
Bucket Elimination: a Unifying Framework for

Processing Hard and Soft Constraints

Rina Dechter

Department of Information and Computer Science

University of California, Irvine

dechter@ics.uci.edu

January 8, 1998

1 Introduction

The Constraint Satisfaction framework is quite restricted. Nevertheless, it is
this restrictiveness that allowed the developments of very useful concepts such
as constraint propagation (also know as "consistency enforcement"), through
which various tractable subclasses had emerged and by which general purpose
algorithms such as backtracking were improved [8,6,7,2]. However, real life
problems frequently call for extending the basic model to allow nondeterminism
as the representation of preferences among solutions. Such extensions relate the
CSP model to known models for combinatorial optimization developed in the
Operation Research community as well as to more recent frameworks such as
Probabilistic Networks [9].

In this note I argue that extending the CSP model to a richer set of tasks can
be done elegantly using a unifying framework which I call "bucket elimination".
I believe that this framework will allow hybrids of two fundamental problem
solving paradigms: elimination and conditioning, will address computational
issues such as time-space tradeo�s, and will allow developing approximation
algorithms, all within this general, and therefore, widely applicable framework.
In the rest of this note I outline the basic framework.

2 Bucket elimination

Bucket elimination, is a unifying algorithmic framework that generalizes dy-
namic programming to accommodate many complex problem solving and rea-
soning activities. Algorithms such as directional-resolution for propositional sat-
is�ability, adaptive-consistency for constraint satisfaction, Fourier and Gaussian
elimination, for linear equalities and inequalities, and dynamic programming for

1

combinatorial optimization, can be all accommodated within this framework
[5]. It was recently demonstrated that many algorithms for probabilistic infer-
ence, such as belief updating, �nding the most probable explanation, �nding
the maximumposteriori hypothesis and the maximumexpected utility, can also
be expressed as bucket-elimination algorithms [3].

The main virtues of this framework, are simplicity and generality. A com-
plete speci�cation of such algorithms is feasible without introducing extensive
terminology, thus making the algorithms accessible to researchers across diverse
areas. More importantly, uniformity brings up understanding, cross fertiliza-
tion, and technology transfer between di�erent disciplines. Indeed, all bucket-
elimination algorithms are su�ciently similar so that any improvement to a
single algorithm is therefore applicable to all others in that class. For example,
by expressing probabilistic inference algorithms as bucket-elimination methods,
their relationship to constraint satisfaction and dynamic programming becomes
perspicuous and allows the knowledge accumulated in those areas to be utilized.

Bucket elimination algorithms process variables one by one in a given order.
Processing a variable means generating an equivalent representation that ex-
cludes, or eliminates that variable. Such algorithms can be viewed as knowledge-
compilation methods since they generate not merely an answer to a query, but
also an equivalent representation of the input problem from which many queries
are answerable in polynomial time. For illustration we include two bucket-
elimination algorithms, directional-resolution, a procedure for satis�ability (Fig-
ure 1) [4], and elim-bel, an algorithm for belief-updating in probabilistic networks
(Figure 2).

Normally, an input to a bucket elimination algorithm is a knowledge-base
theory and a query speci�ed by a collection of functions or relations, over sub-
sets of variables (e.g., clauses for propositional satis�ability, constraints, or cost
functions for constraint optimization, or conditional probability matrices for
belief networks). In its �rst step, the algorithm partitions these functions into
buckets, each associated with a single variable. Given a variable ordering, the
bucket of a particular variable contains the functions de�ned on that variable,
provided the function is not de�ned on variables higher in that ordering. Subse-
quently, buckets are processed from top to bottom. When the bucket of variable
X is processed, an \elimination procedure" is performed over the functions in its
bucket, yielding a new function that is de�ned over all the variables mentioned
in the bucket, excluding X. This function summarizes the \e�ect" of X on the
remainder of the problem. The new function is placed in a lower bucket.

An important property of variable elimination algorithms is that their per-
formance can be bounded in advance using a graph parameter, called induced
width (or tree-width), w�. In general, a given theory and its query can be
associated with an interaction graph describing various dependencies between
variables. The complexity of bucket-elimination is time and space exponential
in the induced width of the problem's interaction graph. The size of the induced
width varies with various variable orderings, and leads to di�erent performance

2

directional resolution

Input: A cnf theory ', an ordering d = Q1; :::; Qn,
Output: A decision of whether ' is satis�able. If it is, a theory Ed('),
equivalent to '; else, an empty directional extension.
1. Initialize: Generate an ordered partition of the clauses,
bucket1; :::; bucketn, where bucketi contains all the clauses whose highest
literal is Qi.
2. Backwards For p = n to 1 do:
� If bucketp contains a unit clause, perform only unit resolution. Put each
resolvent in the appropriate bucket.
� else, resolve each pair f(� _Qp); (� _ :Qp)g � bucketp. If
 = � _ � is
empty, return Ed(') = ;, the theory is not satis�able; else, determine the
index of
 and add it to the appropriate bucket.
3. Return Ed(')(=

S
i bucketi.

Figure 1: Algorithm directional resolution

guarantees. In summary, bucket-elimination algorithms exploit the problem's
structure; they are tractable for problems having a small w�.

