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Abstract

This paper presents new look-ahead schemes for back-
tracking search when solving constraint satisfaction
problems. The look-ahead schemes compute a heuristic
for value ordering and domain pruning, which influences
variable orderings at each node in the search space.
As a basis for a heuristic, we investigate two tasks, both
harder than the CSP task. The first is finding the so-
lution with min-number of conflicts. The second is
counting solutions. Clearly each of these tasks also
finds a solution to the CSP problem, if one exists, or
decides that the problem is inconsistent. Our plan is
to use approximations of these more complex tasks as
heuristics for guiding search for a solution of a CSP
task. In particular, we investigate two recent partition-
based strategies that approximate variable elimination
algorithms, Mini-Bucket-Tree Elimination and Iterative
Join-Graph Propagation (ijgp). The latter belong to the
class of belief propagation algorithm that attracted sub-
stantial interest due to their surprising success for proba-
bilistic inference. Our preliminary empirical evaluation
is very encouraging, demonstrating that the counting-
based heuristic approximated by by IJGP yields a very
focused search even for hard problems.

Introduction
We investigate two cost functions for modelling con-
straint satisfaction problems. One as an optimization,
min-conflict (MC) and the other as solution-counting
(SC). When approximating variable elimination algo-
rithms on each of these formulations, we obtain heuris-
tic functions that can be used to guide backtracking
search algorithms. For the min-conflict formulation,
each constraint is modelled by a cost function that as-
signs 0 to each allowed tuple and 1 to unallowed tuples
and the overall cost is the sum of all cost functions. An
assignment is a solution when its cost is 0.

Within the solution-count formulation, each con-
straint is modelled by a function that assigns 1 to al-
lowed tuples and 0 otherwise. The overall cost is the
product of all individual functions. An assignment is
a solution when its cost is 1. The target is to find the
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number of solutions, namely the number of assignments
having cost 1.

Both of these tasks can be solved exactly by vari-
able elimination algorithms. However the complexity
of these algorithm are two high to be practical and ap-
proximations are necessary. In order to approximate
variable elimination, we apply two basic approxima-
tion schemes, Mini-Bucket-Tree Elimination (MBTE)
(Dechter, Kask, & Larrosa 2001) and Iterative Join-
Graph Propagation (IJGP) (Dechter, Kask, & Mateescu
2002) to each of the two formalisms, yielding heuris-
tic functions. The heuristics derived using MBTE can
provide a lower-bound on the min-conflict function and
an upper-bound in the case of solution counting1. The
heuristics generated using IJGP provide no guarantee,
but were shown to work very well sometimes for prob-
abilistic inference tasks.

We incorporate these these heuristics, computed
by MBTE/IJGP on MC/SC tasks within backtracking
search and compare the resulting backtracking algo-
rithms against MAC (Sabin & Freuder 1997), one of
the most powerful lookahead methods, and against SLS
(Stochastic Local Search).

Our results are very promising. We show that, on
hard random problem instances on the phase transi-
tion, the SC model yields overall stronger heuristics
than the MC model. In particular, IJGP computing SC
yields a very focused search with relatively few dead-
ends. We show that this new algorithm, backtracking
with solution count heuristic computed by IJGP (IJGP-
SC), is more scalable than MAC/SLS - it is inferior to
MAC/SLS on small problems, but as the problem size
grows, the performance of IJGP-SC improves relative to
MAC/SLS, and on the largest problems we tried IJGP-
SC outperforms both MAC and SLS. These results are
significant because our base algorithm is naive back-
tracking that is not enhanced by either backjumping or
learning, but equipped with a single look-ahead heuris-
tics. Finally, we believe that our implementation can be
optimized to yield at least an order of magnitude speed-

1If we normalize messages computed by MBTE-SC, we
get approximations of fractions of solutions, instead of upper
bounds on solution counts.



up.

Preliminaries
DEFINITION 0.1 (constraint satisfaction problem)
A Constraint Network (CN) is defined by a
triplet (X,D, C) where X is a set of variables
X = {X1, ..., Xn}, associated with a set of discrete-
valued domains,D = {D1, ..., Dn}, and a set of
constraintsC = {C1, ..., Cm}. Each constraintCi

is a pair (Si, Ri), whereRi is a relationRi ⊆ DSi

defined on a subset of variablesSi ⊆ X called the
scope ofCi. The relation denotes all compatible tuples
of DSi

allowed by the constraint. The primal graph of
a constraint network, called aconstraint graph, has a
node for each variable, and an arc between two nodes
iff the corresponding variables participate in the same
constraint. Asolution is an assignment of values to
variablesx = (x1, ..., xn), xi ∈ Di, such that each
constraint is satisfied, namely∀ Ci ∈ C xSi

∈ Ri. The
Constraint Satisfaction Problem (CSP) is to determine
if a constraint network has a solution, and if so, to find
a solution. A binary CSP is one where each constraint
involves at most two variables.

As noted a constraint satisfaction problem can be
solved through a minimization problem, minimizing the
number of conflict cost function, through the task of
finding all solutions. Both of these tasks can be solved
exactly by inference algorithms defined over a tree-
decomposition of the problem specification, developed
for constraint network (Dechter & Pearl 1989) and for
belief networks (Lauritzen & Spiegelhalter 1988). Intu-
itively, a tree-decomposition takes a collection of func-
tions and partition them into a tree of clusters. The clus-
ter tree is often called ajoin-treeor a junction tree. We
overview formally the notion of a tree-decomposition
and a message-passing algorithm over the tree. The
combined description is similar to the Shafer-Shenoy
variant of junction-tree algorithm (Shafer & Shenoy
1990).

We use a recent formalization of tree-decomposition
given by (Gottlob, Leone, & Scarello 1999).

