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Abstract

The paper compares two popular strategies for solving propositional satis�abil-

ity, backtracking search and resolution, and analyzes the complexity of a directional

resolution algorithm (DR) as a function of the \width" (w�) of the problem's graph.

Our empirical evaluation con�rms theoretical prediction, showing that on low-w�

problems DR is very e�cient, greatly outperforming the backtracking-based Davis-

Putnam-Logemann-Loveland procedure (DP). We also emphasize the knowledge-

compilation properties of DR and extend it to a tree-clustering algorithm that facil-

itates query answering. Finally, we propose two hybrid algorithms that combine the

advantages of both DR and DP. These algorithms use control parameters that bound

the complexity of resolution and allow time/space trade-o�s that can be adjusted to

the problem structure and to the user's computational resources. Empirical studies

demonstrate the advantages of such hybrid schemes.

Keywords: propositional satis�ability, backtracking search, resolution, computa-

tional complexity, knowledge compilation, empirical studies.
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1 Introduction

Propositional satis�ability (SAT) is a prototypical example of an NP-complete problem;

any NP-complete problem is reducible to SAT in polynomial time [8]. Since many practical

applications such as planning, scheduling, and diagnosis can be formulated as proposi-

tional satis�ability, �nding algorithms with good average performance has been a focus

of extensive research for many years [59, 10, 34, 45, 46, 3]. In this paper, we consider

complete SAT algorithms that can always determine satis�ability as opposed to incom-

plete local search techniques [59, 58]. The two most widely used complete techniques are

backtracking search (e.g., the Davis-Putnam Procedure [11]) and resolution (e.g., Direc-

tional Resolution [12, 23]). We compare both approaches theoretically and empirically,

suggesting several ways of combining them into more e�ective hybrid algorithms.

In 1960, Davis and Putnam presented a resolution algorithm for deciding propositional

satis�ability (the Davis-Putnam algorithm [12]). They proved that a restricted amount

of resolution performed along some ordering of the propositions in a propositional theory

is su�cient for deciding satis�ability. However, this algorithm has received limited atten-

tion and analyses of its performance have emphasized its worst-case exponential behavior

[35, 39], while overlooking its virtues. It was quickly overshadowed by the Davis-Putnam

Procedure, introduced in 1962 by Davis, Logemann, and Loveland [11]. They proposed

a minor syntactic modi�cation of the original algorithm: the resolution rule was replaced

by a splitting rule in order to avoid an exponential memory explosion. However, this

modi�cation changed the nature of the algorithm and transformed it into a backtracking

scheme. Most of the work on propositional satis�ability quotes the backtracking version

[40, 49]. We will refer to the original Davis-Putnam algorithm as DP-resolution, or di-

rectional resolution (DR) 1, and to its later modi�cation as DP-backtracking, or DP (also

called DPLL in the SAT community).

Our evaluation has a substantial empirical component. A common approach used

in the empirical SAT community is to test algorithms on randomly generated problems,

such as uniform random k-SAT [49]. However, these benchmarks often fail to simulate

realistic problems. On the other hand, \real-life" benchmarks are often available only on

an instance-by-instance basis without any knowledge of underlying distributions which

makes the empirical results hard to generalize. An alternative approach is to use structured

random problem generators inspired by the properties of some realistic domains. For

example, Figure 1 illustrates the unit commitment problem of scheduling a set of n power

generating units over T hours (here n = 3 and T = 4). The state of unit i at time t (\up"

1A similar approach known as \ordered resolution" can be viewed as a more sophisticated �rst order

version of directional resolution [25].
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Figure 1: An example of a \temporal chain": the unit commitment problem for 3 units

over 4 hours.

or \down") is speci�ed by the value of boolean variable xit (0 or 1), while the minimum

up- and down-time constraints specify how long a unit must stay in a particular state

before it can be switched. The corresponding constraint graph can be embedded in a

chain of cliques where each clique includes the variables within the given number of time

slices determined by the up- and down-time constraints. These clique-chain structures

are common in many temporal domains that possess the Markov property (the future

is independent of the past given the present). Another example of structured domain is

circuit diagnosis. In [27] it was shown that circuit-diagnosis benchmarks can be embedded

in a tree of cliques, where the clique sizes are substantially smaller than the overall

number of variables. In general, one can imagine a variety of real-life domains having

such structure that is captured by k-tree-embeddings [1] used in our random problem

generators.

Our empirical studies of SAT algorithms con�rm previous results: DR is very ine�-

cient when dealing with unstructured uniform random problems. However, on structured

problems such as k-tree embeddings having bounded induced width, directional resolu-

tion outperforms DP-backtracking by several orders of magnitude. The induced width

(denoted w�) is a graph parameter that describes the size of the largest clique created

in the problem's interaction graph during inference. We show that the worst-case time

and space complexity of DR is O(n � exp(w�)), where n is the number of variables. We

also identify tractable problem classes based on a more re�ned syntactic parameter, called

diversity.

Since the induced width is often smaller than the number of propositional variables,

n, DR's worst-case bound is generally better than O(exp(n)), the worst-case time bound

for DP. In practice, however, DP-backtracking { one of the best complete SAT algorithms
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available { is often much more e�cient than its worst-case bound. It demonstrates \great

discrepancies in execution time" (D.E. Knuth), encountering rare but exceptionally hard

problems [60]. Recent studies suggest that the empirical performance of backtracking

algorithms can be modeled by long-tail exponential-family distributions, such as lognormal

and Weibull [32, 54]. The average complexity of algorithm DR, on the other hand, is close

to its worst-case [18]. It is important to note that the space complexity of DP is O(n),

while DR is space-exponential in w�. Another di�erence is that in addition to deciding

satis�ability and �nding a solution (a model), directional resolution also generates an

equivalent theory that allows �nding each model in linear time (and �nding all models in

time linear in the number of models), and thus can be viewed as a knowledge-compilation

algorithm.

The complementary characteristics of backtracking and resolution (Figure 2) call for

hybrid algorithms. We present two hybrid schemes, both using control parameters that

restrict the amount of resolution by bounding the resolvent size, either in a preprocess-

ing phase or dynamically during search. These parameters allow time/space trade-o�s

that can be adjusted to the given problem structure and to the computational resources.

Empirical studies demonstrate the advantages of these 
exible hybrid schemes over both

extremes, backtracking and resolution.

This paper is an extension of the work presented in [23] and includes several new

results. A tree-clustering algorithm for query processing that extends DR is presented

and analyzed. The bounded directional resolution (BDR) approach proposed in [23] is

subjected to a much more extensive empirical tests that include both randomly gener-
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ated problems and DIMACS benchmarks. Finally, a new hybrid algorithm, DCDR, is

introduced and evaluated empirically on a variety of problems.

The rest of this paper is organized as follows. Section 2 provides necessary de�nitions.

Section 3 describes directional resolution (DR), our version of the original Davis-Putnam

algorithm expressed within the bucket-elimination framework. Section 4 discusses the

complexity of DR and identi�es tractable classes. An extension of DR to tree-clustering

scheme is presented in Section 5, while Section 6 focuses on DP-backtracking. Empirical

comparison of DR and DP is presented in Section 7. Section 8 introduces the two hybrid

schemes, BDR-DP and DCDR, and empirically evaluates their e�ectiveness. Related work

and conclusions are discussed in Sections 9 and 10. Proofs of theorems are given in the

Appendix A.

2 De�nition and Preliminaries

We denote propositional variables, or propositions, by uppercase letters, e.g. P;Q;R,

propositional literals (propositions or their negations, such as P and :P ) by lowercase

letters, e.g., p; q; r, and disjunctions of literals, or clauses, by the letters of the Greek

alphabet, e.g., �; �; 
. For instance, � = (P _ Q _ R) is a clause. We will sometimes

denote the clause (P _Q_R) by fP;Q;Rg. A unit clause is a clause with only one literal.

A clause is positive if it contains only positive literals and is negative if it contains only

negative literals. The notation (� _ T ) is used as shorthand for (P _ Q _ R _ T ), while

� _ � refers to the clause whose literals appear in either � or �. A clause � is subsumed

by a clause � if �'s literals include all �'s literals. A clause is a tautology, if for some

proposition Q the clause includes both Q and :Q. A propositional theory ' in conjunctive

normal form (cnf) is represented as a set f�1; :::; �tg denoting the conjunction of clauses

�1; :::; �t. A k-cnf theory contains only clauses of length k or less. A propositional cnf

theory ' de�ned on a set of n variables Q1,...,Qn is often called simply \a theory '".

The set of models of a theory ' is the set of all truth assignments to its variables that

satisfy '. A clause � is entailed by ' (denoted ' j= �), if and only if � is true in all

models of '. A propositional satis�ability problem (SAT) is to decide whether a given

cnf theory has a model. A SAT problem de�ned on k-cnfs is called a k-SAT problem.

The structure of a propositional theory can be described by an interaction graph. The

interaction graph of a propositional theory ', denoted G('), is an undirected graph that

contains a node for each propositional variable and an edge for each pair of nodes that

correspond to variables appearing in the same clause. For example, the interaction graph

of theory '1 = f(:C); (A_B _C); (:A_B _E); (:B _C _D)g is shown in Figure 3a.

One commonly used approach to satis�ability testing is based on the resolution op-
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Figure 3: (a) The interaction graph of theory '1 = f(:C); (A _ B _ C); (:A _ B _ E);

(:B _ C _D)g, and (b) the e�ect of resolution over A on that graph.

eration. Resolution over two clauses (� _ Q) and (� _ :Q) results in a clause (� _ �)

(called resolvent) eliminating variable Q. The interaction graph of a theory processed

by resolution should be augmented with new edges re
ecting the added resolvents. For

example, resolution over variable A in '1 generates a new clause (B _ C _ E), so the

graph of the resulting theory has an edge between nodes E and C as shown in Figure 3b.

Resolution with a unit clause is called unit resolution. Unit propagation is an algorithm

that applies unit resolution to a given cnf theory until no new clauses can be deduced.

Propositional satis�ability is a special case of constraint satisfaction problem (CSP).

CSP is de�ned on a constraint network < X;D;C >, where X = fX1; :::;Xng is the

set of variables, associated with a set of �nite domains, D = fDi; :::;Dng, and a set of

constraints, C = fC1; :::; Cmg. Each constraint Ci is a relation Ri � Di1� :::�Dik de�ned

on a subset of variables Si = fXi1 ; :::;Xikg. A constraint network can be associated

with an undirected constraint graph where nodes correspond to variables and two nodes

are connected if and only if they participate in the same constraint. The constraint

satisfaction problem (CSP) is to �nd a value assignment to all the variables (called a

solution) that is consistent with all the constraints. If no such assignment exists, the

network is inconsistent. A constraint network is binary if each constraint is de�ned on at

most two variables.

3 Directional Resolution (DR)

DP-resolution [12] is an ordering-based resolution algorithm that can be described as

follows. Given an arbitrary ordering of the propositional variables, we assign to each

clause the index of its highest literal in the ordering. Then resolution is applied only

to clauses having the same index and only on their highest literal. The result of this

restriction is a systematic elimination of literals from the set of clauses that are candidates

6



Directional Resolution: DR

Input: A cnf theory ', o = Q1; :::; Qn.
Output: The decision of whether ' is satis�able.
If it is, the directional extension Eo(') equivalent to '.
1. Initialize: generate a partition of clauses, bucket1; :::; bucketn,
where bucketi contains all the clauses whose highest literal is Qi.
2. For i = n to 1 do:

If there is a unit clause in bucketi,
do unit resolution in bucketi
else resolve each pair f(� _Qi); (� _ :Qi)g � bucketi.
If 
 = � _ � is empty, return \' is unsatis�able"
else add 
 to the bucket of its highest variable.

