
Memory Intensive Branch-and-Bound Search for Graphical Models

Radu Marinescu and Rina Dechter
School of Information and Computer Science
University of California, Irvine, CA 92627
{radum,dechter}@ics.uci.edu

Abstract

AND/OR search spaceshave recently been introduced as
a unifying paradigm for advanced algorithmic schemes for
graphical models. The main virtue of this representation
is its sensitivity to the structure of the model, which can
translate into exponential time savings for search algorithms.
AND/OR Branch-and-Bound (AOBB) is a new algorithm that
explores the AND/OR search tree for solving optimization
tasks in graphical models. In this paper we extend the al-
gorithm to explore an AND/OR searchgraph by equipping
it with a context-based adaptive caching scheme similar to
good and no-good recording. The efficiency of the new
graph search algorithm is demonstrated empirically on var-
ious benchmarks, including the very challenging ones that
arise in genetic linkage analysis.

Introduction
Graphical models such as belief networks or constraint
networks are a widely used representation framework for
reasoning with probabilistic and deterministic information.
These models use graphs to capture conditional independen-
cies between variables, allowing a concise representationof
the knowledge as well as efficient graph-based query pro-
cessing algorithms.Constraint Optimization Problemssuch
as finding the most likely state of a belief network or finding
a solution that violates the least number of constraints canbe
defined within this framework and they are typically tackled
with eithersearchor inferencealgorithms (Dechter 2003).

The AND/OR search space for graphical models (Dechter
& Mateescu 2004) is a new framework for search that is
sensitive to the independencies in the model, often result-
ing in exponentially reduced complexities. It is based on
a pseudo-tree that captures independencies in the graphical
model, resulting in a search tree exponential in the depth of
the pseudo-tree, rather than in the number of variables.

AND/OR Branch-and-Bound algorithm (AOBB) is a new
search method that explores the AND/OR search tree for
solving optimization tasks in graphical models (Marinescu
& Dechter 2005). In this paper we improve theAOBB
scheme significantly by usingcachingschemes. Namely, we
extend the algorithm to explore the AND/OR searchgraph

Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

rather than the AND/OR search tree, using a flexible caching
mechanism that can adapt to memory limitations.

The caching scheme is based oncontextsand is similar
to good and no-good recording and recent schemes appear-
ing in Recursive Conditioning (Darwiche 2001) and Valued
Backtracking (Bacchus, Dalmao, & Pittasi 2003). The effi-
ciency of the proposed search methods also depends on the
accuracy of the guiding heuristic function, which is based on
the mini-bucket approximation (Dechter & Rish 2003). We
focus our empirical evaluation on two common optimiza-
tion tasks such as solving Weighted CSPs (de Givryet al.
2005) and finding the Most Probable Explanation in belief
networks (Pearl 1988), and illustrate our results over vari-
ous benchmarks, including the very challenging ones that
arise in the field of genetic linkage analysis.

Section 2 provides background on constraint optimization
problems, AND/OR search trees and theAOBB algorithm.
In Section 3 we introduce the AND/OR searchgraph and
AOBB with caching. In Section 4 we describe two context-
based caching schemes. Section 5 gives experimental results
and Section 6 concludes.

Preliminaries
Constraint Optimization Problems

A finite Constraint Optimization Problem(COP) is a six-
tupleP = 〈X ,D,F ,⊗,⇓, Z〉, whereX = {X1, ...,Xn}
is a set of variables,D = {D1, ...,Dn} is a set of finite
domains andF = {f1, ..., fm} is a set of constraints. Con-
straints can be eithersoft (cost functions) orhard (sets of
allowed tuples). Without loss of generality we assume that
hard constraints are represented as (bi-valued) cost func-
tions. Allowed and forbidden tuples have cost0 and∞,
respectively. The scope of functionfi, denotedscope(fi) ⊆
X , is the set of arguments offi. The operators⊗ and
⇓ are defined as follows:⊗ifi is a combinationoperator,
⊗ifi ∈ {

∏
i fi,

∑
i fi} and⇓Y f is aneliminationoperator,

⇓Y f ∈ {maxS−Y f,minS−Y f}, whereS is the scope of
functionf andY ⊆ X . The scope of⇓Y f is Y .

