \FC-CBJ+LRN" is FC-CBJ plus 4th-order jumpback

learning; \FC-CBJ+LRN+LVO" is FC-CBJ with both LVO and learning. The

columns labeled \Set 1" through \Set 3" report averages from 2000 randomly

generated binary CSP instances. All instances had variables with three ele-

ment value domains, and the number of constraints was selected to generate

approximately 50% solvable problems. The number of variables and the num-

ber of valid relations per constraint was: Set 1: 200 and 8; Set 2: 300 and 7;

Set 3: 350 and 6. Algorithm BT was not run on sets 1 and 2. The rightmost two

columns of the �gure show results on two speci�c problems from the Second

Dimacs Implementation Challenge [43]: \ssa7552-038" and \ssa7552-158." For

more details about the experiments, see [31].
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subprocedure selectValue-fc-cbj

while D0
i
is not empty

select an arbitrary element a 2 D0
i
, and remove a from D0

i

empty-domain  false

for all k, i < k � n

for all values b in D0
k

if not consistent(~ai�1; xi=a; xk=b)

let RS be the earliest constraint causing the con
ict

add the variables in RS's scope S, but not xk, to Jk
remove b from D0

k

end for

if D0
k
is empty (xi=a leads to a dead-end)

empty-domain  true

end for

if empty-domain (don't select a)

reset each D0
k
; i < k � n; to status before a was selected

reset each Jk; i < k � n; to status before a was selected

else

return a

end while

return null (no consistent value)

end subprocedure

Fig. 15. The SelectValue subprocedure for FC-CBJ.

Interleaving an arc-consistency procedure with search was generally quite ef-

fective in these studies, as was both learning and value ordering. An interesting

observation can be made based on the nature of the constraints in each of the

three sets of random problems. In Set 1, each constraint between two vari-

ables with domains of size three permitted eight of the nine combinations; in

Set 2, seven of nine; in Set 3, six of nine. The problems with more restrictive,

or \tighter," constraints, had sparser constraint graphs. With the less tight

constraints, the di�erence in performance among the algorithms was much

less than on problems with tighter constraints. Enforcing arc-consistency and

learning new constraints were much more e�ective on the sparser graphs with

tight constraints. These procedures are able to exploit the local structure in

such problems.

The empirical results shown in Figure 17 are only examples of typical ex-

perimental comparisons of algorithms. Unfortunately, from these and similar

studies it is not necessarily possible to conclude how the algorithms will per-

form on all problems having di�erent structural properties.
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Forward 
Checking

CBJ

Backtracking

Gaschnig’s
Backjumping

Conflict-directed
backjumping

i-

Graph-based
Backjumping

CBJ with
Jumpback learning

CBJ with
arc-consistency

CBJ with
forward checking

Fig. 16. The relationships of selected backtracking based algorithms. CBJ is an

abbreviation for con
ict-directed backjumping. An arrow from A to B indicates

that on the same problem and with the same variable and value orderings, the

number of nodes in A's search tree will be greater than or equal to the number of

nodes in B's.

Algorithm Set 1 Set 2 Set 3 ssa 038 ssa 158

FC 207 68.5 - - 46 14.5 52 20.0

FC+AC 40 55.4 1 0.6 1 0.4 4 3.5 18 8.2

FC-CBJ 189 69.2 222 119.3 182 140.8 40 12.2 26 10.7

FC-CBJ+LVO 167 73.8 132 86.8 119 111.8 32 11.0 8 4.5

FC-CBJ+LRN 186 63.4 32 15.6 1 0.5 23 5.5 19 8.6

FC-CBJ+LRN+LVO 160 74.0 26 14.0 1 3.8 16 3.8 13 7.1

Fig. 17. Empirical comparison of six selected CSP algorithms. See text for explana-

tion. In each column of numbers, the �rst number indicates the number of nodes in

the search tree, rounded to the nearest thousand, and �nal 000 omitted; the second

number is CPU seconds.
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8 Historical Remarks

Most current work on improving backtracking algorithms for solving con-

straint satisfaction problems use Bitner and Reingold's formulation of the

algorithm [10]. One of the early and still one of the most in
uential ideas

for improving backtracking's performance on constraint satisfaction problems

was introduced by Waltz [80]. Waltz demonstrated that often, when constraint

propagation in the form of arc-consistency is applied to a two-dimensional line-

drawing interpretation, the problem can be solved without encountering any

dead-ends. This led to the development of various consistency-enforcing al-

gorithms such as arc-, path- and k-consistency [59,48,24]. However, Golomb

and Baumert [39] may have been the �rst to informally describe this idea.

