AND/OR Branch-and-Bound Search for Pure 0/1
Integer Linear Programming Problems

Radu Marinescu and Rina Dechter

School of Information and Computer Science
University of California, Irvine, CA 92697-3425
{radum decht er }@cs. uci . edu

Abstract. AND/OR search spacdsave recently been introduced as a unify-
ing paradigm for advanced algorithmic schemes for graphical motleésmain
virtue of this representation is its sensitivity to the structure of the model, which
can translate into exponential time savings for search algorithms. In {hés pee
extend the recently introduced AND/OR Branch-and-Bound algorithGBB)

[1] for solving pure 0/1 Integer Linear Programs [2]. Since the védgiablection
can have a dramatic impact on search performance, we introduee @ynamic
AND/OR Branch-and-Bound algorithm able to accommodate variableriogile
heuristics. The effectiveness of the dynamic AND/OR approach is dsirated
on a variety of benchmarks for pure 0/1 integer programming, includstgnces
from the MIPLIB library, real-world combinatorial auctions and randonta-
pacitated warehouse location problems.

1 Introduction

A constraint optimization probleris the minimization/maximization of an objective
function subject to a set of constraints on the possibleegbf a set of independent
decision variables. An important class of constraint otation problems are the Inte-
ger Linear Programming problems (ILP) [2] where the objexis to optimize a linear

function of integer-valued variables, subject to a setr@dir equality or inequality con-
straints defined on subsets of variables. The classicabapbrto solving ILPs is the

branch-and-boundnethod [3] which maintains the best solution found so farilevh

discarding partial solutions which cannot improve on thetbe

The AND/OR search space for graphical models [4] is a newtypduced frame-
work for search that is sensitive to the independenciesdmtbdel, often resulting in
exponentially reduced complexities. It is based on a pséxgdothat captures indepen-
dencies in the graphical model, resulting in a search trpereantial in the depth of the
pseudo-tree, rather than in the number of variables.

The AND/OR Branch-and-Bound algorithrA@BB) is a new search method that
explores the AND/OR search tree for solving optimizatiosk&in graphical models
[1]. In this paper we present an extension of the algorithmsfaving optimization
problems from the class of pure 0/1 Integer Linear Progra@hsA pure 0/1 integer
linear program is a linear program where all the decisiombes are restricted to be
either O or 1 at the optimal solution.

Since variable selection can have a dramatic impact on lsgadormance [2],
we introduce alynamicAND/OR Branch-and-Bound search algorithm that combines
the AND/OR decompoaosition principle with variable orderimguristics. There are two
orthogonal approaches to incorporating dynamic ordeiimg@sAOBB. The first one im-
provesAOBB by applying an independent semantic variable orderingisiuwhenever
the partial order dictated by the decomposition princifitargs. The second, orthogonal
approach gives priority to the semantic variable orderiegristic and applies problem
decomposition as a secondary principle. We demonstratérieaily the efficiency of
the dynamic AND/OR Branch-and-Bound approach on severatiearks for pure 0/1
integer linear programming problems, including test insts from the MIPLIB library,
combinatorial auctions simulating radio spectrum allmratind random uncapacitated
warehouse location problems.

The paper is organized as follows. In Section 2 we preserikgoaand on con-
straint optimization problems and integer linear prograngnSection 3 presents the
AND/OR search space as well as an efficient heuristic fortcoctng low depth bal-
anced pseudo-trees. In Section 4 we introduce the AND/ORdBrand-Bound algo-
rithm, specialized for solving pure 0/1 integer linear progs. In Section 5 we intro-
duce the dynamic AND/OR Branch-and-Bound algorithm. ®®&cé shows our empir-
ical evaluation and Section 7 concludes.

2 Background

2.1 Constraint Optimization Problems

A finite Constraint Optimization ProbleriCOP) is a four-tupleg/X, D, C, z), where
X = {X1,..,X,} is a set of variablesD = {D,, ..., D,,} is a set of finite domains,
C = {C1,...,Cy} is a set of constraints on the variables anid a global cost func-
tion (i.e. objective function) to be optimized. The scopeaofonstraintC;, denoted
scope(C;) C X, is the set of arguments @f;. Constraints can be expresseden-
sionally, through relations, omtentionally, by a mathematical formula (equality or
inequality). An optimal solution to a COP is a complete vaassignment to all the
variables such that every constraint is satisfied and thectg function is minimized
or maximized.

With every COP instance we can associat®astraint graphG which has a node
for each variable and connects any two nodes whose variapfesar in the scope of
the same constraint. Theduced graptof G relative to an ordering of its variables,
denoted>*(d), is obtained by processing the nodes in reverse ordérfedr each node
all its earlier neighbors are connected, including neighlimnnected by previously
added edges. Given a graph and an ordering of its nodesyittike of a node is the
number of edges connecting it to nodes lower in the ordefihg.induced widthof a
graph, denoted*(d), is the maximum width of nodes in the induced graph.