DEFINITION 0.2 (cluster-tree decompositions)Let
CSP =< X, D, C > be a constraint satisfaction
problem. Acluster-tree decompositionfor CSP is a
triple D =< T, χ, ψ >, whereT = (V,E) is a tree,
and χ and ψ are labelling functions which associate
with each vertexv ∈ V two sets, variable label
χ(v) ⊆ X and function labelψ(v) ⊆ C.

1. For each functionCi ∈ C, there isexactlyone vertex
v ∈ V such thatCi ∈ ψ(v), andSi ⊆ χ(v).

2. For each variableXi ∈ X, the set{v ∈ V |Xi ∈
χ(v)} induces a connected subtree ofT . The con-
nectedness requirement is also called the running in-
tersection property.

Let (u, v) be an edge of a tree-decomposition, thesepa-
ratorof u andv is defined assep(u, v) = χ(u) ∩ χ(v);

the eliminator of u and v is defined aselim(u, v) =
χ(u)− sep(u, v).

DEFINITION 0.3 (tree-width, induced-width)
The tree-width of a tree-decomposition is
tw = maxv∈V |χ(v)| − 1, and its maximum sep-
arator size is s = max(u,v)∈E |sep(u, v)|. The
tree-width of a graph is the minimum tree-width over
all its tree-decompositions and it can be shown to be
identical to the graph’s induced-width (Dechter &
Pearl 1989).

Cluster-tree elimination(CTE) (Dechter, Kask, &
Larrosa 2001) is a message-passing algorithm on a tree-
decomposition, the nodes of which are called clusters,
each associated with variable and function subsets (their
labels). CTE computes two messages for each edge
(one in each direction), from each node to its neigh-
bors, in two passes, from the leaves to the root and from
the root to the leaves. The message that clusteru sends
to clusterv, for the min-conflict task is as follows: The
cluster sums all its own functions (in its label), with all
the messages received from its neighbors excludingv
and then minimize the resulting function relative to the
eliminators betweenu andv. This yields a message de-
fined on the separator betweenu andv. For solution
counts the messages are the same except summation is
replaced with a product and minimization with summa-
tion.

The complexity of CTE is time exponential in the
maximum size of variable subsets and space exponen-
tial in the maximum size of the separators. Join-tree
and junction-tree algorithms for constraint and belief
networks are instances of CTE. CTE is an exact al-
gorithm for computing either the min conflict solution
or the solution counts for the whole problem. More-
over the algorithm can output for each value and each
variable the min number of conflicts, or the number of
solutions extending this variable-value pair, for the re-
spective tasks. For more details see (Dechter, Kask,
& Larrosa 2001; Dechter, Kask, & Mateescu 2002).
Bucket-tree-elimination algorithm,BTE, is the spe-
cial case when the underlying tree-decomposition is a
bucket-tree. A bucket-tree is the structure associated
with bucket-elimination algorithms.

Mini-cluster-tree elimination(MCTE(i)) (Dechter,
Kask, & Larrosa 2001) approximates CTE by using
the partitioning idea - when computing a message from
clusteru to clusterv, clusteru is partitioned into mini-
clusters whose function scopes has at mosti variables,
each of which is processed separately by the same clus-
ter computation described above, resulting in a set of
messages which are sent to clusterv. MCTE(i) com-
putes a bound on the exact value (a lower bound in case
of a minimization problem, an upper bound in case of a
maximization problem) and allows a trade-off between
accuracy and complexity controlled byi. Its space and
time complexity is exponential in the input parameteri
that also bounds the scope of the messages.



Iterative Join-Graph Propagation(IJGP) (Dechter,
Kask, & Mateescu 2002) can be perceived as an iter-
ative version of the cluster-tree elimination algorithm
that applies the message-passing tojoin-graphsrather
than join-trees. A join-graph is a decomposition of
functions into clusters that interact in a graph manner,
rather than a tree-manner. namely conditions 1 and 2
should be satisfied by the clusters in the graph. There-
fore there are two major differences between join-trees
and join-graphs:

1. Unlike a join-tree decomposition, which is defined
on a treeT , a join-graph is defined on a graphG =
(V, E).

2. Join-graph satisfies the same two conditions 0.2 as
join-tree. In addition, each edgee ∈ E of the join-
graph has a labellingφ(e) ⊆ sep(e), such that, for
any variableXi, the set of edges{e|Xi ∈ φ(e)} is a
tree.

Join-graph propagation algorithmsends the same
CTE messages to their neighbors, except that their mes-
sages are computed on the edge labellingφ, instead of
separators. This class of algorithms generalizes loopy
belief propagation that demonstrated a useful approxi-
mation method for various belief networks, especially
for probabilistic decoding (Dechter, Kask, & Mateescu
2002).

An important difference between MCTE and IJGP is
that IJGP is iterative and can improve its performance
with additional iterations. Similarly to MCTE(i), IJGP
can be parameterized byi which controls the cluster
size in the join-graph, yielding a class of algorithms
(IJGP(i)) that allow a trade-off between accuracy and
complexity. Asi increase accuracy generally increases.
Wheni is big enough to allow a tree-structure IJGP(i)
coincide with CTE and become exact.

Min-Cost vs. Solution-Count
As noted before, we can express the relationRi as a
cost functionCi(Xi1 = xi1, ..., Xik = xik) = 0 if
(xi1, ..., xik) ∈ Ri, and1 otherwise. We call this aMin-
Conflict(MC) model of the CSP. The objective function
is the sum of all cost functions. The CSP problem is
to find an assignment for which the cost function is 0.
We will focus on a related task - given a partial assign-
mentE, compute, for each valuea of each uninstanti-
ated variableXi, the number of constraints violated in
the extension of the assignmentE ∪ {Xi = a} that has
a least number of conflicts. As an optimization (mini-
mization) task, it is NP-hard. However, an approxima-
tion of this can serve as a heuristic function guiding the
Branch-and-Bound search for finding a solution.

