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Abstract. The paper presents a new sampling methodology for Bayesian
networks called cutset sampling that samples only a subset of the vari-
ables and applies exact inference for the others. We show that this ap-
proach can be implemented efficiently when the sampled variables con-
stitute a cycle-cutset for the Bayesian network and otherwise it is ex-
ponential in the induced-width of the network’s graph, whose sampled
variables are removed. Cutset sampling is an instance of the well known
Rao-Blakwellisation technique for variance reduction investigated in [5, 2,
16]. Moreover, the proposed scheme extends standard sampling methods
to non-ergodic networks with ergodic subspaces. Our empirical results
confirm those expectations and show that cycle cutset sampling is supe-
rior to Gibbs sampling for a variety of benchmarks, yielding a simple,
yet powerful sampling scheme.

1 Introduction

Sampling methods for Bayesian networks are commonly used approximation
techniques, applied successfully where exact inference is not possible due to
prohibitive time and memory demands. In this paper, we focus on Gibbs sam-
pling, a member of the Markov Chain Monte Carlo sampling methods group
for Bayesian networks [6,7,17]. Given a Bayesian network over the variables
X = {Xy,...,X,}, and evidence e, Gibbs sampling [6,7,17] generates a set of
samples {z'} from P(X|e) where each sample z* = {z!, ..., 2!} is an instantia-
tion of all the variables in the network. It is well-known that a function f(X)
can be estimated using the generated samples by:

BIf (Xl = 7 3 £ 1)
t

where T is the number of samples. Namely, given enough samples, the estimate
converges to the exact value. The central query of interest over Bayesian networks
is computing the posterior marginals P(z;|e) for each value z; of variable X;. For
this query, the above equation reduces to counting the fraction of occurrences of
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X; = x; in the samples. A significant limitation of all existing sampling schemes,
including Gibbs sampler, is the increase in the statistical variance for high-
dimensional spaces. In addition, standard sampling methods fail to converge to
the target distribution when the network is not ergodic.

In this paper, we present a sampling scheme for Bayesian networks that
addresses both of these limitations by sampling from a subset of the variables. It
is rooted in the well established Rao-Blakwellisation methodology for sampling
that was developed in the past years by various authors, most notably [5, 2, 16].
Based on the Rao-Blackwell theorem ([8]), it is easy to show that sampling from
a subspace (if feasible computationally) can reduce the variance and therefore
yield faster convergence to the target function.

The basic Rao-Blackwellisation scheme can be described as follows. Suppose
we partition the space of variables X into two subsets C and Z. It can be shown
that if we can efficiently compute P(cle) and E[f(C, Z)|c, €] (by summing out Z
in both cases), then we can perform sampling only on C generating c',c?, ...,cT
and approximate the quantity of interest by:

BIf (X0l = 7 Y B, 2)le.e] e
t

If function f(X) is a posterior marginal of node X;, then f(X)|e = P(z;|e) and
f(ct, Z)|c,e = P(z;|ct, e), then Equation (2) instantiates to:

Plasle) = % S Pailcte) 3)

In this paper, we propose to use the above scheme when the subspace C' is such
that conditioning on C' yields a sparse Bayesian network where exact inference
is polynomial, such as when C' is a cycle-cutset. The proposed scheme is called
cutset sampling. This yields a special application of Rao-Blackwellisation for
sampling in Bayesian networks that offers two-fold benefits over regular sam-
pling: 1. improved convergence and 2. convergence in non-ergodic networks.

Indeed, we show empirically that cycle-cutset sampling converges faster not
only in terms of number of samples, as dictated by theory, but it is also time-wise
cost-effective on all the benchmarks tried (CPCS networks, random networks,
and coding networks). We also demonstrate the applicability of this scheme to
non-ergodic networks such as Hailfinder network and coding networks.