2.2 Integer Linear Programming

A Linear Program(LP) consists of a set of continuous variables and a set@#finon-
straints (equalities or inequalities). The goal is to ojtera global linear cost function
subject to the constraints. One of the standard forms ofatiprogram is:

min{c' x| Az < b,z > 0} (1)

wherec € R", b € R™, A € R™*™ andz € R". Herec represents the cost vector and
x is the vector of decision variables. The vedi@nd the matrix4 define them linear
constraints. Linear programs are usually solved by DalstzigupLEX method [5].

A Mixed Integer Linear Programmin¢MILP) problem is a linear program where
some of the decision variables are constrained to have otdgér values at the optimal
solution. An important special case is a decision variahléhat is integer with) <
z; < 1. This forcesz; to be either 0 or 1 at the solution. Variables likeare called
0/1 or binary integer variablesSubsequently, a MILP problem with binary integer
variables is also called @1 Mixed Integer Linear Programmingroblem. Apure 0/1
Integer Linear Programmingroblem is a MILP where all the decision variables are
binary. Pure 0/1 ILPs can formulate many practical probleath as capital budgeting
[6], cargo loading [7], processor allocation in distribditgystems [8] or combinatorial
auctions [9, 10].

Clearly, any pure 0/1 integer linear program can be viewealfagte COP instance
(X,D,C,z) with linear constraints and a linear objective function.thie remaining
of the paper we will consider einimizationproblem defined by: = > | ¢;X;
subject tom linear constraint€ = {C4,...,C,,}, overn binary decision variables
X ={X1,..., X}

2.3 Branch-and-Bound Search for Constraint Optimization

Branch-and-BoundBB) is a generasearchmethod for solving constraint optimization
problems [3]. It traverses the search tree defined by thelgmglwhere internal nodes
represent partial assignments and leaf nodes denote dengples, which may or may
not be optimal. During the traversal, which is usuadpth first BB maintains urupper
boundub, the cost of the best solution found so far. At each internderthe algorithm
computes dower boundib on the optimal extension of the current partial assignment.
Whenib > ub, the current best cost cannot be improved and the algofichtracks
pruning the subtree below the current node. Otherwise, If@rithm moves forward
and tries to instantiate the next variable in the ordering.

In the context of pure 0/1 integer linear programs, the Idvaemd of a subproblem
is obtained by solving its linear relaxation (i.e. relaxihg integrality restrictions). In
this case the branching process can fail at a particular fardene of the following
reasons: (i) the LP solution can be integer; or (ii) the LPbpgm can be infeasible; or
(iii) the lower bound exceeds the upper bound (for more tesaie [2, 3]).

3 AND/OR Search Spaces

The classical way to do search is to instantiate variablesaira time, following a
static/dynamic variable ordering. In the simplest case,flocess defines a search tree
(called here OR search tree), whose nodes represent states $pace of partial as-
signments. The traditional search space does not captlepémdencies that appear in

minimize:z=7A+3B-2C +5D —-6E +8F
subject ta
3A-12B+C<3
-2B+5C-3D<-2
2A+B-4E<2
A-3E+F <1
AB,C,D,E,F {01}
@)

on ®

o]

or ® (&)

B g

x © ® © ©® O ©® O ©

o B DODBEDEDOEE DO E @ @
= ®© O O OO ®
mo I OEUERE OEEE @ 0 EEHEE Gla

(©

Fig. 1. The AND/OR search space.

the structure of the underlying graphical model. IntrodgoAND states into the search
space can capture the structure, decomposing the probtenmafependent subprob-
lems by conditioning on values [11, 4]. The AND/OR searchcepa defined using a
backbongyseudo-tree

Definition 1 (pseudo-tree).Given an undirected grap&y’ = (V, E), a directed rooted
treeT = (V, E’) defined on all its nodes is callgtbeudo-tredf any arc of G which is
not included inE’ is a back-arc, namely it connects a node to an ancestdr.in

3.1 AND/OR Search Trees

Given a COP instancéY, D, C, z), its constraint grapli: and a pseudo-tre€ of G,
the associated AND/OR search tr8g has alternating levels of OR nodes and AND
nodes. The OR nodes are labeled Xy and correspond to the variables. The AND
nodes are labeled byX;, z;) and correspond to value assignments in the domains of
the variables. The structure of the AND/OR tree is based enittierlying pseudo-tree
T of G. The root of the AND/OR search tree is an OR node, labeledtwéhoot ofT".

The children of an OR nod&; are AND nodes labeled with assignme(s;, ;),
consistent along the path from the roptth(z;) = ((X1,21), ..., (X;-1,2:-1)). The
children of an AND nod€ X, z;) are OR nodes labeled with the children of variable

X, inT. In other words, the OR states represent alternative wagslaing the prob-
lem, whereas the AND states represent problem decompo#itio independent sub-
problems, all of which need be solved. When the pseudo-traeisin, the AND/OR
search tree coincides with the regular OR search tree.

A solution subtreeols,. of Sy is an AND/OR subtree such that: (i) it contains the
root of St; (ii) if a nonterminal AND node: € Sr is in Sols,. then all of its children
are inSolg,.; (iii) if a nonterminal OR node: € St is in Solr then exactly one of its
children is inSols,..