Following Waltz's work and Montanari's seminal work on constraint networks

[59], Mackworth detailed several speci�c algorithms for node-, arc-, and path-

consistency to be be possibly augmented, either before backtracking search or

interleaved with backtracing search [48]. Consistency techniques are used in

Lauriere's Alice system [47]. Explicit algorithms employing this idea have been

given by Gaschnig [34], who described a backtracking algorithm that incorpo-

rates arc-consistency; McGregor [54], who described backtracking combined

with forward checking, which is a truncated form of arc-consistency; Haralick

and Elliott [41], who also added various look-ahead methods; and Nadel [60],

who discussed backtracking combined with many variations of partial arc-

consistency. Gaschnig [33] has compared Waltz-style look-ahead backtracking

with look-back improvements that he introduced, such as backjumping and

backmarking. Haralick and Elliot [41] have done a relatively comprehensive

study, for the late 1970s, using randomly generated instances with up to 17

variables and n-queens problems with n ranging up to 10. They compared the

performances of various look-ahead and look-back methods. Based on their

empirical evaluation, they concluded that forward checking, the algorithm

that uses the weakest form of constraint propagation, is superior. This con-

clusion was maintained until the mid-1990s, when larger and more diÆcult

problem classes were tested [71,29,30]. In these studies, forward checking lost

its superiority on many problem instances to full looking ahead and other

stronger looking-ahead variants. Empirical evaluation of backtracking with

dynamic variable ordering on the n-queens problem was reported in [76].

Researchers in the logic-programming community have tried to improve a

backtracking algorithm used for interpreting logic programs. Their improve-

ments, known under the umbrella name intelligent backtracking, focused on

a limited amount of backjumping and constraint recording [11]. The truth-

maintenance systems area also has contributed to improving backtracking.

Stallman and Sussman [75] were the �rst to mention nogood recording, and

their idea gave rise to look-back type algorithms, called dependency-directed

backtracking algorithms, that include both backjumping and nogood recording
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[53].

In the context of solving propositional satis�ability, Logemann, Davis and

Loveland [16] introduced a backtracking algorithm (DLL) that uses look-

ahead for variable selection in the form of unit resolution, which is similar

to arc-consistency. To date, this algorithm is perceived as one of the most

successful procedures for that task. Analytical average-case analysis for some

backtracking algorithms has been pursued for satis�ability [69] and for con-

straint satisfaction [41,63,61]. The value of look-back improvements for solving

propositional satis�ability was initially largely overlooked, as most researchers

focused on look-ahead improvements of DLL [15]. This was changed signi�-

cantly with the work by Bayardo and Schrag in 1997 [7]. They showed that

their algorithm relsat, which incorporates both learning and backjumping,

outperforms many of the best backtracking-based SAT solvers available at

the time, on hard benchmarks. Subsequently several smart implementations

of look-back based SAT solvers (e.g., Grasp [51]) were developed.

Freuder [25] and Dechter and Pearl [20,17] introduced graph-based methods

for improving both the look-ahead and the look-back methods of backtrack-

ing. In particular, advice generation, a look-ahead value selection method that

prefers a value if it leads to more solutions as estimated from a tree relaxation,

was proposed [20]. Dechter [17] also described the graph-based variant of back-

jumping, which was followed by con
ict-directed backjumping, introduced by

Prosser [68]. Other graph-based methods include graph-based learning (i.e.,

constraint recording) as well as the cycle-cutset scheme [17]. The complexity

of these methods is bounded by graph parameters: Dechter and Pearl [20]

developed the induced width bound on learning algorithms and Dechter [17]

showed that the cycle-cutset size, bounds some look-ahead methods. Frueder

and Quinn [26] noted the dependence of backjumping's performance on the

depth of the DFS tree of the constraint graph, and Bayardo and Mirankar [6]

improved the complexity bound.

