
Approximate Decomposition: A Method for Bounding and
Estimating Probabilistic and Deterministic Queries

David Larkin

Abstract

In this paper, we introduce a method for ap-
proximating the solution to inference and op-
timization tasks in uncertain and determin-
istic reasoning. Such tasks are in general in-
tractable for exact algorithms because of the
large number of dependency relationships in
their structure. Our method effectively maps
such a dense problem to a sparser one which
is in some sense “closest”. Exact methods
can be run on the sparser problem to derive
bounds on the original answer, which can be
quite sharp. On one large CPCS network,
for example, we were able to calculate upper
and lower bounds on the conditional proba-
bility of a variable, given evidence, that were
almost identical in the average case.

1 INTRODUCTION

Belief networks [Pearl, 1988] are a widely used for-
malism for reasoning with uncertainty in Artificial In-
telligence. Unfortunately, basic computations on be-
lief networks, such as calculating the probability of a
query variable given evidence, or finding the probabil-
ity of the most probable explanation consistent with
a certain variable value given evidence, are NP-hard.
Clique tree propagation [Jensen et al., 1990] is the
most popular exact algorithm, which requires time and
space exponential in the treewidth of the network’s
interaction graph. Variable elimination [Zhang and
Poole, 1994; Dechter, 1999] is a simplified formula-
tion of this method, which only computes the answer
to one query, but which is easier to derive and un-
derstand. Its complexity is also exponential in the
treewidth. Approximation algorithms include iterative
belief propagation [Pearl, 1988], stochastic simulation
[Pearl, 1988], variational methods [Jordan et al., 1999],
and mini buckets [Dechter and Rish, 1997]. Iterative

belief propagation provides an estimate of the exact
answer, if it converges, but there is no guarantee of
accuracy. Stochastic simulation also provides an esti-
mate, along with a level of confidence, but it can be
expensive and there is always some chance that the an-
swer is significantly inaccurate. Variational methods
provide guaranteed bounds, but must be tailored to
specific classes of networks. They cannot be applied
systematically to general networks. Mini buckets is
a simple algorithm that works on general networks,
which also provides guaranteed bounds, but in prac-
tice these are too loose to be useful. Mini buckets can
also provide bounds for the MAX-CSP problem, where
it compares well with state of the art methods [Kask
and Dechter, 2001].

In this paper, we introduce an algorithm called ap-
proximate decomposition which is designed to provide
tight guaranteed bounds on probabilistic and deter-
ministic queries. It works by bounding a large com-
plex function with a combination of simpler ones, such
that the expected loss of accuracy in a query involving
the function will be minimized.

The paper is divided into several parts. Following this
introduction, we define basic concepts in section 2. In
section 3 we describe the approximate decomposition
algorithm. Finally in section 4 we describe our empir-
ical results, and in section 5 we conclude and discuss
possibilities for future research.

2 BASIC CONCEPTS

In this section we review basic concepts which will be
important in succeeding sections.

2.1 BELIEF NETWORKS

A belief network is a tuple (X,D,G, P) where X is
a set of n variables {X1,X2, ...Xn} and D is a set of
variable domains {D1, ...Dn}. We use xi to denote a
value from Xi’s domain Di, x to represent a vector

(x1, x2, ...xn) of values for all variables, and xS to rep-
resent a choice of values for a subset S of X. G is a di-
rected acyclic graph, and P is a set of conditional prob-
ability tables {P (Xi|pai)}, also called CPTs. The par-
ent set pai of Xi is the set of nodes which are sources
of arcs pointing into Xi. P (Xi = xi|pai = xpai

) is the
conditional probability of X taking the value xi, given
that its parents are assigned xpai

. The semantics of the
network is a factorized joint probability distribution
over X: P (X = x) =

∏n
i=1 P (Xi = xi|pai = xpai

),
where xi and xpai

are consistent with x.

2.2 BELIEF NETWORK TASKS

The belief inference task is to compute the condi-
tional probability P (Xq = xq|E = xE) of a query
variable Xq for any of its values xq, given some ev-
idence E = xE . Bayes’s rule allows us to expand
this as P (Xq = xq ∧ E = xE)/P (E = xE) =
αP (Xq = xq ∧ E = xE), where α is a normalizing
constant. By the definition of the network P (Xq =
xq ∧ E = xE) =

∑
{X−(E∪Xq)}

∏n
i=1 P (Xi = xi|pai =

xpai
)|E=xE

, where the sum is over all assignments to
the subscripted set of variables and f(x)|E=xE

is f(x)
when x is consistent with E = xE and zero otherwise.

The MPE task is to find the probability of the most
probable assignment X = x which is consistent with
the evidence E = xE and any value of a query variable
Xq. Formally, again by the network definition, this is
max{X−(E∪Xq)}

∏n
i=1 P (Xi = xi|pai = xpai

)|E=xE
.