The approach we propose is simple, however, to the best of our knowledge,
it was not yet presented for general Bayesian networks except for the special
case of Dynamic Bayesian networks [4]. In that paper, the authors apply Rao-
Blackwellisation to particle filtering that iterates along the timeline, by selecting
a specific sampling set C. Hence, the current paper extends the work of [4] to
general Bayesian networks. Following background (Section 2), the paper presents
cutset-sampling and analyzes its complexity (Section 4), provides empirical eval-
uation in Section 6 and concludes in Section 7.



2 Background

S N

Fig. 1. Bayesian network (left), its moral graph(center), and conditioned polytree
(right) (conditioned on C = {X>3, X5}).

Definition 1 (belief networks). Let X = {Xq,...,X,} be a set of random
variables over multi-valued domains D(X1),...,D(X,). A belief network (BN)
is a pair (G, P) where G is a directed acyclic graph on X and P = {P(X;|pa;)|i =
1,...,n} is the set of conditional probability matrices associated with each X;. A
belief network is ergodic if any assignment © = {x1,...,2,} has non-zero prob-
ability, defined by P(xy,....,x,) = II7L, P(x|Tpq(x,)). An evidence e is an in-
stantiated subset of variables E. The moral graph of a belief network is obtained
by connecting the parents of the same child and eliminating the arrows. Figure
1 shows a belief network(left) and its moral graph(center).

Definition 2 (induced-width). The width of a node in an ordered undirected
graph is the number of the node’s neighbors that precede it in the ordering. The
width of an ordering d, denoted w(d), is the width over all nodes. The induced
width of an ordered graph, w*(d), is the width of the ordered graph obtained
by processing the nodes from last to first. When node X is processed, all its
preceding neighbors are connected. The resulting graph is called induced graph or
triangulated graph.

Definition 3 (induced-width, cycle-cutset). A cycle in G is a path whose
two end-points coincide. A cycle-cutset of undirected graph G is a set of vertices
that contains at least one node in each cycle in G. A graph is singly connected
(also called a polytree), if its underlying undirected graph has no cycles. Oth-
erwise, it is called multiply connected. A loop in D is a subgraph of D whose
underlying graph is a cycle. A vertex v is a sink with respect to loop L if the
two edges adjacent to v in L are directed into v. A vertex that is not a sink with
respect to a loop L is called an allowed vertex with respect to L. A cycle-cutset
of a directed graph D is a set of vertices that contains at least one allowed vertex
with respect to each loop in D.

2.1 Gibbs sampling

Gibbs sampling generates samples from P(X|e) which converges to P(X|e) as
the number of samples increases [18,17] as long as the network is ergodic. Given



a Bayesian network B, Gibbs sampling generates a set of samples z! where t
denotes a sample and and z! is the value of X; in sample t. Given a sample
ot = {ot 2l 2t 1} (evidence variables remain fixed), a new sample
z' is generated by assigning a new value z! to each variable X; in some order.
Value z! is computed by sampling from the conditional probability distribu-
tion: P(z;) = P(wilat,ab,at_,...,al 1, ...,at) = P(zi|/markovt(z;)), where
markovt(z;) is the assignment in sample ¢ to the Markov blanket of variable X;
which includes its parents, children, and parents of its children.

Once all the samples are generated, we can answer any query over the sam-
ples. In particular, computing a posterior marginal belief P(x;|e) for each vari-
able X; can be estimated by counting samples where X; = x;:

1 T

Plaile) = 7 Y dau(a") (4)

(here &, (z*) = 1 if ! = z; and equals 0 otherwise) or by averaging the condi-
tional marginals (known as mixture estimator):

P(zile) = % Z P(z;|markov (z;)) (5)

This method is likely to converge faster than simple counting [18]. The Markov
blanket of X; ([18]) is given explicitly by:

P(z;|markovt(z;)) = aP(xi|x;a(xi)) H P(:z:§ |a:;aj) (6)
{41 X; €chs}

Thus, generating a complete new sample requires O(n - r) multiplication steps
where r is the maximum family size and n is the number of variables. Subse-
quently, computing the posterior marginals is linear in the number of samples.