Subsequently, as it became clear that many of backtracking's improvements

are largely orthogonal to one another (i.e., look-back methods and look-ahead

methods), researchers have more systematically investigated various hybrid

schemes in an attempt to exploit the virtues in each method. Dechter [17]

evaluated combinations of graph-based backjumping, graph-based learning,

and the cycle-cutset scheme, emphasizing the additive e�ect of each method.

An evaluation of hybrid schemes was carried out by Prosser [68], who combined

known look-ahead and look-back methods and ranked each combination based

on average performance on, primarily, Zebra problems. Dechter and Meiri [19]

have evaluated the e�ect of pre-processing consistency algorithms on back-

tracking and backjumping.

With improvements in hardware and recognition that empirical evaluation
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may be the best way to compare the various schemes, has come a substantial

increase in empirical testing. After Cheeseman, Kanefsky, and Taylor [12] ob-

served that randomly generated instances have a phase transition from easy

to hard, researchers began to focus on testing various hybrids of algorithms

on larger and harder instances [28,27,29,38,15,5,3]. In addition, closer exami-

nation of various algorithms uncovered interesting relationships. For instance,

as already noted, dynamic variable ordering performs the function of value

selection as well as variable selection [2], and when the order of variables is

�xed, forward checking eliminates the need for backjumping in leaf nodes, as

is done in Gaschnig's backjumping [44].

The idea of non-systematic complete backtracking was introduced by Makoto

Yokoo who was the �rst to observe that the use of learning in the context of

a distributed version of search maintains completeness [81]. This idea caught

up recently in the community of SAT-solver developers as well. Many of the

current solution methods combine di�erent algorithms or exploit nondeter-

minizm in the randomized version of backtracking search using either random

restarts or randomizing backtrack points [40,66].

Constraint processing techniques have been augmented into Constraint Logic

Programming (CLP) languages. The inference engines of these languages use a

constraint solver as well as the traditional logic programming inference proce-

dures. In addition to employing general constraint techniques such as enforcing

arc-consistency, these languages gain eÆciency by using a collection of special-

ized constraint propagation algorithms for frequently used constraints, such

as \all-di�erent" [78,42,52].

Acknowledgements

Thanks to Peter van Beek for helpful comments, particularly his useful sug-

gestions on the section covering historical and other perspectives; to Roberto

Bayardo and Javier Larrosa for perceptive comments; to Irina Rish for some

of the �gures; and lastly, to Michelle Bonnice for her dedicated editing of an

earlier version of the paper.

References

[1] S. Arnborg. EÆcient algorithms for combinatorial problems on graphs with

bounded decomposability | a survey. BIT, 25:2{23, 1985.

[2] F. Bacchus and P. van Run. Dynamic variable ordering in CSPs. In

Principles and Practice of Constraint Programming (CP-95), Cassis, France,

46



1995. Available as Lecture Notes on CS, vol 976, pp 258{277, 1995.

[3] A. B. Baker. The hazards of fancy backtracking. In Proceedings of National

Conference of Arti�cial Intelligence (AAAI-94), 1994.

[4] A. B. Baker. Intelligent Backtracking on constraint satisfaction problems:

experimental and theoretical results. PhD thesis, Graduate School of the

University of Oregon, Eugene, OR, 1995.

[5] R. Bayardo and D. Miranker. A complexity analysis of space-bounded learning

algorithms for the constraint satisfaction problem. In AAAI-96: Proceedings of

the Thirteenth National Conference on Arti�cial Intelligence, pages 298{304,

Portland, OR, 1996.

[6] R. Bayardo, Jr. and D. P. Miranker. On the space-time trade-o� in solving

constraint satisfaction problems. In Fourteenth International Joint Conference

on Arti�cial Intelligence (IJCAI-95), pages 558{562, 1995.

[7] R. Bayardo, Jr. and R. C. Schrag. Using csp look-back techniques to solve

real-world sat instances. In AAAI-97: Proceedings of the Fourteenth National

Conference on Arti�cial Intelligence, 1997.

[8] C. Bessi�ere. Arc-consistency and arc-consistency again. Arti�cial Intelligence,

65:179{190, 1994.