Alternatively, we may also express the relationRi as
a cost functionCi(Xi1 = xi1, ..., Xik = xik) = 1 if
(xi1, ..., xik) ∈ Ri, and0 otherwise. We call this aSo-
lution Counting(SC) model of the CSP. The objective
function is the product of all cost functions. The CSP

problem is to find an assignment for which the objec-
tive function is 1. However, we will focus on a harder
task within this representation - given a partial assign-
mentE, compute, for each valuea of each uninstanti-
ated variableXi, the number of solutions that agrees
with E ∪ {Xi = a}. As a counting problem, it is
#P-complete. However, an approximation of this task
can serve as a heuristic function guiding a backtracking
search algorithms for finding a solution.

Approximating by MBTE the Min-Conflict and
Solution-Count
Mini-Bucket-Tree Elimination (Dechter, Kask, & Lar-
rosa 2001), or more generally, the Mini-Cluster-Tree
Elimination, can be applied to approximate both the
Min-Cost and Solution-Count heuristics in a straight-
forward manner. MBTE applied to the Min-Conflict
model (MBTE(i)-MC) computes, given a partial assign-
mentE, for each valuea of each uninstantiated vari-
ableX, a lower boundon the cost of the best exten-
sion of the given partial assignmentE ∪ {X = a}.
When MBTE is applied to the Solution-Count model
(MBTE(i)-SC) it computes, given a partial assignment
E, for each valuea of each uninstantiated variableXi,
an approximation on the number of solutions that agree
with E ∪ {Xi = a}. Note that thei-bound can be used
to control the accuracy and complexity of this approxi-
mation scheme.

The respective approximated values computed by
MBTE(i)-MC and MBTE(i)-SC can also be used for
domain pruning. It can be shown that the SC heuristic
pruning power, computed by MBTE(i), is equivalent to
the MC heuristic pruning power. More precisely,
Proposition.[Equivalence of SC and MC for pruning]
The pruning power of MBTE(i)-SC is equal to that
of MBTE(i)-MC. Namely, if the partitioning structure
used by MBTE-MC and MBTE-SC is identical, then
MBTE(i)-MC(E) > 0 exactly when MBTE(i)-SC(E) =
0, where E is a set of instantiated variables. That is,
MBTE(i)-MC allows pruning (> 0) iff MBTE( i)-SC al-
lows pruning (= 0).

Overall it seems that SC is superior to MC because
it allows not only pruning of domains but also value or-
dering. Consequently, unless MBTE-MC can be imple-
mented more efficiently MBTE-SC is superior overall,
as will be validated by our experiments.

Approximating Solution-Count by IJGP
We will also use IJGP for approximating solution
counts for each singleton assignmentXi = a. IJGP
for solution counting is technically very similar to IJGP
for the computation of belief in Bayesian networks
(Dechter, Kask, & Mateescu 2002). For completeness,
a formal description of IJGP(i)-SC is given in Figure 1.

IJGP(i)-SC takes, as input, a join-graph and an acti-
vation schedule which specifies the order in which mes-
sages are computed. It executes a number of IJGP itera-
tions. The algorithm sends the same messages between



neighboring clusters as CTE using the SC model. At the
end of iterationj it computes the distance∆(j) between
the messages computed during iterationj and the pre-
vious iterationj − 1. The algorithm uses this distance
to decide whether IJGP(i)-SC is converging. The al-
gorithm stops when either a predefined maximum num-
ber of iterations is exceeded (indicating that IJGP(i)-SC
is not converging), the distance∆(j) is not decreasing
(IJGP(i)-SC is diverging), or∆(j) is less than some
predefined value (0.1) indicating that IJGP(i)-SC has
reached a fixed-point. Some of the more significant
technical points are:

• As input, constraints are modelled by cost functions
which assign 1 to combinations of values that are al-
lowed, and 0 to nogoods.

• IJGP-SC diverges (solution count values computed
by IJGP-SC may get arbitrarily large) and thus the so-
lution count values computed by IJGP can be shown
to be trivial upper bounds on the exact values. Also,
in practice IJGP may suffer from double-point preci-
sion overflow. To avoid that, we will normalize all
messages as they are computed. As a result, IJGP(i)-
SC will compute, for each variableXi, not solu-
tion counts but their ratios. For example, IJGP(i)-
SC(X = a)=0.4 means that in approximately 40% of
the solutions,X = a. Therefore the approximated
solution counts are no longer upper bounds. Still,
when the solution count (ratio) computed by IJGP(i)-
SC is 0, the true value is 0 as well, and therefore the
corresponding valuea of X can be pruned.

• Note, however, that since we use the solution counts
only to create a variable and value ordering, we don’t
need to know the counts precisely. All we want is that
the approximated solution counts be accurate enough
to yield a value ordering as close as possible to that
induced by the exact solution counts.

As we commented earlier, it is easy to see that IJGP-
SC zero values are sound.

THEOREM 0.1 (Correctness of IJGP-SC for 0’s)
(Dechter & Mateescu 2003) Whenever IJGP(i)-
SC(Xi = a)=0, the exact solution count SC(Xi = a)=0
as well.