2.3 MAX-CSP

In the MAX-CSP problem, we are given a set of con-
straints C = {C1, ..., Cm} over the variables X. Each
constraint Ci is a function defined on a subset of X
called its scope. It maps assignments to the scope
that satisfy it to 0, and unsatisfying assignments to
1. The best solution violates the minimum number of
constraints. Given a query variable Xq, the goal is to
find the cost of the best solution consistent with any
of its values, or min{X−Xq}

∑
i Ci.

2.4 VARIABLE ELIMINATION

Variable elimination [Zhang and Poole, 1994; Dechter,
1999] is an exact algorithm for probabilistic and de-
terministic reasoning. It can be applied to any of
the tasks mentioned above. The basic operation is to
transform an expression ⊗{X1,...,Xk}�m

i=1 fm to an ex-
pression ⊗{X1,...,Xk−1} �m′

i=1 f ′
i which is equivalent and

does not mention Xk. This transformation is called
eliminating Xk. We assume that ⊗ and � are com-
mutative and associative binary operations over the
real numbers, and that ⊗Xi

(fj � fk) = fj � (⊗Xi
fk)

if fj does not depend on Xi (in other words, � dis-
tributes over ⊗). The transformation is done by writ-
ing �m

i=1fm as (�h
i=1fi)�(�m

j=h+1fj) where only func-
tions h + 1 to m depend on Xk (renumbering if neces-
sary). We can then write ⊗{X1,...Xk−1}⊗Xk

(�h
i=1fi)�

(�m
j=h+1fj) as ⊗{X1,...Xk−1}(�h

i=1fi) � (⊗Xk
�m

j=h+1

fj). We then define a new function λ = ⊗Xk
�m

j=h+1fj

which does not depend on Xk, and the expression
⊗{X1,...Xk−1} �h

i=1 fi � λ is then the desired result.
After Xk to X1 have been eliminated, we will be left
with a constant or a function on the uneliminated vari-
ables which is equivalent to the original expression, but
which can be evaluated in O(1) time.

For belief inference, we let ⊗ be summation, and �
becomes product. For the MPE task, ⊗ is the max
function, and � is product. Initially the CPTs in the
network are simplified by instantiating the evidence
variables with their values. Then f1, ..., fm will be
the CPTs, and all variables will be eliminated but the
query. For MAX-CSP, f1, ..., fm are the constraints,
⊗ is min, � is summation, and again all variables but
the query will be eliminated. The result of variable
elimination then will be a unary function on the query
variable, giving the desired answer for each of its val-
ues.

3 APPROXIMATE
DECOMPOSITION

In this section we describe the approximate decompo-
sition algorithm.

3.1 THE MAIN ALGORITHM

A collection of functions {f1, ..., fm} over a set of vari-
ables X can be represented by an undirected graph.
There is a node for each variable in X, and a pair of
variables are connected by an edge if they both appear
in the scope of fi, for some i. The undirected graph
representing the CPTs of a belief network, called the
moral graph, is found by connecting all parents of a
common child in the network’s DAG and undirecting
the edges. See figure 1 for an example.

When a variable Xk is eliminated by variable elimina-
tion, all functions mentioning it are removed and a new
function is defined on all of its neighbors. This corre-
sponds to deleting Xk from the graph and connecting
all neighbors. The cost of calculating the new function
is exponential in the number of neighbors. In general,
as variables are eliminated, the graph of the remain-
ing problem gets denser and denser, until all variables
have more than i neighbors, for some fixed affordable
complexity limit i. At that point the algorithm cannot
proceed without an unacceptable cost.

A

B

C

D

E

F

A

B

C

D

E

F

A

B

C

D

E

Figure 1: Example of Approximate Decomposition.
Left: Input network. Middle: Moralized network
graph. Right: After eliminating F .

P (A) : P (B|A) : P (C|A) :

P (A) = .6 P (B|A) = .3 P (C|A) = .4
P (A) = .4 P (B|A) = .7 P (C|A) = .6

P (B|A) = .5 P (C|A) = .8
P (B|A) = .5 P (C|A) = .2

λ(B, C) : λ1(B), λ2(C) : λ1(B) · λ2(C) :

λ(B, C) = .23 λ1(B) = 1 λ1(B) · λ2(C) = .23
λ(B, C) = .15 λ1(B) = 1.41 λ1(B) · λ2(C) = .207
λ(B, C) = .33 λ2(C) = .232 λ1(B) · λ2(C) = .33
λ(B, C) = .29 λ2(C) = .207 λ1(B) · λ2(C) = .29

Figure 2: Approximating λ(B,C) with λ1(B) · λ2(C)

The width of a graph is a measure of its density. It
is determined by repeatedly deleting the node with
the minimum number of neighbors (without adding
new edges) until the graph is empty. The maximum
number of neighbors a node had when it was deleted is
the width. If the width is bounded by i, then variable
elimination can finish the problem without introducing
a new function on more than i variables, if it does not
add any new edges.

Approximate decomposition works like variable elimi-
nation, except that after eliminating a variable, it will
delete newly added edges as necessary to ensure that
the width of the graph remains bounded by i. We do
not allow the algorithm to eliminate a variable with
more than i neighbors. However if the width limit is
maintained, it will always be able to finish the prob-
lem, in the worst case by immediately deleting every
new edge.