3. Return \' is satis�able" and Eo(') =
S
i bucketi.

Figure 4: Algorithm Directional Resolution (DR).

for future resolution. The original DP-resolution also includes two additional steps, one

forcing unit resolution whenever possible, and one assigning values to all-positive and

all-negative variables. An all-positive (all-negative) variable is a variable that appears

only positively (negatively) in a given theory, so that assigning such a variable the value

\true" (\false") is equivalent to deleting all relevant clauses from the theory. There are

other intermediate steps that can be introduced between the basic steps of eliminating

the highest indexed variable, such as deleting subsumed clauses. Albeit, we will focus

on the ordered elimination step and refer to auxiliary steps only when necessary. We

are interested not only in deciding satis�ability but in the set of clauses accumulated

by this process constituting an equivalent theory with useful computational features.

Algorithm directional resolution (DR), the core of DP-resolution, is presented in Figure

4. This algorithm can be described using the notion of buckets, which de�ne an ordered

partitioning of clauses in ', as follows. Given an ordering o = (Q1 ; :::; Qn) of the variables

in ', all the clauses containing Qi that do not contain any symbol higher in the ordering

are placed in bucketi. The algorithm processes the buckets in a reverse order of o, from

Qn to Q1. Processing bucketi involves resolving over Qi all possible pairs of clauses in

that bucket. Each resolvent is added to the bucket of its highest variable Qj (clearly,

j < i). Note that if the bucket contains a unit clause (Qi or :Qi), only unit resolutions

are performed. Clearly, a useful dynamic-order heuristic (not included in our current

implementation) is to processes next a bucket with a unit clause. The output theory,
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�nd-model (Eo('); o )
Input: A directional extension Eo('), o = Q1; :::; Qn.
Output: A model of '.
1. For i = 1 to N

Qi  a value qi consistent with the assignment to
Q1; :::; Qi�1 and with all the clauses in bucketi.

2. Return q1; :::; qn.

Figure 5: Algorithm �nd-model.

Eo('), is called the directional extension of ' along o. As shown by Davis and Putnam

[12], the algorithm �nds a satisfying assignment to a given theory if and only if there

exists one. Namely,

Theorem 1: [12] Algorithm DR is sound and complete. 2

A model of a theory ' can be easily found by consulting Eo(') using a simple model-

generating procedure �nd-model in Figure 5. Formally,

Theorem 2: (model generation)

Given Eo(') of a satis�able theory ', the procedure �nd-model generates a model of '

backtrack-free, in time O(jEo(')j). 2

Example 1: Given the input theory '1 = f(:C); (A_B_C); (:A_B_E); (:B_C_D)g;

and an ordering o = (E;D;C;B;A), the theory is partitioned into buckets and processed

by directional resolution in reverse order2. Resolving over variable A produces a new

clause (B _ C _ E), which is placed in bucketB. Resolving over B then produces clause

(C _D_E) which is placed in bucketC. Finally, resolving over C produces clause (D_E)

which is placed in bucketD. Directional resolution now terminates, since no resolution can

be performed in bucketD and bucketE. The output is a non-empty directional extension

Eo('1). Once the directional extension is available, model generation begins. There are

no clauses in the bucket of E, the �rst variable in the ordering, and therefore E can be

assigned any value (e.g., E = 0). Given E = 0, the clause (D _ E) in bucketD implies

D = 1, clause :C in bucketC implies C = 0, and clause (B _C _E) in bucketB, together

2For illustration, we selected an arbitrary ordering which is not the most e�cient one. Variable

ordering heuristics will be discussed in Section 4.3.
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Figure 6: A trace of algorithm DR on the theory '1 = f(:C); (A_B _C); (:A_B _E);
(:B _ C _D)g along the ordering o = (E;D;C;B;A).

with the current assignments to C and E, implies B = 1. Finally, A can be assigned any

value since both clauses in its bucket are satis�ed by previous assignments.

As stated in Theorem 2, given a directional extension, a model can be generated

in linear time. Once Eo(') is compiled, determining the entailment of a single literal

requires checking the bucket of that literal �rst. If the literal appears there as a unit

clause, it is entailed; if it is not entailed, its negation is added to the appropriate bucket

and the algorithm resumes from that bucket. If the empty clause is generated, the literal

is entailed. Entailment queries will also be discussed in Section 5.

4 Complexity and Tractability

Clearly, the e�ectiveness of algorithm DR depends on the the size of its output theory

Eo(').

Theorem 3: (complexity)

Given a theory ' and an ordering o, the time complexity of algorithm DR is O(n�jEo(')j2)

where n is the number of variables. 2
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The size of the directional extension and therefore the complexity of directional resolu-

tion is worst-case exponential in the number of variables. However, there are identi�able

cases when the size of Eo(') is bounded, yielding tractable problem classes. The order

of variable processing has a particularly signi�cant e�ect on the size of the directional

extension. Consider the following two examples:

Example 2: Let '2 = f(B _ A), (C _ :A); (D _ A); (E _ :A)g: Given the ordering

o1 = (E;B;C;D;A), all clauses are initially placed in bucket(A). Applying DR along the

(reverse) ordering, we get: bucket(D) = f(C _ D); (D _ E)g, bucket(C) = f(B _ C)g,

bucket(B) = f(B _ E)g. In contrast, the directional extension along ordering o2 =

(A;B;C;D;E) is identical to the input theory '2 since each bucket contains at most one

clause.

Example 3: Consider the theory '3 = f(:A_B); (A_:C); (:B_D); (C_D_E)g. The

directional extensions of '3 along ordering o1 = (A;B;C;D;E) and o2 = (D;E;C;B;A)

are Eo1('3) = '3 and Eo2('3) = '3 [ f(B _ :C) ; (:C _D); (E _D)g, respectively.

In example 2, variable A appears in all clauses. Therefore, it can potentially generate

new clauses when resolved upon, unless it is processed last (i.e., it appears �rst in the

ordering), as in o2. This shows that the interactions among variables can a�ect the

performance of the algorithm and should be consulted for producing preferred orderings.

In example 3, on the other hand, all the symbols have the same type of interaction,

each (except E) appearing in two clauses. Nevertheless, D appears positive in both

clauses in its bucket, therefore, it will not be resolved upon and can be processed �rst.

Subsequently, B and C appear only negatively in the remaining theory and will not add

new clauses. Inspired by these two examples, we will now provide a connection between

the algorithm's complexity and two parameters: a topological parameter, called induced

width, and a syntactic parameter, called diversity.

4.1 Induced width

In this section we show that the size of the directional extension and therefore the com-

plexity of directional resolution can be estimated using a graph parameter called induced

width.

As noted before, DR creates new clauses which correspond to new edges in the resulting

interaction graph (we say that DR \induces" new edges). Figure 7 illustrates again the

performance of directional resolution on theory '1 along ordering o = (E;D;C;B;A),

showing this time the interaction graph of Eo('1) (dashed lines correspond to induced

edges). Resolving over A creates clause (B _ C _ E) which corresponds to a new edge
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B _ C); (:A _B _ E); (:B _ C _D)g along the ordering o = (E;D;C;B;A).

between nodes B and E, while resolving over B creates clause (C _D_E) which induces

a new edge between C and E. In general, processing a bucket of a variable Q produces

resolvents that connect all the variables mentioned in that bucket. The concepts of induced

graph and induced width are de�ned to re
ect those changes.

De�nition 1: Given a graph G, and an ordering of its nodes o, the parent set of a node

Xi is the set of nodes connected to Xi that precede Xi in o. The size of this parent set

is called the width of Xi relative to o. The width of the graph along o, denoted wo, is

the maximum width over all variables. The induced graph of G along o, denoted Io(G),

is obtained as follows: going from i = n to i = 1, we connect all the neighbors of Xi

preceding it in the ordering. The induced width of G along o, denoted w�
o, is the width

of Io(G) along o, while the induced width w� of G is the minimum induced width along

any ordering.

For example, in Figure 7 the induced graph Io(G) contains the original (bold) and the

induced (dashed) edges. The width of B is 2, while its induced width is 3; the width of

C is 1, while its induced width is 2. The maximum width along o is 3 (the width of A),

and the maximum induced width is also 3 (the induced width of A and B). Therefore, in

this case, the width and the induced width of the graph coincide. In general, however,

the induced width of a graph can be signi�cantly larger than its width. Note that in
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this example the graph of the directional extension, G(Eo(')), coincides with the induced

ordered graph of the input theory's graph, Io(G(')). Generally,

Lemma 1: Given a theory ' and an ordering o, G(Eo(')) is a subgraph of Io(G(')). 2

The parents of node Xi in the induced graph correspond to the variables mentioned

in bucketi. Therefore, the induced width of a node can be used to estimate the size of its

bucket, as follows:

Lemma 2: Given a theory ' and an ordering o = (Q1; :::; Qn), if Qi has at most k

parents in the induced graph along o, then the bucket of a variable Qi in Eo(') contains

no more than 3k+1 clauses. 2

We can now derive a bound on the complexity of directional resolution using properties

of the problem's interaction graph.

Theorem 4: (complexity of DR)

Given a theory ' and an ordering of its variables o, the time complexity of algorithm DR

along o is O(n � 9w
�

o ), and the size of Eo(') is at most n � 3w
�

o
+1 clauses, where w�

o is the

induced width of ''s interaction graph along o. 2

Corollary 1: Theories having bounded w�
o for some ordering o are tractable. 2.

Figure 8 demonstrates the e�ect of variable ordering on the induced width, and conse-

quently, on the complexity of DR when applied to theory '1. While DR generates 3 new
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clauses of length 3 along ordering (a), only one binary clause is generated along ordering

(c). Although �nding an ordering that yields the smallest induced width is NP-hard [1],

good heuristic orderings are currently available [6, 14, 55] and continue to be explored [4].

Furthermore, there is a class of graphs, known as k-trees, that have w� < k and can be

recognized in O(n � exp(k)) time [1].

De�nition 2: (k-trees)

1. A clique of size k (complete graph with k nodes) is a k-tree.

2. Given a k-tree de�ned on X1; :::;Xi�1, a k-tree on X1; :::;Xi can be generated by

selecting a clique of size k and connecting Xi to every node in that clique.

Corollary 2: If the interaction graph of a theory ' having n variables is a subgraph of

a k-tree, then there is an ordering o such that the space complexity of algorithm DR along

o (the size of Eo(')) is O(n � 3k), and its time complexity is O(n � 9k). 2

Important tractable classes are trees (w� = 1) and series-parallel networks (w� = 2).

These classes can be recognized in polynomial (linear or quadratic) time.

Example 4: Consider a theory 'n de�ned on the variables fA1; A2; :::; Ang. A clause

(Ai _ Ai+1 _ :Ai+2) is de�ned for each odd i, and two clauses (:Ai _ Ai+2) and (:Ai_

Ai+1_ :Ai+2) are de�ned for each even i, where 1 � i � n. The interaction graph of 'n
for n = 5 is shown in Figure 9. The reader can verify that the graph is a 3-tree (w� = 2)

and that its induced width along the original ordering is 2. Therefore, by theorem 4, the

size of the directional extension will not exceed 27n.

4.1.1 2-SAT

Note that algorithm DR is tractable for 2-cnf theories, because 2-cnfs are closed under

resolution (the resolvents are of size 2 or less) and because the overall number of clauses of
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size 2 is bounded by O(n2) (in this case, unordered resolution is also tractable), yielding

O(n � n2) = O(n3) complexity. Therefore,

Theorem 5: Given a 2-cnf theory ', its directional extension Eo(') along any ordering

o is of size O(n2), and can be generated in O(n3) time.

Obviously, DR is not the best algorithm for solving 2-SAT, since 2-SAT can be solved

in linear time [26]. Note, however, that DR also compiles the theory into one that can

produces each model in linear time. As shown in [17], in this case all models can be

generated in output linear time.

4.1.2 The graphical e�ect of unit resolution

Resolution with a unit clause Q or :Q deletes the opposite literal over Q from all relevant

clauses. It is equivalent to assigning a value to variable Q. Therefore, unit resolution

generates clauses on variables that are already connected in the graph, and therefore will

not add new edges.