Approximating Min-Cost by IJGP

We do not use IJGP for approximating the Min-Conflict
heuristic for the following reason. IJGP is an iter-
ative algorithm that runs on a join-graph, not join-
tree. Therefore, as with IJGP-SC, IJGP-MC diverges
(messages computed by IJGP-MC would get arbitrar-
ily large). However, unlike the case with IJGP-SC, this
means that the values computed by IJGP(i)-MC are not
bounds (in case of the MC task we need lower bounds),
and therefore their usefulness as a heuristic is ques-
tionable. We could normalize the messages, like we
did with IJGP(i)-SC, but unlike in case of IJGP(i)-SC,

heuristic value 0 cannot be used for pruning, and heuris-
tic values greater than 0 are not guaranteed to be lower
bounds, so they also cannot be used for pruning as well.

Backtracking algorithm with guiding
heuristics

Backtracking with MBTE-MC
BB-MBTE(i)-MC is a simple Branch-and-Bound algo-
rithm for constraint satisfaction that uses approximated
min-conflict computed by MBTE(i)-MC as a heuris-
tic function. At each point in the search space it ap-
plies MBTE(i)-MC and prunes domains of variables
that have a min-cost greater than 0. When choosing the
next variable to instantiate, it chooses a variable with
the smallest domain. Unfortunately, MBTE(i)-MC does
not allow dynamic value ordering because all values are
either pruned or have a heuristic value 0.

Backtracking with IJGP-SC/MBTE-SC
BB-IJGP(i)-SC uses approximated solution counting
computed by IJGP(i)-SC as a heuristic function for
guiding backtracking search. At each node in the
search space it computes IJGP(i)-SC and prunes do-
mains of variables that have a solution count 0 (theo-
rem 0.1). When choosing the next variable to instanti-
ate, it chooses a variable with the smallest domain com-
puted at this point using by IJGP(i)-SC, breaking ties
by choosing a variable with the largest single solution
count. The strength of IJGP(i)-SC is in value ordering.
It chooses a value with the largest approximated solu-
tion count (fraction). BB-MBTE(i)-SC works like BB-
IJGP(i)-SC except that the heuristic function is com-
puted by MBTE(i)-SC.

Competing algorithms
Stochastic Local Search
For comparison, we also compare against one of the
most successful greedy local search schemes for CSP.
The stochastic local search algorithm we use is a ba-
sic greedy search algorithm that uses three heuristics to
improve its performance:

1. Constraint weighting ((Morris 1993)). When the al-
gorithm gets stuck is a local minima, it re-weights
constraints, which has the effect of changing the
search space, eliminating the local minima.

2. Dynamic restarts ((Kask & Dechter August 1995).
When one try is executed, the program automatically
determines when to quit the try and restart.

3. Tie-braking according to historic information ((Gent
& Walsh 1993). When more than one flip yield the
same change in the objective function, choose the one
that was used the longest ago.

SLS algorithms, while incomplete, have been suc-
cessfully applied to wide range of automated reasoning



Algorithm IJGP( i)-SC
Input: A graph decomposition< JG, χ, ψ >, JG = (V, E) for CSP =< X, D, C >. Each constraintC(Sk) is
represented by a cost functionf(Sk) = 1 iff Sk ∈ Rk and 0 otherwise. Evidence variablesI. Activation schedule
d = (u1, v1), . . . , (u2∗|E|, v2∗|E|).
Output: A solution count approximation for each singleton assignmentX = a.

Denote by h(u,v) the message from vertexu to v in JG. cluster(u) = ψ(u) ∪ {h(v,u)|(v, u) ∈ E},
clusterv(u) = cluster(u) excluding message fromv to u.
Let h(u,v)(j) be h(u,v) computed during the j-th iteration of IJGP.δh(u,v)(j) =

∑
sep(u,v)

(h(u,v)(j) − h(u,v)(j −
1))/|h(u,v)(j)|, ∆(j) =

∑
dl∈d

(δhdl
(j))/2 ∗ |E|.

1. Process observed variables:
Assign relevant evidence to allRk ∈ ψ(u), χ(u) := χ(u)− I, ∀u ∈ V .

2. Repeat iterations of IJGP:

• Along d, for each edge(ui, vi) in the ordering,
• computeh(ui,vi) = α

∑
elim(ui,vi)

∏
f∈clustervi

(ui)
f

3. until :

• Max number of iterations is exceeded, or
• Distance∆(j) is less than 0.1,
• ∆(j) > ∆(j − 1).

4. Compute solution counts:

For every Xi ∈ X let u be a vertex in JG such that Xi ∈ χ(u). Compute SC(Xi) =
α

∑
χ(u)−{Xi}(

∏
f∈cluster(u)

f).

Figure 1: Algorithm IJGP(i)-SC

problems. They have been more scalable than system-
atic complete methods, especially on random problems,
and thus are the main competing algorithm.

The MAC algorithm
Maintaining arc consistency or the MAC algo-
rithm (Sabin & Freuder 1997) is one of the best per-
forming algorithm for random binary CSPs that uses
arc-consistency look-ahead. It differs from chronologi-
cal backtracking in the following three aspects:

1. The constraint network is initially made arc-
consistent.

2. Every time a variableX is instantiated to a valuev,
the effects are propagated in the constraint network
by treating the domain ofX as{v}.

3. Every time an instantiation of a variableX to a value
v is refuted, the network is made arc-consistent by
removingv from the domain ofX.

The performance of the basic MAC algorithm can be
improved by using variable and value ordering heuris-
tics during search. In our implementation2, we have
used thedom/deg heuristic for variable ordering while

2The implementation is based on Tudor’s Hulubei’s imple-
mentation available athttp://www.hulubei.net/tudor/csp. We
have augmented this implementation to includedom/deg and
MC heuristics

the min-conflicts or theMC heuristic for value order-
ing. This combination was shown to perform the best
on random binary CSPs (Bessiere & Regin 1996). The
dom/deg heuristic selects the next variable to be instan-
tiated as the variable that has the smallest ratio between
the size of the remaining domain and the degree of the
variable. The MC heuristic chooses the value that re-
moves the smallest number of values from the domains
of the future variables. Our implementation uses the
AC-7 algorithm (Christian Bessière 1999) for maintain-
ing arc-consistency.