3 Augmentation Schemes

Variable augmentation schemes exist that allow to improve the convergence prop-
erties of simple Gibbs sampler. The two main approaches are blocking (grouping
variables together and sampling simultaneously) and Rao-Blackwellisation (in-
tegrating out some of the random variables). Given Bayesian network with three
random variables: X, Y, and Z, we can schematically describe those three sam-
pling schemes as follows:

1. Rao-Blackwellised: sample x from P(z|y), sample y from P(y|z) integrating
out random variable z.

2. Blocking Gibbs: samples values from P(z|y, z), P(y, z|z)

3. Standard Gibbs: samples values from P(zly, z), P(y|z, 2), P(z|z,y)



As shown in [16], the blocking Gibbs sampling scheme, where several variables
are grouped together and sampled simultaneously, is expected to converge faster
than standard Gibbs sampler. Variations to this scheme have been investigated
in [10,13]. Still, in a blocking Gibbs sampler a sample is an instantiation of
all the variables in the network, same as standard Gibbs sampler. The Rao-
Blackwellised sampling scheme actually allows to integrate some of the random
variables out, thus reducing sampling space, and it is expected to converge the
fastest [16]. Thus, of the two basic data augmentation scheme, namely Rao-
Blackwellisation and Blocking, Rao-Blackwellisation is generally preferred.

The caveat in the utilization of the Rao-Blackwellised sampling scheme is that
computation of the probabilities P(z|y) and P(y|z) must be efficient. In case of
Bayesian networks, the task of integrating variables out equates to performing
exact inference on the network where evidence nodes and sampling nodes are
observed and its time complexity is exponential in the network size. Taken a
priori that performance of the sampler will be severely impacted when many
variables are integrated out, Rao-Blackwellisation has been applied only to a
few special cases of Bayesian networks. In particular, it has been applied to the
Particle Filtering (using importance sampling) method for Dynamic Bayesian
networks [4] in cases where some of the variables can be integrated out easily
either because they are conditionally independent given the sampled variables
(plus evidence) or because their probability distribution permits tractable exact
inference (for example, using Kalman filter).

In this paper, we define a general scheme for Rao-Blackwellised sampling
for Bayesian networks (see Section 4) and show that Rao-Blackwellisation can
be done efficiently when sampling set is a cycle-cutset of the Bayesian network.
We demonstrate empirically for several networks that we can compute a new
sample faster using cutset sampling scheme than standard Gibbs sampler. The
gain is easily explained. In a Bayesian network of size |X| = N, Gibbs sampler
maybe able to compute individual probabilities P(z|markovt(z)) fast, but it
has to repeat this computation N times. In Rao-Blackwellised scheme, where
most variables are integrated out and sampling set C' € X is of size |C| = K,
K < N, it may take longer to compute P(z|c,e), but we only have to repeat
this computation K times (potentially, K can be much smaller than N). Most
importantly, fewer samples are needed for convergence.

4 Cutset sampling

This section presents the cutset sampling method. As noted in the introduction,
the basic scheme partitions variables X into two subsets C and Z. If we can
efficiently compute P(c|e) and P(z;|c!,e), then we can sample only values of C
efficiently and approximate the quantity of interest via equation (3).

4.1 Cutset sampling algorithm.

The cutset sampling algorithm is given in Figure 2. Given a subset of cutset
variables C={C1, Cs, ...,Cy, }, it generates samples ¢!, t=1...T, over subspace



C. Here, ¢! is an instantiation of the variables in C. Similarly to Gibbs sam-
pling, we generate a new sample ¢! by sampling a value ¢! from the probabil-

ity distribution P(cz|ctJrl bt cfﬂ, iy, chyy€) for each C;. We will denote
f o Lt gl
iy =€l 6 ity Chys s €y, for conciseness.

The key idea is that the relevant conditional distributions (eq. (7)) can be
computed by exact inference algorithms whose complexity is tied to the network’s
structure and is improved by conditioning. We use JT'C(X,e) as a generic name
for a class of variable-elimination or join tree-clustering algorithms that compute
the exact posterior beliefs for a variable X given evidence e [15,3,11]. It is known
that the complexity of JTC(X,e) is time and space exponential in the induced-
width of the network’s moral graph whose evidence variables E are removed.