Example 1.For illustration consider the pure 0/1 integer program \gittecision vari-
ables A, B, C, D, E, Fand 4 linear constraitis(A, B, C), C3(B, C, D), C3(A, B, E),
C4(A, E, F) from Figure 1(a). The objective function to be minimizec:is 7A+B-
2C+5D-6E+8F. The pseudo-tree arrangement of the constyi@ph, together with the
back-arcs (dotted lines) are given in Figure 1(b). Figu® &bows the corresponding
AND/OR search tree (for AND nodes we only denote the valumeta (A, 0) is writ-
ten ad0| child of A). The shaded nodes represent dead-ends (i.e. inconsiateas).

The AND/OR search tree can be traversed by a depth-firstlsaggorithm that is
guaranteed to have a time complexity exponential in theldepthe pseudo-tree and
can operate in linear space. The arcs frémto (X;, ;) are annotated by appropriate
labelsof the objective function. The nodes #- can be associated wittalues defined
over the subtrees they root.

Definition 2 (label). Given a COP instance with objective function= """, ¢; X;
and a corresponding AND/OR search tr8e, thelabel [(X;, z;) of the arc from the
OR nodeX; to the AND nodé X, z;) is defined a$(X;, z;) = ¢; - z;.

Definition 3 (value). The value v(n) of a noden € St is defined recursively as
follows: (i) if n = (X, ;) is a terminal AND node then(n) = I(X;,z;); (i) if

n = (X;, ;) is an internal AND node then(n) = {(X;, 2:) + -, csuce(n) 0(1); (iii)

if n = X is an internal OR node them(n) = min, ¢ sycen)v(n'), wheresucc(n) are
the children ofn in St.

Clearly, the value of each node can be computed recursiveiy, leaves to root.

Proposition 1. Given an AND/OR search tre- of a COP instanc® = (X, D,C, 2),

the valuev(n) of a noden € St is the minimal cost solution to the subproblem rooted
at n, subject to the current variable instantiation along thetp&om root ton. If n is
the root ofSt, thenv(n) is the minimal cost solution t&.

Therefore, we can traverse the AND/OR search tree in a depthmanner to com-
pute the value of the root. This approach would require lispace, storing only the
current partial solution subtree. The algorithm expandsrigting levels of OR and
AND nodes, periodically evaluating the values of the nodeagthe current path. It
terminates when the root node is evaluated with the optistl c

Theorem 1 (complexity). The complexity of an algorithm that traverses an AND/OR
search tree in a depth-first manner is linear space and tini&(is- exp(h)), whereh is

the depth of the pseudo-tree associated with the consigaath. When the constraint
graph has induced widtty, the algorithm can be bounded BY(n - exp(w - log(n))).

3.2 Pseudo-Trees Based on Recursive Hypergraph Decomp it

The performance of the AND/OR tree search algorithms is énfted by the quality
of the pseudo-tree. Finding the minimal depth pseudo-seehard problem [11, 12].
In this section we describe a heuristic for generating a leptld balanced pseudo-tree,
based on the recursive decomposition of a hypergraph.

Definition 4 (hypergraph). Given a COP instancéX’, D, C, z), its hypergraphH =
(V, E) has a vertexw; € V for each constraint irC and each variable i’ is an edge
e; € F connecting all the constraints in which it appears.

Definition 5 (hypergraph separators). Given a hypergrapt{ = (V, E), a hyper-

graph separator decompositiisa triple (H, S, R) where: (i))S C E, and the removal
of § separatesH into k disconnected components (subgraphs) ..., Hx; (i) Ris a

relation over the size of the disjoint subgraphs (i.e. baafactor).

It is well known that the problem of generating optimal hygraph partitions is
hard. However heuristic approaches were developed ovegetrs. A good approach is
packaged ilnMeTi St. We will use this software as a basis for our pseudo-treergene
tion. This idea and software were also used by [13] to geadvat width decomposition
trees. Generating a pseudo-tree usiMp Ti Sis fairly straightforward. The vertices of
the hypergraph are partitioned into two balanced (roughlyaésized) parts, denoted
by Hics: and™H,ig5: respectively, while minimizing the number of hyperedge®ss.
A small number of crossing edges translates into a small earobvariables shared
between the two sets of constrairité, s and ;4 are then each recursively parti-
tioned in the same fashion, until they contain a single weifde result of this process
is a tree of hypergraph separators which is also a pseud@itae original model since
each separator corresponds to a subset of variables cliagnsttier.

4 AND/OR Branch-and-Bound Search

AND/OR Branch-and-BoundAOBB) was recently proposed by [1] as a depth-first
Branch-and-Bound that explores an AND/OR search tree foirgpoptimization tasks
in graphical models. In this section we review briefly theistaersion of the algorithm.