Experimental Results
In this section, we report on experiments that exam-
ined the effect of adding our new lookahead schemes
on the performance of the chronological backtracking
algorithm. Because all the schemes are solution driven,
we focused more on the soluble CSPs while our results
on the insoluble instances are incomplete. We compare
the performance of our algorithms by using parameters
like the the cpu time and the number of backtracks. We
also compare our algorithms with our implementations
of the MAC algorithm and the stochastic local search
algorithm described in previous sections.

Problem Sets
So far we have experimented with randomly gener-
ated binary CSPs using ModelB (MacIntyreet al.



1998). ModelB can be defined by a standard 4-tuple
< N, K, C, T > whereN is the number of variables,
K is the domain size of each variable,C is the num-
ber of pairs of variables that are involved in a constraint
andT is the number of pairs of values that are incon-
sistent for each constraint. When constructing a con-
straint graph using this model, we selectC constraints
uniformly at random from the possibleN(N − 1)/2
constraints. Then, for each constraint, we select uni-
formly at randomT pairs of values as nogoods from the
possibleK2 pairs.
We generated four sets of random problem instances
in the phase transition region having100, 200, 500
and 1000 variables respectively using ModelB. Note
that researchers have indicated (Cheeseman, Kanef-
sky, & Taylor 1991; Smith 1994) that the hardest CSP
instances appear in the phase transition region and
also that ModelB generates harder problem instances
than other models at the phase transition for binary
CSPs (Smith 1994). The domain size for all instances
was 4 and the constraint tightness was4. These in-
stances are typical of graph coloring problems although
they are not as random. For each set, we systematically
located the phase transition region by varying the num-
ber of constraints in increments of5. We then selected
four points in this range that correspond to a particu-
lar constraint density value and generated a number of
random problem instances for each selected point.

Results and Discussion

We will refer to the chronological backtracking algo-
rithm that uses the look-ahead schemes IJGP(i)-SC,
MBTE(i)-SC and MBTE(i)-MC as IJGP(i)-SC,
MBTE(i)-SC and MBTE(i)-MC respectively wherei
is the i-bound used. Note that processing each search
node is typically exponential in thei-bound used and
so we experimented only withi-bounds of2, 3 and4.
Also, note that we have fixed the maximum number of
iterations to10 (see step3 Figure 1). This choice was
rather arbitrary. All the experiments reported in this
paper use a cpu time bound i.e. if a solution is not found
within this time bound, we record a time-out. Note
that only those instances that were solved by at least
one algorithm within the time bound are considered
as soluble instances while those instances that were
proved to be insoluble by at least one algorithm within
the time bound are considered as insoluble instances.

Experiments on the 100-variable-set All experi-
ments on the 100-variable-set were run on a Pentium-
2400 MHz machine with a1000 MB RAM running ver-
sion 9.0 of the red-hat Linux operating system. The
time bound was500 seconds. We generated200 in-
stances each with420, 430, 440 and 450 constraints
and ran all the algorithms on these instances. We ob-
served that the instances with420 and430 constraints
lie in the under-constrained region of the phase transi-

tion while the instances with440 and450 constraints lie
in the over-constrained region of the phase transition.
We observed that the large variation in cpu time and the
number of backtracks was very dependent on whether
the instance was soluble or not. So we have decom-
posed our results into two subsets, the first consisting
of only the soluble instances while the other consist-
ing of only insoluble instances. Tables 1 shows the re-
sults for the soluble100 variable instances. It is evident
that algorithms withi-bound2 dominate their counter-
parts with higheri-bounds in terms of cpu time. In gen-
eral, for a giveni-bound, IJGP(i)-SC was better than
MBTE(i)-SC which was in turn better than MBTE(i)-
MC in terms of cpu time and the number of backtracks.
As expected the number of backtracks decreases asi-
bound increases. While it is not reflected in the time
measure, the number of backtracks required by our al-
gorithms is significantly lower than MAC(table 1).
Table 1 shows the results for insoluble instances. From
this table, we can see that for insoluble instances in
the 100-variable-set, IJGP(2)-SC performs better than
MBTE(2)-SC which in turn is better than MBTE(2)-
MC both in terms of cpu time and the number of back-
tracks. MAC is the best performing algorithm on in-
soluble CSPs both in terms of cpu time and the num-
ber of backtracks. Dechter and Mateescu (Dechter &
Mateescu 2003) proved that IJGP(2) is identical to arc-
consistency when run until convergence. However, we
run IJGP(2)-SC for only10 iterations and thus IJGP(2)-
SC prunes less values as compared to the MAC algo-
rithm. Moreover, MAC maintains arc-consistency when
a variable is instantiated and also when a value is re-
futed while we run IJGP(2) only when a variable is in-
stantiated. Less pruning means more nodes explored
and more backtracks which is why the number of back-
tracks by IJGP(2)-SC is more than MAC on insoluble
CSPs. We believe that the poor performance of algo-
rithms with higheri-bounds is also due to the fact that
we do not run them until convergence at each iteration.

Experiments on the 200-variable-set All ex-
periments on the 200-variable-set were run on a
Pentium-1700 MHz machine with a256 MB RAM
running the version9.0 of the red-hat Linux operating
system. The time-out used was1800 seconds. We ran
all the algorithms withi-bound2 on100 instances each
when the number of constraints was840, 850, 860 and
870 respectively. Algorithms with higheri-bound were
found to be infeasible because of the higher cost both
in terms of time and space that is required to process
each node. We observed that instances with840 and
850 constraints lie in the under-constrained region of
the phase transition while the instances with860 and
870 constraints lie in the over-constrained region of the
phase transition. We analyze the results on only soluble
CSPs for the 200-variable-set because as mentioned
earlier, our look-ahead schemes are inherently designed
for soluble CSPs. The results obtained here are similar
to the 100-variable-set and are summarized in Table 2.