4.2 Diversity

The concept of induced width sometimes leads to a loose upper bound on the number

of clauses recorded by DR. In Example 4, only six clauses were generated by DR, even

without eliminating subsumption and tautologies in each bucket, while the computed

bound is 27n = 27 � 8 = 216. Consider the two clauses (:A _ B) and (:C _ B) and

the order o = A;C;B. When bucket B is processed, no clause is added because B is

positive in both clauses, yet nodes A and C are connected in the induced graph. In this

subsection, we introduce a new parameter called diversity, that provides a tighter bound

on the number of resolution operations in the bucket. Diversity is based on the fact that

a proposition can be resolved upon only when it appears both positively and negatively

in di�erent clauses.

De�nition 3: (diversity)

Given a theory ' and an ordering o, let Q+
i (Q�

i ) denote the number of times Qi appears

positively (negatively) in bucketi. The diversity of Qi relative to o, div(Qi), is de�ned

as Q+
i � Q�

i . The diversity of an ordering o, div(o), is the largest diversity of its vari-

ables relative to o, and the diversity of a theory, div, is the minimal diversity among all

orderings.

The concept of diversity yields new tractable classes. For example, if o is an ordering

having a zero diversity, algorithm DR adds no clauses to ', regardless of its induced

width.
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Example 5: Let ' = f(G_E_:F ); (G_:E_D); (:A_F ); (A_:E); (:B_C_:E);

(B _C _D)g. It is easy to see that the ordering o = (A;B;C;D;E;F;G) has diversity 0

and induced width 4.

Theorem 6: Zero-diversity theories are tractable for DR: given a zero-diversity theory '

having n variables and c clauses, 1. its zero-diversity ordering o can be found in O(n2 � c)

time and 2. DR along o takes linear time. 2

The proof follows immediately from Theorem 8 (see subsection 4.3).

Zero-diversity theories generalize the notion of causal theories de�ned for general con-

straint networks of multivalued relations [22]. According to this de�nition, theories are

causal if there is an ordering of the propositional variables such that each bucket contains

a single clause. Consequently, the ordering has zero diversity. Clearly, when a theory

has a non-zero diversity, it is still better to place zero-diversity variables last in the or-

dering, so that they will be processed �rst. Indeed, the pure literal rule of the original

Davis-Putnam resolution algorithm requires processing �rst all-positive and all-negative

(namely, zero-diversity) clauses.

However, the parameter of real interest is the diversity of the directional extension

Eo('), rather than the diversity of '.

De�nition 4: (induced diversity)

The induced diversity of an ordering o, div�(o), is the diversity of Eo(') along o, and the

induced diversity of a theory, div�, is the minimal induced diversity over all its orderings.

Since div�(o) bounds the number of clauses generated in each bucket, the size of Eo(')

for every o can be bounded by j'j + n � div�(o). The problem is that computing div�(o)

is generally not polynomial (for a given o), except for some restricted cases. One such

case is the class of zero-diversity theories mentioned above, where div�(o) = div(o) = 0.

Another case, presented below, is a class of theories having div� = 1. Note that we can

easily create examples with high w� having div� � 1.

Theorem 7: Given a theory ' de�ned on variables Q1,..., Qn, such that each symbol

Qi either (a) appears only negatively (only positively), or (b) it appears in exactly two

clauses, then div�(') � 1 and ' is tractable. 2

4.3 Ordering heuristics

As previously noted, �nding a minimum-induced-width ordering is known to be NP-hard

[1]. A similar result can be demonstrated for minimum-induced-diversity orderings. How-

ever, the corresponding suboptimal (non-induced) min-width and min-diversity heuristic
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min-diversity (')
1. For i = n to 1 do:

Choose symbol Q having the smallest diversity
in '�

Sn
j=i+1 bucketj and put it in the ith position.

Figure 10: Algorithm min-diversity.

min-width (')
1. Initialize: G G(')
2. For i = n to 1 do

1.1. Choose symbol Q having the smallest
degree in G and put it in the ith position.

1.2. G G� fQg.

Figure 11: Algorithm min-width.

orderings often provide relatively low induced width and induced diversity. Min-width

and min-diversity orderings can be computed in polynomial time by a simple greedy

algorithm, as shown in Figures 10 and 11.

Theorem 8: Algorithm min-diversity generates a minimal diversity ordering of a theory

in time O(n2 � c), where n is the number of variables and c is the number of clauses in the

input theory. 2

The min-width algorithm [14] (Figure 11) is similar to the min-diversity, except that

at each step we select a variable with the smallest degree in the current interaction graph.

The selected variable is then placed i-th in the ordering and deleted from the graph.

A modi�cation of min-width ordering, called min-degree [28] (Figure 12), connects all

the neighbors of the selected variable in the current interaction graph before the variable

is deleted. Empirical studies demonstrate that the min-degree heuristic usually yields

lower-w� orderings than the induced-width heuristic. In all these heuristics ties are broken

randomly.

There are several other commonly used ordering heuristics, such as max-cardinality

heuristic presented in Figure 13. For more details, see [6, 14, 55].
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min-degree (')
1. Initialize: G G(')
2. For i = n to 1 do

1.1. Choose symbol Q having the smallest
degree in G and put it in the ith position.

1.2. Connect the neighbors of Q in G.
1.3. G G� fQg.

Figure 12: Algorithm min-degree.

max-cardinality (')
1. For i = 1 to n do

Choose symbol Q connected to maximum number of
previously ordered nodes in G and put it in the ith position.

Figure 13: Algorithm max-cardinality.

5 Directional Resolution and Tree-Clustering

In this section we further discuss the knowledge-compilation aspects of directional reso-

lution, and relate it to tree-clustering [21], a general preprocessing technique commonly

used in constraint and belief networks.

As stated in Theorem 2, given an input theory and a variable ordering, algorithm

DR produces a directional extension that allows model generation in linear time. Also,

when entailment queries are restricted to a small �xed subset of the variables C, orderings

initiated by the queried variables are preferred, since in such cases only a subset of the

directional extension needs to be processed. The complexity of entailment in this case

is O(exp(min(jCj; w�
o))), when w�

o is computed over the induced graph truncated above

variables in C 3.

However, when queries are expected to be uniformly distributed over all the variables it

3Moreover, since querying variables in C implies the addition of unit clauses, all the edges incident to

the queried variables can be deleted, further reducing the induced width.
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may be worthwhile to generate a compiled theory symmetrical with regard to all variables.

This can be accomplished by tree-clustering [21], a compilation scheme used for constraint

networks. Since cnf theories are special types of constraint networks, tree-clustering is

immediately applicable. The algorithm compiles the propositional theory into a join-tree

of relations (i.e., partial models) de�ned over cliques of variables that interact in a tree-like

manner. The join-tree allows query processing in linear time. A tree-clustering algorithm

for propositional theories presented in [5], is described in Figure 14 while a variant of tree-

clustering that generates a join-tree of clauses rather than a tree of models is presented

later.

Tree-clustering (')
Input: A cnf theory ' and its interaction graph G('), an ordering o.
Output: A join-tree representation of all models of ', TCM(').
Graph operations:

1. Apply triangulation to Go(') yielding a chordal graph Gh = Io(G).
2. Let C1,...,Ct be all the maximal cliques in Gh indexed by their highest nodes.
3. For each Ci, i = t to 1,

connect Ci to Cj (j < i), where Cj shares the largest set of variables with Ci.
The resulting graph is called a join tree T.
4. Assign each clause to every clique that contains all its atoms, yielding 'i for each Ci.
Model generation:

5. For each clique Ci, compute Mi, the set of models over 'i.
6. Apply arc-consistency on the join tree T of models:

for each Ci, and for each Cj adjacent to Ci in T, delete from Mi every model M
that does not agree with any model in Mj on the set of their common variables.

6. Return TCMo(') = fM1; :::;Mtg and the tree structure.

Figure 14: Model-based tree-clustering (TC).

The �rst three steps of tree-clustering (TC) are applied only to the interaction graph

of the theory, transforming it into a chordal graph (a graph is chordal if every cycle of

length at least four has a chord, i.e. an edge between two non-sequential nodes in that

cycle). This procedure, called triangulation [61], processes the nodes along some order of

the variables o, going from the last node to the �rst, connecting edges between the earlier

neighbors of each node. The result is the induced graph along o, which is chordal, and

whose maximal cliques serve as the nodes in the resulting structure called a join-tree. The

size of the largest clique in the triangulated (induced) graph equals w�
o + 1. Steps 2 and
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3 of the algorithm complete the join-tree construction by connecting the various cliques

into a tree structure. Once the tree of cliques is identi�ed, each clause in ' is placed in

every clique that contains its variables (step 4), yielding subtheories 'i for each clique

Ci. In step 5, the models Mi of each 'i are computed and replace 'i. Finally (step 6),

arc-consistency is enforced on the tree of models (for more details see [21, 5]). Given a

theory ', the algorithm generates a tree of partial models denoted TCM(').

It was shown that a join-tree yields a tractable representation. Namely, satis�abil-

ity, model generation, and a variety of entailment queries can all be done in linear or

polynomial time:

Theorem 9: [5]

1. A theory ' and a TCM(') generated by algorithm TC are satis�able if and only if

none of Mi 2 TCM(') is empty. This can be veri�ed in linear time in the resulting

join-tree.

2. Deciding whether a literal P 2 Ci is consistent with ' can be done in linear time in

jMij, by scanning the columns of a relation Mi de�ned over P .

3. Entailment of a clause � can be determined in O(j�j � n �m � log(m)) time, where m

bounds the number of models in each clique. This is done by temporary elimination

of all submodels that disagree with � from all relevant cliques, and reapplying arc-

consistency. 2

We now present a variant of the tree-clustering algorithm where each clique in the �nal

output join-tree is associated with a subtheory of clauses rather than with a set of models,

while all the desirable properties of the compiled representation are maintained. We show

that the compiled subtheories are generated by two successive applications of DR along

an ordering dictated by the join-tree's structure. The resulting algorithm Clause-based

Tree-Clustering (CTC) (Figure 15) outputs a clause-based join-tree, denoted TCC(').

The �rst three steps of structuring the join-tree and associating each clique with cnf

subtheories (step 4) remain unchanged. Directional resolution is then applied to the

resulting tree of cliques twice, from leaves to the root and vice-versa. However, DR is

modi�ed; each bucket is associated with a clique rather than with a single variable. Thus,

each clique is processed by full (unordered) resolution relative to all the variables in the

cliques. Some of the generated clauses are then copied into the next neighboring clique.

Let o = C1... Ct be a tree-ordering of cliques generated by either breadth-�rst or depth-

�rst traversal of the clique-tree rooted at C1. For each clique, the rooted tree de�nes a

parent and a set of child cliques. Cliques are then processed in a reverse order of o. When
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CTC(')

Input: A cnf theory ' and its interaction graph G('), an ordering o.
Output: A clause-based join-tree representation of '
1. Compute the skeleton join-tree (steps 1-3 in Figure 14.
2. Place every clause in very clique that contains it literals.
Let C1,...,Ct be a breadth �rst search ordering of the clique-tree that starts with C1

as its root. Let '1,...,'t be theories in C1,...,Ct, respectively.
3. For i = t to 1, 'i  res('i) (namely, close 'i under resolution)
put a copy of resolvents de�ned only on variables shared between Ci and Cj where
Cj is an earlier clique, into Cj.
4. For i = 1 to t do Ci  res(Ci);
put a copy of resolvents de�ned only on variables that Ci shares with a later clique Cj,
into Cj .
5. Return TCC(') = f'�

1; :::; '
�
tg, the set of all clauses de�ned

on each clique and the tree structure.

Figure 15: Algorithm clause-based tree-clustering (CTC).

processing clique Ci and its subtheory 'i, all possible resolvents over the variables in Ci

are added to 'i. The resolvents de�ned only on variables shared by Ci and its parent Cl

are copied and placed into Cl. The second phase works similarly in the opposite direction,

from the root C1 towards the leaves. In this case, the resolvents generated in clique Ci

that are de�ned on variables shared with a child clique Cj are copied into Cj
4. Since

applying full resolution to theories having jCj variables is time and space exponential in

jCj we get:

Theorem 10: The complexity of CTC is time and space O(n � exp(w�)), where w� is

the induced width of the ordered graph used for generating the join-tree structure. 2

Example 6: Consider theory '2 = f(:B _ A)(A _ :C); (:B _ D); (C _ D _ E)g.