As an example, suppose approximate decomposition is
run on the problem in figure 1 to compute an upper
bound on the probability of the query, with an i bound
of 2. This means that we do not want to record a
function with arity higher than 2. Starting with the
moral graph in the middle, which has a width of 2,
variable F is eliminated first. This can be done exactly
since it only has 2 neighbors. The result is shown on
the right hand side of the figure. It still has width 2.
The next variable to be eliminated is A.

The Main AD Algorithm

Input: Functions F, query variable Xq,
operators ⊗ and �, complexity bound i.
Output: Bound on the value of the query.

Let G = (V, E) be F’s graph. While |V | > 1:

1. Choose Xj ∈ V, Xj �= Xq with the smallest
number of pairs of unconnected neighbors.

2. Let Fj = {f ∈ F |f mentions Xj}. Set λ =
⊗Xj �{f∈Fj} f, F = λ ∪ (F − Fj).

3. Connect all Xj’s neighbors in G, delete Xj.
If width(G) > i,

(a) Delete new edges until width(G) ≤ i.

(b) Let {C1, ..., Cm} be the maximal cliques
among Xj’s neighbors.

(c) Let λi have scope Ci, and use approximate
decomposition to bound λ by �iλi.

(d) Set F = {λi} ∪ (F − λ).

Figure 3: The Main AD Algorithm

In the top of figure 2 we show the CPTs P (A),
P (B|A), and P (C|A) which mention A. On the bot-
tom left of figure 2 is the new function λ(B,C) =∑

A P (A)P (B|A)P (C|A) which results from eliminat-
ing A. This new function adds an edge between B and
C. The remaining graph is then a clique on four ver-
tices, with a width of 3. This would exceed i and is
therefore not acceptable. So after computing λ(B,C),
we replace it with the product of two unary functions
λ1(B) and λ2(C) which is an upper bound. In the bot-
tom middle of the figure we show example values for
λ1(B) and λ2(C), and at the bottom right we show
the upper bound that they represent. The bound is
not tight only in the case where B is false and C is
true. This substitution is equivalent to deleting the
edge between B and C. After that, variable elimi-
nation can process the rest of the problem normally
without violating the i bound.

In general, approximate decomposition computes a
bound on the value of a query variable, given ⊗, �, and
the complexity bound i. Assuming that the width of
the belief network’s moral graph is initially no greater
than i, it eliminates variables like variable elimination
so long as the new edges do not cause the width of
the graph to exceed i. If this does happen, then the
new edge with the maximum sum of endpoint degrees
is deleted until the limit is met. If C1, ..., Cm are the
maximal cliques of the subgraph induced by the elim-
inated variable’s neighbors, we want to approximate
the exact elimination function λ with �iλi, where λi

has scope Ci. To do this, a linear program is set up
and solved. The details of this step are given in the
next subsection. This defines values for the bounding

functions {λi}, which then replace λ, allowing variable
elimination to continue. The final result is an upper
or lower bound on the original query. If a bound from
the other direction is desired, the algorithm must be
run again from the beginning. Pseudocode for this
main algorithm is given in figure 3.

3.2 THE APPROXIMATE
DECOMPOSITION STEP

In this subsection we describe the linear program-
ming step which is used to compute values for a set
of functions {λ1, λ2, ..., λm} such that their product
λ′ =

∏
i λi is a good bound on λ. We will assume that

L is the scope of λ and λ′. The technique needed to
approximate λ with a sum of functions is much simpler
and is outlined briefly at the end.

3.2.1 What is a Good Bound?

We will use the notation EF (H(F)) to denote∑
f P (F = f)H(f), that is, the expected value of H

as a function of the random variable F .

Definition 1 Let λ be a function with scope L, and
let F (xL) be a collection of random variables, one for
each assignment xL to L. Let λ′ be a bound on λ, also
with scope L, and suppose ⊗ ∈ {+,max}. Then we
define the cost of λ′ to be C(λ′) = EF (| ⊗xL

F (xL) ·
λ′(xL) −⊗xL

F (xL) · λ(xL)|).

The cost of λ′ is a measure of the error in the bound
on the final query that results from substituting λ′

for λ, assuming that all previous and subsequent com-
putation is exact. In the case of belief inference,
for example, if λ′ is an upper bound on the func-
tion λ that results from eliminating Xk, the query er-
ror is

∑
{X1,...,Xk−1}

∏
i fiλ

′ − ∑
{X1,...,Xk−1}

∏
i fiλ =

∑
xL

F (xL)λ′(xL)−∑
xL

F (xL)λ(xL), where F (xL) =∑
{X1,...,Xk−1}−L

∏
i fi is the set of random variables

summarizing our uncertainty about the rest of the
problem.