[9] C. Bessi�ere, E. C. Freuder, and J.-C. R�egin. Using constraint metaknowledge to

reduce arc consistency computation. Arti�cial Intelligence, 107:125{148, 1999.

[10] J. R. Bitner and E. M. Reingold. Backtrack programming techniques.

Communications of the ACM, 18(11):651{656, 1975.

[11] M. Bruynooghe. Solving combinatorial search problems by intelligent

backtracking. Information Processing Letters, 12:36{39, 1981.

[12] P. Cheeseman, B. Kanefsky, and W. Taylor. Where the really hard problems

are. In Proceedings of the Twelfth International Joint Conference on Arti�cial

Intelligence (IJCAI-91), pages 331{337, 1991.

[13] Xinguang Chen and Peter van Beek. Con
ict-Directed Backjumping Revisited.

Journal of Arti�cial Intelligence Research, 14:53{81, 2001.

[14] M. C. Cooper. An optimal k-consistency algorithm. Arti�cial Intelligence,

41(1):89{95, 1990.

[15] J. Crawford and L. Auton. Experimental results on the crossover point in

satis�ability problems. In AAAI-93: Proceedings of the Eleventh National

Conference on Arti�cial Intelligence, pages 21{27, 1993.

[16] M. Davis, G. Logemann, and D. Loveland. A machine program for theorem

proving. Communications of the ACM, 5:394{397, 1962.

[17] R. Dechter. Enhancement schemes for constraint processing: Backjumping,

learning, and cutset decomposition. Arti�cial Intelligence, 41:273{312, 1990.

47



[18] R. Dechter. Constraint networks. In S. C. Shapiro, editor, Encyclopedia of

Arti�cial Intelligence, 2nd Edition, pages 276{285. John Wiley & Sons, 1992.

[19] R. Dechter and I. Meiri. Experimental evaluation of preprocessing algorithms

for constraint satisfaction problems. Arti�cial Intelligence, 68:211{241, 1994.

[20] R. Dechter and J. Pearl. Network-based heuristics for constraint satisfaction

problems. Arti�cial Intelligence, 34:1{38, Dec. 1987.

[21] R. Dechter and J. Pearl. Tree clustering for constraint networks. Arti�cial

Intelligence, pages 353{366, 1989.

[22] R. Dechter and P. van Beek. Local and global relational consistency. Theoretical

Computer Science, pages 283{308, 1997.

[23] S. Even. Graph algorithms. In Computer Science Press, 1979.

[24] E. C. Freuder. Synthesizing constraint expressions. Communications of the

ACM, 21(11):958{965, 1978.

[25] E. C. Freuder. A suÆcient condition for backtrack-free search. Journal of the

ACM, 29(1):24{32, 1982.

[26] E. C. Freuder and M. J. Quinn. The use of linear spanning trees to represent

constraint satisfaction problems. Technical Report 87-41, University of New

Hampshire, Durham, 1987.

[27] D. Frost and R. Dechter. Dead-end driven learning. In Proceedings of the

Twelfth National Conference on Arti�cial Intelligence (AAAI-94), pages 294{

300, 1994.

[28] D. Frost and R. Dechter. In search of the best constraint satisfaction search:

An empirical evaluation. In AAAI-94: Proceedings of the Twelfth National

Conference on Arti�cial Intelligence, pages 301{306, Seattle, 1994.

[29] D. Frost and R. Dechter. Look-ahead value ordering for constraint satisfaction

problems. In Proceedings of the International Joint Conference on Arti�cial

Intelligence (IJCAI-95), pages 572{578, 1995.

[30] D. Frost and R. Dechter. Looking at full look-ahead. In Proceedings of the

Second International Conference on Constraint Programming (CP-96), 1996.

[31] D. H. Frost. Algorithms and Heuristics for Constraint Satisfaction Problems.

PhD thesis, Information and Computer Science, University of California, Irvine,

CA, 1997.

[32] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the

Theory of NP-Completeness. W. H. Freeman, 1979.

[33] J. Gaschnig. Experimental case studies of backtrack vs. waltz-type vs. new

algorithms for satis�cing assignment problems. In Proceedings of the Second

Canadian Conference on Arti�cial Intelligence (CSCSI-78), pages 268{277,

Toronto, Ont., 1978.