An optimization task is defined byg(Z) = ⇓Z⊗
m
i=1fi,

whereZ ⊆ X . A global optimizationis the task of find-
ing the best global cost, namelyZ = ∅. For simplicity
we will develop our work assuming a COP instance with
summationand minimizationas combination and elimina-

A

E

C

B

F

D

(a)

A

D

B

EC

F

(b)

OR

AND

OR

AND

OR

OR

AND

AND

A

0

B

0

E

F F

0 1 0 1

0 1

C

D D

0 1 0 1

0 1

1

E

F F

0 1 0 1

0 1

C

D D

0 1 0 1

0 1

1

B

0

E

F F

0 1 0 1

0 1

C

D D

0 1 0 1

0 1

1

E

F F

0 1 0 1

0 1

C

D D

0 1 0 1

0 1

(c)

AOR

0AND

BOR

0AND

OR E

OR F F

AND
0 1

AND 0 1

C

D D

0 1

0 1

1

EC

D D

0 1

1

B

0

E

F F

0 1

C

1

EC

(d)

Figure 1: AND/OR Search Spaces

tion operators, yielding a global cost function defined by
f(X) = minX

∑m

i=1 fi.
Given a COP instance, itsprimal graphG associates each

variable with a node and connects any two nodes whose vari-
ables appear in the scope of the same function.

AND/OR Search Trees
The usual way to do search is to instantiate variables in turn
(we only consider a static variable ordering). In the sim-
plest case, this process defines a search tree (called here OR
search tree), whose nodes represent states in the space of
partial assignments. The traditional search space does not
capture the structure of the underlying graphical model. In-
troducing AND states into the search space can capture the
structure decomposing the problem into independent sub-
problems by conditioning on values. The AND/OR search
space is defined using a backbonepseudo-tree(Freuder &
Quinn 1985; Bayardo & Miranker 1995).

DEFINITION 1 (pseudo-tree) Given an undirected graph
G = (V,E), a directed rooted treeT = (V,E′) defined
on all its nodes is calledpseudo-treeif any arc ofG which is
not included inE′ is a back-arc, namely it connects a node
to an ancestor inT .

Given a COP instanceP = (X ,D,F), its primal graph
G and a pseudo-treeT of G, the associated AND/OR search
treeST has alternating levels of OR nodes and AND nodes.
The OR nodes are labeledXi and correspond to the vari-
ables. The AND nodes are labeled〈Xi, xi〉 and correspond
to value assignments in the domains of the variables. The
structure of the AND/OR tree is based on the underlying
pseudo-tree arrangementT of G. The root of the AND/OR
search tree is an OR node, labeled with the root ofT .

The children of an OR nodeXi are AND nodes labeled
with assignments〈Xi, xi〉, consistent along the path from
the root,path(Xi, xi) = (〈X1, x1〉, ..., 〈Xi−1, xi−1〉). The
children of an AND node〈Xi, xi〉 are OR nodes labeled
with the children of variableXi in T . In other words, the
OR states represent alternative ways of solving the problem,
whereas the AND states represent problem decomposition
into independent subproblems, all of which need be solved.
When the pseudo-tree is a chain, the AND/OR search tree
coincides with the regular OR search tree.

A solution subtreeSolST
of ST is an AND/OR subtree

such that: (i) it contains the root ofST ; (ii) if a nonterminal

AND noden ∈ ST is in SolST
then all its children are in

SolST
; (iii) if a nonterminal OR noden ∈ ST is in SolT

then exactly one of its children is inSolST
.

Example 1 Figures 1(a) and 1(b) show a COP instance and
its pseudo-tree together with the back-arcs (dotted lines).
Figure 1(c) shows the AND/OR search tree based on the
pseudo-tree, for bi-valued variables. A solution subtree is
highlighted.

The AND/OR search tree can be traversed by a depth-first
search algorithm that is guaranteed to have a time complex-
ity exponential in the depth of the pseudo-tree and can use
linear space (Dechter & Mateescu 2004). The arcs fromXi

to 〈Xi, xi〉 are annotated by appropriatelabelsof the func-
tions inF . The nodes inST can be associated withvalues,
defined over the subtrees they root.

DEFINITION 2 (label) The label l(Xi, xi) of the arc from
the OR nodeXi to the AND node〈Xi, xi〉 is defined as the
sum of all the cost functions values whose scope includesXi

and is fully assigned alongpath(Xi, xi).

DEFINITION 3 (value) Thevaluev(n) of a noden ∈ ST

is defined recursively as follows: (i) ifn = 〈Xi, xi〉 is
a terminal AND node thenv(n) = l(Xi, xi); (ii) if n =
〈Xi, xi〉 is an internal AND node thenv(n) = l(Xi, xi) +∑

n′∈succ(n) v(n′); (iii) if n = Xi is an internal OR node
then v(n) = minn′∈succ(n)v(n′), wheresucc(n) are the
children ofn in ST .

Clearly, the value of each node can be computed recur-
sively, from leaves to root.

PROPOSITION1 (Marinescu & Dechter 2005) Given an
AND/OR search treeST of a COP instanceP = (X ,D,F),
the valuev(n) of a noden ∈ ST is the minimal cost so-
lution to the subproblem rooted atn, subject to the current
variable instantiation along the path from root ton. If n is
the root ofST , thenv(n) is the minimal cost solution toP.