IJGP(i)-SC MBTE(i)-SC MBTE(i)-MC
C Quartiles i=2 i=3 i=4 i=2 i=3 i=4 i=2 i=3 i=4 SLS MAC

Time for soluble instances
1st quartile 1.2 1.8 3.5 3.7 4.6 8.7 2.3 3.0 5.2 0.1 0.1

420.0(163) median 1.2 1.9 3.9 4.1 5.6 9.9 4.7 4.5 5.9 0.2 0.2
3rd quartile 1.7 3.2 6.0 53.4 45.8 65.1 14.9 20.3 22.8 0.3 0.3
1st quartile 1.2 1.9 3.6 3.9 5.0 9.0 5.3 3.2 5.0 0.1 0.1

430.0(109) median 1.3 2.1 4.2 14.4 15.8 16.1 13.0 7.1 15.8 0.2 0.2
3rd quartile 5.1 4.8 7.0 87.7 113.7 80.2 41.4 29.6 48.7 0.5 0.4
1st quartile 1.3 2.0 3.6 4.5 10.4 8.7 4.7 4.1 6.9 0.1 0.2

440.0(85) median 1.4 2.1 7.0 29.0 30.2 20.9 9.9 20.4 20.7 0.3 0.4
3rd quartile 2.4 20.9 23.1 88.7 68.9 144.6 150.2 69.0 57.1 1.1 0.6
1st quartile 1.3 2.0 4.6 4.2 6.5 10.0 53.4 53.4 84.1 0.0 0.3

450.0(43) median 1.4 2.2 11.2 9.3 38.9 287.2 134.9 57.8 89.5 0.7 0.6
3rd quartile 9.5 8.8 32.7 356.4 209.7 436.3 290.7 217.3 218.1 1.8 0.7

Backtracks for soluble instances
1st quartile 0.0 0.0 0.0 100.0 100.0 100.8 1.8 0.0 0.0 38.8

420.0(163) median 0.0 0.0 0.0 111.0 103.0 115.0 83.0 29.0 10.0 44.0
3rd quartile 21.0 51.0 42.0 871.0 481.0 455.0 338.0 287.0 126.0 54.0
1st quartile 0.0 0.0 0.0 100.8 100.0 100.0 55.3 3.3 2.3 32.3

430.0(109) median 2.0 3.0 2.0 261.0 267.0 155.0 243.0 62.0 92.0 40.0
3rd quartile 82.0 68.5 60.0 1200.5 1258.0 485.5 838.5 334.5 415.0 58.5
1st quartile 0.0 0.0 0.8 117.5 171.0 102.3 58.8 15.3 31.5 42.0

440.0(85) median 2.0 39.0 132.0 485.5 331.0 334.5 415.0 48.5 140.0 73.0
3rd quartile 69.0 75.8 228.0 1334.0 849.0 565.0 1085.0 386.0 362.3 109.0
1st quartile 0.0 0.0 17.0 102.0 109.0 116.0 687.0 484.0 503.0 39.0

450.0(43) median 0.0 0.0 69.0 178.0 400.0 1550.0 1673.0 565.0 531.0 58.0
3rd quartile 162.8 89.0 291.5 4213.8 2033.8 2278.5 5337.8 1823.3 1379.5 75.8

Time for insoluble instances
1st quartile 46.0 70.6 107.7 237.5 183.3 290.3 274.1 192.9 202.1 0.3

420.0(37) median 76.6 139.9 168.7 392.6 327.9 398.2 398.4 223.2 276.4 0.4
3rd quartile 99.1 143.5 261.2 475.2 486.2 500.0 500.0 331.0 363.2 0.5
1st quartile 24.0 32.8 86.9 158.3 167.1 242.5 104.9 88.7 116.3 0.6

430.0(91) median 44.0 62.7 107.9 276.6 231.7 306.7 148.0 134.1 171.1 0.7
3rd quartile 59.6 71.5 154.2 415.5 430.2 500.0 246.8 187.6 298.6 0.8
1st quartile 19.4 30.2 56.2 106.4 108.1 154.0 97.8 92.7 105.9 0.1

440.0(115) median 26.2 43.4 80.1 211.5 232.6 311.8 164.1 141.4 161.3 0.4
3rd quartile 42.0 62.0 143.6 371.8 382.0 500.0 223.5 174.7 263.0 0.7
1st quartile 15.9 23.2 46.9 144.4 155.4 216.2 80.5 79.4 102.3 0.2

450.0(157) median 30.2 38.2 90.4 230.6 231.6 327.3 132.0 124.4 156.5 0.4
3rd quartile 43.5 68.2 113.0 438.0 428.4 495.5 299.5 256.6 292.4 0.6

Backtracks for insoluble instances
1st quartile 886.0 1000.5 895.0 1814.0 1402.5 1194.3 3647.3 2266.0 1418.3 57.8

420.0(37) median 1501.0 1718.5 1415.0 4870.0 2870.0 2211.0 4463.5 2577.0 1764.0 92.5
3rd quartile 2152.0 2067.0 2064.0 7253.0 5312.0 3054.0 34533.0 3044.0 2598.0 106.0
1st quartile 606.5 422.0 630.8 1565.8 1358.5 1242.5 1537.8 1001.8 856.8 53.3