3 Conditioning and elimination

When a problem having a high induced-width is encountered, bucket-elimination
may be unsuitable, primarily because of its extensive memory demand. To
alleviate space complexity, another universal method for problem solving, called
conditioning, can be incorporated.

Conditioning is a generic name for algorithms that search the space of par-
tial value assignments, or partial conditionings. Conditioning means splitting
a problem into subproblems based on a certain condition. In general, a sub-
set of variables, conditioning variables, will be instantiated, thus generating a
subproblem that can be solved by any means; if the resulting subproblem is
unsolvable, or if more solutions are needed, the algorithm can try di�erent as-
signments to the conditioning set. Algorithms such as backtracking and branch
and bound may be viewed as conditioning algorithms, while cutset-conditioning
applies conditioning to a subset of variables that form a cycle-cutset of the
interaction graph, and solves the resulting subproblem by bucket-elimination
[1,9].

The complexity of conditioning algorithms is exponential in the condition-
ing set, which is normally larger than the induced-width and which frequently
includes all variables. However, the space complexity of conditioning is only
linear. Moreover, empirical studies show that its average performance is often

3

Algorithm elim-bel

Input: A belief network BN = fP1; :::; Png, and an ordering of the vari-
ables, o = X1; :::; Xn.
Output: the belief of X1 given evidence e.
1. Initialize: generate an ordered partition of the conditional probability
matrices into buckets. bucketi contains all matrices whose highest variable
is Xi. Put each observation in its bucket. Let S1; :::; Sj be the subset of
variables in the processed bucket on which matrices (new or old) are de-
�ned.
2. Backwards: for p n downto 1 do
for all the matrices �1; �2; :::; �j in bucketp do
� If (bucket with observed variable) Xp = xp appear in bucket, then sub-
stitute Xp = xp in each matrix �i and put each in appropriate bucket.

� else, Up
Sj

i=1 Si�fXpg For all Up = u, �p(u) =
P

xp
�j
i=1�i(xp; uSi).

Add �p to the largest index variable in Up.
3. Return Bel(x1) = �P (x1) ��i�i(x1)
(where the �i are in bucket1, � is a normalizing constant.)

Figure 2: Algorithm elim-bel

far superior to that of bucket-elimination. This suggests that combining elimi-
nation with conditioning may be the key to improving reasoning. Particularly,
tailoring the balance of elimination and conditioning to the problem instance
may better utilize the bene�ts in each scheme on a case by case basis; we may
have better performance guarantees, better space complexity, and better overall
average performance.

Conditioning can be easily incorporated into the bucket elimination frame-
work. Whenever a variable is processed, it can either be eliminated or con-
ditioned upon, a decision that can be made statically or dynamically during
run-time. In summary, we believe that the key to e�cient reasoning across
many areas, is tailoring the balance between conditioning and elimination to
the problem instance by consulting its graph.

4 Approximations

Sometimes the interaction graph may suggest that the problem at hand is too
di�cult, no matter what hybrid algorithm we use. In such cases approxima-
tion algorithms should be attempted. We could elegantly generate approxima-
tion algorithms using the framework of bucket elimination by approximating
the conditioning part, the elimination part, or both. Randomized greedy algo-
rithms such as GSAT, that are currently popular for propositional satis�ability
and constraint satisfaction, approximate conditioning; rather than systemat-

4

ically searching the space of all \conditionings", they search a subset in the
hope that it is adequate to determine the solution. On the other hand, con-
straint propagation algorithms, like arc-, path-, and k-consistency, approximate
the full bucket elimination algorithm (i.e., adaptive-consistency) for constraint
satisfaction. These approaches, approximating conditioning and elimination, as
well as their hybrids in the area of constraint processing, start to show promise.
Taking advantage of the generality and uniformity of the bucket-elimination
framework will allow, I believe, the extensions of conditioning and elimination
principles and their approximation, to areas such as constraint optimization and
probabilistic inference.

References

[1] R. Dechter. Enhancement schemes for constraint processing: Backjumping,
learning and cutset decomposition. Arti�cial Intelligence, 41:273{312, 1990.

[2] R. Dechter. Constraint networks. Encyclopedia of Arti�cial Intelligence,
pages 276{285, 1992.

[3] R. Dechter. Bucket elimination: A unifying framework for probabilistic in-
ference algorithms. In Uncertainty in Arti�cial Intelligence (UAI-96), pages
211{219, 1996.

[4] R. Dechter and I. Rish. Directional resolution: The davis-putnam procedure,
revisited. In Principles of Knowledge Representation and Reasoning (KR-
94), pages 134{145, 1994.

[5] R. Dechter and P. van Beek. Local and global relational consistency. In
Principles and Practice of Constraint programming (CP-95), pages 240{257,
1995.

[6] E. C. Freuder. A su�cient condition for backtrack-free search. Journal of
the ACM, 29(1):24{32, 1982.

[7] A. K. Mackworth. Constraint satisfaction. In Encyclopedia of Arti�cial
Intelligence, pages 285{293, 1992.

[8] U. Montanari. Networks of constraints: Fundamental properties and appli-
cations to picture processing. Information Sciences, 7(66):95{132, 1974.

[9] J. Pearl. Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann,
1988.

5