Using the order o = (A;B;C;D;E), directional-resolution along o adds no clauses. The

join-tree structure relative to this ordering is obtained by selecting the maximal cliques

in the ordered induced graph (see Figure 16a). We get C3 = EDC, C2 = BCD, and

C1 = ABC. Step 4 places clause (C _ D _ E) in clique C3, clause(:B _ D) in C2 and

clauses (A _ :C) and (:B _ A) in C1. The resulting set of clauses in each clique after

4Note that duplication of resolvents can be avoided using a simple indexing scheme.
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(C    D   E)

(~C    D)

Figure 16: Theory and its two tree-clusterings.

processing by tree-clustering using o = C1; C2; C3 is given in Figure 16b. The boldface

clauses in each clique are those added during processing. No clause is generated in its

backward phase. In the root clique C1, resolution over A generates clause (:C_B) which

is then added to clique C2. Processing C2 generates clause (:C_D) added to C3. Finally,

processing C3 generates clause (D _ E).

The most signi�cant property of the compiled sub-theories of each clique Ci, denoted

'�
i , is that each contains all the prime implicates of ' de�ned over variables in Ci. This

implies that entailment queries involving only variables contained in a single clique, Ci,

can be answered in linear time, scanning the clauses of '�
i . Clauses that are not contained

in one clique can be processed in O(exp(w� + 1)) time.

To prove this claim, we �rst show that the clause-based join-tree of ' contains the di-

rectional extensions of ' along all the orderings that are consistent with the tree-structure.

The ability to generate a model backtrack-free facilitated by the directional extensions

therefore guarantees the existence of all clique-restricted prime implicates. We provide a

formal account of these claims below.

De�nition 5: A prime implicate of a theory ' is a clause � such that ' j= �, and there

is no �1 � � s.t. ' j= �1.

De�nition 6: Let ' be a cnf theory, and let C be a subset of the variables of '. We

denote by prime' the set of all prime implicates of ', and by prime'(C) the set of all

prime implicates of ' that are de�ned only on variables in C.
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We will show that any compiled clausal tree, TCC('), contains the directional exten-

sion of ' along a variety of variable orderings.

Lemma 3: Given a theory ', let T = TCC('), be a clause-based join-tree of ' and

let C be a clique in T . Then, there exist an ordering o that can start with any internal

ordering of the variables in C, such that Eo(') � TCC('). 2

Based on Lemma 3 we can prove the following theorem:

Theorem 11: Let ' be a theory and let T = TCC(') be a clause-based join-tree of ',

then for every clique C 2 T , prime'(C) � TCC('). 2

Consider again theory '3 and Figure 16. Focusing on clique C3 we see that it has only

two prime implicates, (D _ E) and(:C _D).

Having all the prime implicates of a clique has a semantic and a syntactic value.

Semantically, it means that all the information related to variables Ci is available inside

the compiled theory '�
i . The rest of the information is irrelevant. On the syntactic level we

also know that '�
i is the most explicit representation of this information. From Theorem

11 we conclude:

Corollary 3: Given a theory ' and its join-tree TCCo('), the following properties hold:

1. The theory ' is satis�able if and only if TCC(') does not contain an empty clause.

2. If T = TCC(') for some ', then entailment of any clause whose variables are

contained in a single clique can be decided in linear time in T .

3. Entailment of an arbitrary clause � from ' can be decided in O(exp(w� + 1)) time

and space.

4. Checking if a new clause is consistent with ' can be done in linear time in T . 2

In the example shown in Figure 16, the compiled sub-theory associated with clique C2

is '�
2 = f(:B _D); (:C _B); (:C _D)g. To determine if ' entails � = (C _B _D), we

must assess whether or not � is contained in '�
2. Since it is not contained, we conclude

that it is not entailed. To determine if � is consistent with ', we must see if ' entails the

negation of each literal. If it does, the clause is inconsistent. Since '�
2 does not include

:B, :C, or :D, neither of those literals is entailed by ', and therefore, � is consistent

with '.
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DP('):
Input: A cnf theory '.
Output: A decision of whether ' is satis�able.
1. Unit propagate(');
2. If the empty clause generated return(false);
3. else if all variables are assigned return(true);
4. else
5. Q = some unassigned variable;
6. return(DP('^ :Q) _
7. DP('^Q) )

(a) (b)

Figure 17: (a) A backtracking search tree along the ordering A;B;C for a cnf theory '5 =
f(:A _B); (:C _A); :B;Cg and (b) the Davis-Putnam Procedure.

6 Backtracking Search (DP)

Backtracking search processes the variables in some order, instantiating the next variable

if it has a value consistent with previous assignments. If there is no such value (a situation

called a dead-end), the algorithm backtracks to the previous variable and selects an alter-

native assignment. Should no consistent assignment be found, the algorithm backtracks

again. The algorithm explores the search tree, in a depth-�rst manner, until it either �nds

a solution or concludes that no solution exists. An example of a search tree is shown in

Figure 17a. This tree is traversed when deciding satis�ability of a propositional theory

'5 = f(:A_B); (:C_A); :B;Cg. The tree nodes correspond to the variables, while the

tree branches correspond to di�erent assignments (0 and 1). Dead-end nodes are crossed

out. Theory '5 is obviously inconsistent.

There are various advanced backtracking algorithms for solving CSPs that improve

the basic scheme using \smart" variable- and value-ordering heuristics ([9], [33]). More

e�cient backtracking mechanisms, such as backjumping [36, 13, 50], constraint propa-

gation (e.g., arc-consistency, forward checking [41]), or learning (recording constraints)

[13, 31, 2] are available. The Davis-Putnam Procedure (DP) [11] shown in Figure 17b

is a backtracking search algorithm for deciding propositional satis�ability combined with

unit propagation. Various branching heuristics augmenting this basic version of DP have

been proposed since 1962 [44, 9, 42, 38].

The worst-case time complexity of all backtracking algorithms is exponential in the
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Figure 18: An empirical distribution of the number of nodes explored by algorithm BJ-
DVO (backjumping+dynamic variable ordering) on 106 instances of inconsistent random
binary CSPs having N=50 variables, domain size D=6, constraint density C=.1576 (prob-
ability of a constraint between two variables), and tightness T=0.333 (the fraction of
prohibited value pairs in a constraint).

number of variables while their space complexity is linear. Yet, the average time complex-

ity of DP depends on the distribution of instances [29] and is often much lower then its

worst-case bound. Usually, its average performance is a�ected by rare, but exceptionally

hard instances. Exponential-family empirical distributions (e.g., lognormal, Weibull) pro-

posed in recent studies [32, 54] summarize such observations in a concise way. A typical

distribution of the number of explored search-tree nodes is shown in Figure 18. The dis-

tribution is shown for inconsistent problems. As it turns out, consistent and inconsistent

CSPs produce di�erent types of distributions (for more details see [32, 33]).
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(a) (b)

Figure 19: An example of a theory with (a) a chain structure (3 subtheories, 5 variables
in each) and (b) a (k,m)-tree structure (k=2, m=2).

7 DP versus DR: Empirical Evaluation

In this section we present an empirical comparison of DP and DR on di�erent types of cnf

theories, including uniform random problems, random chains and (k,m)-trees, and bench-

mark problems from the Second DIMACS Challenge 5. The algorithms were implemented

in C and tested on SUN Sparc stations. Since we used several machines having di�erent

performance (from Sun 4/20 to Sparc Ultra-2), we specify which machine was used for

each set of experiments. Reported runtime is measured in seconds.

Algorithm DR is implemented as discussed in Section 3. If it is followed by DP using

the same �xed variable ordering, no dead-ends will occur (see Theorem 2).

Algorithm DP was implemented using the dynamic variable ordering heuristic of

Tableau [9], a state-of-the-art backtracking algorithm for SAT. This heuristic, called the 2-

literal-clause heuristic, suggests instantiating next a variable that would cause the largest

number of unit propagations approximated by the number of 2-literal clauses in which

the variable appears. The augmented algorithm signi�cantly outperforms DP without

this heuristic [9].

7.1 Random problem generators

To test the algorithms on problems with di�erent structures, several random problem

generators were used. The uniform k-cnfs generator [49] uses as input the number of

variables N, the number of clauses C, and the number of literals per clause k. Each clause

is generated by randomly choosing k out of N variables and by determining the sign of

each literal (positive or negative) with probability p. In the majority of our experiments

p = 0:5. Although we did not check for clause uniqueness, for large N it is unlikely that

identical clauses will be generated.

5Available at ftp://dimacs.rutgers.edu/pub/challenge/sat/benchmarks/volume/cnf.
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Our second generator, chains, creates a sequence of independent uniform k-cnf the-

ories (called subtheories) and connects each pair of successive cliques by a 2-cnf clause

containing variables from two consecutive subtheories in the chain (see Figure 19a). The

generator parameters are the number of cliques, Ncliq, the number of variables per clique,

N , and the number of clauses per clique, C. A chain of cliques, each of size N variables,

is a subgraph of a k-tree [1] where k = 2n� 1 and therefore, has w� � 2n � 1.

We also used a (k,m)-tree generator which generates a tree of cliques each having

(k + m) nodes where k is the size of the intersection between two neighboring cliques

(see Figure 19b, where k = 2 and m = 2). Given k, m, the number of cliques Ncliq,

and the number of clauses per clique Ncls, the (k,m)-tree generator produces a clique of

size k +m with Ncls clauses and then generates each of the other Ncliq � 1 cliques by

selecting randomly an existing clique and its k variables, adding m new variables, and

generating Ncls clauses on that new clique. Since a k-m-tree can be embedded into a

(k + m � 1)-tree, its induced width is bounded by k +m � 1 (note that (k; 1)-trees are

conventional k-trees).

7.2 Results

As expected, on uniform random 3-cnfs having large w�, the complexity of DR grew

exponentially with the problem density while the performance of DP was much better.

Even small problems having 20 variables already demonstrate the exponential behavior

of DR (see Figure 20a). On larger problems DR often ran out of memory. We did not

proceed with more extensive experiments in this case, since the exponential behavior of

DR on uniform 3-cnfs is already well-known [35, 39].

However, the behavior of the algorithms on chain problems was completely di�erent.

DR was by far more e�cient than DP, as can be seen from Table 1 and from Figure 20b,

summarizing the results on 3-cnf chain problems that contain 25 subtheories, each having

5 variables and 9 to 23 clauses (24 additional 2-cnf clauses connect the subtheories in the

chain) 6. A min-diversity ordering was used for each instance. Since the induced width

of these problems was small (less than 6, on average), directional resolution solved these

problems quite easily. However, DP-backtracking encountered rare but extremely hard

problems that contributed to its average complexity. Table 2 lists the results on selected

hard instances from Table 1 (where the number of dead-ends exceeds 5,000).

Similar results were obtained for other chain problems and with di�erent variable

orderings. For example, Figure 21 graphs the experiments with min-width and input

orderings. We observe that min-width ordering may signi�cantly improve the performance

6Figure 20b also shows the results for algorithms BDR-DP and backjumping discussed later.
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Table 1: DR versus DP on 3-cnf chains having 25 subtheories, 5 variables in each, and from
11 to 21 clauses per subtheory (total 125 variables and 299 to 549 clauses). 20 instances
per row. The columns show the percentage of satis�able instances, time and deadends
for DP, time and the number of new clauses for DR, the size of largest clause, and the
induced width w�

md along the min-diversity ordering. The experiments were performed on
Sun 4/20 workstation.

Num % DP DR
of sat Time Dead Time Number Size of w�

cls ends of new max
clauses clause

299 100 0.4 1 1.4 105 4.1 5.3
349 70 9945.7 908861 2.2 131 4.0 5.3
399 25 2551.1 207896 2.8 131 4.0 5.3
449 15 185.2 13248 3.7 135 4.0 5.5
499 0 2.4 160 3.8 116 3.9 5.4
549 0 0.9 9 4.0 99 3.9 5.2

Table 2: DR and DP on hard chains when the number of dead-ends is larger than 5,000.
Each chain has 25 subtheories, with 5 variables in each (total of 125 variables). The
experiments were performed on Sun 4/20 workstation.

