
AND/OR Branch-and-Bound Search for Pure 0/1
Integer Linear Programming Problems

Radu Marinescu and Rina Dechter

School of Information and Computer Science
University of California, Irvine, CA 92697-3425
{radum,dechter}@ics.uci.edu

Abstract. AND/OR search spaceshave recently been introduced as a unify-
ing paradigm for advanced algorithmic schemes for graphical models.The main
virtue of this representation is its sensitivity to the structure of the model, which
can translate into exponential time savings for search algorithms. In this paper we
extend the recently introduced AND/OR Branch-and-Bound algorithm (AOBB)
[1] for solving pure 0/1 Integer Linear Programs [2]. Since the variable selection
can have a dramatic impact on search performance, we introduce a new dynamic
AND/OR Branch-and-Bound algorithm able to accommodate variable ordering
heuristics. The effectiveness of the dynamic AND/OR approach is demonstrated
on a variety of benchmarks for pure 0/1 integer programming, includinginstances
from the MIPLIB library, real-world combinatorial auctions and randomunca-
pacitated warehouse location problems.

1 Introduction

A constraint optimization problemis the minimization/maximization of an objective
function subject to a set of constraints on the possible values of a set of independent
decision variables. An important class of constraint optimization problems are the Inte-
ger Linear Programming problems (ILP) [2] where the objective is to optimize a linear
function of integer-valued variables, subject to a set of linear equality or inequality con-
straints defined on subsets of variables. The classical approach to solving ILPs is the
branch-and-boundmethod [3] which maintains the best solution found so far, while
discarding partial solutions which cannot improve on the best.

The AND/OR search space for graphical models [4] is a newly introduced frame-
work for search that is sensitive to the independencies in the model, often resulting in
exponentially reduced complexities. It is based on a pseudo-tree that captures indepen-
dencies in the graphical model, resulting in a search tree exponential in the depth of the
pseudo-tree, rather than in the number of variables.

The AND/OR Branch-and-Bound algorithm (AOBB) is a new search method that
explores the AND/OR search tree for solving optimization tasks in graphical models
[1]. In this paper we present an extension of the algorithm for solving optimization
problems from the class of pure 0/1 Integer Linear Programs [2]. A pure 0/1 integer
linear program is a linear program where all the decision variables are restricted to be
either 0 or 1 at the optimal solution.

Since variable selection can have a dramatic impact on search performance [2],
we introduce adynamicAND/OR Branch-and-Bound search algorithm that combines
the AND/OR decomposition principle with variable orderingheuristics. There are two
orthogonal approaches to incorporating dynamic orderingsintoAOBB. The first one im-
provesAOBB by applying an independent semantic variable ordering heuristic whenever
the partial order dictated by the decomposition principle allows. The second, orthogonal
approach gives priority to the semantic variable ordering heuristic and applies problem
decomposition as a secondary principle. We demonstrate empirically the efficiency of
the dynamic AND/OR Branch-and-Bound approach on several benchmarks for pure 0/1
integer linear programming problems, including test instances from the MIPLIB library,
combinatorial auctions simulating radio spectrum allocation and random uncapacitated
warehouse location problems.

The paper is organized as follows. In Section 2 we present background on con-
straint optimization problems and integer linear programming. Section 3 presents the
AND/OR search space as well as an efficient heuristic for constructing low depth bal-
anced pseudo-trees. In Section 4 we introduce the AND/OR Branch-and-Bound algo-
rithm, specialized for solving pure 0/1 integer linear programs. In Section 5 we intro-
duce the dynamic AND/OR Branch-and-Bound algorithm. Section 6 shows our empir-
ical evaluation and Section 7 concludes.

2 Background

2.1 Constraint Optimization Problems

A finite Constraint Optimization Problem(COP) is a four-tuple〈X ,D, C, z〉, where
X = {X1, ...,Xn} is a set of variables,D = {D1, ...,Dn} is a set of finite domains,
C = {C1, ..., Cm} is a set of constraints on the variables andz is a global cost func-
tion (i.e. objective function) to be optimized. The scope ofa constraintCi, denoted
scope(Ci) ⊆ X , is the set of arguments ofCi. Constraints can be expressedexten-
sionally, through relations, orintentionally, by a mathematical formula (equality or
inequality). An optimal solution to a COP is a complete valueassignment to all the
variables such that every constraint is satisfied and the objective function is minimized
or maximized.

With every COP instance we can associate aconstraint graphG which has a node
for each variable and connects any two nodes whose variablesappear in the scope of
the same constraint. Theinduced graphof G relative to an orderingd of its variables,
denotedG∗(d), is obtained by processing the nodes in reverse order ofd. For each node
all its earlier neighbors are connected, including neighbors connected by previously
added edges. Given a graph and an ordering of its nodes, thewidth of a node is the
number of edges connecting it to nodes lower in the ordering.The induced widthof a
graph, denotedw∗(d), is the maximum width of nodes in the induced graph.