4.1 Lower Bounds on Partial Trees

At any stage during search, a nodealong the current path roots a curregydrtial
solution subtregedenoted byG,,;(n), to the corresponding subproblem. By the nature
of the search proces§;,,;(n) must be connected, must contain its raoand will
have afrontier containing all those nodes that were generated but not yetreled.
The leaves of+,,(n) are calledtip nodes. Furthermore, we assume that there exists
a static heuristic evaluation functioh(n) underestimating(n) that can be computed
efficiently when node: is first generated.

! http://www-users.cs.umn.edu/ karypis/metis/hmetis

(b)

Fig. 2. A partially explored AND/OR search tree.

Given the current partially explored AND/OR search tfee theactive pathAP(t)
is the path of assignments from the root$f to the current tip node. Theinside
contextin(AP) of AP(t) contains all nodes that were fully evaluated and are childre
of nodes onAP(t). Theoutside contexbut(AP) of AP(t), contains all the frontier
nodes that are children of the nodes .d®(¢). The active partial subtreedPT (n)
rooted at a node € AP(t) is the subtree of#,,;(n) containing the nodes aAP(t)
betweem andt together with their OR children. We can define nodyaamic heuristic
evaluation functiorof a noden relative toAP7T (n), as follows.

Definition 6 (dynamic heuristic evaluation function). Given an active partial tree
APT (n), thedynamic heuristic evaluation functiaf n, f;,(n), is defined recursively
as follows: (i) if AP7T (n) consists only of a single node and ifn € in(AP) then
frn(n) = v(n) elsefr(n) = h(n); (i) if n = (X;,z;) is an AND node, having OR
childrenmy, ..., my then fy,(n) = max(h(n), (X;, z;) + Zle fr(my)); (i) if n =
X; is an OR node, having an AND child, thenf;, (n) = maz(h(n), fn(m)).

We can show that:

Theorem 2. (1) f(n) is alower boundon the minimal cost solution to the subproblem
rooted atn, namelyf;,(n) < v(n); (2) fn(n) > h(n), namely the dynamic heuristic
function is tighter than the static one.

Example 2.For illustration consider the pseudo-tree in Figure 2(a)the partially ex-
plored AND/OR search tree in Figure 2(b). The active pathtipasode(FE, 1) and rep-
resents the partial assignmeht= 1, B = 1, £ = 1. The shaded nodes at the left of the
active path belong to the inside context (their correspauypdubtrees have already been
explored). The outside context includes the noffésF'}, which are also in the search
frontier. For the active partial subtree rootedzathighlighted), the lower boungd, (B)
onwv(B) is computed recursively as followgi (B) = max(h(B), fn((B,1))), where
(B, 1)) = maz(h({B,1)),I(B,1) +v(D) + fu(E) + h(F)). Similarly, f,(E) =
maz(h(E), f1((E,1))) = maz(h(E), h({E,1))), sincefy((E, 1)) = h((E,1)).

function: AOBB(vo, st, T, X, D, C, z)
1 if X = 0 then return O

2 else

3 X, <« Sel ect Var (vo, T ,X) ;

4 v(X;) — oo

5 foreacha € D; do

6 st' — stU (X5, a);

7 foreachk = 1..q do

8 h(Xk) — LB(Xk,'Dk,Ck))

9 Updat eCont ext (out, Xi, h(Xx) ;
10 end

11 hMXi,a) — cia+ 3 7, h(Xg);

12 if =Fi ndCut (X;,a,h(X;,a)) then
13 v(X;,a) «— 0;

14 foreachk = 1..q do

15 val «— AOBB(vo,st’, T, Xk, Dk.Ck,2k) ;
16 v(X;,a) — v(X;,a) + val;
17 end

18 v(X;,a) + 1 abel (i,a);

19 Updat eCont ext (in, v(X;,a)) ;
20 v(X;) — min(v(X;),v(X;,a));
21 end

22 end

23 return v(X;);

24 end

Fig. 3. AND/OR Branch-and-Bound.

4.2 Static AND/OR Branch-and-Bound

ACBB can calculate dower boundon v(n) for any noden on the active path, by using
fr(n). It also maintains ampper boundon v(n) which is the current minimal cost
solution subtree rooted at If f;,(n) > ub(n) then the search can be safely terminated
below the tip node of the active path.

Figure 3 showsAOBB. The algorithm assumes tigdobal linear objective function
z =Y., ¢;X;. The following notation is used:X’, D, C) is the problem with which
the procedure is called; is a pseudo-tree arrangement of the underlying constraint
graph,st is current partial solution subtree being explored (iflifigzt = NULL), in
(resp.out) represents the inside (resp. outside) context of theaptth. These contexts
are constantly updated during search. Variables are sélstatically according to the
pseudo-tred” (indicated by the input parametes = SVO).