Num Sat: DP DR
of 0 or 1 Time Dead Time
cls ends

349 0 41163.8 3779913 1.5
349 0 102615.3 9285160 2.4
349 0 55058.5 5105541 1.9
399 0 74.8 6053 3.6
399 0 87.7 7433 3.1
399 0 149.3 12301 3.1
399 0 37903.3 3079997 3.0
399 0 11877.6 975170 2.2
399 0 841.8 70057 2.9
449 1 655.5 47113 5.2
449 0 2549.2 181504 3.0
449 0 289.7 21246 3.5
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(a) uniform random 3-cnfs, w� = 10 to 18 (b) chain 3-cnfs, w� = 4 to 7

Figure 20: (a) DP versus DR on uniform random 3-cnfs; (b) DP, DR, BDR-DP(3) and
backjumping on 3-cnf chains (Sun 4/20).

of DP relative to the input ordering (compare Figure 21a and Figure 21b). Still, it did

not prevent backtracking from encountering rare, but extremely hard instances.

Table 3 presents the histograms demonstrating the performancs of DP on chains in

more details. The histograms show that in most cases the frequency of easy problems (e.g.,

less than 10 deadends) decreased and the frequency of hard problems (e.g., more than

104 deadends) increased with increasing number of cliques and with increasing number of

clauses per clique. Further empirical studies are required to investigate the possible phase

transition phenomenon in chains as it was done for uniform random 3cnfs [7, 49, 9].

In our experiments nearly all of the 3-cnf chain problems that were di�cult for DP

were unsatis�able. One plausible explanation is that inconsistent chain theories may have

an unsatis�able subtheory only at the end of the ordering. If all other subtheories are

satis�able then DP will try to re-instantiate variables from the satis�able subtheories

whenever it encounters a dead-end. Figure 22 shows an example of a chain of satis�able

theories with an unsatis�able theory close to the end of the ordering. Min-diversity and

min-width orderings do not preclude such a situation. There are enhanced backtracking

schemes, such as backjumping [36, 37, 13, 51], that are capable of exploiting the structure

and preventing useless re-instantiations. Experiments with backjumping con�rm that it
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Figure 21: DR and DP on 3-cnf chains with di�erent orderings (Sun 4/20).

Table 3: Histograms of the number of deadends (log-scale) for DP on chains having 20,
25 and 30 subtheories, each de�ned on 5 variables and 12 to 16 clauses. Each column
presents results for 200 instances; each row de�nes a range of deadednds; each entry
is the frequency of instances (out of total 200) that yield the range of deadends. The
experiments were performed on Sun Ultra-2.

C=12 C=14 C=16
Deadends Ncliq Ncliq Ncliq

20 25 30 20 25 30 20 25 30

[0; 1) 103 90 75 75 23 8 7 2 2
[1; 10) 81 85 102 102 107 93 73 68 59
[10; 102) 3 4 7 7 21 24 40 37 43
[102; 103) 2 1 4 4 8 12 20 26 22
[103; 104) 1 3 2 2 10 8 21 10 21
[104;1) 10 17 10 10 31 55 39 57 53
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sat=1 sat=1 sat=1 sat=1 sat= 0

Figure 22: An inconsistent chain problem: a naive backtracking is very ine�cient when
encountering an inconsistent subproblem at the end of the variable ordering.

Table 4: DP versus Tableau on 150- and 200-variable uniform random 3-cnfs using the
min-degree ordering. 100 instances per row. Experiments ran on Sun Sparc Ultra-2.

Cls % Tableau DP DP
sat time time de

150 variables

550 1.00 0.3 0.4 81
600 0.93 2.0 3.9 992
650 0.28 4.1 10.1 2439
700 0.04 2.7 7.1 1631

200 variables

780 0.99 11.6 10.0 1836
820 0.95 48.5 43.7 7742
860 0.40 81.7 125.8 22729
900 0.07 26.6 92.4 17111

substantially outperforms DP on the same chain instances (see Figure 20b).

The behavior of DP and DR on (k-m)-trees is similar to that on chains and will be

discussed later in the context of hybrid algorithms.

7.2.1 Comparing di�erent DP implementations

One may raise the question whether our (not highly optimized) DP implementation is

e�cient enough to be representative of backtracking-based SAT algorithms. We answer

this question by comparing our DP with the executable code of Tableau [9].

The results for 150- and 200-variable uniform random 3-cnf problems are presented in

Table 4. We used min-degree as an initial ordering consulted by both (dynamic-ordering)

algorithms Tableau and DP in tie-breaking situations. In most cases, Tableau was 2-4

times faster than DP, while in some DP was faster or comparable to Tableau.

On chains, the behavior pattern of Tableau was similar to that of DP. Table 5 com-

pares the runtime histograms for DP and Tableau on chain problems showing that both
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Table 5: Histograms of DP and Tableau runtimes (log-scale) on chains having Ncliq = 15,
N = 8, and C from 21 to 27, 200 instances per column. Each row de�nes a runtime
range, and each entry is the frequency of instances within the range. The experiments
were performed on Sun Ultra-2.

Time C=21 C=23 C=25

Tableau runtime histogram

[0; 1) 195 189 166
[1; 10) 0 2 12
[10; 102) 0 3 14
[102;1) 5 6 8

DP runtime histogram

[0; 1) 193 180 150
[1; 10) 2 3 8
[10; 102) 2 2 11
[102;1) 3 15 31

algorithms were encountering rare hard problems, although Tableau usually encountered

hard problems less frequently than DP. Some problem instances that were hard for DP

were easy for Tableau, and vice versa.

Thus, although Tableau is often more e�cient than our implementation, this di�erence

does not change the key distinctions made between backtracking- and resolution-based

approaches. Most of experiments in this paper use our implementation of DP 7.

8 Combining search and resolution

The complementary properties of DP and DR suggest combining both into a hybrid

scheme (note that algorithm DP already includes a limited amount of resolution in the

form of unit propagation). We will present two general parameterized schemes integrat-

ing bounded resolution with search. The hybrid scheme BDR-DP(i) performs bounded

resolution prior to search, while the other scheme called DCDR(b) uses it dynamically

during search.
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Bounded Directional Resolution: BDR(i)

Input: A cnf theory ', o = Q1; :::; Qn, and bound i.
Output: The decision of whether ' is satis�able.
If it is, a bounded directional extension Ei

o(').
1. Initialize: generate a partition of clauses, bucket1; :::; bucketn,
where bucketi contains all the clauses whose highest literal is Qi.
2. For i = n to 1 do:

resolve each pair f(� _Qi); (� _ :Qi)g � bucketi.
If 
 = � _ � is empty, return \' is unsatis�able"
else if 
 contains no more than i propositions,
add 
 to the bucket of its highest variable.

3.Return Ei
o(') =

S
i bucketi.

Figure 23: Algorithm Bounded Directional Resolution (BDR).

8.1 Algorithm BDR-DP(i)

The resolution operation helps detecting inconsistent subproblems and thus can prevent

DP from unnecessary backtracking. Yet, resolution can be costly. One way of limiting

the complexity of resolution is to bound the size of the recorded resolvents. This yields

the incomplete algorithm bounded directional resolution, or BDR(i), presented in Figure

8.1, where i bounds the number of variables in a resolvent. The algorithm coincides with

DR except that resolvents with more than i variables are not recorded. This bounds the

size of the directional extension Ei
o(') and, therefore, the complexity of the algorithm.

The time and space complexity of BDR(i) is O(n � exp(i)). The algorithm is sound but

incomplete. Algorithm BDR(i) followed by DP is named BDR-DP(i) 8. Clearly, BDR-

DP(0) coincides with DP while for i > w�
o BDR-DP(i) coincides with DR (each resolvent

is recorded).

8.2 Empirical evaluation of BDR-DP(i)

We tested BDR-DP(i) for di�erent values of i on uniform 3-cnfs, chains, (k,m)-trees, and

on DIMACS benchmarks. In most cases, BDR-DP(i) achieved its optimal performance

7Having the source code for DP allowed us more control over the experiments (e.g., bounding the

number of deadends) than having only the executable code for Tableau.
8Note that DP always uses the 2-literal-clauses dynamic variable ordering heuristic.
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Table 6: DP versus BDR-DP(i) for 2 � i � 4 on uniform random 3-cnfs with 150 variables,
600 to 725 clauses, and positive literal probability p = 0:5. The induced width w�

o along
the min-width ordering varies from 107 to 122. Each row presents average values on 100
instances (Sun Sparc 4).

Num DP BDR-DP(2) BDR-DP(3) BDR-DP(4) w
�

o

of Time Dead BDR DP Dead New BDR DP Dead New BDR DP Dead New

cls ends time time ends cls time time ends cls time time ends cls

600 4.6 784 0 4.6 786 0 0.1 4.1 692 16 1.7 8.5 638 731 113

625 8.9 1487 0 8.9 1503 0 0.1 8.2 1346 18 1.9 16.8 1188 805 114

650 11.2 1822 0.1 11.2 1821 0 0.1 10.3 1646 19 2.3 21.4 1421 889 115

675 10.2 1609 0.1 9.9 1570 0 0.1 9.1 1405 21 2.6 19.7 1232 975 116

700 7.9 1214 0.1 7.9 1210 0 0.1 7.5 1116 23 3 16.6 969 1071 117

725 6.1 910 0.1 6.1 904 0 0.1 5.7 820 25 3.5 13.3 728 1169 118

for intermediate values of i.

8.2.1 Performance on uniform 3-cnfs

The results for BDR-DP(i) (0 � i � 4) on a class of uniform random 3-cnfs are presented

in Table 6. It shows the average time and number of deadends for DP, the average BDR(i)

time, DP time and the number of deadends after preprocessing, as well as the average

number of new clauses added by BDR(i). An alternative summary of the same data is

given in Figure 24, comparing DP and BDR-DP(i) time. It also demonstrates the increase

in the number of clauses and the corresponding reduction in the number of deadends. For

i = 2, almost no new clauses are generated (Figure 24c). Indeed, the graphs for DP and

BDR-DP(2) practically coincide. Incrementing i by 1 results in a two orders of magnitude

increase in the number of generated clauses, while the number of deadends decreases by

100-200, as shown in Figure 24c.

The results suggest that BDR-DP(3) is the most cost-e�ective on these problem clases

(see Figure 24a). It is slightly faster than DP and BDR-DP(2) (BDR-DP(2) coincides with

DP on this problem set) and signi�cantly faster than BDR-DP(4). Table 6 shows that

BDR(3) takes only 0.1 second to run, while BDR(4) takes up to 3.5 seconds and indeed

generates many more clauses. Observe also that DP runs slightly faster when applied

after BDR(3). Interestingly enough, for i = 4 the time of DP almost doubles although

fewer deadends are encountered. For example, in Table 6, for the problem set with 650

clauses, DP takes on average 11.2 seconds but after preprocessing by BDR(4) it takes 21.4

seconds. This can be explained by the signi�cant increase in the number of clauses that

need to be consulted by DP. Thus, as i increases beyond 3, DP's performance is likely to

worsen while at the same time the complexity of preprocessing grows exponentially in i.

Table 7 presents additional results for problems having 200 variables where p = 0:7 9.

9Note that the average decrease in the number of deadends is not always monotonic: for problems
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Figure 24: BDR-DP(i) on a class of uniform random 3-cnf problems. (150 variables, 600
to 725 clauses). The induced width along the min-width ordering varies from 107 to 122.
Each data point corresponds to 100 instances. Note that the plots for DP and BDR(2)-
DP in (a) and (b) almost coincide (the white-circle plot for BDR(2)-DP overlaps with the
black-circle plot for DP).

Table 7: DP versus BDR-DP(i) for i = 3 and i = 4 on uniform 3-cnfs with 200 variables,
900 to 1400 clauses, and with positive literal probability p = 0:7. Each row presents mean
values on 20 experiments.