2.2 Integer Linear Programming

A Linear Program(LP) consists of a set of continuous variables and a set of linear con-
straints (equalities or inequalities). The goal is to optimize a global linear cost function
subject to the constraints. One of the standard forms of a linear program is:

min{c>x | Ax ≤ b, x ≥ 0} (1)

wherec ∈ R
n, b ∈ R

m, A ∈ R
m×n andx ∈ R

n. Herec represents the cost vector and
x is the vector of decision variables. The vectorb and the matrixA define them linear
constraints. Linear programs are usually solved by Dantzig’s SIMPLEX method [5].

A Mixed Integer Linear Programming(MILP) problem is a linear program where
some of the decision variables are constrained to have only integer values at the optimal
solution. An important special case is a decision variablexi that is integer with0 ≤
xi ≤ 1. This forcesxi to be either 0 or 1 at the solution. Variables likexi are called
0/1 or binary integer variables. Subsequently, a MILP problem with binary integer
variables is also called a0/1 Mixed Integer Linear Programmingproblem. Apure 0/1
Integer Linear Programmingproblem is a MILP where all the decision variables are
binary. Pure 0/1 ILPs can formulate many practical problemssuch as capital budgeting
[6], cargo loading [7], processor allocation in distributed systems [8] or combinatorial
auctions [9, 10].

Clearly, any pure 0/1 integer linear program can be viewed asa finite COP instance
〈X ,D, C, z〉 with linear constraints and a linear objective function. Inthe remaining
of the paper we will consider aminimizationproblem defined byz =

∑n

i=1 ciXi

subject tom linear constraintsC = {C1, ..., Cm}, over n binary decision variables
X = {X1, ...,Xn}.

2.3 Branch-and-Bound Search for Constraint Optimization

Branch-and-Bound(BB) is a generalsearchmethod for solving constraint optimization
problems [3]. It traverses the search tree defined by the problem, where internal nodes
represent partial assignments and leaf nodes denote complete ones, which may or may
not be optimal. During the traversal, which is usuallydepth first, BB maintains unupper
boundub, the cost of the best solution found so far. At each internal node the algorithm
computes alower boundlb on the optimal extension of the current partial assignment.
Whenlb ≥ ub, the current best cost cannot be improved and the algorithmbacktracks
pruning the subtree below the current node. Otherwise, the algorithm moves forward
and tries to instantiate the next variable in the ordering.

In the context of pure 0/1 integer linear programs, the lowerbound of a subproblem
is obtained by solving its linear relaxation (i.e. relaxingthe integrality restrictions). In
this case the branching process can fail at a particular nodefor one of the following
reasons: (i) the LP solution can be integer; or (ii) the LP problem can be infeasible; or
(iii) the lower bound exceeds the upper bound (for more details see [2, 3]).

3 AND/OR Search Spaces

The classical way to do search is to instantiate variables one at a time, following a
static/dynamic variable ordering. In the simplest case, this process defines a search tree
(called here OR search tree), whose nodes represent states in the space of partial as-
signments. The traditional search space does not capture independencies that appear in

{ }1,0,,,,,

13

242

2352

3123

 :subject to

865237 :minimize

∈
≤+−

≤−+
−≤−+−

≤+−

+−+−+=

FEDCBA

FEA

EBA

DCB

CBA

FEDCBAz

(a)

A

D

B

EC

F

(b)

OR

AND

OR

AND

OR

OR

AND

AND

A

0

B

0

E

F F

0 1 0 1

0 1

C

D

1

0 1

1

E

F F

0 1 0 1

0 1

C

D

0 1

0 1

1

B

0

E

F F

0 0 1

0 1

C

D

1

0 1

1

E

F

0 1

0 1

C

D

0 1

0 1

(c)

Fig. 1.The AND/OR search space.

the structure of the underlying graphical model. Introducing AND states into the search
space can capture the structure, decomposing the problem into independent subprob-
lems by conditioning on values [11, 4]. The AND/OR search space is defined using a
backbonepseudo-tree.

Definition 1 (pseudo-tree).Given an undirected graphG = (V,E), a directed rooted
treeT = (V,E′) defined on all its nodes is calledpseudo-treeif any arc ofG which is
not included inE′ is a back-arc, namely it connects a node to an ancestor inT .

3.1 AND/OR Search Trees

Given a COP instance〈X ,D, C, z〉, its constraint graphG and a pseudo-treeT of G,
the associated AND/OR search treeST has alternating levels of OR nodes and AND
nodes. The OR nodes are labeled byXi and correspond to the variables. The AND
nodes are labeled by〈Xi, xi〉 and correspond to value assignments in the domains of
the variables. The structure of the AND/OR tree is based on the underlying pseudo-tree
T of G. The root of the AND/OR search tree is an OR node, labeled withthe root ofT .

The children of an OR nodeXi are AND nodes labeled with assignments〈Xi, xi〉,
consistent along the path from the root,path(xi) = (〈X1, x1〉, ..., 〈Xi−1, xi−1〉). The
children of an AND node〈Xi, xi〉 are OR nodes labeled with the children of variable

Xi in T . In other words, the OR states represent alternative ways ofsolving the prob-
lem, whereas the AND states represent problem decomposition into independent sub-
problems, all of which need be solved. When the pseudo-tree isa chain, the AND/OR
search tree coincides with the regular OR search tree.