430.0(91) median 944.0 762.5 792.5 2818.5 1829.5 1415.0 2038.0 1599.0 1350.0 61.0
3rd quartile 1394.0 1083.0 1398.5 4664.5 3434.5 2512.5 3782.0 2116.5 2215.5 68.5
1st quartile 395.0 354.0 358.0 991.0 732.0 652.0 1149.0 920.0 704.0 34.0

440.0(115) median 565.0 549.0 617.0 2332.0 1861.0 1549.0 2068.0 1460.0 1048.0 67.0
3rd quartile 910.8 793.3 881.0 3795.8 2894.5 2181.3 2790.3 1828.3 1695.5 89.5
1st quartile 293.0 245.5 257.0 1210.5 953.5 760.5 920.0 711.0 550.0 27.5

450.0(157) median 573.0 420.0 481.0 2090.0 1622.0 1429.0 1756.0 1131.0 918.0 52.0
3rd quartile 1003.3 845.5 706.8 3698.5 2863.8 1868.5 3483.8 2578.3 1791.5 79.5

Table 1: Table showing time in seconds and number of backtracks taken by various algorithms for100 variable problems with
K=4, T=4. C:number of constraints andi is thei-bound used. The quantity in the bracket alongside each constraint indicates the
number of instances on which the results are based on.

IJGP(2)-SC MBTE(2)-SC MBTE(2)-MC MAC SLS
C Quartiles T B T B T B T B T

1st quartile 17.0 0.0 58.6 6.5 73.7 201.5 0.5 102.5 2.7
840.0(72) median 18.2 3.0 214.6 643.0 272.6 489.0 1.3 303.0 6.9

3rd quartile 159.0 898.0 1800.0 3334.0 1800.0 2811.0 2.9 729.0 13.3
1st quartile 18.1 1.5 356.9 266.5 531.9 1473.0 0.3 135.0 2.1

850.0(59) median 24.9 48.0 1800.0 3097.0 1800.0 2301.0 0.8 265.0 12.5
3rd quartile 182.2 1589.0 1800.0 4542.0 1800.0 2814.0 3.3 1044.8 53.5
1st quartile 27.6 32.5 1024.9 1416.8 689.4 1495.5 0.6 226.5 0.7

860.0(37) median 135.7 656.5 1800.0 2844.5 1800.0 2068.5 0.9 312.0 7.3
3rd quartile 973.4 4373.0 1800.0 3604.0 1800.0 2543.0 1.9 508.8 22.1
1st quartile 35.7 3.75 1800.0 2466 643.6 1249.25 1.2 443 34.8

870.0(22) median 83.8 358 1800.0 3451 1800.0 1657.5 2.7 887.5 50.0
3rd quartile 549.2 2341 1800.0 3730 1800.0 2077 3.7 1924 114.9

Table 2: Table showing the time in seconds and the number of backtracks made by various algorithms for200 variable soluble
problems with K=4, T=4. C:number of constraints, B: the number of backtracks, T: time in seconds andi is thei-bound used. The
quantity in the bracket alongside each constraint indicates the number of instances on which the results are based on.



IJGP(2)-SC MAC SLS
C Quartiles T B T B T

1st quartile 126.2 0.0 23.1 7844.0 31.7
2040.0(41) median 276.7 404.0 45.1 14987.0 48.4

3rd quartile 638.3 1280.5 187.4 65446.5 94.2
1st quartile 128.8 2.0 72.9 22708.3 44.8

2060.0(30) median 180.9 109.0 124.9 38507.5 184.5
3rd quartile 1800.0 11870.0 480.5 129258.0 1195.9
1st quartile 128.3 2.8 171.2 56792.3 82.7

2080.0(24) median 326.5 479.0 497.9 131492.0 261.5
3rd quartile 1800.0 5570.5 498.2 135240.3 376.9
1st quartile 1665.4 3735.0 13.3 3939.0 558.6

2100.0(18) median 1800.0 12791.0 113.2 31759.0 988.5
3rd quartile 1800.0 17237.0 270.7 74156.3 1503.8

Table 3:Table showing the time in seconds and the number
of backtracks made by various algorithms for500 variable
soluble problems with K=4, T=4. C:number of constraints,
B: the number of backtracks, T: time in seconds andi is the
i-bound used. The quantity in the bracket alongside each con-
straint indicates the number of instances on which the results
are based on.

Experiments on the 500-variable-set All experi-
ments on the500 variable problems were run on a
Pentium-2400 MHz machine with a1000 MB RAM
running the red-hat Linux operating system. The time-
out used was 7200s. On the 500-variable-set, we re-
port results on IJGP(2)-SC, SLS and MAC. MBTE(2)-
SC and MBTE(2)-MC were able to solve only3 and6
problems respectively out of the400 problems consid-
ered in the stipulated time-bound. So we do not report
results on these algorithms. We observed that the phase
transition for the 500-variable-set occurs around when
the number of constraints is in the range2040-2100.
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Figure 2:Results comparing IJGP(2)-SC and SLS for solu-
ble 500 variable problems with K=4, T=4.

Figures 2 and 3 show a scatter plot of the time taken
by IJGP(2)-SC vs SLS and IJGP(2)-SC vs MAC re-
spectively while Table 3 gives a summary of results for
SLS, MAC and IJGP(2)-SC. From Table 3 and Fig-
ures 3 and 2, we observe that SLS and MAC are only
slightly better in terms of time as compared to IJGP(2)-
SC. Once again note that the number of backtracks per-
formed by IJGP(2)-SC is significantly less than MAC.
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Figure 3:Results comparing IJGP(2)-SC and MAC forsolu-
ble 500 variable problems with K=4, T=4.