Cutset Sampling
Input: A belief network (B), cutset C = {C1, ..., C, }, evidence e.
Output: A set of samples ¢!, t = 1...T..
1. Initialize: Assign random value ¢ to each C; € C and assign e.
2. Generate samples:

For t = 1 to T, generate a new sample c':

For i = 1 to m, compute new value ¢! for variable C; as follows:
1. Using algorithm join-tree clustering JT'C(C;, cfi), e), compute:

P(ci) = P(cilc(iy,e) (7
2. Sample a new value ¢} for C;, from (7).
End For i
End For ¢t

Fig. 2. Cutset sampling Algorithm

4.2 Computing the posterior marginals.

Once the samples over the cutest C' are available, we can compute the posterior
beliefs of all variables as follows. For each cutset variable C; € C' (excluding evi-
dence variables), the posterior marginals can be computed as in Gibbs sampling:

cz|e T ZP Cl|c(z)7 (8)

If we record the distributions computed during sample generation (equation (7)),
these quantities will be readily available for summation.

For each non-cutset variable X; € X\E,C, and every sample c!, P(z;|c!,e)
can be computed over the Bayesian network conditioned on ¢! and e, by JTC(X;, ct, e):

P(cile) = ZP zi|cte) 9)



Note that the probability distribution P(z;|ct,e) can be computed as soon as
sample ¢! is generated. Namely, it is sufficient to keep a running sum (eq. 3)
(relative to samples ct) for each value z; of each variable X;.

We provide a proof of the convergence of this general scheme in Section 5.
Namely, computing P(z;|e) by cutset sampling is (1) guaranteed to converge
to the exact quantities. In general, cutset sampling requires fewer samples to
converge than full sampling as a result of Rao-Blackwell theorem [2, 8, 16].

Example. Consider again a belief network shown in Figure 1. When sampling
from set C = {X>5, X5} (although there is a better cutset C = {X3}), we will
have to compute for each sample t the probabilities P(z2|z} ') and P(zs|2}).
These probabilities can be computed using belief propagation over the singly
connected network (Figure 1, right) or bucket elimination in linear time. For each
new value of variables X, and X5, we profane the updated messages through
the (singly-connected) network. The desired joint P(z}, zf,e) can be computed
at any variable and then normalized to yield the conditional distribution.

4.3 Complexity

Cutset sampling uses the adjusted induced width w, to control the size of the
sampling set and thus can adjust the trade-off between sampling and inference.
Given an undirected graph G = (V, E), if C is a subset of V such that when
removed from G, the induced width of the resulting graph is less or equal w,
then C is called a w-cutset of G and the adjusted induced width of G relative to
C is w. The cycle-cutset of a graph is a 1-cutset.

Clearly, computing a new sample ¢ in cutset-sampling is more complex (step
1) than Gibbs sampling. However, it is still very efficient when the cutset C
is a cycle-cutset of the Bayesian network (w=1). In this case, JTC reduces
to belief propagation algorithm [18,19] that can compute the joint probability
P(ci,c’éi), ..y¢t. €) in linear time and then normalize it relative to C; yielding
equation (7) (details are omitted). When C is a w-cutset, the complexity of JTC
(equation 7) is exponential in w and will dominate the complexity of generating
the next sample. Therefore:

Theorem 1 (Complexity of sample generation). The complezity of gener-
ating a sample by cutset sampling with cutset C is O(m -d-n-d¥) where C is a
w-custet of size m, d bounds the variables domain size, and n is the number of
nodes.

Corollary 1. If C is a cycle-cutset, the complexity of generating a sample by
cycle-cutset sampling is linear in the size of the network.

Computing P(X;|e) using equation (3) requires computing P(z;|ct,e) for each
variable. The complexity of this computation by JTC(X;, ¢!, e) is also exponen-
tial in w, the adjusted induced width relative to cutset:

Theorem 2. Given a w-cutset C, the complexity of computing the posterior of
all the variables using cutset sampling over T samples is O(T -n - d™).