A solution subtreeSolST
of ST is an AND/OR subtree such that: (i) it contains the

root of ST ; (ii) if a nonterminal AND noden ∈ ST is in SolST
then all of its children

are inSolST
; (iii) if a nonterminal OR noden ∈ ST is in SolT then exactly one of its

children is inSolST
.

Example 1.For illustration consider the pure 0/1 integer program with6 decision vari-
ables A, B, C, D, E, F and 4 linear constraintsC1(A,B,C), C2(B,C,D), C3(A,B,E),
C4(A,E, F) from Figure 1(a). The objective function to be minimized isz = 7A+B-
2C+5D-6E+8F. The pseudo-tree arrangement of the constraint graph, together with the
back-arcs (dotted lines) are given in Figure 1(b). Figure 1(c) shows the corresponding
AND/OR search tree (for AND nodes we only denote the value, namely 〈A, 0〉 is writ-
ten as0 child of A). The shaded nodes represent dead-ends (i.e. inconsistentvalues).

The AND/OR search tree can be traversed by a depth-first search algorithm that is
guaranteed to have a time complexity exponential in the depth of the pseudo-tree and
can operate in linear space. The arcs fromXi to 〈Xi, xi〉 are annotated by appropriate
labelsof the objective function. The nodes inST can be associated withvalues, defined
over the subtrees they root.

Definition 2 (label). Given a COP instance with objective functionz =
∑n

i=1 ciXi

and a corresponding AND/OR search treeST , the label l(Xi, xi) of the arc from the
OR nodeXi to the AND node〈Xi, xi〉 is defined asl(Xi, xi) = ci · xi.

Definition 3 (value). The value v(n) of a noden ∈ ST is defined recursively as
follows: (i) if n = 〈Xi, xi〉 is a terminal AND node thenv(n) = l(Xi, xi); (ii) if
n = 〈Xi, xi〉 is an internal AND node thenv(n) = l(Xi, xi)+

∑
n′∈succ(n) v(n′); (iii)

if n = Xi is an internal OR node thenv(n) = minn′∈succ(n)v(n′), wheresucc(n) are
the children ofn in ST .

Clearly, the value of each node can be computed recursively,from leaves to root.

Proposition 1. Given an AND/OR search treeST of a COP instanceP = (X ,D, C, z),
the valuev(n) of a noden ∈ ST is the minimal cost solution to the subproblem rooted
at n, subject to the current variable instantiation along the path from root ton. If n is
the root ofST , thenv(n) is the minimal cost solution toP.

Therefore, we can traverse the AND/OR search tree in a depth-first manner to com-
pute the value of the root. This approach would require linear space, storing only the
current partial solution subtree. The algorithm expands alternating levels of OR and
AND nodes, periodically evaluating the values of the nodes along the current path. It
terminates when the root node is evaluated with the optimal cost.

Theorem 1 (complexity).The complexity of an algorithm that traverses an AND/OR
search tree in a depth-first manner is linear space and time isO(n ·exp(h)), whereh is
the depth of the pseudo-tree associated with the constraintgraph. When the constraint
graph has induced widthw, the algorithm can be bounded byO(n · exp(w · log(n))).

3.2 Pseudo-Trees Based on Recursive Hypergraph Decomposition

The performance of the AND/OR tree search algorithms is influenced by the quality
of the pseudo-tree. Finding the minimal depth pseudo-tree is a hard problem [11, 12].
In this section we describe a heuristic for generating a low depth balanced pseudo-tree,
based on the recursive decomposition of a hypergraph.

Definition 4 (hypergraph). Given a COP instance〈X ,D, C, z〉, its hypergraphH =
(V,E) has a vertexvi ∈ V for each constraint inC and each variable inX is an edge
ej ∈ E connecting all the constraints in which it appears.

Definition 5 (hypergraph separators).Given a hypergraphH = (V,E), a hyper-
graph separator decompositionis a triple (H,S,R) where: (i)S ⊂ E, and the removal
of S separatesH into k disconnected components (subgraphs)H1, ...,Hk; (ii) R is a
relation over the size of the disjoint subgraphs (i.e. balance factor).

It is well known that the problem of generating optimal hypergraph partitions is
hard. However heuristic approaches were developed over theyears. A good approach is
packaged inhMeTiS1. We will use this software as a basis for our pseudo-tree genera-
tion. This idea and software were also used by [13] to generate low width decomposition
trees. Generating a pseudo-tree usinghMeTiS is fairly straightforward. The vertices of
the hypergraph are partitioned into two balanced (roughly equal-sized) parts, denoted
by Hleft andHright respectively, while minimizing the number of hyperedges across.
A small number of crossing edges translates into a small number of variables shared
between the two sets of constraints.Hleft andHright are then each recursively parti-
tioned in the same fashion, until they contain a single vertex. The result of this process
is a tree of hypergraph separators which is also a pseudo-tree of the original model since
each separator corresponds to a subset of variables chainedtogether.

4 AND/OR Branch-and-Bound Search

AND/OR Branch-and-Bound (AOBB) was recently proposed by [1] as a depth-first
Branch-and-Bound that explores an AND/OR search tree for solving optimization tasks
in graphical models. In this section we review briefly the static version of the algorithm.