Num DP BDR-DP(3) BDR-DP(4)
of Time Dead BDR DP Dead New BDR DP Dead New
cls ends time time ends cls time time ends cls

900 1.1 0 0.3 1.1 0 11 8.4 1.7 1 657
1000 2.7 48 0.4 1.6 14 12 13.1 2.7 21 888
1100 8.8 199 0.6 27.7 685 18 20.0 50.4 729 1184
1200 160.2 3688 0.8 141.5 3271 23 28.6 225.7 2711 1512
1300 235.3 5027 1.0 219.1 4682 28 39.7 374.4 4000 1895
1400 155.0 3040 1.2 142.9 2783 34 54.4 259.0 2330 2332
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Table 8: DP versus BDR-DP(3) on uniform random 3-cnfs with p = 0:5 at the phase-
transition point (C/N=4.3): 150 variables and 645 clauses, 200 variables and 860 clauses,
250 variables and 1075 clauses. The induced width w�

o was computed for the min-width
ordering. The results in the �rst two rows summarize 100 experiments, while the last row
represents 40 experiments.

< vars; cls > DP BDR-DP(3) w�
o

Time Dead BDR DP Dead New
ends time time ends cls

< 150; 650> 11.2 1822 0.1 10.3 1646 19 115
< 200; 860> 81.3 15784 0.1 72.9 14225 18 190
< 250; 1075> 750 115181 0.1 668.8 102445 19 1094

Finally, we observe that e�ect of BDR(3) is more pronounced on larger theories. In

Table 8 we compare the results for three classes of uniform 3-cnf problems in the phase

transition region. While this improvement was marginal for 150-variable problems (from

11.2 seconds for DP to 10.3 seconds for BDR-DP(3)), it was more pronounced on 200-

variable problems (from 81.3 to 72.9 seconds), and on 250-variable problems (from 929.9

to 830.5 seconds). In all those cases the average speed-up is about 10%.

Our tentative empirical conclusion is that i = 3 is the optimal parameter for BDR-

DP(i) on uniform random 3-cnfs.

8.2.2 Performance on chains and (k,m)-trees

The experiments with chains showed that BDR-DP(3) easily solved almost all instances

that were hard for DP. In fact, the performance of BDR-DP(3) on chains was comparable

to that of DR and backjumping (see Figure 20b).

Experimenting with (k;m)-trees, while varying the number of clauses per clique, we

discovered again exceptionally hard problems for DP. The results on (1,4)-trees and on

(2,4)-trees are presented in Table 9. In these experiments we terminated DP once it

exceeded 20,000 dead-ends (around 700 seconds). This happened in 40% of (1,4)-trees

with Ncls = 13, and in 20% of (2,4)-trees with Ncls = 12. Figure 25 shows a scatter

diagram comparing DP and BDR-DP(3) time on the same data set together with an

additional 100 experiments on (k,m)-trees having 15 cliques (total of 500 instances).

As in the case of 3-cnf chains we observed that the majority of the exceptionally hard

problems were unsatis�able. For �xed m, when k is small and the number of cliques is

having 1000 clauses, DP has an average of 48 deadends, BDR-DP(3) yields 14 deadends, but BDR-DP(4)

yields 21 deadends. This may occur because DP uses dynamic variable ordering.
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Figure 25: DP and BDR-DP(3) on (k-m)-trees, k=1,2, m=4, Ncliq=100, and Ncls=11 to
15. 50 instances per each set of parameters (total of 500 instances), an instance per point.

Table 9: BDR-DP(3) and DP (termination at 20,000 dead ends) on (k;m)-trees, k=1,2,
m=4, Ncliq=100, and Ncls=11 to 14. 50 experiments per each row.

DP BDR-DP(3)

Number % Time Dead BDR(3) DP after BDR(3) Number
of sat ends time time dead of new

ends clauses

(1,4)-tree, Ncls = 11 to 14, Ncliq = 100 (total: 401 vars, 1100-1400 cls)

1100 60 233.2 7475 5.4 17.7 2 298
1200 18 352.5 10547 7.5 1.2 7 316
1300 2 328.8 9182 9.8 0.25 3 339
1400 0 174.2 4551 11.9 0.0 0 329

(2,4)-tree, Ncls = 11 to 14, Ncliq = 100 (total: 402 vars, 1100-1400 cls)

1100 36 193.7 6111 4.1 23.8 568 290
1200 12 160.0 4633 6.0 1.6 25 341
1300 2 95.1 2589 8.4 0.1 0 390
1400 0 20.1 505 10.3 0.0 0 403
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Figure 26: BDR-DP(i) on 100 instances of (1,4)-trees, Ncliq = 100, Ncls = 11, w�
md = 4

(termination at 50,000 deadends). (a) Average time, (b) the number of dead-ends, and
(c) the number of new clauses are plotted as functions of the parameter i. Note that the
plot for BDR-DP(i) practically coincides with the plot for DP when i � 3, and with DP
when i > 3.

large, hard instances for DP appeared more frequently.

The behavior of BDR-DP(i) as a function of i on structured bounded-w� theories is

demonstrated in Figures 26 and 27. In these experiments we used min-degree ordering

that yielded smaller average w� (denoted w�
md) than input ordering, min-width ordering,

and min-cardinality ordering (see [52] for details). Figure 26 shows results for (1,4)-trees,

while Figure 27a presents the results for (4,8)-trees, (5,12)-trees, and (8,12)-trees. Each

point represents an average over 100 instances. We observed that for relatively low-w�

(1,4)-trees preprocessing time is not increasing when i > 3 since BDR(4) coincides with

DR (Figure 26a), while for high-w� (8,12)-trees the preprocessing time grows quickly with

increasing i (Figure 26c). Since DP time after BDR(i) usually decreases monotonically

with i, the total time of BDR-DP(i) is optimal for some intermediate values of i. We

observe that for (1,4)-trees, BDR-DP(3) is most e�cient, while for (4,8)-trees and for

(5,12)-trees the optimal parameters are i = 4 and i = 5, respectively. For (8,12)-trees,

the values i = 3; 4; and 5 provide the best performance.

8.2.3 BDR-DP(i), DP, DR, and Tableau on DIMACS benchmarks

We tested DP, Tableau, DR and BDR-DP(i) for i=3 and i=4 on the benchmark prob-

lems from the Second DIMACS Challenge. The results presented in Table 10 are quite
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Figure 27: BDR-DP(i) on 3 classes of (k,m)-tree problems: (a) (4,8)-trees, Ncliq = 60,
Ncls = 23, w�

md = 9, (b) (5,12)-trees, Ncliq = 60, Ncls = 36, w� = 12, and (c) (8,12)-
trees, Ncliq = 50, Ncls = 34, w� = 14 (termination at 50,000 deadends). 100 instances
per each problem class. Average time, the number of dead-ends, and the number of new
clauses are plotted as functions of the parameter i.

interesting: while all benchmark problems were relatively hard for both DP and Tableau,

some of them had very low w� and were solved by DR in less than a second (e.g., dubois20

and dubois21). On the other hand, problems having high induced width, such as aim-

100-2 0-no-1 (w� = 54) and bf0432-007 (w� = 131) were intractable for DR, as expected.

Algorithm BDR-DP(i) was often better than both \pure" DP and DR. For example,

solving the benchmark aim-100-2 0-no-1 took more than 2000 seconds for Tableau, more

than 8000 seconds for DP, and DR ran out of memory, while BDR-DP(3) took only 0.9

seconds and reduced the number of DP deadends from more than 108 to 5. Moreover,

preprocessing by BDR(4), which took only 0.6 seconds, made the problem backtrack-free.

Note that the induced width of this problem is relatively high (w� = 54).

Interestingly, for some DIMACS problems (e.g., ssa0432-003 and bf0432-007) prepro-

cessing by BDR(3) actually worsened the performance of DP. Similar phenomenon was

observed in some rare cases for (k,m)-trees (Figure 25). Still, BDR-DP(i) with interme-

diate values of i is overall more cost-e�ective than both DP and DR. On unstructured

random uniform 3-cnfs BDR-DP(3) is comparable to DP, on low-w� chains it is compa-

rable to DR, and on intermediate-w� (k,m)-trees, BDR-DP(i) for i = 3; 4; 5 outperforms
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Table 10: Tableau, DP, DR, and BDR-DP(i) for i=3 and 4 on the Second DIMACS
Challenge benchmarks. The experiments were performed on Sun Sparc 5 workstation.

Problem Tableau DP Dead DR BDR-DP(3) BDR-DP(4)
time time ends time time Dead New time Dead New w�

ends cls ends cls
aim-100-2 0-no-1 2148 >8988 > 108 * 0.9 5 26 0.60 0 721 54

dubois20 270 3589 3145727 0.2 349 262143 30 0.2 0 360 4
dubois21 559 7531 6291455 0.2 1379 1048575 20 0.2 0 390 4

ssa0432-003 12 45 4787 4 132 8749 950 40 1902 1551 19
bf0432-007 489 8688 454365 * 46370 677083 10084 * * * 131

both DR and DP. We believe that the transition from i=3 to i=4 on uniform problems

is too sharp, and that intermediate levels of preprocessing may provide a more re�ned

trade-o�.

8.3 Algorithm DCDR(b)
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Figure 28: The e�ect of conditioning on A on the interaction graph of theory ' = f(:C _
E); (A _ B _ C); (:A _B _ E); (:B _ C _D)g.

The second method of combining DP and DR that we consider uses resolution dy-

namically during search. We propose a class of hybrid algorithms that select a set of

conditioning variables (also called a cutset), such that instantiating those variables results

in a low-width theory tractable for DR 10. The hybrids run DP on the cutset variables and

DR on the remaining ones, thus combining the virtues of both approaches. Like DR, they

10This is a generalization of the cycle-cutset algorithm proposed in [20] which transforms the interaction

graph of a theory into a tree.
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exploit low-w� structure and produce an output theory that facilitates model generation,

while using less space and allowing less average time, like DP.

The description of the hybrid algorithms uses a new notation introduced below. An

instantiation of a set of variables C � X is denoted I(C). The theory ' conditioned on

the assignment I(C) is called a conditional theory of ' relative to I(C), and is denoted as

'I(C). The e�ect of conditioning on C is deletion of variables in C from the interaction

graph. Therefore the conditional interaction graph of ' with respect to I(C), denoted

G('I(C)), is obtained from the interaction graph of ' by deleting the nodes in C (and all

their incident edges). The conditional width and conditional induced width of a theory '

relative to I(C), denoted wI(C) and w�
I(C), respectively, are the width and induced width

of the interaction graph G('I(C)).

For example, Figure 28 shows the interaction graph of theory ' = f(:C _ E); (A _

B _ C); (:A _ B _ E); (:B _ C _ D)g along the ordering o = (E;D; C;B;A) having

width and induced width 4. Conditioning on A yields two conditional theories: 'A=0 =

f(:C _ E); (B _ C); (:B _ C _D)g, and 'A=1 = f(:C _ E); (B _ E); (:B _ C _D)g.

The ordered interaction graphs of 'A=0 and 'A=1 are also shown in Figure 28. Clearly,

wo(B) = w�
o(B) = 2 for theory 'A=0, and wo(B) = w�

o(B) = 3 for theory 'A=1. Note

that, besides deleting A and its incident edges from the interaction graph, an assignment

may also delete some other edges (e.g., A = 0 removes the edge between B and E because

the clause (:A _B _ E) becomes satis�ed).

The conditioning variables can be selected in advance (\statically"), or during the

algorithm's execution (\dynamically"). In our experiments, we focused on the dynamic

version Dynamic Conditioning + DR (DCDR) that was superior to the static one.

Algorithm DCDR(b) guarantees that the induced width of variables that are resolved

upon is bounded by b. Given a consistent partial assignment I(C) to a set of variables

C, the algorithm performs resolution over the remaining variables having w�
I(C) < b. If

there are no such variables, the algorithm selects a variable and attempts to assign it a

value consistent with I(C). The idea of DCDR(b) is demonstrated in Figure 29 for the

theory ' = f(:C _E); (A_B _C _D); (:A_B _E _D); (:B _C _D)g. Assume that

we run DCDR(2) on '. Every variable is initially connected to at least 3 other variables

in G('). As a result, no resolution can be done and a conditioning variable is selected.