Corollary 2. If C is a cycle-cutset, the complezity of computing the posterior
of all the variables by cycle-cutset sampling is linear in the size of the network.

In conclusion, when sampling over a cycle-cutset C, both sampling and es-
timating the marginal posterior are linear in the size of the network and the
number of samples.

5 Convergence of cutset-sampling.

In this section we will show that P(c;|e) and P(z;|e) as defined in equations (8)
and (9) converge to the correct probabilities P(c;|e) and P(z;|e) respectively.

Theorem 3 (cutset convergence). Given a network B over X and o subset
of evidence variables E, and given a cutset C, assuming P(cile) and P(x;le)
were computed by equations (8) and (9) over the cutset sample, then P(c;le) —
P(cile) and P(xz;]le) — P(x;le) as the number of samples T, increses.

While the result of theorem 3 is implied by the Rao-Blackwell theorem, the
proof from first principles is simple enough.

Proof. Let |C| = m. Let |X| = n. The computation of P(c;le) is done ex-
actly in the same way as in Gibbs sampling. There are several different ways to
prove convergence of Gibbs sampling and we will not repeat them here. There-
fore, based on the correct convergence of Gibbs sampling we can conclude that
P(c;le) = P(c;le) as the number of samples increases.

Consider now a variable X; not in C' and not in E. We could write the
posterior distribution of variable X; as follows: P(xz;le) = Y_ . P(x;|c,e)P(cle).

Assume that we have generated a collection of samples c!, c?, ...,c! from the
correct distribution P(Cle). Let m(c) be the number of times ¢ occurs in the
samples. Then, for each tuple C' = ¢:

P(cle) = m:ﬁc) (10)

After we substitute the right hand side of the equation 10 in the expression for

P(z;le):

P(z;le) = ZP z;|e, e) c) (11)
Factoring out 7 we get:

P(z;le) = ZP x;|e,e)m(c). (12)

Clearly, > m(C) = T. Therefore, we can sum over T instead of summing over
instantiations of C, yielding;:

T

S Plaile,em(e) = 3 Plailc,e) (13)

t=1



After replacing the sum over C in (12) with the sum over T, we get:

Plaile) = = 3 Plaide,e) (14)

Therefore we obtained expression (14), assuming that m(c)

converges to the

exact P(Cle). Since P(c;|e) converges to P(cile) in cutset- samphng, as we have
already shown, then we can conclude that P(z;|e) — P(z;le). O

6 Experiments

We compared cycle-cutset sampling with full Gibbs sampling on several CPCS
networks, random networks, Hailfinder network, and coding networks. Generally,
we are interested in how much accuracy we can achieve in a given period of time.
Therefore, we provide here figures showing accuracy of the Gibbs and cycle-
cutset sampling as a function of time. For comparison, we also show the accuracy
of Iterative Belief Propagation algorithm (IBP) after 25 iterations. IBP is an
iterative message-passing algorithm that performs exact inference in Bayesian
networks without loops ([18]). It can also be applied to Bayesian networks with
loops to compute approximate posterior marginals. The advantage of IBP as
an approximate algorithm is that it is very efficient. It requires linear space
and usually converges very fast. IBP was shown to perform well in practice ([9,
12]) and is considered the best algorithm for inference in coding networks where
finding the most probable variable values equals the decoding process.

For each Bayesian network B with variables X = {Xy,..., X,,}, we computed
exact posterior marginals P(z;|e) using bucket-tree ehmlnatlon and computed
the mean square error (MSE) in the approximate posterior marginals P(z;|e)
for each approximation scheme:

MSE—Z|D ZZ (zile) — P(zile))?

. D(z;)

and averaged MSE over the number of instances tried. In all networks, except for
coding networks, evidence nodes were selected at random. The cutset was always
selected so that evidence and sampling nodes together constitute a cycle-cutset
of the network using the mga algorithm ([1]).

