Publications & Technical Reports | |
R123 | ||
Approximate Inference Algorithms for Hybrid Bayesian Networks with
Discrete Constraints
Vibhav Gogate and Rina Dechter
Abstract
In this paper, we consider Hybrid Mixed Networks (HMN) which are Hybrid Bayesian Networks that allow discrete deterministic information to be modeled explicitly in the form of constraints. We present two approximate inference algorithms for HMNs that integrate and adjust well known algorithmic principles such as Generalized Belief Propagation, Rao-Blackwellised Importance Sampling and Constraint Propagation to address the complexity of modeling and reasoning in HMNs. We demonstrate the performance of our approximate inference algorithms on randomly generated HMNs. |