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Abstract rather than the AND/OR search tree, using a flexible caching
mechanism that can adapt to memory limitations.

AND/OR search spacelsave recently been introduced as The caching scheme is based amntextsand is similar

a unifying paradigm for advanced algorithmic schemes for ) : .
graphical models. The main virtue of this representation to good and no-good recording and recent schemes appear

is its sensitivity to the structure of the model, which can Ing In Rec_urswe Conditioning (DarWIQhe 2.001) and Valueq
translate into exponential time savings for search algorithms, ~ Backtracking (Bacchus, Dalmao, & Pittasi 2003). The effi-
AND/OR Branch-and-BoundOBB) is a new algorithm that ciency of the proposed search methods also depends on the
explores the AND/OR search tree for solving optimization accuracy of the guiding heuristic function, which is based o
tasks in graphical models. In this paper we extend the al-  the mini-bucket approximation (Dechter & Rish 2003). We
gorithm to explore an AND/OR seardraph by equipping focus our empirical evaluation on two common optimiza-
it with a context-based adeptive caching .scheme similar to tion tasks such as solving Weighted CSPs (de Getrl.
good and no-good recording. The efficiency of the new  5005) and finding the Most Probable Explanation in belief
graph search algorithm is demonstrated empirically on var- aqyorks (Pearl 1988), and illustrate our results over-vari
lous benchmarks, including the very challenging ones that  \<"henchmarks, including the very challenging ones that
arise in genetic linkage analysis. S : S .
arise in the field of genetic linkage analysis.
Section 2 provides background on constraint optimization

Introduction problems, AND/OR search trees and #@BB algorithm.
In Section 3 we introduce the AND/OR searghaph and
AOBB with caching. In Section 4 we describe two context-
based caching schemes. Section 5 gives experimentalgesult
and Section 6 concludes.

Graphical models such as belief networks or constraint

networks are a widely used representation framework for

reasoning with probabilistic and deterministic infornoati

These models use graphs to capture conditional independen-

cies between variables, allowing a concise representafion .. .

the knowledge as well as efficient graph-based query pro- Preliminaries

cessing algorithmsConstraint Optimization Problemsich Constraint Optimization Problems

as finding the most likely state of a belief network or finding - ) o ) ]

a solution that violates the least number of constraintbean A finite Constraint Optimization ProblerqCOP) is a six-

defined within this framework and they are typically tackled tuple? = (X, D, F,®,|, Z), whereX’ = {X,... X, }

with eithersearchor inferencealgorithms (Dechter 2003). is a set of variablesD = {Dy,..., D, } is a set of finite
The AND/OR search space for graphical models (Dechter domains and® = {fi,..., fn} is a set of constraints. Con-

& Mateescu 2004) is a new framework for search that is Straints can be eithesoft (cost functions) ohard (sets of

sensitive to the independencies in the model, often result- &llowed tuples). Without loss of generality we assume that

ing in exponentially reduced complexities. It is based on hard constraints are represented as (bi-valued) cost func-

a pseudo-tree that captures independencies in the graphica ions- Allowed and forbidden tuples have cdésand oo,

model, resulting in a search tree exponential in the depth of "€SPectively. The scope of functigiy denotedscope(f;) <

the pseudo-tree, rather than in the number of variables. X, Is the. set of arguments qfl The operatorss and
AND/OR Branch-and-Bound algorithrAOBB) is a new { are defined as followsw; f; IS acombmat_lonoperator,

search method that explores the AND/OR search tree for €ifi € {I1i fi; 22 fi} andyy- f is aneliminationoperator,

solving optimization tasks in graphical models (Marinescu Vv / € {mazs_y f,mins_y f}, wheres is the scope of

& Dechter 2005). In this paper we improve t#©BB function f andY” C X'. The scope ofl fisY". .

scheme significantly by usirgachingschemes. Namely, we An optimization task is defined by(Z) = ;& fi,

extend the algorithm to explore the AND/OR seagrhph whereZ C &. A global optimizationis the task of find-
ing the best global cost, namely = (. For simplicity

Copyright © 2006, American Association for Artificial Intelli- we will develop our work assuming a COP instance with
gence (www.aaai.org). All rights reserved. summationand minimizationas combination and elimina-
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Figure 1: AND/OR Search Spaces

tion operators, yielding a global cost function defined by

F(X) =minx 3370, fi.