In general the random variables F (xL) can encapsu-
late any knowledge we may have about the remain-
der of the problem. We will make the most conser-
vative assumption, that nothing at all about the rest
of the problem is known. The random variables then
are taken to be independent, identically distributed,
and uniform. The cost of the bound λ′ then depends
only on λ. Theorem 1 states that the cost of λ′ for
belief inference (⊗ =

∑
) under these assumptions is

k
∑

xL
|λ′ − λ|, and theorem 2 states that the cost for

MPE (⊗ = max) is no greater than 2k
∑

xL
|λ′ − λ|,

where k = EF (F (xL)). In the subsequent sections we
will assume that the best bound for both problems
minimizes the sum of absolute errors (L1 distance).

Theorem 1 Let λ be a function on L, and let λ′

bound it. Let F (xL) be a collection of i. i. d. uni-
form random variables, and suppose ⊗ =

∑
. Then

the cost C(λ′) = k
∑

xL
|λ′(xL) − λ(xL)|, where k =

EF (F (xL)).

Proof: Assume λ′ is an upper bound. When it
is a lower bound the proof in analogous. Let ε =
λ′ − λ. The cost is EF (

∑
xL

F (xL)· (λ(xL) + ε(xL)))
−EF (

∑
xL

F (xL)· λ(xL)). The first expectation
EF (

∑
xL

F (xL) ·(λ(xL) +ε(xL))) = EF (
∑

xL
F (xL)·

λ(xL) +
∑

xL
F (xL) ·ε(xL)) = EF (

∑
xL

F (xL)· λ(xL))
+

∑
xL

E(F (xL))· ε(xL). Therefore the cost reduces to∑
xL

EF (F (xL))· ε(xL), as desired. �

Lemma 1 Let λ be a function on L, and let F (xL)
be a collection of i. i. d. uniform random variables
each with N possible values and maximum value M .
Then the probability that xL maximizes F (xL)λ(xL)
is 1

N

∑
{f∈dom(F (xL))}

∏
{yL �=xL}

fλ(xL)
Mλ(yL) .

Proof: The probability that xL maximizes Fλ is∑
{f∈dom(F (xL))} P (F (xL) = f)· ∏

{yL �=xL} P (F (yL)·
λ(yL) ≤ f · λ(xL)) =

∑
{f∈dom(F (xL))}

1
N ·

∏
{yL �=xL} P (F (yL) ≤ fλ(xL)

λ(yL)). Now, assuming
F (yL)’s N values are evenly spaced on the line
between 0 and M , the probability that it will be
less than or equal to q is approximately q/M . So
the expression for the desired probability becomes
∑

{f∈dom(F (xL))}
1
N

∏
{yL �=xL}

fλ(xL)
Mλ(yL) , as required. �

Theorem 2 Let λ be a function on L and let λ′ be a
bound on it. Let F (xL) be a set of i. i. d. uniform
random variables with N values and maximum value
M , and suppose ⊗ = max. Then the cost C(λ′) ≤
2k

∑
xL

|λ′(xL) − λ(xL)|, where k = EF (F (xL)).

Proof: We assume that λ′ is an upper bound (when
it is a lower bound the proof is analogous). Define
ε = λ′−λ. Let QL be the random variable ranging over
assignments to L that maximizes F (xL)λ′(xL) and
likewise let RL maximize F (xL)λ(xL). Then the cost
C(λ′) = EF (maxxL

F (xL)· λ′(xL) −maxxL
F (xL)·

λ(xL)) = E{F,QL,RL}(F (QL)· λ′(QL) −F (RL)·
λ(RL)) = EF (

∑
xL

P (QL = xL)· F (xL)· λ′(xL)−∑
xL

P (RL = xL)· F (xL)· λ(xL)) = EF (
∑

xL
F (xL)·

(P (QL = xL)· λ′(xL)− P (RL = xL)· λ(xL))) =
EF (

∑
xL

F (xL)· ((P (QL = xL)− P (RL = xL))·
λ(xL)+ P (QL = xL)· ε(xL))).

Now, let r(xL) = λ′(xL)/λ(xL) be the rel-
ative error in the bound. By lemma 1,
P (RL = xL) = 1

N

∑
{f∈dom(F (xL))}

∏
{yL �=xL}

fλ(xL)
Mλ(yL)

and also P (QL = xL) =
1
N

∑
{f∈dom(F (xL))}

∏
{yL �=xL}

fλ(xL)r(xL)
Mλ(yL)r(yL) ≤ r(xL)·

1
N

∑
{f∈dom(F (xL))}

∏
{yL �=xL}

fλ(xL)
Mλ(yL) , where the

inequality follows by lower bounding r(yL) with its
minimum value 1. But then P (QL = xL) ≤ r(xL)·
P (RL = xL), and EF (

∑
xL

F (xL)· ((P (QL = xL)−
P (RL = xL))· λ(xL)+ P (QL = xL)· ε(xL))) ≤
EF (

∑
xL

F (xL)· (P (RL = xL)· (r(xL) − 1)· λ(xL)+
P (QL = xL)· ε(xL))). Since λr = λ+ ε, ε = λ(r − 1),
and the upper bound becomes EF (

∑
xL

F (xL)·
(P (RL = xL)· ε(xL)+ P (QL = xL)· ε(xL))) ≤
EF (

∑
xL

F (xL)· 2· ε(xL)) =
∑

xL
2· EF (F (xL))·

ε(xL), as desired. �

3.2.2 Calculating a Good Bound

Assume that we are given a function λ defined on L
and a set of subsets L1, ..., Lm such that ∪m

i=1Li = L.
We must compute functions λ1, ..., λm such that λi has
scope Li and

∏
i λi is a bound on λ which minimizes

the sum of the absolute errors. Without losing gener-
ality we will assume for the moment that it is to be an
upper bound.