4.1 Lower Bounds on Partial Trees

At any stage during search, a noden along the current path roots a currentpartial
solution subtree, denoted byGsol(n), to the corresponding subproblem. By the nature
of the search process,Gsol(n) must be connected, must contain its rootn and will
have afrontier containing all those nodes that were generated but not yet expanded.
The leaves ofGsol(n) are calledtip nodes. Furthermore, we assume that there exists
a staticheuristic evaluation functionh(n) underestimatingv(n) that can be computed
efficiently when noden is first generated.

1 http://www-users.cs.umn.edu/ karypis/metis/hmetis

A

H

B

ED

K

L

C

F G

(a)

A

0 1

B C B C

0 1

D E F D E F

0 1

H K

0 1

(b)

Fig. 2.A partially explored AND/OR search tree.

Given the current partially explored AND/OR search treeST , theactive pathAP(t)
is the path of assignments from the root ofST to the current tip nodet. The inside
contextin(AP) of AP(t) contains all nodes that were fully evaluated and are children
of nodes onAP(t). Theoutside contextout(AP) of AP(t), contains all the frontier
nodes that are children of the nodes onAP(t). The active partial subtreeAPT (n)
rooted at a noden ∈ AP(t) is the subtree ofGsol(n) containing the nodes onAP(t)
betweenn andt together with their OR children. We can define now adynamic heuristic
evaluation functionof a noden relative toAPT (n), as follows.

Definition 6 (dynamic heuristic evaluation function). Given an active partial tree
APT (n), thedynamic heuristic evaluation functionof n, fh(n), is defined recursively
as follows: (i) ifAPT (n) consists only of a single noden, and if n ∈ in(AP) then
fh(n) = v(n) elsefh(n) = h(n); (ii) if n = 〈Xi, xi〉 is an AND node, having OR
childrenm1, ...,mk thenfh(n) = max(h(n), l(Xi, xi) +

∑k

i=1 fh(mi)); (iii) if n =
Xi is an OR node, having an AND childm, thenfh(n) = max(h(n), fh(m)).

We can show that:

Theorem 2. (1) fh(n) is a lower boundon the minimal cost solution to the subproblem
rooted atn, namelyfh(n) ≤ v(n); (2) fh(n) ≥ h(n), namely the dynamic heuristic
function is tighter than the static one.

Example 2.For illustration consider the pseudo-tree in Figure 2(a) and the partially ex-
plored AND/OR search tree in Figure 2(b). The active path hastip node〈E, 1〉 and rep-
resents the partial assignmentA = 1, B = 1, E = 1. The shaded nodes at the left of the
active path belong to the inside context (their corresponding subtrees have already been
explored). The outside context includes the nodes{C,F}, which are also in the search
frontier. For the active partial subtree rooted atB (highlighted), the lower boundfh(B)
on v(B) is computed recursively as follows:fh(B) = max(h(B), fh(〈B, 1〉)), where
fh(〈B, 1〉) = max(h(〈B, 1〉), l(B, 1) + v(D) + fh(E) + h(F)). Similarly, fh(E) =
max(h(E), fh(〈E, 1〉)) = max(h(E), h(〈E, 1〉)), sincefh(〈E, 1〉) = h(〈E, 1〉).

function: AOBB(vo,st,T,X,D,C,z)
if X = ∅ then return 0;1

else2

Xi ← SelectVar(vo,T ,X);3

v(Xi)←∞;4

foreacha ∈ Di do5

st′ ← st ∪ (Xi, a);6

foreachk = 1..q do7

h(Xk)← LB(Xk,Dk,Ck);8

UpdateContext(out, Xk, h(Xk);9

end10

h(Xi, a)← cia +
Pq

k=1
h(Xk);11

if ¬FindCut(Xi,a,h(Xi, a)) then12

v(Xi, a)← 0;13

foreachk = 1..q do14

val← AOBB(vo,st′,T ,Xk,Dk,Ck,zk);15

v(Xi, a)← v(Xi, a) + val;16

end17

v(Xi, a) + label(i,a);18

UpdateContext(in, v(Xi, a));19

v(Xi)← min(v(Xi), v(Xi, a));20

end21

end22

return v(Xi);23

end24

Fig. 3.AND/OR Branch-and-Bound.

4.2 Static AND/OR Branch-and-Bound

AOBB can calculate alower boundon v(n) for any noden on the active path, by using
fh(n). It also maintains anupper boundon v(n) which is the current minimal cost
solution subtree rooted atn. If fh(n) ≥ ub(n) then the search can be safely terminated
below the tip node of the active path.

Figure 3 showsAOBB. The algorithm assumes theglobal linear objective function
z =

∑n

i=1 ciXi. The following notation is used:(X ,D, C) is the problem with which
the procedure is called,T is a pseudo-tree arrangement of the underlying constraint
graph,st is current partial solution subtree being explored (initially st = NULL), in

(resp.out) represents the inside (resp. outside) context of the active path. These contexts
are constantly updated during search. Variables are selected statically according to the
pseudo-treeT (indicated by the input parametervo = SVO).