Given a COP instance, igimal graphG associates each

AND noden € St is in Solg,. then all its children are in
Solg,.; (iii) if a nonterminal OR noden € St is in Solr
then exactly one of its children is iflolg,..

variable with a node and connects any two nodes whose vari- Example 1 Figures 1(a) and 1(b) show a COP instance and

ables appear in the scope of the same function.

AND/OR Search Trees

The usual way to do search is to instantiate variables in turn
(we only consider a static variable ordering). In the sim-

plest case, this process defines a search tree (called here O
search tree), whose nodes represent states in the space

its pseudo-tree together with the back-arcs (dotted lines)
Figure 1(c) shows the AND/OR search tree based on the
pseudo-tree, for bi-valued variables. A solution subtee i
highlighted.

The AND/OR search tree can be traversed by a depth-first

giearch algorithm that is guaranteed to have a time complex-

y exponential in the depth of the pseudo-tree and can use

partial assignments. The traditional search space does notjjaar space (Dechter & Mateescu 2004). The arcs fiom

capture the structure of the underlying graphical model. In

to (X;, z;) are annotated by appropridabelsof the func-

troducing AND states into the search space can capture theions in 7. The nodes i can be associated witralues

structure decomposing the problem into independent sub-
problems by conditioning on values. The AND/OR search
space is defined using a backbgreeudo-tregFreuder &
Quinn 1985; Bayardo & Miranker 1995).

DEFINITION 1 (pseudo-tree) Given an undirected graph
G = (V,E), a directed rooted tred" = (V, E’) defined
on all its nodes is calleg@seudo-tred any arc ofG which is
not included inE’ is a back-arc, namely it connects a node
to an ancestor irf".

Given a COP instanc® = (X, D, F), its primal graph
G and a pseudo-treE of G, the associated AND/OR search
tree St has alternating levels of OR nodes and AND nodes.
The OR nodes are labeled; and correspond to the vari-
ables. The AND nodes are labeléd;, ;) and correspond
to value assignments in the domains of the variables. The
structure of the AND/OR tree is based on the underlying
pseudo-tree arrangementof G. The root of the AND/OR
search tree is an OR node, labeled with the rodf of

The children of an OR nod&,; are AND nodes labeled
with assignmentsX;, x;), consistent along the path from
the rOOt,path(Xi, Il) = (<X1,£C1>, . <Xi—171'i—1>)- The
children of an AND node(X;, z;) are OR nodes labeled
with the children of variableX; in T'. In other words, the
OR states represent alternative ways of solving the prablem

defined over the subtrees they root.

DEFINITION 2 (label) Thelabel (X, z;) of the arc from
the OR nodeX; to the AND nod€X;, z;) is defined as the
sum of all the cost functions values whose scope incliges
and is fully assigned alongath(X;, ;).

DEFINITION 3 (value) Thevaluewv(n) of a noden € St
is defined recursively as follows: (i) it = (X;,x;) is
a terminal AND node them(n) = I(X;,z;); (i) if n =
(X;, ;) is an internal AND node then(n) = I(X;, z;) +
> wesuce(n) V(M); (iii) if n = X; is an internal OR node
thenv(n) = min, csucen)v(n’), wheresucc(n) are the
children ofn in St.

Clearly, the value of each node can be computed recur-
sively, from leaves to root.

ProPOSITION1 (Marinescu & Dechter 2005) Given an
AND/OR search tre87 of a COP instanc® = (X, D, F),
the valuev(n) of a noden € Sy is the minimal cost so-
lution to the subproblem rooted at subject to the current
variable instantiation along the path from root to If n is
the root ofSt, thenv(n) is the minimal cost solution tB.

AND/OR Branch-and-Bound Tree Search
AND/OR Branch-and-Bound AOBB) was introduced in

whereas the AND states represent problem decomposition (Marinescu & Dechter 2005) as a depth-first Branch-and-
into independent subproblems, all of which need be solved. Bound that explores an AND/OR search tree for solving op-
When the pseudo-tree is a chain, the AND/OR search tree timization tasks in graphical models. In the following we

coincides with the regular OR search tree.
A solution subtreeSols,. of S is an AND/OR subtree
such that: (i) it contains the root &fr; (i) if a nonterminal

review briefly the algorithm.
At any stage during search, a nodealong the current
path roots a curremartial solution subtreavhich must be



connected, must contain its rootand will have afrontier function: ACBB,( st, X, D, F)
containing all those nodes that were generated and not yet 1 if X = () then return 0;
expanded. Furthermore, there existstatic heuristic func- 2 else