If the setX’ is empty, then the result is trivially computed (line 1). &£180BB se-
lects a variableX; (i.e. expands the OR nodg;) and iterates over its values (lines
3-5) to compute the OR valug(X;). Each valuea defines the current subproblem
P = (X; = a,X,D,C) that is decomposed into a set@fndependent subproblems
P, = (X, Dy, Cr, z1), With k = 1..q,q > 0, one per childX;, of X; in the pseudo-
treeT. Each subproblen®; is defined by the subset of variablds corresponding

function: Sel ect Var (vo, st, T, X)
1 switchvo do

caseSVO

3 if st = NULL then next «—Get PseudoTr eeRoot (T) ;
4 elsenext «—Get PseudoTr eeChi | d(st,T)

5 casePVO
6

7

8

N

candidates «— Get PseudoTr eeVar G- oup(st,T) ;
next < Sel ect Best Candi dat e(candidates) ;
caseDVO
9 next <« Sel ect Best Candi dat e(X);
10 end
11 return next

Fig. 4. Variable selection procedure.

to the descendants df; in T including X}, the subset of constraints and constraint
projectionsCy, involving the variables inYy, subject to the current instantiation along
the active path, andlacal objective function denoted by, = >_ .y, ¢; X;, which
corresponds to the projection efon the variables ink},. For eachPy, the algorithm
computes a static heuristic functi@f.X) which underestimates;, (line 8). The out-
side context of the active path is updated in line 9. Thecsteuristic function ofP is
h(X;,a) (line 11), computed as the sum of independent lower bouralisding the pro-
jection onX; and valuex of the objective function (i.e. the label of the correspoidi
AND node(X;, a)).

Upon instantiatingX; with valuea (i.e. expanding the AND nodgX;, a)) (line 12),
AOBB successively updates thgnamic heuristic evaluation functigfy (m) for every
ancestor node: along the active path (procedufrendCut implements Definition 6).

If frn(m) > ub(m), for some ancestor node, then the algorithm backtracks and tries
the next value in the domain of;. As the algorithm recursively solves independent
subproblems (line 14) the AND valug X;, a) accumulates the results (line 16). The
inside context of the active path is also updated with theaolution of the current
subproblem (line 19). Once all subproblems are solved, tRevBluev(X;) is also
updated (line 20). After trying all feasible values of véta X, the cost of the optimal
solution to the problem rooted by; remains inv(X;), which is returned (line 23).

In the context of pure 0/1 integer linear programming protsiethe static heuristic
functionh(X},) for each subproblen®; is obtained by solving its linear relaxation (i.e.
relaxing the integrality restrictions). If the respectiirear program is infeasible, then
h(X}) is set toco. For illustration, consider again the pure 0/1 integer paiogfrom
Figure 1(a). Letd = 0 andB = 0 be the current partial assignment of the active path in
the AND/OR search tree from Figure 1(c). The subproblénrooted at nod€” in the
search tree corresponds to minimizing the local objectivetionzc = —2C + 5D,
subject to the constraints and constraint projectionshimvg variablesC and D only
(i,e.C < 3andsC — 3D < —2, respectively). Moreover, if the subproblefy rooted
at nodek = X, in the search tree has an integer solution (i.e. the soltidine linear

relaxation of P, has no fractional variables), then there is no need to s¢hecsubtree
belowk. In this casey(k) = h(X}) and this is the value returned fé.

5 Dynamic AND/OR Branch-and-Bound

It is well known that the variable ordering can dramaticafifluence search perfor-
mance [2, 14]. In this section we go beyond static orderimgkiatroduce a nevdy-
namicAND/OR Branch-and-Bound algorithm that incorporatesatale ordering heuris-
tics used in the classic OR search space.

We distinguish two classes of variable ordering heurist@@saphbased heuris-
tics (e.g. pseudo-tree arrangements) that try to maximiablem decomposition and
semantiebased heuristics (e.g. min pseudo cost, min reduced ¢@$tyim at shrinking
the search space. These two forces are orthogonal, nameatgnvese one as the pri-
mary goal and break ties based on the other. Moreover, wesseaach class statically
or dynamically. We present next two ways of combining effithethese two classes of
heuristics.

5.1 Partial Variable Ordering (PVO)

The first approach, calleiND/OR Branch-and-Bound with Partial Variable Ordering
(AOBB+PVO) combines the static graph-based decomposition given tseado-tree
with a dynamic semantic ordering heuristic. Let us illutrhe idea with an example.
Consider the pseudo-tree from Figure 1(a) inducing thefidlig variable group order-
ing: {A,B}, {C,D}, {E,F}; which dictates that variablegA,B} should be considered
before{C,D} and{E,F}. Variables in each group can be dynamically ordered based on
a second, independent semantic heuristic. Notice that\adt@bles{A,B} are instan-
tiated, the problem decomposes into two independent coemtsrithat can be solved
separately.

AOBB+PVOis similar to its precursoAOBB described in Figure 3 in the sense that
it is also guided by a pre-computed pseudo-tree. The pagiéble ordering strategy,
indicated by the input parametenr = PV O, is implemented by th&el ect Var
procedure from Figure 4. The algorithm selects the nextldeiX; as the best scoring
uninstantiated variable from the current variable grouthefthe pseudo-treg.

5.2 Dynamic Variable Ordering (DVO)

The second, orthogonal approach to PVO ca&D/OR Branch-and-Bound with Dy-
namic Variable Orderind AOBB+DVO), gives priority to the dynamic semantic order-
ing heuristic and applies static problem decomposition secandary principle during
search.