CPCS networks. We considered four CPCS networks derived from the
Computer-based Patient Case Simulation system. The largest network, cpcs422b,
consisted of 422 nodes with induced width w*=23. With evidence, its cycle-cutset
size was 42. The results are shown in Figures 3-4. Each chart title specifies net-
work name, number of nodes in the network N, the size of evidence set |E|, size
of cycle-cutset (sampling set) |C|, and induced width w* of the network instance.
For all four CPCS networks, we observed that the cutset sampling is far better
than Gibbs sampling. In case of cpcs179 (Figure 6, middle), cpcs360b (Figure 6,
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Fig. 3. Comparing cycle-cutset sampling, Gibbs sampling and IBP on CPCS networks
averaged over 3 instances each. MSE as a function of time.
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Fig. 4. Comparing cycle-cutset sampling, Gibbs sampling and IBP on cpcs422b net-
work averaged over 2 instances. MSE as a function of time.

bottom), and cpcs422b (Figure 6) cutset sampling achieves even greater accu-
racy than IBP. Gibbs sampling does not converge on ¢pcs179 due to non-ergodic
properties of the network. The cutset sampling overcomes this limitation because
the cycle-cutset selected is an ergodic subspace.

Random networks. We generated a set of random networks with bi-valued
nodes. Each network contained total of 200 nodes. The first 100 nodes, { X1, ..., X100},
were designated as root nodes. Each non-root node X; was assigned 3 parents
selected randomly from the list of predecessors {Xj, ..., X;1}. The conditional
probability table values P(X; = 0|pa(X;)) were chosen randomly from a uniform
distribution. We collected data for 10 instances (Figure 5, top). Cutset sampling
always converged faster than Gibbs sampling.

2-Layer networks. We generated a set of random 2-layer networks with
bi-valued nodes. Each network contained 50 root nodes (first layer) and a total
of 200 nodes. Each non-root node (second layer) was assigned a maximum of
3 parents selected at random from the root nodes. The conditional probability
table values P(X; = O|pa(X;)) were chosen randomly from uniform distribution.
We collected data for 10 instances (Figure 5, middle). On those types of networks,
Iterative Belief Propagation often does not perform well. And, as our experiments
show, cutset sampling outperfoms both Gibbs sampling and IBP (although it
takes longer time to converge than IBP).

Coding Networks. We experimented with coding networks with 100 nodes
(25 coding bits, 25 parity check bits). The results are shown in Figure 5, bottom.
Those networks had cycle-cutset size between 12 and 14 and induced width
between 13 and 16. The parity check matrix was randomized; each parity check
bit had three parents. We computed MSE over all coding bits and averaged over
10 networks. Coding networks are not ergodic due to the deterministic parity
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Fig. 5. Comparing cycle-cutset sampling, Gibbs sampling and IBP on random net-
works (top), 2-layer random networks (middle), and coding networks, 0=0.4 (bottom),
averaged over 10 instances each. MSE as a function of time.



check function. As a result, Gibbs sampling does not converge. At the same time,
the subspace of code bits only is ergodic and cutset sampling, that samples a
subset of coding bits, converges and generates results comparable to those of
IBP. In practice, IBP is certainly preferable for coding networks since the size
of the cycle-cutset grows linearly with the number of code bits.

HailFinder, N=56, |C|=5, |E|=1 —a— Cutset
! —a— Gibbs
0.1
= - - - = = = = = o
0.01
A—p ——a
0.001 A A
0.0001 : : : T S T T T
1 2 3 4 5 6 7 8 9 10
Time(sec)

Fig. 6. Comparing cycle-cutset sampling and Gibbs sampling on Hailfinder network, 1
instance. MSE as a function of time.

Hailfinder network. Hailfinder is a non-ergodic network with many deter-
ministic relationships. It has 56 nodes and cycle-cutset of size 5. Indeed, this
network is easy to solve exactly. We used this network to compare the behavior
cutset sampling and Gibbs sampling in non-ergodic networks. As expected, Gibbs
sampling fails while cycle cutset sampling computes more accurate marginals and
its accuracy continues to improve with time (Figure 6).