tion h(n) underestimating(n) that can be computed effi- X, < Sel ect Var (X);

w

ciently when node is first generated. 4 v(X;) — oo
AOBB traverses the AND/OR search tree in a depth-first 5 foreach x; € D; do
manner. For any node on the current search path the 6 st — st U (X, x;);
algorithm calculates aynamic heuristic evaluation func- 7 v «— ReadCache( X;,z;) ;
tion f5(n), which underestimates(n). The definition of 8 if v # NULL then
fr(n) is based on the portion of the search space below 9 tmp — v+l abel ( X;,z;);
that has already been explored, as described in (Marinescu 10 if -Fi ndCut ( X;,z;,tmp) then
& Dechter 2005). The algorithm also maintains @per 1 v(X;) «— min(v(X;), tmp);
boundon v(n) which is the current minimal cost solution 12 continue;
subtree rooted at. If f;(n) > wub(n) then the search is 13 end
terminated below the tip node of the current search path (for 14 h(X;,z;) — LB(X,D,F);
more details see (Marinescu & Dechter 2005)). 15 foreach k = 1..q do
16 h(Xk) — LB( Xk,Dk,fk) )
AND/OR Search Graphs 17 end

18 if =Fi ndCut (X“l‘“h(X“J?L)) then

The AND/OR search tree may contain nodes that root iden- 10 W(X;, ) — 0

tical subtrees (in particular, their root nodes values de@e-

tical). These are callednifiable When unifiable nodes are (1) foryezcil;aBE.q( 22 X Do) |
merged, the search tree becomes a graph and its size be- o o(X;, 7:) (_HU(X_' x’“_’) —i’v:l"
comes smaller. A depth-first search algorithm can explore . end v v '
the AND/OR graph using additional memory. The algorithm . ]
can be modified t@achepreviously computed results and Wi teCache( X;u(X;,2:)) ; .
retrieve them when the same nodes are encountered again. 2 v(Xy, ) — v(X;, 2;)+ abel (i) 3
Some unifiable nodes can be identified based on tiueir 2 v(Xy) = min(v(Xy), v(Xi, 21));
texts 2 end

28 end
DEFINITION 4 (context) Given a COP instance and the 29 returnv(X;);
corresponding AND/OR search trég- relative to a pseudo- 30 end
treeT', thecontextof any AND nodéX;, z;) € Sr, denoted
by context(X;), is defined as the set of ancestorsXafin Figure 2: Graph AND/OR Branch-and-Bound.

T, including X, that are connected to descendantsxgf

Itis easy to verify that the context of; d-separates (Pearl
1988) the subproblerRx, below X, from the rest of the net- Figure 2 shows the graphOBB, algorithm. The follow-
work. Namely, itis possible to solBy, for any assignment ing notation is used{X’, D, F) is the problem with which
of context(X;) and record its optimal value, thus avoiding  the procedure is called and is the current partial solution
to solve Py, again for the same assignment. Tdntext- subtree being explored. The algorithm assumes that vari-
minimal AND/OR graph is obtained by merging all the con-  ables are selected according to a pseudo-tree arrangement.
text unifiable AND nodes. The size of the largest context  f the setx is empty, then the result is trivially computed
is bounded by the induced width" of the primal graph (jine 1). Else AOBB, selects a variabl&; (i.e. expands the
(extended with the pseudo-tree extra arcs) over the omglerin - OR nodeX;) and iterates over its values (line 5) to compute
given by the depth-first traversal Gf (i.e. induced width  the OR values(X;). The algorithm attempts to retrieve the
of the pseudo-tree). Therefore, the time and space com- regylts cached at the AND nodes (line 7). If a valid cache en-
plexity of a search algorithm traversing the context-miaiim try v is found for the current AND nodgX;, z;) then the OR
AND/OR graph isO(exp(w”)) (Dechter & Mateescu 2004).  yajuev(X;) is updated (line 11) and the search continues
_For illustration, consider the context-minimal graph in  \yith the next value inY;’s domain. Otherwise, the problem
Figure 1(d) of the pseudo-tree from Figure 1(b). Its size s decomposed into a set@fndependent subproblems, one
is far smaller that that of the AND/OR tree from Figure 1(C) or each childx;, of X; in the pseudo-tree. Procedur®

(16 nodes vs. 54 nodes). The contexts of the nodes can becomputes the static heuristic functibv) for every node in
read from the pseudo-tree, as followsintext(A) = {A}, the search graph.