A straightforward way to do this is to set up a non-
linear program. We introduce a variable λi(xLi

) for ev-
ery assignment xLi

to Li, and also a non-negative vari-
able ε(xL) for every xL. Now, for every xL, we define
a non-linear constraint

∏m
i=1 λi(xLi

)− ε(xL) = λ(xL),
where xLi

is consistent with xL for all i. Subject to
these constraints, we want to minimize the objective
function

∑
xL

ε(xL), which corresponds to the L1 er-
ror. The values that the optimum solution assigns to
λi(xLi

) will then be our desired result.

The problem with this approach of course is that non-
linear programs are in general very difficult to solve.
Instead, we will relax the constraints until they be-
come linear, and then use the solution of the lin-
ear program as an approximation of the optimum
solution. First, we introduce new variables r(xL)
representing the relative error. We will not repre-
sent the absolute error directly, so the constraints
defined above cannot be used. Instead a constraint
(
∏m

i=1 λi(xLi
))/λ(xL) = r(xL) is generated for every

xL. Since we want an upper bound, r must be at least
1. After taking the logarithm of both sides, this be-
comes

∑m
i=1 log(λi(xLi

))−log(λ(xL)) = log r(xL). We
can introduce new variables log λi(xLi

) and log r(xL),
and the constraints are now linear in these variables
(log λ(xL) of course is a constant). The constraints
r ≥ 1 become log r ≥ 0.

Now, for upper bounds, r(xL)λ(xL) = λ(xL)+ε(xL) =∏
i λi(xLi

), so ε(xL) = λ(xL)(r(xL) − 1). We want
to minimize

∑
xL

ε(xL), but unfortunately the only
relevant variables that have meaning under the con-
straints are lr(xL) = log r(xL). The objective func-
tion is therefore

∑
xL

λ(xL)(exp(lr(xL)) − 1). This is

Minimize
.23lr(B, C) + .15lr(B, C) + .33lr(B, C) + .29lr(B, C)
subject to:
log λ1(B) + log λ2(C) − lr(B, C) = log λ(B, C) = −0.635
log λ1(B) + log λ2(C) − lr(B, C) = log λ(B, C) = −0.83
log λ1(B) + log λ2(C) − lr(B, C) = log λ(B, C) = −0.484
log λ1(B) + log λ2(C) − lr(B, C) = log λ(B, C) = −0.535
lr(B, C), lr(B, C), lr(B, C), lr(B, C) ≥ 0

Figure 4: The linear program computing the bounding
functions in figure 2

Procedure Approximate Decomposition

Input: Function λ with scope L, subsets
L1, ..., Lm such that ∪iLi = L.
Output: Set of functions λ1, ..., λm such that λi

has scope Li and
∏

i
λi is an upper bound on λ

(lower bound is similar).

1. Begin constructing a new linear program:

(a) Introduce linear program variables
log λi(xLi) and lr(xL) ≥ 0.

(b) ∀λ(xL) �= 0, introduce the constraint∑
i
log λi(xLi) − log λ(xL) = lr(xL).

(c) ∀λ(xL) = 0, introduce the constraint∑
i
log λi(xLi) −Z ≤ lr(xL).

(d) Let the objective be to minimize∑
xL

max(10−5, λ(xL)/
∑

xL
λ(xL))lr(xL).

2. Solve the program using a standard LP
algorithm. Define {λi} with the solution.

Figure 5: The Approximate Decomposition Procedure

nonlinear since it involves the exponential function.
Therefore we will approximate exp(lr) − 1 as dlr + c,
for appropriate constants d ≥ 0 and c. The objective
function then becomes

∑
xL

λ(xL)(dlr(xL) + c) = c′ +
d

∑
xL

λ(xL)lr(xL) for some constant c′. The solution
that minimizes this also minimizes

∑
xL

λ(xL)lr(xL),
so we will use the latter as our approximate objective
function. The linear program is then complete.

If we want a lower bound on λ instead, then
the constraints are r(xL) = λ(xL)/(

∏
i λi(xLi

)), so∑
i log λi − log λ = − log r. Now,

∏
i λi(xLi

) =
λ(xL)/r(xL) = λ(xL) − ε(xL), so ε(xL) = λ(xL)(1 −
1/r(xL)) = λ(xL)(1 − 1/ exp(lr(xL))). As before, we
approximate (1 − 1/ exp(lr(xL))) with dlr(xL) + c for
appropriate constants d ≥ 0 and c, and the objective
function again becomes

∑
xL

λ(xL)lr(xL).