Experiments on the 1000-variable-set On the 1000-
variable-set, we report results on IJGP(2)-SC and
MAC. Our SLS implementation timed-out on all the
problems in the 1000-variable-set. We must acknowl-
edge that we are using a sub-optimal implementation
of SLS and better results could be obtained by a better
implementation of SLS. All experiments on the 1000-
variable set were run on a Pentium-2400 MHz machine
with a 1000 MB RAM running the red-hat Linux oper-
ating system. The time-out used was 7200s. The num-
ber of constraints was varied between 4000 and 4100
which corresponds to the phase-transition region.
Figure 4 shows a scatter plot of the time and the number
of backtracks taken by IJGP(2)-SC and MAC. We can
see that IJGP(2)-SC is better than MAC both in terms
of cpu time and the number of backtracks. This re-
sult clearly indicates that IJGP(2)-SC scales better than
MAC.
To summarize, we found that in general IJGP(i)-SC
shows a consistently better performance than MBTE(i)-
SC while MBTE(i)-SC shows a consistently better per-
formance than MBTE(i)-MC both in terms of the cpu
time and the number of backtracks. On the other hand,
we found that algorithms that use a loweri-bound out-
perform those that use a higheri-bound in terms of
cpu time but not in terms of the number of backtracks.
IJGP(2)-SC was the best performing algorithm among
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Figure 4:Results comparing IJGP(2)-SC and MAC forsolu-
ble 1000 variable problems with K=4, T=4.

our look-ahead schemes in terms of cpu time. More
importantly, we found that IJGP(2)-SC was better than
MAC in terms of the cpu time on larger problems (1000
variables) while it was inferior to SLS and MAC on
smaller problems (100, 200 and 500 variables). In other
words, our results show that IJGP(2)-SC is more scal-
able than MAC. Also since the MAC implementation is
highly optimized and the implementations of our look-
ahead schemes are sub-optimal, we find our results very
encouraging.

Summary and Conclusions
As we claim, the solution count measure is stronger
than the min-conflicts heuristic when everything else re-
mains fixed since, using the same boundi, they have
identical pruning power but SC also provides value or-
dering. This heuristic is designed to be effective when
the problem has a solution. We demonstrated empiri-
cally that indeed for MBTE, MBTE-SC is stronger than
MBTE-MC. Still, it is possible to implement MBTE-
MC as a strictly propagation algorithm with relation de-
scription. This is likely to be much more efficient and
therefore may present a worthwhile approach and time-
accuracy trade-off that is not dominated by MBTE-SC.
We plan to investigate this in the future.

The next question is whether IJGP is more cost-
effective than MBTE for SC approximation. Our em-

pirical evaluation strongly suggests that IJGP-SC is
much stronger and dominates MBTE-SC, both in prun-
ing power, as shown over inconsistent instances (see Ta-
ble 1, as well as in its informativeness and guidance to
the solution, as shown over consistent instances (see Ta-
ble 1). However, there is no complete dominance.

We see that the ”focus” power of IJGP-SC for value
ordering is very strong even for i=2 (the median is low
even in the phase transition). It is much stronger than
MBTE-SC. See in particular the results for 500 and
1000 variables.

Finally, our experiments show that IJGP-SC has bet-
ter scalability than MAC and SLS (at least relative
to our implementation). Comparing IJGP-SC with
MAC/SLS, we observed that MAC/SLS are superior on
small problems, but as the problem size grows the rel-
ative performance of IJGP-SC improves and on 1000
variable problems, IJGP-SC outperforms MAC. This is
even more significant since our implementation is far
from optimal and we are using the heuristic on top of
chronological backtracking without any backjumping
or constraint recording.
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Christian Bessìere, Eugene C. Freuder, J.-C. R. 1999.
Using constraint metaknowledge to reduce arc consis-
tency computation.Artificial Intelligence125–148.

Dechter, R., and Mateescu, R. 2003. A simple insight
into iterative belief propagation’s success.UAI-2003.

Dechter, R., and Pearl, J. 1989. Tree clustering for
constraint networks.Artificial Intelligence353–366.

Dechter, R.; Kask, K.; and Larrosa, J. 2001. A general
scheme for multiple lower-bound computation in con-
straint optimization.Principles and Practice of Con-
straint Programming (CP-2001).

Dechter, R.; Kask, K.; and Mateescu, R. 2002. It-
erative join graph propagation. InUAI ’02, 128–136.
Morgan Kaufmann.

Gent, I. P., and Walsh, T. 1993. Towards an under-
standing of hill-climbing procedures for sat. InPro-
ceedings of the Eleventh National Conference on Arti-
ficial Intelligence (AAAI-93), 28–33.

Gottlob, G.; Leone, N.; and Scarello, F. 1999. A
comparison of structural csp decomposition methods.
Ijcai-99.

Kask, K., and Dechter, R. August 1995. Gsat and



local consistency. InInternational Joint Conference
on Artificial Intelligence (IJCAI-95), 616–622.
Lauritzen, S., and Spiegelhalter, D. 1988. Local com-
putation with probabilities on graphical structures and
their application to expert systems.Journal of the
Royal Statistical Society, Series B50(2):157–224.
MacIntyre, E.; Prosser, P.; Smith, B.; and Walsh,
T. 1998. Random constraint satisfaction: Theory
meets practice.Lecture Notes in Computer Science
1520:325+.
Morris, P. 1993. The breakout method for escaping
from local minima. InProceedings of the Eleventh
National Conference on Artificial Intelligence (AAAI-
93), 40–45.
Sabin, D., and Freuder, E. C. 1997. Understanding
and improving the MAC algorithm. InPrinciples and
Practice of Constraint Programming, 167–181.
Shafer, G., and Shenoy, P. 1990. Probability propaga-
tion. Annals of Math and Artificial Intelligence2:327–
352.
Smith, B. 1994. The phase transition in constraint
satisfaction problems: A CLoser look at the mushy re-
gion. InProceedings ECAI’94.