context(B) = {B,A}, context(C) = {C,B}, context(D) = When ex ;
i | panding the AND nodgX;, =;), AOBB, succes-
{D}, context(E) = {E,A} andcontext(F) = {F}. sively updates thdynamic heuristic functionfh(mq) for ev-

ery ancestor node: along the active path and terminates the
AND/OR Branch-and-Bound Graph Search current search path if, for some, f,(m) > ub(m). Else,

In this section we extenéOBB to traverse an AND/OR the independent subproblems are sequentially solved (line
search graph by equipping it with a caching mechanism. 21) and the solutions are accumulated by the AND value



v(X;, z;) (line 23). After trying all feasible values of vari-
able X;, the minimal cost solution to the problem rooted by
X; remains inv(X;), which is returned (line 31).

Caching Schemes

In this section we present two caching schemes that can
adapt to the current memory limitations. They are based on
contextswhich are pre-computed from the pseudo-tree and
use a parameter calledche boundor j-bound) to control
the amount of memory used for storing unifiable nodes.

Naive Caching

The first scheme, calledaive cachingand denoted by
AOBB+C(j), stores nodes at the variables whose context size
is smaller than or equal to the cache boyndt is easy to
see that wheri equals the induced width of the pseudo-tree
the algorithm explores the context-minimal AND/OR graph.
A straightforward way of implementing the caching
scheme is to have@ache tabldor each variableX,, record-
ing the context. Specifically, lets assume that the context o
Xy, is context(Xy) = {X;, ..., Xi} and|context(Xy)| <
4. A cache table entry corresponds to a particular instan-
tiation {z;, ...,z } of the variables incontext(X;) and
records the optimal cost solution to the subprobieg .

However, wherAOBB+AC(j) retracts toX,_; or above, all
the nodes cached at variabig, need to be discarded.

This caching scheme requires only a linear increase in
additional memory, compared tAOBB+C(j), but it has
the potential of exponential time savings. Specifically,
for solving the subproblem rooted h¥, in the pseudo-
tree, AOBB+AC(j) requiresO(exp(m)) time andO (exp(j))
space, whereadOBB+C(j) need0(exp(hy)) time and lin-
ear space, wherk, is the depth of the subtree rootedXt
in the pseudo-treen = |context(Xy)| andm < hy.

Additional dead-caches in the adaptive scheme can also
be identified by inspecting the pseudo-tree. Consider the
nodeX}, from the previous example and letc(Xy) be the
ancestors ofX}; in the pseudo-tree betwee¥y, and X;,_;,
including Xy. If anc(X}) contains only the variables in the
adjusted context ok, then X}, is a dead-cache.

Experiments

In this section we evaluate empirically the performance of
the AND/OR Branch-and-Bound graph search algorithm on
two optimization tasks: solving Weighted CSPs and finding
the Most Probable Explanation (MPE) in belief netwdrks

Weighted CSRde Givry et al. 2005) extends the clas-
sic CSP formalism with so-callezbft constraintsvhich as-

However, some tables might never get cache hits. These sjgn positive integer costs to forbidden tuples (allowed tu

are calleddead-cachegDarwiche 2001). In the AND/OR

ples have cost 0). The goal is to find a complete assignment

search graph, dead-caches appear at nodes that have onlyyith minimum aggregated cost.

one incoming arc. AOBB+C(5) needs to record only nodes
that are likely to have additional incoming arcs, and these

A Belief Network(Pearl 1988) provides a formalism for
reasoning under conditions of uncertainty by represerging

nodes can be determined by inspecting the pseudo-tree. jgint probability distribution over the variables of inést via

Namely, if the context of a node includes that of its par-
ent, then there is no need to store anything for that node,
because it would be a dead-cache. For example, fibue

the AND/OR search graph from Figure 1(d) is a dead-cache
because its context includes the context of its pareintthe
pseudo-tree from Figure 1(b).

Adaptive Caching

The second scheme, calladaptive cachingind denoted by
AOBB+AC(j), is inspired by the AND/OR cutset condition-
ing scheme and was first explored in (Mateescu & Dechter
2005). It extends the naive scheme by allowing caching even
at nodes with contexts larger than the given cache bound,
based oradjusted contexts

We will illustrate the idea with an example. Con-
sider the nodeX;, with context(X) = {Xi, ..., Xk},
where|context(Xy)| > j. During search, when variables
{Xi,..., X_;} are assigned, they can be viewed as part of a
w-cutset(Pearl 1988). Thev-cutset method consists of enu-
merating all the possible instantiations of a subset of-vari
ables (i.e. cutset), and for each one solving the remaining
easier subproblem withim-bounded space restrictions.