As an example, consider figure 2 in subsection 3.1. The
linear program that was used to compute the bounding
functions λ1 and λ2 is given in figure 4.

There is one issue we have not addressed so far, namely
how to deal with cases when λ(xL) is 0. Then log λ(xL)
is negative infinity, which does not allow us to set up

-5.85

-4.85

-3.85

-2.85

-1.85

-0.85

0.15

AD (i=11) AD (i=12) MB (i=12) MB (i=13)
A

v
g

 L
o

g
 Q

u
e
ry

 P
ro

b
a
b

il
it

y

Upper bound

Estimate

Lower bound

Exact

Figure 6: CPCS2 Belief Inference (360 binary vari-
ables, w∗ = 20, 5 observations)

the program as described above. Instead, we approx-
imate log 0 as a large negative number Z (say -40).
Then, for an upper bound we introduce the constraint∑

i log λi − Z ≤ log r, and for a lower bound we have∑
i log λi ≤ Z. In the second case,

∏
i λi will not ex-

ceed 10Z , but all the factors in the product will be
nonzero (although there will generally be at least one
very small one). To enforce the lower bound in this
case, after the linear program has been solved, we set
the λi which was assigned the smallest value directly
to 0.

As the log of the relative error of the bounding func-
tions on a given domain value goes to infinity, the
ideal cost function for upper bounds increases expo-
nentially, and the ideal cost function for lower bounds
approaches a constant. The approximation in both
cases is linear, meaning that for upper bounds it will
be an arbitrarily bad underestimation and for lower
bounds it will be an overestimation. Therefore the
linear objective function is only meaningful when the
relative errors are more or less bounded. If one cost co-
efficient in this function is very small in relation to the
others, the optimum LP solution might assign the cor-
responding relative error a very high value. To avoid
this, in our implementation we normalized all of the
cost coefficients so that they added up to one, and then
set any coefficient less than 10−5 to 10−5. This sub-
stantially increased the accuracy in our experiments.

Finally it is interesting to note that the objec-
tive function for lower bounds

∑
xL

λ(xL)lr(xL) =∑
xL

λ(xL)(log(λ(xL)/
∏

i λi(xLi
))) is actually the KL

distance between the target function and its bound,
assuming both are normalized probabilities. A similar
observation holds for upper bounds. In general how-
ever the intermediate functions produced by variable
elimination and their bounds are not normalized.

Pseudocode for the approximate decomposition proce-
dure is given in figure 5.

AD (i=11) MB (i=12)
Qry. Pr. Evd. Pr. Qry. Pr. Evd. Pr.

Low -0.825 -3.65 -5.41 -7.12
Est. -0.771 -3.63 -0.761 -3.56

High -0.74 -3.6 -0.00551 -2.48
Exact -0.775 -3.64 -0.775 -3.64
Est. ε 0.00493 0.0159 0.015 0.284
Hi-Lo 0.0854 0.046 5.41 4.63
Time 10.8s 7.75s

AD (i=12) MB (i=13)
Qry. Pr. Evd. Pr. Qry. Pr. Evd. Pr.

Low -0.783 -3.64 -4.45 -6.27
Est. -0.765 -3.64 -0.772 -3.49

High -0.749 -3.64 -0.0303 -2.59
Exact -0.775 -3.64 -0.775 -3.64
Est. ε 0.0111 0.00103 0.00433 0.241
Hi-Lo 0.034 0.00292 4.42 3.68
Time 15.6s 13.6s

Table 1: CPCS2 Belief Inference (360 binary variables,
w∗ = 20, 5 observations, exact algorithm takes 202s)

AD MB AD MB
(i = 11) (i = 12) (i = 12) (i = 13)

Low -12.6 -24.1 -12.5 -22.3
Est. -12.3 -15.6 -12.3 -15.4

High -12.1 -11.8 -12.2 -12
Exact -12.3 -12.3 -12.3 -12.3
Est. ε 0.223 3.36 0.125 3.17
Hi-Lo 0.527 12.3 0.314 10.3
Time 15.4s 8.43s 20.5s 14.5s

Table 2: CPCS2 MPE (360 binary variables, w∗ = 20,
5 observations, exact algorithm takes 205s)

3.2.3 Computing a Bound for MAX-CSP

If λ is to be bounded by the sum of the λi’s, instead
of the product, the task becomes much easier. For an
upper bound, we introduce a constraint

∑
i λi(xL) −

ε(xL) = λ(xL) for all xL. The lower bound is similar.
Notice that there is no need to take the logarithms, and
cases where λ(xL) is zero do not need to be handled
specially. The objective function to be minimized is
then the exact sum of absolute errors,

∑
xL

ε(xL).