If the setX is empty, then the result is trivially computed (line 1). Else,AOBB se-
lects a variableXi (i.e. expands the OR nodeXi) and iterates over its values (lines
3-5) to compute the OR valuev(Xi). Each valuea defines the current subproblem
P = (Xi = a,X ,D, C) that is decomposed into a set ofq independent subproblems
Pk = (Xk,Dk, Ck, zk), with k = 1..q, q > 0, one per childXk of Xi in the pseudo-
treeT . Each subproblemPk is defined by the subset of variablesXk corresponding

function: SelectVar(vo,st,T,X)
switch vo do1

caseSVO2

if st = NULL then next←GetPseudoTreeRoot(T);3

elsenext←GetPseudoTreeChild(st,T)4

casePVO5

candidates← GetPseudoTreeVarGroup(st,T);6

next← SelectBestCandidate(candidates);7

caseDVO8

next← SelectBestCandidate(X);9

end10

return next;11

Fig. 4. Variable selection procedure.

to the descendants ofXk in T including Xk, the subset of constraints and constraint
projectionsCk involving the variables inXk, subject to the current instantiation along
the active path, and alocal objective function denoted byzk =

∑
Xj∈Xk

cjXj , which
corresponds to the projection ofz on the variables inXk. For eachPk, the algorithm
computes a static heuristic functionh(Xk) which underestimateszk (line 8). The out-
side context of the active path is updated in line 9. The static heuristic function ofP is
h(Xi, a) (line 11), computed as the sum of independent lower bounds including the pro-
jection onXi and valuea of the objective function (i.e. the label of the corresponding
AND node〈Xi, a〉).

Upon instantiatingXi with valuea (i.e. expanding the AND node〈Xi, a〉) (line 12),
AOBB successively updates thedynamic heuristic evaluation functionfh(m) for every
ancestor nodem along the active path (procedureFindCut implements Definition 6).
If fh(m) ≥ ub(m), for some ancestor nodem, then the algorithm backtracks and tries
the next value in the domain ofXi. As the algorithm recursively solves independent
subproblems (line 14) the AND valuev(Xi, a) accumulates the results (line 16). The
inside context of the active path is also updated with the actual solution of the current
subproblem (line 19). Once all subproblems are solved, the OR valuev(Xi) is also
updated (line 20). After trying all feasible values of variableXi, the cost of the optimal
solution to the problem rooted byXi remains inv(Xi), which is returned (line 23).

In the context of pure 0/1 integer linear programming problems, the static heuristic
functionh(Xk) for each subproblemPk is obtained by solving its linear relaxation (i.e.
relaxing the integrality restrictions). If the respectivelinear program is infeasible, then
h(Xk) is set to∞. For illustration, consider again the pure 0/1 integer program from
Figure 1(a). LetA = 0 andB = 0 be the current partial assignment of the active path in
the AND/OR search tree from Figure 1(c). The subproblemPC rooted at nodeC in the
search tree corresponds to minimizing the local objective functionzC = −2C + 5D,
subject to the constraints and constraint projections involving variablesC andD only
(i.e.C ≤ 3 and5C − 3D ≤ −2, respectively). Moreover, if the subproblemPk rooted
at nodek = Xk in the search tree has an integer solution (i.e. the solutionto the linear

relaxation ofPk has no fractional variables), then there is no need to searchthe subtree
belowk. In this case,v(k) = h(Xk) and this is the value returned forPk.

5 Dynamic AND/OR Branch-and-Bound

It is well known that the variable ordering can dramaticallyinfluence search perfor-
mance [2, 14]. In this section we go beyond static orderings and introduce a newdy-
namicAND/OR Branch-and-Bound algorithm that incorporates variable ordering heuris-
tics used in the classic OR search space.

We distinguish two classes of variable ordering heuristics. Graph-based heuris-
tics (e.g. pseudo-tree arrangements) that try to maximize problem decomposition and
semantic-based heuristics (e.g. min pseudo cost, min reduced cost) that aim at shrinking
the search space. These two forces are orthogonal, namely wecan use one as the pri-
mary goal and break ties based on the other. Moreover, we can use each class statically
or dynamically. We present next two ways of combining efficiently these two classes of
heuristics.

5.1 Partial Variable Ordering (PVO)

The first approach, calledAND/OR Branch-and-Bound with Partial Variable Ordering
(AOBB+PVO) combines the static graph-based decomposition given by a pseudo-tree
with a dynamic semantic ordering heuristic. Let us illustrate the idea with an example.
Consider the pseudo-tree from Figure 1(a) inducing the following variable group order-
ing: {A,B}, {C,D}, {E,F}; which dictates that variables{A,B} should be considered
before{C,D} and{E,F}. Variables in each group can be dynamically ordered based on
a second, independent semantic heuristic. Notice that after variables{A,B} are instan-
tiated, the problem decomposes into two independent components that can be solved
separately.

AOBB+PVO is similar to its precursorAOBB described in Figure 3 in the sense that
it is also guided by a pre-computed pseudo-tree. The partialvariable ordering strategy,
indicated by the input parametervo = PV O, is implemented by theSelectVar
procedure from Figure 4. The algorithm selects the next variableXi as the best scoring
uninstantiated variable from the current variable group ofthe the pseudo-treeT .