In summary, the empirical results demonstrate the cycle-cutset is cost-effective
time-wise and is superior to Gibbs sampling. We measured the ratio R = %ﬂ of
the number of samples generated by Gibbs M, to the number of samples gener-
ated by cycle-cutset sampling M, in the same time period. For cpcsb4, cpcsl79,
cpcs360b, and cpcs422b the ratios were correspondingly 1.4, 1.7, 0.6, and 0.5.
We also obtained R=2.0 for random networks and R=0.3 for random 2-layer
networks. While cutset sampling algorithm often takes more time to generate a
sample, it produced substantially better results overall due to its variance re-
duction. In some cases, cutset sampling could actually compute samples faster
than Gibbs sampler. in which case the improvement in the accuracy was due
to both large sample set and variance reduction. Cutset sampling also achieves
better accuracy than IBP on some CPCS and random networks although takes
more time to achieve same or better accuracy. In 2-layer networks and coding
networks, cycle-cutset sampling achieves the IBP level of accuracy very quickly
and is able to substantially improve with time.



7 Related Work and Conclusions

We presented a sampling scheme called cutset sampling for Bayesian networks
that samples only a subset of variables in the network. The remaining nodes are
marginalised out (by inference) which is an instance of a technique known as Rao-
Blackwellisation. As we showed theoretically and empirically, cutset sampling:
(1) improves convergence rate due to sampling from lower-dimensional space
and (2) allows sampling from non-ergodic network that have ergodic subspace.
The resulting scheme is a simple yet powerful extension of sampling in Bayesian
networks that is likely to dominate regular sampling for any sampling method.
While we focused on Gibbs sampling, other sampling techniques, with better
convergence characteristics, can be implemented with cutset sampling as long as
they permit to exploit Bayesian network structure in a similar manner.

Previously, sampling from a subset of variables was successfully applied to
particle sampling for Dynamic Bayesian networks (DBNs) [4]. Indeed, the au-
thors demonstrated that sampling from a subspace combined with exact infer-
ence yields a better approximation. Our scheme offers an elegant way of extend-
ing [4] and combining inference and sampling in Bayesian networks.

A different combination of sampling and exact inference for join trees was
described in [14] and [13]. Both papers proposed to use sampling to estimate the
probability distribution in each cluster from which they compute messages sent
to the neighboring clusters. In this approximation scheme, sampling is always
performed locally (within the cluster) and thus, the algorithm must rely on the
approximated messages received from neighbors when generating new samples.
In [14], the authors attempt to remedy this problem by iterative refinement. Our
cutset-sampling algorithm does not encounter such problems since it takes into
account the global state of the network when generating a new sample. Cutset
sampling can also be seen as an approximation to cycle-cutset coditioning ([18]).

In [10], exact inference was used in combination with blocking Gibbs sam-
pling. The major differences between our cutset sampling approach and one
proposed in [10] are that first, in the proposed blocking Gibbs sampling, a sam-
ple consists of all the variables in the network (as usual) while cutset sampling
never assigns values to those variables that are integrated out; second, in [10],
exact inference is used to perform joint sampling step for a group of variables
while cutset sampling uses exact inference to integrate variables out.

The direction of our future work is to investigate methods for finding a sam-
pling set with good convergence properties. Some of the factors that strongly
affect convergence of MCMC methods are the sampling set size, the complexity
of sample generation, and the correlations between variables. Reducing sam-
pling set size generally leads to a reduction in the sampling variance due to
Rao-Blackwellisation, but it also results in the increased complexity of exact
inference when generating a new sample. Another factor is strong correlations
between sampled variables (deterministic probabilities, present in non-ergodic
networks, are an extreme example of strong correlation). If two variables are
strongly dependent, it is preferred to either integrate one of them out or group
them together and sample jointly (as in blocking Gibbs sampler) (see [16]). Tak-



ing above into consideration, a good sampling set could be defined as a minimal
w-cutset with a small w and with all strongly-correlated variables removed.
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