AOBB+DVO s also based on the algorithm from Figure 3. It instantizgrgables
dynamically using a semantic ordering heuristic while ¢any updating the problem
graph structure. Specifically, after variabtg is selected by procedufgel ect Var ,
AOBB+DVO tentatively removesY; from the graph and, if disconnected components
are detected their corresponding subproblems are theadsséparately and the results

BB AOBB

miplib| n | (w*h) SVO PVO DVO
time nodes time nodes time nodes time nodes
p0033 33| (18, 20) 6.53 18,081 0.59 1,893 0.39 1,099 3.39 9,251
p0201{201{(120, 142) 37.41 15,57%57.88 25,28/02.90 8,988 42.46 14,4638
Iseu | 89| (53, 69)|153.90 368,5739.74 87,53138.9486,073152.55 336,953

Table 1. Results for MIPLIB problem instances.

combined in an AND/OR manner (lines 14-20). It is easy to $e¢ in this case a
variable may have the best semantic heuristic to tighterséfaech space, yet, it may
not yield a good decomposition for the remaining of the peablin which case the
algorithm would explore primarily an OR space.

6 Experiments

In this section we evaluate empirically the performancenef AND/OR Branch-and-
Bound algorithms on several benchmarks for pure 0/1 intigear programming in-
cluding problem instances from the MIPLIB libré&gycombinatorial auctions and un-
capacitated warehouse location problems. All our expearimm@ere done on a 2.4GHz
Pentium IV with 2GB of RAM, running Windows XP. Our C++ implemtation of the
AND/OR algorithms was based on the open solingesol ve library®.

We consider three classes of depth-first AND/OR BranchBmahd (AOBB) al-
gorithms described in the previous sections and denoteA@BB+SVO (i.e. static
AND/OR Branch-and-Bound AOBB+PVOandAOBB+DVO, respectively. For compar-
ison, we include results obtained with the classic OR déipgh-Branch-and-Bound
(BB) available in thé p_sol ve library. All competing algorithms used a sematic vari-
able ordering heuristic based oaduced costgi.e. dual values) [2]. Specifically, the
next fractional variable to instantiate has the smalleduced cost. Ties are broken
lexicographically.

We report the average effort, as CPU time (in seconds) andeunf nodes vis-
ited (which is equivalent to the number of time themPLEX routine was called to
solve the linear relaxation of the current subproblem)uireg for proving optimality
of the solution. We also record the number of variables (mg,depth of the pseudo-
trees (h) and the induced width of the graphs (w*) obtainedtie test instances. As
AOBB+SVOandAOBB+PVOalgorithms use a non-deterministic algorithm for generat-
ing the pseudo-tree, the running time may vary significafityn one run to the next.
We therefore ran these algorithms 5 times on each benchmdrgravide an average
of those runs. The best performance points are highligintedl test cases.

6.1 MIPLIB Library

MIPLIB is a library of mixed integer linear programming iasces that is commonly
used for benchmarking integer programming algorithms.demrpurpose we selected

2 available at http://miplib.zib.de/miplib2003.php
% |p_solve 5.5.0.6 is available at http://groups.yahoo.com/groLguipe/

BB AOBB

auction (w*,h) SVO PVO DVO

time nodes wins time nodes wins time nodes wins time nodes
reg-upv-b200g50/(145, 162) 1.71 602 4 3.28 938 (0298 888 6 1.97 602
reg-upv-b250g75(166, 190)16.27 3,472 07.32 1,209 8 6.301,110 718.36 3,472
reg-upv-h300g10Q173, 204)63.29 7,997 52.75 4,855 M5.614,801 469.18 7,997
reg-npv-b200g50 (140, 161) 1.27 443 1178 514 1115 302 § 145 443
reg-npv-b250g75/(160, 187) 5.531,150 2 5.97 1,085 45.96 1,144 46.24 1,150
reg-npv-b300g10Q172, 206)58.61 7,342 121.54 1,904 M6.351,748 863.74 7,342

Table 2. Results for combinatorial auction problem instances.

3 pure 0/1 integer linear instances of increasing difficulgble 1 reports a summary
of the experiment. We see immediately that, ove&IBB+PVOis the best performing
algorithm, both in terms of CPU time and number of nodes edsitOBB+DVO does
indeed explore a smaller search space than BB in all tess casedue to its computa-
tional overhead these savings do not reflect in the running. ti