5.2 Dynamic Variable Ordering (DVO)

The second, orthogonal approach to PVO calledAND/OR Branch-and-Bound with Dy-
namic Variable Ordering(AOBB+DVO), gives priority to the dynamic semantic order-
ing heuristic and applies static problem decomposition as asecondary principle during
search.

AOBB+DVO is also based on the algorithm from Figure 3. It instantiatesvariables
dynamically using a semantic ordering heuristic while constantly updating the problem
graph structure. Specifically, after variableXi is selected by procedureSelectVar,
AOBB+DVO tentatively removesXi from the graph and, if disconnected components
are detected their corresponding subproblems are then solved separately and the results

BB AOBB
miplib n (w*,h) SVO PVO DVO

time nodes time nodes time nodes time nodes
p0033 33 (18, 20) 6.53 18,081 0.59 1,893 0.39 1,099 3.39 9,251
p0201 201 (120, 142) 37.41 15,57557.88 25,28422.90 8,988 42.46 14,463
lseu 89 (53, 69) 153.90 368,57339.74 87,53738.9486,073152.55 336,953

Table 1.Results for MIPLIB problem instances.

combined in an AND/OR manner (lines 14-20). It is easy to see that in this case a
variable may have the best semantic heuristic to tighten thesearch space, yet, it may
not yield a good decomposition for the remaining of the problem, in which case the
algorithm would explore primarily an OR space.

6 Experiments

In this section we evaluate empirically the performance of the AND/OR Branch-and-
Bound algorithms on several benchmarks for pure 0/1 integerlinear programming in-
cluding problem instances from the MIPLIB library2, combinatorial auctions and un-
capacitated warehouse location problems. All our experiments were done on a 2.4GHz
Pentium IV with 2GB of RAM, running Windows XP. Our C++ implementation of the
AND/OR algorithms was based on the open sourcelp solve library3.

We consider three classes of depth-first AND/OR Branch-and-Bound (AOBB) al-
gorithms described in the previous sections and denoted byAOBB+SVO (i.e. static
AND/OR Branch-and-Bound),AOBB+PVO andAOBB+DVO, respectively. For compar-
ison, we include results obtained with the classic OR depth-first Branch-and-Bound
(BB) available in thelp solve library. All competing algorithms used a sematic vari-
able ordering heuristic based onreduced costs(i.e. dual values) [2]. Specifically, the
next fractional variable to instantiate has the smallest reduced cost. Ties are broken
lexicographically.

We report the average effort, as CPU time (in seconds) and number of nodes vis-
ited (which is equivalent to the number of time theSIMPLEX routine was called to
solve the linear relaxation of the current subproblem), required for proving optimality
of the solution. We also record the number of variables (n), the depth of the pseudo-
trees (h) and the induced width of the graphs (w*) obtained for the test instances. As
AOBB+SVO andAOBB+PVO algorithms use a non-deterministic algorithm for generat-
ing the pseudo-tree, the running time may vary significantlyfrom one run to the next.
We therefore ran these algorithms 5 times on each benchmark and provide an average
of those runs. The best performance points are highlighted in all test cases.

6.1 MIPLIB Library

MIPLIB is a library of mixed integer linear programming instances that is commonly
used for benchmarking integer programming algorithms. Forour purpose we selected

2 available at http://miplib.zib.de/miplib2003.php
3 lp solve 5.5.0.6 is available at http://groups.yahoo.com/group/lpsolve/

BB AOBB
auction (w*,h) SVO PVO DVO

time nodes wins time nodes wins time nodes wins time nodes
reg-upv-b200g50 (145, 162) 1.71 602 4 3.28 938 0 2.98 888 6 1.97 602
reg-upv-b250g75 (166, 190)16.27 3,472 0 7.32 1,209 3 6.30 1,110 718.36 3,472
reg-upv-b300g100(173, 204)63.29 7,997 252.75 4,855 445.61 4,801 469.18 7,997
reg-npv-b200g50 (140, 161) 1.27 443 1 1.78 514 1 1.15 302 8 1.45 443
reg-npv-b250g75 (160, 187) 5.53 1,150 2 5.97 1,085 4 5.96 1,144 4 6.24 1,150
reg-npv-b300g100(172, 206)58.61 7,342 121.54 1,904 416.35 1,748 563.74 7,342

Table 2.Results for combinatorial auction problem instances.

3 pure 0/1 integer linear instances of increasing difficulty. Table 1 reports a summary
of the experiment. We see immediately that, overall,AOBB+PVO is the best performing
algorithm, both in terms of CPU time and number of nodes visited.AOBB+DVO does
indeed explore a smaller search space than BB in all test cases, but due to its computa-
tional overhead these savings do not reflect in the running time.