4 EMPIRICAL RESULTS

We compared the approximations computed by ap-
proximate decomposition with those of mini buckets
on a number of problems. For each experiment, ran-
dom evidence and a random query variable was se-
lected, and bounds and an estimate on the value of the
query were computed by each algorithm. The results
reported in all cases are the average of 25 experiments.

To solve the linear programming problems, we used
ILOG CPLEX’s primal simplex optimizer. AD effec-
tively solved each problem twice, once for the upper
bound U , and once for the lower bound L. For proba-

bilistic queries, the estimate was exp(log U+log L
2). For

MAX-CSP, the estimate was U+L
2 . This was effective

since the bounds were generally tight and well centered
around the exact answer.

MB processed each problem 3 times, twice for the
bounds, and once for the estimate. A lower bound
on the query was found by projecting the bucket vari-
able out of all of the mini buckets beyond the first in
the bucket with the min operator. Likewise max was
used for the upper bound and mean for the estimate.
MB’s bounds were loose and generally poorly centered
around the exact, so AD’s technique was not used.
For details about mini buckets see [Dechter and Rish,
1997].

In table 1, we report the results of 25 belief inference
experiments on the CPCS2 network, each with five ob-
servations. AD took longer than MB with the same i
bound because of the overhead of linear programming,
so MB was given an increased i bound to make the
times comparable. “Qry. Pr.” describes the approxi-
mation of the conditional probability of the query, and
“Evd. Pr.” describes the approximation of the proba-
bility of the evidence. The conditional probability can
be bounded in a straightforward way from bounds on
the joint, which was what the algorithms computed
directly. Each entry in the table represents the av-
erage base 10 logarithm of the noted value, averaged
over all 25 experiments, and in the case of the condi-
tional probability, over the query domain values also.
The rows “Low”, “Est.”, and “High” give the lower
bounds, estimates, and upper bounds. “Exact” is the
exact answer, and “Est. ε” is the factor by which the
estimate diverged from the exact. “Hi-Lo” is the up-
per bound divided by the lower bound, and “Time”
is the number of seconds required by each algorithm
(not the logarithm in this case).

For all the experiments, the main measures of approx-
imation accuracy are Est. ε and Hi-Lo. In table 1,
under the query probability column, Est. ε is 0.00493
for AD at i = 11. This means that the estimate of
the conditional probability diverged from the exact
by a factor of 100.00495 = 1.01 in the average case.
Hi-Lo is 0.0854. That means that the average upper
bound was higher than the lower bound by a factor
of 100.0854 = 1.21. High is −0.74, meaning that the
average upper bound was 10−0.74 = 0.18. By contrast,
for MB at i = 13 approximating the same quantity,
the average error in the estimate was 100.00433, just
slightly better than AD’s estimates, but the average
upper bound was a factor of 104.42 = 26, 302 higher
than the lower. Clearly MB was not effective at com-
puting bounds in this case. In figure 6, for comparison,
we have graphically displayed the Low, Est., High, and
Exact values for the query probabilities. Each column

-30

-25

-20

-15

-10

-5

0

AD (i=11) AD (i=12) MB (i=12) MB (i=13)

A
v
g

 L
o

g
 M

P
E

 P
ro

b
a
b

il
it

y

Upper bound

Estimate

Lower bound

Exact

Figure 7: CPCS2 MPE (360 binary variables, w∗ = 20,
5 observations)

AD (i=12) MB (i=14)
Qry. Pr. Evd. Pr. Qry. Pr. Evd. Pr.

Low -1.77 -4.52 -9.42 -10.5
Est. -1.12 -4.21 -1.09 -4.03
High -0.772 -3.89 0 -2.17

Exact -1.1 -4.24 -1.1 -4.24
Est. ε 0.0402 0.122 0.0238 0.255
Hi-Lo 1 0.639 9.42 8.3
Time 30.9s 28.9s

Table 3: CPCS3 Belief Inference (422 binary variables,
w∗ = 22, 5 observations, exact algorithm takes 1020s)

corresponds to an algorithm and an i bound. In a col-
umn, the top bar is High, the bottom is Low, the circle
is Est., and the dotted line is Exact.

In table 2 we report the results of MPE experiments
on CPCS2. For each value of the query variable, we
approximated the probability of the most probable ex-
planation consistent with it and the evidence, then av-
eraged the logs of the approximations over all domain
values. AD at i = 11 computed an upper bound that
was a factor of 100.527 = 3.37 higher than the lower
in the average case, whereas MB’s upper bound at
i = 13 was 1010.3 times higher. Unlike in the belief
inference case, its estimate was also significantly in-
accurate. AD’s estimate diverged from the exact by
an average factor of 100.223 = 1.67, while MB’s error
factor was 103.17 = 1, 479. As before, in figure 7 we
graphically display the values of the table. Note that
MB’s intervals are very poorly centered around the
exact and that the estimate is far off.

In table 3 we report the results of belief inference on
the CPCS3 network. Again AD computed very sharp
bounds on the conditional and evidence probabilities,
whereas MB’s were too loose to be useful. The es-
timates produced by both algorithms were both quite
accurate. In table 4, we report the results of the MPE
task on CPCS3. AD’s bounds and estimate were or-
ders of magnitude better than MB’s in all cases.