Therefore, once variablgsy;, ..., Xj,_; } are instantiated,
the problem rooted ak_;,; can be solved as a simpli-
fied subproblem from the cutset method. In the subproblem,
conditioned on the valuegx;, ..., xx—;}, context(Xy) is
{Xk—j+1, -, Xi} (we call this theadjusted contextf X,),
so it can be stored within thebounded space restrictions.

a directed acyclic graph. A function of the model encodes
the conditional probability distribution(CPT) of a variable
given its parents in the graph. The MPE problem is the task
of finding a complete assignment with maximum probability
that is consistent with the evidence. It is equivalent tesol
ing a COP instance witultiplicationandmaximizatioras

the combination and elimination operators.

We consider two classes of AND/OR Branch-and-Bound
graph search algorithms guided by the pre-compiled mini-
bucket heuristics (Marinescu & Dechter 2005) and using ei-
ther naive or adaptivecaching schemes. They are denoted
by AOVB+C(i,j) and AOVB+AC(i,j), respectively. The pa-
rameters and;j denote the mini-buckétbound (which con-
trols the accuracy of the heuristic) and the cache bound. The
pseudo-trees were generated using the min-fill heurisdic, a
described in (Marinescu & Dechter 2005).

We report the average effort as CPU time (in seconds)
and number of nodes visited, required for proving optimal-
ity of the solution, the induced width (w*) and depth of the
pseudo-tree (h) obtained for the test instances. The best pe
formance points are highlighted. For comparison, we also
report results obtained with the tree version of the alpori
denoted byAOVB(i). The latter was shown to outperform
significantly the OR Branch-and-Bound versi@B{B) in
various domains (Marinescu & Dechter 2005).

LAll our experiments were done on a 2.4GHz Pentium IV with
2GB of RAM, running Windows XP.
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Figure 3: Time in seconds and nodes visited to prove optiynfai random belief networks with 120 variables.

spot | (w5 h) | MEDAC | AOEDAC (W) AOMB()) ped | (W h) VEC | SUPER | G )) AOMB(i,))

=0 C()  AC() LINK j=0 c)  AC()
29 | (14, 42) 0.41 191 | (8,6) 103 100  1.06 T | (15 61) | 24.62 131.3 | (10,10) | 0.609 0249 0218
54 | (11,33) 0.06 113 | (8,8) 012 006 006 20 | (24,69) | 1,304 1244 | (16,16) | 4802 1820  192.0
404 | (19, 42) 0.03 250 | (8,6) 003 002 002 23 | (23,38) | 1,144 6,809 | (16,18) | 1660 11.33 1129
408 | (12,27) 0.39 8.50 | (6,6) 0.05 003 003 30 | (26,51) | 26,719 | 28,740 | (20,22) | 6157 38.85 3881
503 | (9,39) 11.70 278 | (8,8) 010 005 003 38 | (17,59) | 15,860 6218 | (12,12) | 1,212 1044 1247
505 | (23,74) 4,010 7543 | (16,16) | 8968 232 231 50 | (18,58) | 85,637 716.6 | (10,12) | 8352 2072  36.41

Table 1: Time in seconds to prove optimality for SPOT5.  Table 2: Time in seconds to prove optimality for pedigrees.

. scheduling problems. In addition, we consider MEDAC
Random Belief Networks and AOEDA% which are the OR and AND/OR Branch-and-
We have generated a class of random belief networks us- Bound algorithms maintaining Existential Directional Arc
ing the parametric modéh, d, ¢, p) proposed in (Kask & Consistency (EDAC) (de Givregt al. 2005) and are not re-
Dechter 2001). Figure 3 reports the average time results stricted to a static variable ordering. We experimentedh wit
in seconds and number of nodes visited for 20 random in- a wide range of values for theandj bounds, but we report
stances of a network with=120 variables, domain sizk2, only the ¢,7) combination for which we obtained the best
¢=110 CPTs ang=2 parents per CPT. The average induced results. BothAOVB+C(i,j) and AOVB+AC(i,;) are the best
width and pseudo-tree depth were 20 and 32, respectively. performing algorithms in this domain. The impact of the
Thei-bound of the mini-bucket heuristic ranged between 2 caching schemes is minor for most of the test instances. This

and 10, and we chose three caching levels as folldos: is due the accuracy of the heuristic estimates which prume th
(j=2), medium(j=6) andhigh (j=10). search space very effectively. 505 however, the hardest

We observe that naive caching improves when the heuris- instance AOVB+AC(16,16) improves dramatically the per-
tic is relatively weak (corresponding to smatbounds). formance causing a speedup of 39 o&xeNVB(16).