Assume that A is selected. Assignment A = 0 adds the unit clause :A which causes unit

resolution in bucketA, and produces a new clause (B _ C _ D) from (A _ B _ C _ D).

The assignment A = 1 produces clause (B _ E _ D). In Figure 29, the original clauses

are shown on the left as a partitioning into buckets. The new clauses are shown on the

right, within the corresponding search-tree branches.

Following the branch for A = 0 we get a conditional theory f(:B_C_D); (B_C_D);
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Figure 29: A trace of DCDR(2) on the theory ' = f(:C _E); (A_B_C); (:A_B_E);
(:B _ C _D)g.

(:C _ E)g. Since the degrees of all the variables in the corresponding (conditional)

interaction graph are now 2 or less, we can proceed with resolution. We select B, perform

resolution in its bucket, and record the resolvent (C _ D) in bucketC. The resolution in

bucketC creates clause (D _ E). At this point, the algorithm terminates, returning the

assignment A = 0, and the conditional directional extension '^ (B _C _D)^ (C _D)^

(D _ E).

The alternative branch of A = 1 results in the conditional theory f(B _ E _ D);

(:B _ C _ D); (:C _ E)g. Since each variable is connected to three other variables,

no resolution is possible. Conditioning on B yields the conditional theory f(E _ D);

(:C _ E)g when B = 0, and the conditional theory f(C _ D); (:C _ E)g when B = 1.

In both cases, the algorithm terminates, returning A = 1, the assignment to B, and the

corresponding conditional directional extension.

Algorithm DCDR(b) (Figure 30) takes as an input a propositional theory ' and a
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parameter b bounding the size of resolvents. Unit propagation is performed �rst (lines

1-2). If no inconsistency is discovered, DCDR proceeds to its primary activity: choosing

between resolution and conditioning. While there is a variable Q connected to at most

b other variables in the current interaction graph conditioned on the current assignment,

DCDR resolves upon Q (steps 4-9). Otherwise, it selects an unassigned variable (step

10), adds it to the cutset (step 11), and continues recursively with the conditional theory

' ^ :Q. An unassigned variable is selected using the same dynamic variable ordering

heuristic that is used by DP. Should the theory prove inconsistent the algorithm switches

to the conditional theory ' ^ Q. If both positive and negative assignments to Q are

inconsistent the algorithm backtracks to the previously assigned variable. It returns to

the previous level of recursion and the corresponding state of ', discarding all resolvents

added to ' after the previous assignment was made. If the algorithm does not �nd any

consistent partial assignment it decides that the theory is inconsistent and returns an

empty cutset and an empty directional extension. Otherwise, it returns an assignment

I(C) to the cutset C, and the conditional directional extension Eo('I(C)) where o is

the variable ordering dynamically constructed by the algorithm. Clearly, the conditional

induced width w�
I(C) of ''s interaction graph with respect to o and to the assignment I(C)

is bounded by b.

Theorem 12: (DCDR(b) soundness and completeness) Algorithm DCDR(b) is sound

and complete for satis�ability. If a theory ' is satis�able, any model of ' consistent with

the output assignment I(C) can be generated backtrack-free in O(jEo('I(C))j) time where

o is the ordering computed dynamically by DCDR(b). 2

Theorem 13: (DCDR(b) complexity) The time complexity of algorithm DCDR(b) is

O(n2��b+jCj), where C is the largest cutset ever conditioned upon by the algorithm, and

� � log29. The space complexity is O(n � 2��b). 2

The parameter b can be used to control the trade-o� between search and resolution.

If b � w�
o('), where o is the ordering used by DCDR(b), the algorithm coincides with

DR having time and space complexity exponential in w�('). It is easy to show that the

ordering generated by DCDR(b) in case of no conditioning yields a min-degree ordering.

Thus, given b and a min-degree ordering o, we are guaranteed that DCDR(b) coincides

with DR if w�
o � b. If b < 0, the algorithm coincides with DP. Intermediate values of b

allow trading space for time. As b increases, the algorithm requires more space and less

time (see also [16]). However, there is no guaranteed worst-case time improvement over

DR. It was shown [6] that the size of the smallest cycle-cutset C (a set of nodes that breaks

all cycles in the interaction graph, leaving a tree, or a forest), and the smallest induced
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DCDR(', X, b)

Input: A cnf theory ' over variables X ; a bound b.
Output: A decision of whether ' is satis�able. If it is, an assignment I(C) to its
conditioning variables, and the conditional directional extension Eo('I(C)).
1. if unit propagate(') = false, return(false);
2. else X  X � f variables in unit clauses g
3. if no more variables to process, return true;
4. else while 9Q 2 X s.t. degree(Q) � b in the current graph
5. resolve over Q
6. if no empty clause is generated,
7. add all resolvents to the theory
8. else return false

9. X  X � fQg

10. Select a variable Q 2 X ; X  X � fQg
11. C  C [ fQg;
12. return( DCDR('^ :Q, X , b) _

DCDR('^ Q, X , b) ).

Figure 30: Algorithm DCDR(b).

width, w�, obey the relation jCj � w� � 1. Therefore, for b = 1, and for a corresponding

cutset Cb, � � b + jCbj � w� + � � 1 � w�, where the left side of this inequality is the

exponent that determines complexity of DCDR(b) (Theorem 13). In practice, however,

backtracking search rarely demonstrates its worst-case performance and thus the average

complexity of DCDR(b) is superior to its worst-case bound as will be con�rmed by our

experiments.

Algorithm DCDR(b) uses the 2-literal-clause ordering heuristic for selecting condi-

tioning variables as used by DP. Random tie-breaking is used for selecting the resolution

variables.

8.4 Empirical evaluation of DCDR(b)

We evaluated the performance of DCDR(b) as a function of b. We tested problem instances

in the 50%-satis�able region (the phase transition region). The results for di�erent b and

three di�erent problem structures are summarized in Figures 31-33. Figure 31(a) presents

the results for uniform 3-cnfs having 100 variables and 400 clauses. Figures 31(b) and

31(c) focus on (4; 5)-trees and on (4; 8)-trees, respectively. We plotted the average time,
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(c) (4,8)-trees

Figure 31: DCDR(b) on three di�erent classes of 3-cnf problems. Average time, the
number of dead-ends, and the number of new clauses are plotted as functions of the
parameter b.
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the number of dead-ends, and the number of new clauses generated as functions of the

bound b (we plot both the total number of generated clauses and the number of clauses

actually added to the output theory excluding tautologies and subsumed clauses).

As expected, the performance of DCDR(b) depends on the induced width of the the-

ories. We observed three di�erent patterns:

� On problems having large w�, such as uniform 3-cnfs in the phase-transition region

(see Figure 31), the time complexity of DCDR(b) is similar to DP when b is small.

However, when b increases, the CPU time grows exponentially. Apparently, the

decline in the number of dead ends is too slow relative to the exponential (in b)

growth in the total number of generated clauses. However, the number of new

clauses actually added to the theory grows slowly. Consequently, the �nal conditional

directional extensions have manageable sizes. We obtained similar results when

experimenting with uniform theories having 150 variables and 640 clauses.

� Since DR is equivalent to DCDR(b) whenever b is equal or greater then w�, for theo-

ries having small induced width, DCDR(b) indeed coincides with DR even for small

values of b. Figure 31(b) demonstrates this behavior on (4,5)-trees with 40 cliques,

15 clauses per clique, and induced width 6. For b � 8, the time, the total number

of clauses generated, as well as the number of new clauses added to the theory, do

not change. With small values of b (b = 0; 1; 2; 3), the e�ciency of DCDR(b) was

sometimes worse than that of DCDR(-1), which is equivalent to DP, due to the

overhead incurred by extra clause generation (a more accurate explanation is still

required).

� On (k;m)-trees having larger size of cliques (Figure 31(c)), intermediate values of

b yielded a better performance than both extremes. DCDR(-1) is still ine�cient on

structured problems while large induced width made pure DR too costly time- and

space-wise. For (4,8)-trees, the optimal values of b appear between 5 and 8.

Figure 32 summarizes the results for DCDR(-1), DCDR(5), and DCDR(13) on the

three classes of problems. The intermediate bound b=5 seems to be overall more cost-

e�ective than both extremes, b= -1 and b=13.

Figure 33 describes the average number of resolved variables which indicates the al-

gorithm's potential for knowledge compilation. When many variables are resolved upon,

the resulting conditional directional extension encodes a larger portion of the models, all

sharing the assignment to the cutset variables.
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9 Related Work

Directional resolution belongs to a family of elimination algorithms �rst analyzed for op-

timization tasks in dynamic programming [6] and later used in constraint satisfaction

[57, 20] and in belief networks [47]. In fact, DR can be viewed as an adaptation of

the constraint-satisfaction algorithm adaptive consistency to propositional satis�ability

where the project-join operation over relational constraints is replaced by resolution over

clauses [20, 24]. Using the same analogy, bounded resolution can be related to bounded

consistency-enforcing algorithms, such as arc- path- and i-consistency [48, 30, 14], while

bounded directional resolution, BDR(i), parallels directional i-consistency [20, 24]. In-
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Figure 33: DCDR: the number of resolved variables on di�erent problems.
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deed, one of this paper's contributions is transferring constraint satisfaction techniques

to the propositional framework.

The recent success of constraint processing which can be attributed to techniques

combining search with limited forms of constraint propagation (e.g., forward-checking,

MAC, constraint logic programming [41, 36, 56, 43]) that motivated our hybrid algorithms.

In the SAT community, a popular form of combining constraint propagation with search

is unit-propagation in DP. Our work extends this idea.

The hybrid algorithm BDR-DP(i), initially proposed in [23], corresponds to applying

directional i-consistency prior to backtracking search for constraint processing. This ap-

proach was empirically evaluated for some constraint problems in [19]. However, those

experiments were restricted to small and relatively easy problems, for which only a very

limited amount of preprocessing was cost-e�ective. The presented experiments with BDR-

DP(i) suggest that the results in [19] were too preliminary and that the idea of prepro-

cessing before search is viable and should be further investigated.

Our second hybrid algorithm, DCDR(b), proposed �rst in [53], generalizes the cycle-

cutset approach that was presented for constraint satisfaction [13] using static variable

ordering. This idea of alternating search with bounded resolution was also suggested and

evaluated independently by van Gelder in [38], where a generalization of unit resolution

known as k-limited resolution was proposed. This operation requires that the operands

and the resolvent have at most k literals each. The hybrid algorithm proposed in [38]

computes k-closure (namely, it applies k-limited resolution iteratively and eliminates

subsumed clauses) between branching steps in DP-backtracking. This algorithm, aug-

mented with several branching heuristics, was tested for k=2 (the combination called 2cl

algorithm), and demonstrated its superiority to DP, especially on larger problems. Algo-

rithm DCDR(b) computes a subset of b-closure between its branching steps 11. In this

paper, we study the impact of b on the e�ectiveness of hybrid algorithms over di�erent

problem structures, rather than focus on a �xed b.

The relationship between clausal tree-clustering and directional resolutions extends

the known relationship between variable elimination and the tree-clustering compilation

scheme that was presented for constraint satisfaction in [21] and was extended to proba-

bilistic frameworks in [15].

11DCDR(b) performs resolution on variables that are connected to at most b other variables; therefore,

the size of resolvents is bounded b. It does not, however, resolve over the variables having degree higher

than b in the conditional interaction graph, although such resolutions can sometimes produce clauses of

size not larger than b.
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10 Summary and Conclusions

The paper compares two popular approaches to solving propositional satis�ability, back-

tracking search and resolution, and proposes two parameterized hybrid algorithms. We

analyze the complexity of the original resolution-based Davis-Putnam algorithm, called

here directional resolution (DR)), as a function of the induced width of the theory's in-

teraction graph. Another parameter called diversity provides an additional re�nement for

tractable classes. Our empirical studies con�rm previous results showing that on uniform

random problems DR is indeed very ine�cient. However, on structured problems such

as k-tree embeddings, having bounded induced width, directional resolution outperforms

the popular backtracking-based Davis-Putnam-Logemann-Loveland Procedure (DP). We

also emphasize the knowledge-compilation aspects of directional resolution as a procedure

for tree-clustering. We show that it generates all prime implicates restricted to cliques in

the clique-tree.