48



[34] J. Gaschnig. Performance measurement and analysis of search algorithms.

Technical Report CMU-CS-79-124, Carnegie Mellon University, 1979.

[35] P. A. Geelen. Dual viewpoint heuristics for binary constraint satisfaction

problems. In Proceedings of the 10th European Conference on Arti�cial

Intelligence (ECAI-92), pages 31{35, Vienna, 1992.

[36] I. P. Gent, E. MacIntyre, P. Prosser, B. M. Smith, and T. Walsh. An Empirical

Study of Dynamic Variable Ordering Heuristics for the Constraint Satisfaction

Problem. In Principles and Practice of Constraint Programming - CP95, pages

179{193, 1996.

[37] I. P. Gent, E. MacIntyre, P. Prosser, and T. Walsh. The constrainedness of

search. In AAAI-96: Proceedings of the Thirteenth National Conference on

Arti�cial Intelligence, Portland, OR, 1996.

[38] M. L. Ginsberg. Dynamic backtracking. Journal of Arti�cial Intelligence

Research, 1:25{46, 1993.

[39] S. Golomb and L. Baumert. Backtrack programming. Journal of the ACM,

12:516{524, 1965.

[40] C. P. Gomez, B. Selman, and H. Kautz. Boosting combinatorial search through

randomization. In Fifteenth National Conference on Arti�cial Intelligence

(AAAI-98), 1998.

[41] M. Haralick and G. L. Elliot. Increasing tree-search eÆciency for constraint

satisfaction problems. Arti�cial Intelligence, 14:263{313, 1980.

[42] J. Ja�ar and J. Lassez. Constraint logic programming: A survey. Journal of

Logic Programming, 19(20):503{581, 1994.

[43] David S. Johnson and Michael A. Trick, editors. Cliques, Coloring, and

Sati�ability, volume 26 of DIMACS Series in Discrete Mathematics and

Theoretical Computer Science. American Mathematical Society, Providence,

Rhode Island, 1996.

[44] G. Kondrak and P. van Beek. A theoretical evaluation of selected backtracking

algorithms. In Proceedings of International Joint Conference of Arti�cial

Intelligence (IJCAI-94), 1994.

[45] G. Kondrak and P. van Beek. A theoretical evaluation of selected algorithms.

Arti�cial Intelligence, 89:365{387, 1997.

[46] V. Kumar. Algorithms for constraint satisfaction problems: A survey. AI

magazine, 13(1):32{44, 1992.

[47] J. L. Lauriere. A language and a program for stating and solving combinatorial

problems. Arti�cial Intelligence, 10(1), 1978.

[48] A. K. Mackworth. Consistency in networks of relations. Arti�cial Intelligence,

8(1):99{118, 1977.

49



[49] A. K. Mackworth. Constraint satisfaction. In S. C. Shapiro, editor, Encyclopedia

of Arti�cial Intelligence, 2nd Edition, pages 285{293. John Wiley & Sons, 1992.

[50] A. K. Mackworth and E. C. Freuder. The complexity of some polynomial

network consistency algorithms for constraint satisfaction problems. Arti�cial

Intelligence, 25:65{74, 1985.

[51] J. P. Marques-Silva and K. A. Sakalla. Grasp-a search algorithm for

propositional satis�ability. IEEE Transaction on Computers, pages 506{521,

1999.

[52] Kim Marriott and Peter J. Stuckey. Programming with Constraints: an

Introduction. MIT Press, 1998.

[53] D. A. McAllester. Truth maintenance. In AAAI-90: Proceedings of the Eighth

National Conference on Arti�cial Intelligence, pages 1109{1116, 1990.

[54] J. J. McGregor. Relational consistency algorithms and their application in

�nding subgraph and graph isomorphisms. Information Science, 19:229{250,

1979.

[55] I. Miguel and Q. Shen. Solution Techniques for Constraint Satisfaction

Problems: Advanced Approaches. Arti�cial Intelligence Review, 15(4):269{293,

2001.

[56] I. Miguel and Q. Shen. Solution Techniques for Constraint Satisfaction

Problems: Foundations. Arti�cial Intelligence Review, 15(4):243{267, 2001.