6.2 Combinatorial Auctions

In combinatorial auctions (CA), an auctioneer has a set of goods,M = {1, 2, ...,m}
to sell and the buyers submit a set of bids,B = {B1, B2, ..., Bn}. A bid is a tuple
Bj = 〈Sj , pj〉, whereSj ⊆ M is a set of goods andpj ≥ 0 is a price. The winner
determination problem is to label the bids as winning or loosing so as to maximize the
sum of the accepted bid prices under the constraint that eachgood is allocated to at
most one bid. We used the following pure 0/1 integer formulation of the problem:

max

n∑

j=1

pjxj (2)

s.t.
∑

j|i∈Sj
xj ≤ 1 i ∈ {1..m}

xj ∈ {0, 1} j ∈ {1..n}

Table 2 shows results for experiments with combinatorial auctions drawn from the
regions distribution of the CATS 2.0 test suite [10]. The suffixesnpv andupv indi-
cate that the bid prices were drawn from either a normal or uniform distribution. These
problem instances simulate the auction of radio spectrum inwhich a government sells
the right to use specific segments of spectrum in different geographical areas (for more
details see [10]). We looked at moderate size auctions by varying the number of bids
between 200 and 300, and the number of goods between 50 and 100. The number of
bids is also the number of variables in the ILP model. For eachvalue combination of
bids and goods we drawn randomly 10 auctions from the respective distribution. For
each algorithm we also report the number of wins out of the 10 runs. These instances
are highly connected with induced widths over 150. For this problem classAOBB+PVO
outperforms its competitors, exploring the smallest search space. If we look for example
at the 300 bid problem instances from thereg-npv distribution,AOBB+PVO is about 4

BB AOBB
uwlp (w*,h) SVO PVO DVO

time nodes time nodes time nodes time nodes
uwlp50-200-a(50, 123) 6.27 2715.72 70 6.28 12 7.23 27
uwlp50-200-b(50, 123) 11.34 5317.22 60 5.78 12 11.75 53
uwlp50-200-c(50, 123) 73.66 46915.78 58 5.83 10 77.94 469
uwlp50-200-d(50, 123) 836.52 4,30927.94 11611.97 26 904.15 4,309
uwlp50-200-e(50, 123)2501.75 11,97332.69 8016.98 28 2990.19 12,733
uwlp50-200-f (50, 123) 43.36 23718.70 64 8.03 20 45.99 237
uwlp50-200-g(50, 123)1328.40 6,90527.89 84 8.53 20 1515.48 7,265
uwlp50-200-h(50, 123) 76.88 33125.20 8413.70 30 88.38 331
uwlp50-200-i (50, 123) 224.33 1,00346.06 19417.17 50 367.14 1,533
uwlp50-200-j (50, 123)7737.65 31,00328.03 64 9.13 10 9276.98 33,415

Table 3.Results for 10 uncapacitated warehouse location problem instances.

times faster than BB, exploring a search space 4 times smaller. Notice thatAOBB+DVO
explores the same number of nodes as BB, showing that in this case the dynamic se-
mantic variable ordering heuristic does not generate decomposable subproblems.

6.3 Uncapacitated Warehouse Location Problem

In the uncapacitated warehouse location problem(UWLP) a company considers
openingm warehouses at some candidate locations in order to supply its n existing
stores. The objective is to determine which warehouse to open, and which of these
warehouses should supply the various stores, such that the sum of the maintenance and
supply costs is minimized. Each store must be supplied by exactly one warehouse. The
typical 0/1 integer formulation of the problem is as follows:

min

n∑

j=1

m∑

i=1

cijxij +
m∑

i=1

fiyi (3)

s.t.
∑m

i=1 xij = 1 ∀j ∈ {1..n}
xij ≤ yi ∀j ∈ {1..n},∀i ∈ {1..m}
xij ∈ {0, 1} ∀j ∈ {1..n},∀i ∈ {1..m}
yi ∈ {0, 1} ∀i ∈ {1..m}

wherefi is the cost of opening a warehouse at locationi andcij is the cost of supplying
storej from the warehouse at locationi.

Table 3 displays the results obtained on 10 randomly generated UWLP problem
instances4 with 50 warehouses and 200 stores. The warehouse opening andstore supply
costs were chosen uniformly randomly between 0 and 1000. These are large problems
with 10,050 variables and 10,500 constraints. The semanticvariable ordering heuristic
that worked best in this case selects the next fractional variable whose value is closest to

4 Problem generator from http://www.mpi-sb.mpg.de/units/ag1/projects/benchmarks/UflLib/

0.5 (ties are broken lexicographically). We can see thatAOBB+PVO dominates in all test
cases, outperforming the classic BB with several orders of magnitude in terms of both
running time and size of the search space explored. Inuwlp50-200-e for example,
one of the hardest instances,AOBB+PVO causes a speed-up of 147 over the classic OR
Branch-and-Bound algorithm, exploring a search tree 428 times smaller. This is due
to the problem’s structure partially captured by a shallow pseudo-tree with depth 123.
AOBB+DVO has a similar performance as BB on all test instances (it is slower than
BB due to its computational overhead), indicating that these problems do not break
into disconnected components when the semantic variable ordering heuristic has higher
priority than problem decomposition.