The two parameterized hybrid schemes, BDR-DP(i) and DCDR(b), allow a 
exible

combination of backtracking search with directional resolution. Both schemes use a pa-

rameter that bounds the size of the resolvents recorded. The �rst scheme, BDR-DP(i),

uses bounded directional resolution BDR(i) as a preprocessing step, recording only new

clauses of size i or less. The e�ect of the bound was studied empirically over both uni-

form and structured problems, observing that BDR-DP(i) frequently achieves its optimal

performance for intermediate levels of i, outperforming both DR and DP. We also believe

that the transition from i=3 to i=4 is too sharp and that intermediate levels of prepro-

cessing are likely to provide even better trade-o�. Encouraging results are obtained for

BDR-DP(i) on DIMACS benchmark, where the hybrid algorithm easily solves some of

the problems that were hard both for DR and DP.

The second hybrid scheme uses bounded resolution during search. Given a bound b,

algorithm DCDR(b) instantiates a dynamically selected subset of conditioning variables

such that the induced width of the resulting (conditional) theory and therefore the size

of the resolvents recorded does not exceed b. When b � 0, DCDR(b) coincides with DP,

while for b � w�
o (on the resulting ordering o) it coincides with directional resolution. For

intermediate b, DCDR(b) was shown to outperform both extremes on intermediate-w�

problem classes.

For both schemes selecting the bound on the resolvent size allows a 
exible scheme that

can be adapted to the problem structure and to computational resources. Our current

\rule of thumb" for DCDR(b) is to use small b when w� is large, relying on search, large

b when w� is small, exploiting resolution, and some intermediate bound for intermediate

w�. Additional experiments are necessary to further demonstrate the spectrum of optimal

hybrids relative to problem structures.
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Appendix A: Proofs

Theorem 2: (model generation)

Given Eo(') of a satis�able theory ', the procedure �nd-model generates a model of '

backtrack-free, in time O(jEo(')j).

Proof: Suppose the model-generation process is not backtrack-free. Namely, suppose

there exists a truth assignment q1; :::; qi�1 for the �rst i � 1 variables in the ordering

o = (Q1; :::; Qn) that satis�es all the clauses in the buckets of Q1,..., Qi�1, but cannot

be extended by any value of Qi without falsifying some clauses in bucketi. Let � and

� be two clauses in the bucket of Qi that cannot be satis�ed simultaneously, given the

assignment q1; :::; qi�1. Clearly, Qi appears negatively in one clause and positively in the

other. Consequently, while being processed by DR, � and � should be resolved, resulting

in a clause 
 that must reside now in a bucketj, j < i. That clause can not allow the

partial model q1; :::; qi, which contradicts our assumption. Since the model-generation is

backtrack-free, it takes O(jEo(')j) time consulting all the buckets. 2

Theorem 3: (complexity)

Given a cnf theory ' and an ordering o, the time complexity of algorithm DR is O(n �

jEo(')j
2) where n is the number of variables.

Proof: There are at most n buckets, each containing no more clauses than the output

directional extension. The number of resolution operations in a bucket does not exceed

the number of all possible pairs of clauses, which is quadratic in the size of the bucket.

This yields the complexity O(n � jEo(')j2). 2

Lemma 1: Given a cnf theory ' and an ordering o, G(Eo(')) is a subgraph of Io(G(')).

Proof: The proof is by induction on the variables along ordering o = (Q1; :::; Qn). The

induction hypothesis is that all the edges incident to Qn; :::; Qi in G(Eo(')) appear also in

Io(G(')). The claim is clearly true for Qn. Assume that the claim is true for Qn; :::; Qi; as

we show, this assumption implies that if (Qi�1; Qj), j < i�1, is an edge in G(Eo(')), then

it also belongs to Io(G(')). There are two cases: either Qi�1 and Qj initially appeared

in the same clause of ' and so are connected in G(') and, therefore, also in Io(G(')), or

a clause containing both variables was added during directional resolution. In the second

case, that clause was obtained while processing some bucket Qt; where t > i � 1. Since

Qi�1 and Qj appeared in the bucket of Qt, each must be connected to Qt in G(Eo('))

and, by the induction hypothesis, each will also be connected to Qt in Io(G(')). Since

Qi�1 and Qj are parents of Qt, they must be connected in Io(G(')). 2
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Lemma 2: Given a theory ' and an ordering o = (Q1; :::; Qn), if Qi has at most k

parents in the induced graph along o, then the bucket of a variable Qi in Eo(') contains

no more than 3k+1 clauses.

Proof: Given a clause � in the bucket of Qi, there are three possibilities for each parent

P : either P appears in �, or :P appears in �, or neither of them appears in �. Since

Qi also appears in �, either positively or negatively, there are no more than 2 � 3k < 3k+1

di�erent clauses in the bucket. 2

Theorem 4: (complexity of DR)

Given a theory ' and an ordering of its variables o, the time complexity of algorithm DR

along o is O(n � 9w
�

o ), and the size of Eo(') is at most n � 3w
�

o+1 clauses, where w�
o is the

induced width of ''s interaction graph along o.

Proof: The result follows from lemmas 1 and 2. The interaction graph of Eo(') is a

subgraph of Io(G) (lemma 1), and the size of theories having Io(G) as their interaction

graph is bounded by n � 3w
�(o)+1 (lemma 2). The time complexity of algorithm DR is

bounded by O(n � jbucketij2), where jbucketij is the size of the largest bucket. By lemma

2, jbucketij = O(3w
�(o)). Therefore, the time complexity is O(n � 9w

�(o)). 2

Theorem 7: Given a theory ' de�ned on variables Q1,..., Qn, such that each symbol

Qi either (a) appears only negatively (only positively), or (b) it appears in exactly two

clauses, then div�(') � 1 and ' is tractable.

Proof: The proof is by induction on the number of variables. If ' satis�es either (a)

or (b), we can select a variable Q with the diversity of at most 1 and put it last in the

ordering. Should Q have zero diversity (case a), no clause is added. If it has diversity 1

(case b), then at most one clause is added when processing its bucket. Assume the clause

is added to the bucket of Qj. If Qj is a single-sign symbol, it will remain so. The diversity

of its bucket will be zero. Otherwise, since there are at most two clauses containing Qj,

and one of these was in the bucket of Qn, the current bucket of Qj (after processing Qn)

cannot contain more than two clauses. The diversity of Qj is therefore 1. We can now

assume that after processing Qn; :::; Qi the induced diversity is at most 1, and can also

show that processing Qi�1 will leave the diversity at most 1. 2

55



Theorem 8: Algorithm min-diversity generates a minimal diversity ordering of a theory.

Its time complexity is O(n2 � c), where n is the number of variables and c is the number

of clauses in the input theory.

Proof: Let o be an ordering generated by the algorithm and let Qi be a variable whose

diversity equals the diversity of the ordering. If Qi is pushed up, its diversity can only

increase. When it is pushed down, it must be replaced by a variable whose diversity is

equal to or higher than the diversity of Qi. Computing the diversity of a variable takes

O(c) time, and the algorithm checks at most n variables in order to select the one with

the smallest diversity at each of n steps. This yields the total O(n2 � c) complexity. 2

Lemma 3: Given a theory ', let T = TCC(') be a clause-based join-tree of ', and let

C be a clique in T . Then, there exist an ordering o that can start with any ordering of

the variables in C, such that Eo(') � TCC(').

Proof: Once the join-tree structure is created, the order of processing the cliques (from

leaves to root) is dependent on the identity of the root clique. Since processing is applied

once in each direction, the resulting join-tree is invariant to the particular rooted tree

selected. Consequently, we can assume that the clique C is the root, and it is the last to

be processed in the backwards phase of DR-TC. Let oC be a tree-ordering of the cliques

that starts with C, and let o be a possible ordering of the variables that is consistent

with oC . Namely for every two variables X and Y if there are two cliques C1 and C2 s.t.

X 2 C1 and Y 2 C2 and C1 is ordered before C2 in oC , then X should appear before Y

in o. It is easy to see that directional-resolution applied to ' using o (in reversed order),

generates a subset of the resolvents that are created by the backwards phase of DR-TC

using oC . Therefore Eo(') � TCCo('). 2

Theorem 11: Let ' be a theory and T = TCCo(') be a clause-based join-tree of '. Then

for every clique C 2 T , prime'(C) � TCC(').

Proof: Consider an arbitrary clique C. Let P1 = prime'(C) and let P2 = TCC(').

We want to show that P1 � P2. If not, there exists a prime implicate � 2 P1, de�ned on

subset S � C, that was not derived by DR-TC. Assume that C is the root of the join-tree

computed by DR-TC. Let o be an ordering consistent with this rooted tree that starts

with the variables in S. From lemma 3 it follows that the directional extension Eo(')

is contained in TCC('), so that any model along this ordering can be generated in a

56



backtrack-free manner by consulting Eo(') (Theorem 2). However, nothing will prevent

model-generation from assigning S the no-good :� (since it is not available, no subsum-

ing clauses exist). This assignment leads to a deadend, contradicting the backtrack-free

property of the directional extension. 2

Corollary 3: Given a theory ' and given TCCo(') of some ordering o the following

properties hold:

1. The theory ' is satis�able if and only if TCC(') does not contain an empty clause.

2. If T = TCC(') for some ' then entailment of any clause whose variables are

contained in a single clique can be decided in linear time.

3. Entailment of a clause � from ' can be decided in O(exp(w� +1)) time in ', when

w� + 1 is the maximal clique size.

4. Checking if a new clause is consistent with ' can be done in time linear in T .

Proof:

1. If no empty clause is encountered, the theory is satis�able and vice-versa.

2. Entailment of a clause � whose variables are contained in clique Ci can be decided

by scanning the compiled '�
i . If no clause subsuming � exists, then � is not entailed

by '.

3. Entailment of an arbitrary clause can be checked by placing the negation of each

literal in the largest-index clique that contains the corresponding variable, and re-

peating the �rst pass of DR-TC over the join-tree. The clause is entailed if and only

if the empty clause was generated, which may take O(exp(w�)) time.

4. Consistency of a clause � is decided by checking the entailment of its negated literals.

� is not consistent with ' if and only if the theory entails each of the negated literals

of �. Entailment of each negated literal can be decided in linear time.

2

Theorem 12: (DCDR(b) soundness and completeness)

Algorithm DCDR(b) is sound and complete for satis�ability. If a theory ' is satis�able,

any model of ' consistent with the output assignment I(C) can be generated backtrack-free

in O(jEo('I(C))j) time, where o is the ordering computed dynamically by DCDR(b).
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Proof: Given an assignment I(C), DCDR(b) is equivalent to applying DR to the

theory 'I(C) along ordering o. From Theorem 2 it follows that any model of 'I(C) can be

found in a backtrack-free manner in time O(jEo('I(C))j). 2

Theorem 13: (DCDR(b) complexity) The time complexity of algorithm DCDR(b)

is O(n2��b+jCj), where C is the largest cutset ever instantiated by the algorithm, and � �

log29. The space complexity is O(n � 2��b).

Proof: Given a cutset assignment, the time and space complexity of resolution steps

within DCDR(b) is bounded by O(n � 9b) (see theorem 4). Since in the worst-case back-

tracking involves enumerating all possible instantiations of the cutset variables C in

O(2jCj) time and O(jCj) space, the total time complexity is O(n �9b �2jCj) = O(n �2��b+jCj),

where C is the largest cutset ever instantiated by the algorithm, and � � log29. The total

space complexity is O(jCj+ n � 9b) = O(n � 9b). 2
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