As thei-bound increases and the heuristics become strong
enough to cut the search space substantially, the added sav-Genetic Linkage Analysis
ings in the number of nodes caused by caching do not trans-
late into time savings as well. In Figure 3(c) we compare
the two caching schemes, in terms of CPU time, for differ-
ent values of theé-bound ¢ €{2,4,6}). We observe only a
minor improvement of the adaptive scheme over the naive
one, more noticeable for smalandj-bounds.

Themaximum likelihood haplotyg@oblem in genetic link-
age analysis is the task of finding a joint haplotype configu-
ration for all members of the pedigree which maximizes the
probability of data. It has been shown to be equivalent to
finding the MPE of a belief network which represents the
pedigree data (Fishelson & Geiger 2002).

Earth Observing Satellites Table 2 displays a summary of the results obtained for

) ) o 6 hard linkage analysis networksFor comparison, we in-
The problem of scheduling an Earth observing satellite is to ¢|ude results obtained withec andsUPERLINKV 1. 5. SU-

select from a set of candidate photographs, the best subsetreriink is currently the most efficient solver for genetic
such that a set of imperative constraints are satisfied @&d th |inkage analysis, is dedicated to this domain, uses a com-
total importance of the selected photographs is maximized. pination of variable elimination and conditioning, andeak
We experimented with problem instances from the SPOT5 advantage of the determinism in the netwomkecC is our
benchmark (Bensana, Lemaitre, & Verfaillie 1999) which  ijmplementation of the elimination/conditioning hybriddan
can be formulated as non-binary WCSPs. For our purpose js not sensitive to determinism. As both algorithms use non-
we considered a simplified MAX-CSP version of the prob-  deterministic algorithms for computing the elimination or

lem where the goal is to minimize the number of imperative  der, their running time may vary significantly from one run
constraints violations.

Table 1 shows a summary of the results obtained for 6 2http://bioinfo.cs.technion.ac.il/superlink/
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Figure 4: Detailed time results in seconds comparing theenas. adaptive caching for genetic linkage analysis.

to the next. We therefore report an average over 5 runs.
We observe thaAOVB+C(i,5j) andAOVB+AC(:,j) are the
best performing algorithms in this domain. The time savings

caused by both naive and adaptive caching schemes are sig-
nificant and in some cases the differences add up to several

orders of magnitude over boteC and SUPERLINK (e.g.
ped- 23, ped- 50). Figure 4 provides an alternative view
comparing the two caching schemes, in terms of CPU time,
for a smalleri-bound of the mini-bucket heuristic. We notice
that adaptive caching improves significantly over the naive
scheme especially for relatively smghbounds. This may

be important because smgtbounds mean restricted space.
At large j-bounds the two schemes are identical.

In summary, the effect of caching (either naive or adap-
tive) is more prominent for relatively weak guiding heuris-
tics estimates. The merit of adaptive caching over naive one
is evident when thg-bound is much smaller than the in-
duced width and there is a relatively small number of dead-
caches. This translates sometimes into impressive time sav
ings for the Branch-and-Bound algorithms.

Conclusion

In this paper we extended the AND/OR Branch-and-Bound
algorithm to traversing an AND/OR search graph rather than
an AND/OR search tree by equipping it with an efficient

caching mechanism. We investigated two flexible context-

based caching schemes that can adapt to the current memory

restrictions. The efficiency of the new AND/OR Branch-
and-Bound graph search algorithms is demonstrated empiri-
cally on various benchmarks including the very challenging
ones from the field of genetic linkage analysis.

Related Work: AOBB graph search is related to the Branch-
and-Bound method proposed by (Kanal & Kumar 1988) for
acyclic AND/OR graphs and game trees. BTD developed
in (Jegou & Terrioux 2004) can also be interpreted as an
AND/OR graph search algorithm with a caching mechanism

based on the separators of the guiding tree-decomposition.

When compared with BTDAOBB, with naive/adaptive
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