7 Conclusion

In this paper we extended the AND/OR Branch-and-Bound search algorithm for solv-
ing pure 0/1 integer linear programming problems. The contribution of the paper is
two-fold. First, we restricted the algorithm to a static variable ordering induced by a
pseudo-tree of the constraint graph. Since the order in which variables are selected for
instantiation can influence dramatically the search performance, we then proposed a dy-
namic version of the AND/OR Branch-and-Bound that incorporates variable ordering
heuristics. We looked at two orthogonal approaches to incorporating dynamic orderings
into AOBB. On one hand,AOBB+PVO augments a static pseudo-tree based problem de-
composition with a dynamic semantic variable ordering heuristics. On the other hand,
AOBB+DVO gives priority to the dynamic semantic variable ordering heuristic while
constantly updating the graph structure and solving separately, in an AND/OR manner,
disconnected components that may be discovered during search. Our empirical eval-
uation demonstrated on a variety of benchmark problems for pure 0/1 integer linear
programming thatAOBB+PVO is a promising candidate solver, outperforming the clas-
sic BB with several orders of magnitude in terms of both running time and size of the
search space explored.

Our dynamic AND/OR approach leaves room for future improvements, which are
likely to make it more effective in practice. For instance, it can be modified to explore
the search tree in abest-firstmanner, rather than depth-first. This is desirable in the
sense that no optimal tree search algorithm can guarantee expanding fewer nodes [15].
We also mention that theBranch-and-Cut, a more modern algorithm that generates
cutting planesto tighten the LP relaxation of the current subproblem, can be adapted to
traverse an AND/OR search tree. Finally, the AND/OR algorithms can be easily adapted
for solvingmixed0/1 ILPs, where only a subset of the decision variables is restricted to
integer values. In that case, the AND/OR search space is based on apartial pseudo-tree
which spans only the integer variables.

Related Work AOBB is related to the Branch-and-Bound method proposed by [16] for
acyclic AND/OR graphs and game trees, as well as the pseudo-tree search algorithm
proposed in [17] for boosting Russian Doll search. The optimization method developed
in [18] for semi-ring CSPs can also be interpreted as an AND/OR graph search algo-

rithm. Problem decomposition based on hypergraph separators was also explored by
[19] and [20] for solving large real-world SAT problem instances.

Acknowledgments

We would like to thank the anonymous reviewers for commenting on an earlier version
of the paper. This work has been partially supported by the NSF grant IIS-0412854.

References

1. R. Marinescu and R. Dechter. And/or branch-and-bound for graphical models.In Interna-
tional Joint Conference on Artificial Intelligence (IJCAI’05), pages 224–229, 2005.

2. G. Nemhauser and L. Wolsey.Integer and combinatorial optimization.Wiley, 1988.
3. E. Lawler and D. Wood. Branch-and-bound methods: A survey.Operations Research,

14(4):699–719, 1966.
4. R. Dechter and R. Mateescu. And/or search spaces for graphicalmodels.UCI-ICS Techical

Report, 2006.
5. G.B. Dantzig. Maximization of a linear function of variables subject to linear inequalities.

Activity Analysis of Production and Allocation, 1951.
6. M. Vasquez and J. Hao. A hybrid approach for the 0/1 multidimensional knapsack approach.

In International Joint Conference on Artificial Intelligence (IJCAI’01), pages 328–333, 2001.
7. W. Shih. A branch-and-bound method for the multiconstraint 0/1 knapsack problem.Journal

of the Operational Research Society, 30:369–378, 1979.
8. B. Gavish and H. Pirkul. Allocation of data bases and processors in a distributed computing

system.Management of Distributed Data Processing, 31:215–231, 1982.
9. T. Sandholm. An algorithm for optimal winner determination in combinatorial auctions.In

International Joint Conference on Artificial Intelligence (IJCAI’99), pages 542–547, 1999.
10. K. Leyton-Brown, M. Pearson, and Y. Shoham. Towards a universal test suite for combina-

torial auction algorithms.In ACM Electronic Commerce, pages 66–76, 2000.
11. E. Freuder and M. Quinn. Taking advantage of stable sets of variables in constraint satisfac-

tion problems.In International Joint Conference on Artificial Intelligence (IJCAI’85), pages
1076–1078, 1985.

12. R. Bayardo and D. Miranker. On the space-time trade-off in solvingconstraint satisfaction
problems. In International Joint Conference on Artificial Intelligence (IJCAI’95), pages
558–562, 1995.

13. A. Darwiche. Recursive conditioning.Artificial Intelligence, 126(1-2):5–41, 2001.
14. Rina Dechter.Constraint Processing. MIT Press, 2003.
15. J. Pearl.Heuristics: Intelligent search strategies for computer problem solving.Addison-

Welsey, 1984.
16. L. Kanal and V. Kumar.Search in artificial intelligence.Springer-Verlag., 1988.
17. J. Larrosa, P. Meseguer, and M. Sanchez. Pseudo-tree search with soft constraints.In Euro-

pean Conference on Artificial Intelligence (ECAI’02), pages 131–135, 2002.
18. P. Jegou and C. Terrioux. Decomposition and good recording forsolving max-csps.In

European Conference on Artificial Intelligence (ECAI’04), pages 196–200, 2004.
19. J. Huang and A. Darwiche. A structure-based variable ordering heuristic. In International

Joint Conference on Artificial Intelligence (IJCAI’03), pages 1167–1172, 2003.
20. W. Li and P. van Beek. Guiding real-world sat solving with dynamic hypergraph separator

decomposition.In International Conference on Tools with Artificial Intelligence (ICTAI’04),
pages 542–548, 2004.