In table 5 we report the results of belief inference on a
class of large random networks. Each network’s graph

AD MB AD MB
(i=11) (i=13) (i=12) (i=14)

Low -13.6 -30.6 -14.3 -27.2
Est. -13 -17 -13.2 -16.1
High -12.5 -12 -12.1 -12

Exact -12.8 -12.8 -12.8 -12.8
Est. ε 0.39 4.22 0.618 3.26
Hi-Lo 1.06 18.6 2.18 15.2
Time 25.6s 17.9s 39.9s 30.9s

Table 4: CPCS3 MPE (422 binary variables, w∗ = 22,
5 observations, exact algorithm takes 1020s)

AD (i=11) MB (i=14)
Qry. Pr. Evd. Pr. Qry. Pr. Evd. Pr.

Low -2.75 -2.87 -15.4 -12.2
Est. -0.314 -1.65 -0.31 -1.57
High 0 -0.436 0 0

Hi-Lo 2.75 2.43 15.4 12.2
Time 27s 21.5s

Table 5: Random Belief Network Inference (115 bi-
nary variables, average w∗ = 34, 5 observations, exact
algorithm intractable)

had 115 variables, where 110 nodes had 3 random par-
ents and the other five were roots. These networks
were very difficult, with an average induced width w∗

of 34, well beyond the reach of an exact algorithm.
AD’s bounds were much tighter than MB’s. Of course
the error in the estimates could not be checked. But
they agreed with each other very closely, as in the other
belief inference tasks.

Finally in table 6, we report some results on a class of
random MAX-CSP problems. Each instance had 30
ternary variables and 125 random binary constraints,
each of which disallowed half of all possible value pairs.
The entries in the table are not logarithms, but direct
approximations of the number of constraints violated
by the optimum solution. In this case also AD sub-
stantially outperformed MB both in terms of the esti-
mation quality and the tightness of the bounds.

To conclude, in our experiments AD was much more
effective than MB at computing bounds on probabilis-
tic and deterministic queries, and also produced sub-
stantially more accurate estimates in the case of the
MPE task and MAX-CSP. For belief inference, the es-
timates of both algorithms were very accurate when

AD MB AD MB
(i=7) (i=8) (i=8) (i=9)

Low 17 14.6 17.8 15.7
Est. 20.6 25.8 20.6 24.5
High 24.2 35.7 23.4 32.5

Exact 21.3 21.3 21.3 21.3
Est. ε 1.02 4.45 1.01 3.15
Hi-Lo 7.21 21.1 5.58 16.8
Time 7.01s 9.27s 34.3s 22.8s

Table 6: MAX-CSP (30 ternary variables, 125 binary
constraints, average w∗ = 14, exact algorithm takes
1190s)

they could be compared to the exact answer.

5 CONCLUSION

In this paper, we introduced a method for bounding
and estimating probabilistic and deterministic queries,
called approximate decomposition. It works by bound-
ing a large complex function with a collection of
smaller and simpler ones. We showed what proper-
ties the bound should have in the ideal case and how
that ideal could be tractably approximated with linear
programming. In the future, we plan to investigate
the idea of a multiple-query version of the algorithm,
along the lines of clique tree propagation.

Acknowledgements

Thanks to James D. Park for pointing out the connec-
tion between the linear objective function and the KL
distance. This work was supported in part by the NSF
grant IIS-0086529 and MURI ONR award N00014-00-
1-0617.

References

[Dechter and Rish, 1997] Rina Dechter and Irina
Rish. A scheme for approximating probabilistic in-
ference. In Proc. of the Conf. on Uncertainty in
Artificial Intelligence, 1997.

[Dechter, 1999] Rina Dechter. Bucket elimination: A
unifying framework for reasoning. Artificial Intelli-
gence, October 1999.

[Jensen et al., 1990] F. V. Jensen, S. L. Lauritzen, and
K. G. Olesen. Bayesian updating in causal proba-
bilistic networks by local computations. Computa-
tional Statistics Quarterly, 5(4):269–282, 1990.

[Jordan et al., 1999] Michael I. Jordan, Zoubin
Ghahramani, Tommi Jaakkola, and Lawrence K.
Saul. An introduction to variational methods for
graphical models. Machine Learning, 37(2):183–
233, 1999.

[Kask and Dechter, 2001] Kalev Kask and Rina
Dechter. A general scheme for automatic gen-
eration of search heuristics from specification
dependencies. Artificial Intelligence, 129:91–131,
2001.

[Pearl, 1988] Judea Pearl. Probabilistic Reasoning in
Intelligent Systems. Morgan Kaufmann, 1988.

[Zhang and Poole, 1994] N.L. Zhang and D. Poole. A
simple algorithm for bayesian network computa-
tions. In Proc of the tenth Canadian Conference
on Artificial Intelligence, pages 171–178, 1994.