[57] S. Minton, M. D. Johnston, A. B. Philips, and P. Laird. Solving large-scale

constraint satisfaction and scheduling problems using a heuristic repair method.

In Proceedings of the Eighth National Conference on Arti�cial Intelligence

(AAAI-90), pages 17{24, Boston, Mass., 1990.

[58] R. Mohr and T. C. Henderson. Arc and path consistency revisited. Arti�cial

Intelligence, 28:225{233, 1986.

[59] U. Montanari. Networks of constraints: Fundamental properties and

applications to picture processing. Information Science, 7(66):95{132, 1974.

[60] B. A. Nadel. Constraint satisfaction algorithms. Computational Intelligence,

5:188{224, 1989.

[61] B. A. Nadel. Some applications of the constraint satisfaction problem. In AAAI-

90: Workshop on Constraint Directed Reasoning Working Notes, Boston, Mass.,

1990.

[62] N. J. Nillson. Principles of Arti�cial Intelligence. Tioga, Palo Alto, CA, 1980.

[63] B. Nudel. Consistent-labeling problems and their algorithms: Expected-

complexities and theory-based heuristics. Arti�cial Intelligence, 21:135{178,

1983.

[64] J. Pearl. Heuristics: Intelligent Search Strategies. Addison-Wesley, 1984.

50



[65] M. Perlin. Arc consistency for factorable relations. Arti�cial Intelligence,

53:329{342, 1992.

[66] S. Prestwich. A hybrid search architecture applied to hard random 3-sat and

low autocorrelation binary sequences. Principles and Practice of Constraint

Programming (CP2000), pages 337{352, 2000.

[67] P. Prosser. Forward checking with backmarking. Technical Report AISL{48{93,

University of Strathclyde, 1993.

[68] P. Prosser. Hybrid algorithms for constraint satisfaction problems.

Computational Intelligence, 9(3):268{299, 1993.

[69] P. W. Purdom, Jr. Search rearrangement backtracking and polynomial average

time. Arti�cial Intelligence, 21:117{133, 1983.

[70] Francesca Rossi. Constraint (Logic) Programming: A Survey on Research and

Applications. In K. R. Apt, A. C. Kakas, E. Monfroy, and F. Rossi, editors,

New Trends in Constraints, pages 40{74. Springer, 1999.

[71] D. Sabin and E. C. Freuder. Contradicting conventional wisdom in constraint

satisfaction. In Proceedings of the European Conference on AI (ECAI-94), pages

125{129, Amsterdam, 1994.

[72] Norman Sadeh and Mark S. Fox. Variable and value ordering heuristics for

activity-based job-shop scheduling. In Proceedings of the Fourth International

Conference on Expert Systems in Production and Management, pages 134{144,

1990.

[73] B. Selman, H. Levesque, and D. Mitchell. A new method for solving hard

satis�ability problems. Proceedings of the Tenth National Conference on

Arti�cial Intelligence (AAAI-92), pages 440{446, 1992.

[74] Barbara Smith and Stuart A. Grant. Trying Harder to Fail First. In Proceedings

of the European Conference on AI (ECAI-98), pages 249{253, 1998.

[75] M. Stallman and G. J. Sussman. Forward reasoning and dependency-directed

backtracking in a system for computer-aided circuit analysis. Arti�cial

Intelligence, 9:135{196, 1977.

[76] S. Stone and J. M. Stone. EÆcient search techniques | an empirical study

of the n-queen problem. In Technical report RC (#54343) IBM T.J. Watson,

1986.

[77] E. Tsang. Foundation of Constraint Satisfaction. Academic Press, 1993.

[78] P. Van Hentenryck. Constraint Satisfaction in Logic Programming. MIT Press,

1989.

[79] P. Van Hentenryck, Y. Deville, and C.-M. Teng. A generic arc-consistency

algorithm and its specializations. Arti�cial Intelligence, 57:291{321, 1992.

51



[80] D. Waltz. Understanding line drawings of scenes with shadows. In P. H.

Winston, editor, The Psychology of Computer Vision, pages 19{91. McGraw-

Hill, 1975.

[81] M. Yokoo. Asynchronous weak commitment search for solving distributed

constraint satisfaction problems. In First International Conference on

Constraint Programming, France, 1995.

52