6.2 Combinatorial Auctions

In combinatorial auctions (CA), an auctioneer has a set of good$,= {1,2,...,m}
to sell and the buyers submit a set of bitls= {Bj, Ba, ..., B, }. A bid is a tuple
B; = (Sj,p;), whereS; C M is a set of goods angd; > 0 is a price. The winner
determination problem is to label the bids as winning or le@$o as to maximize the
sum of the accepted bid prices under the constraint that gaatl is allocated to at
most one bid. We used the following pure 0/1 integer formaoitabf the problem:

n
max E piT;
Jj=1

SUY s, 75 < 1i € {1.m}
z;€{0,1} je{l.n}

Table 2 shows results for experiments with combinatoriatians drawn from the
r egi ons distribution of the CATS 2.0 test suite [10]. The suffixgsv andupv indi-
cate that the bid prices were drawn from either a normal doumi distribution. These
problem instances simulate the auction of radio spectruwhich a government sells
the right to use specific segments of spectrum in differeagggphical areas (for more
details see [10]). We looked at moderate size auctions byingathe number of bids
between 200 and 300, and the number of goods between 50 andH®Gumber of
bids is also the number of variables in the ILP model. For eathe combination of
bids and goods we drawn randomly 10 auctions from the reispetistribution. For
each algorithm we also report the number of wins out of theut®3.rThese instances
are highly connected with induced widths over 150. For thidbfgm clasAOBB+PVO
outperforms its competitors, exploring the smallest seapace. If we look for example
at the 300 bid problem instances from theg- npv distribution,AOBB+PVOis about 4

(2)

BB AOBB
uwlp (w*,h) SVO PVO DVO
time nodes time nodes time nodes time nodes
uwlp50-200-a(50, 123 6.27 2115.72 70 6.28 12 7.23 27
uwlp50-200-(50, 123) 11.34 5317.22 60 5.78 12| 11.75 53
uwlp50-200-¢(50, 123) 73.66 46915.78 58 5.83 10, 77.94 469
uwlp50-200-q(50, 123) 836.52 4,3027.94 11611.97 26| 904.15 4,309
uwlp50-200-¢(50, 123)2501.75 11,9782.69 8016.98 28/2990.19 12,733
uwlp50-200-f(50, 123) 43.36 23718.70 64 8.03 20| 45.99 237
uwlp50-200-¢(50, 123)1328.40 6,90827.89 84 8.53 20/1515.48 7,265
|
5]
5

uwlp50-200-h(50, 123) 76.88 33]125.20 8413.70 30, 88.38 331
uwlp50-200-i/(50, 123) 224.33 1,00816.06 19417.17 50) 367.14 1,53
uwlp50-200-j((50, 123)7737.65 31,00@28.03 64 9.13 10/9276.98 33,41

Table 3.Results for 10 uncapacitated warehouse location problem instances.

times faster than BB, exploring a search space 4 times stidtiice thatAOBB+DVO
explores the same number of nodes as BB, showing that in éisis the dynamic se-
mantic variable ordering heuristic does not generate dposable subproblems.

6.3 Uncapacitated Warehouse Location Problem

In the uncapacitated warehouse location problem(UWLP) a company considers
openingm warehouses at some candidate locations in order to supphy ékisting
stores. The objective is to determine which warehouse tm,oped which of these
warehouses should supply the various stores, such thatthefthe maintenance and
supply costs is minimized. Each store must be supplied bgtlyxane warehouse. The
typical 0/1 integer formulation of the problem is as follows

miny Y e+ fiyi ®3)
i=1

j=11i=1

s.t. E:il Tij = 1Vj € {177,}
Tij <Y Vj e {1’11},V’L S {1m}
Tij € {0, 1} Vj e {1n},Vz S {177?}
i€ (0,1} Vie{l.m}

wheref; is the cost of opening a warehouse at locatiandc;; is the cost of supplying
storej from the warehouse at locatian

Table 3 displays the results obtained on 10 randomly gesrdiVLP problem
instance$with 50 warehouses and 200 stores. The warehouse openirsgaadcupply
costs were chosen uniformly randomly between 0 and 100Gs€Taee large problems
with 10,050 variables and 10,500 constraints. The semu@atiable ordering heuristic
that worked best in this case selects the next fraction&igrwhose value is closest to

* Problem generator from http://www.mpi-sh.mpg.de/units/ag1/projecistinearks/UfILib/

0.5 (ties are broken lexicographically). We can see A@BB+PVOdominates in all test
cases, outperforming the classic BB with several ordersagmitude in terms of both
running time and size of the search space exploredwnp50- 200- e for example,
one of the hardest instanc&$)BB+PVO causes a speed-up of 147 over the classic OR
Branch-and-Bound algorithm, exploring a search tree 42@gismaller. This is due
to the problem’s structure partially captured by a shall@gymo-tree with depth 123.
AOBB+DVO has a similar performance as BB on all test instances (itowesl than

BB due to its computational overhead), indicating that ¢hpsoblems do not break
into disconnected components when the semantic variat&iog heuristic has higher
priority than problem decomposition.

7 Conclusion

In this paper we extended the AND/OR Branch-and-Bound kealgorithm for solv-

ing pure 0/1 integer linear programming problems. The doution of the paper is
two-fold. First, we restricted the algorithm to a staticiahte ordering induced by a
pseudo-tree of the constraint graph. Since the order intwiaciables are selected for
instantiation can influence dramatically the search peréorce, we then proposed a dy-
namic version of the AND/OR Branch-and-Bound that incogpes variable ordering
heuristics. We looked at two orthogonal approaches to pawating dynamic orderings
into AOBB. On one handAOBB+PVOaugments a static pseudo-tree based problem de-
composition with a dynamic semantic variable ordering tstigs. On the other hand,
AOBB+DVO gives priority to the dynamic semantic variable orderingiistic while
constantly updating the graph structure and solving ségsyrin an AND/OR manner,
disconnected components that may be discovered duringtseaur empirical eval-
uation demonstrated on a variety of benchmark problems doe p/1 integer linear
programming thafOBB+PVOis a promising candidate solver, outperforming the clas-
sic BB with several orders of magnitude in terms of both ragrtime and size of the
search space explored.

Our dynamic AND/OR approach leaves room for future improgets, which are
likely to make it more effective in practice. For instandezan be modified to explore
the search tree in bhest-firstmanner, rather than depth-first. This is desirable in the
sense that no optimal tree search algorithm can guaranpeaéixg fewer nodes [15].
We also mention that thBranch-and-Cuta more modern algorithm that generates
cutting planego tighten the LP relaxation of the current subproblem, caadapted to
traverse an AND/OR search tree. Finally, the AND/OR aldponis can be easily adapted
for solvingmixedO/1 ILPs, where only a subset of the decision variables isicesd to
integer values. In that case, the AND/OR search space isl loasapartial pseudo-tree
which spans only the integer variables.

Related Work AOBB is related to the Branch-and-Bound method proposed by 6] f
acyclic AND/OR graphs and game trees, as well as the pseadcsearch algorithm
proposed in [17] for boosting Russian Doll search. The optition method developed
in [18] for semi-ring CSPs can also be interpreted as an ANDgbaph search algo-

rithm. Problem decomposition based on hypergraph separai@s also explored by
[19] and [20] for solving large real-world SAT problem instas.

Acknowledgments

We would like to thank the anonymous reviewers for commentin an earlier version
of the paper. This work has been partially supported by thE di@nt 11S-0412854.

References

1. R. Marinescu and R. Dechter. And/or branch-and-bound fgtical models.In Interna-
tional Joint Conference on Atrtificial Intelligence (IJCAI'Q%ages 224-229, 2005.

2. G. Nemhauser and L. Wolseynteger and combinatorial optimizatioWiley, 1988.

3. E. Lawler and D. Wood. Branch-and-bound methods: A surv®perations Research
14(4):699-719, 1966.

4. R. Dechter and R. Mateescu. And/or search spaces for grapiackls. UCI-ICS Techical
Report 2006.

5. G.B. Dantzig. Maximization of a linear function of variables subject todiriaequalities.
Activity Analysis of Production and Allocatiph951.

6. M. Vasquez and J. Hao. A hybrid approach for the 0/1 multidimenbior@sack approach.
In International Joint Conference on Atrtificial Intelligence (IJCAI'Qpages 328—-333, 2001.

7. W. Shih. A branch-and-bound method for the multiconstraint 0/1 $aepproblemJournal
of the Operational Research Socigdp:369-378, 1979.

8. B. Gavish and H. Pirkul. Allocation of data bases and processorsigtréodted computing
system.Management of Distributed Data Processiiggd:215-231, 1982.

9. T. Sandholm. An algorithm for optimal winner determination in combinakauctions.In
International Joint Conference on Atrtificial Intelligence (IJCAI'99pges 542-547, 1999.

10. K. Leyton-Brown, M. Pearson, and Y. Shoham. Towards aansat test suite for combina-
torial auction algorithmsln ACM Electronic Commercgages 66—76, 2000.

11. E. Freuder and M. Quinn. Taking advantage of stable sets of lesigbconstraint satisfac-
tion problemsIn International Joint Conference on Artificial Intelligence (IJCAI'85ages
1076-1078, 1985.

12. R. Bayardo and D. Miranker. On the space-time trade-off in soleomgtraint satisfaction
problems. In International Joint Conference on Atrtificial Intelligence (IJCAI'9®ages
558-562, 1995.

13. A. Darwiche. Recursive conditioningutificial Intelligence 126(1-2):5-41, 2001.

14. Rina DechterConstraint ProcessingMIT Press, 2003.

15. J. Pearl.Heuristics: Intelligent search strategies for computer problem solvidddison-
Welsey, 1984.

16. L. Kanal and V. KumarSearch in artificial intelligenceSpringer-Verlag., 1988.

17. J. Larrosa, P. Meseguer, and M. Sanchez. Pseudo-tred sétr soft constraintsln Euro-
pean Conference on Artificial Intelligence (ECAI'QPages 131-135, 2002.

18. P. Jegou and C. Terrioux. Decomposition and good recordingdleing max-csps.In
European Conference on Atrtificial Intelligence (ECAI'Ogages 196—200, 2004.

19. J. Huang and A. Darwiche. A structure-based variable ordegagdtic. In International
Joint Conference on Artificial Intelligence (IJCAI'Q3)ages 1167-1172, 2003.

20. W. Li and P. van Beek. Guiding real-world sat solving with dynamigengraph separator
decompositionin International Conference on Tools with Atrtificial Intelligence (ICTAJO
pages 542-548, 2004.