AND/OR Branch-and-Bound Tree Search
AND/OR Branch-and-Bound (AOBB) was introduced in
(Marinescu & Dechter 2005) as a depth-first Branch-and-
Bound that explores an AND/OR search tree for solving op-
timization tasks in graphical models. In the following we
review briefly the algorithm.

At any stage during search, a noden along the current
path roots a currentpartial solution subtreewhich must be

connected, must contain its rootn and will have afrontier
containing all those nodes that were generated and not yet
expanded. Furthermore, there exists astaticheuristic func-
tion h(n) underestimatingv(n) that can be computed effi-
ciently when noden is first generated.
AOBB traverses the AND/OR search tree in a depth-first

manner. For any noden on the current search path the
algorithm calculates adynamic heuristic evaluation func-
tion fh(n), which underestimatesv(n). The definition of
fh(n) is based on the portion of the search space belown
that has already been explored, as described in (Marinescu
& Dechter 2005). The algorithm also maintains anupper
boundon v(n) which is the current minimal cost solution
subtree rooted atn. If fh(n) ≥ ub(n) then the search is
terminated below the tip node of the current search path (for
more details see (Marinescu & Dechter 2005)).

AND/OR Search Graphs
The AND/OR search tree may contain nodes that root iden-
tical subtrees (in particular, their root nodes values are iden-
tical). These are calledunifiable. When unifiable nodes are
merged, the search tree becomes a graph and its size be-
comes smaller. A depth-first search algorithm can explore
the AND/OR graph using additional memory. The algorithm
can be modified tocachepreviously computed results and
retrieve them when the same nodes are encountered again.
Some unifiable nodes can be identified based on theircon-
texts.

DEFINITION 4 (context) Given a COP instance and the
corresponding AND/OR search treeST relative to a pseudo-
treeT , thecontextof any AND node〈Xi, xi〉 ∈ ST , denoted
by context(Xi), is defined as the set of ancestors ofXi in
T , includingXi, that are connected to descendants ofXi.

It is easy to verify that the context ofXi d-separates (Pearl
1988) the subproblemPXi

belowXi from the rest of the net-
work. Namely, it is possible to solvePXi

for any assignment
of context(Xi) and record its optimal value, thus avoiding
to solvePXi

again for the same assignment. Thecontext-
minimalAND/OR graph is obtained by merging all the con-
text unifiable AND nodes. The size of the largest context
is bounded by the induced widthw∗ of the primal graph
(extended with the pseudo-tree extra arcs) over the ordering
given by the depth-first traversal ofT (i.e. induced width
of the pseudo-tree). Therefore, the time and space com-
plexity of a search algorithm traversing the context-minimal
AND/OR graph isO(exp(w∗)) (Dechter & Mateescu 2004).

For illustration, consider the context-minimal graph in
Figure 1(d) of the pseudo-tree from Figure 1(b). Its size
is far smaller that that of the AND/OR tree from Figure 1(c)
(16 nodes vs. 54 nodes). The contexts of the nodes can be
read from the pseudo-tree, as follows:context(A) = {A},
context(B) = {B,A}, context(C) = {C,B}, context(D) =
{D}, context(E) = {E,A} andcontext(F) = {F}.

AND/OR Branch-and-Bound Graph Search
In this section we extendAOBB to traverse an AND/OR
search graph by equipping it with a caching mechanism.

function: AOBBg(st,X,D,F)
if X = ∅ then return 0;1

else2

Xi ← SelectVar(X);3

v(Xi)←∞;4

foreach xi ∈ Di do5

st′ ← st ∪ (Xi, xi);6

v ← ReadCache(Xi,xi);7

if v 6= NULL then8

tmp← v+label(Xi,xi);9

if ¬FindCut(Xi,xi,tmp) then10

v(Xi)← min(v(Xi), tmp);11

continue;12

end13

h(Xi, xi)← LB(X ,D,F);14

foreach k = 1..q do15

h(Xk)← LB(Xk,Dk,Fk);16

end17

if ¬FindCut(Xi,xi,h(Xi, xi)) then18

v(Xi, xi)← 0;19

foreach k = 1..q do20

val←AOBBg(st′,Xk,Dk,Fk);21

v(Xi, xi)← v(Xi, xi) + val;22

end23

WriteCache(Xi,v(Xi, xi));24

v(Xi, xi)← v(Xi, xi)+label(Xi,xi);25

v(Xi)← min(v(Xi), v(Xi, xi));26

end27

end28

return v(Xi);29

end30

Figure 2: Graph AND/OR Branch-and-Bound.

Figure 2 shows the graphAOBBg algorithm. The follow-
ing notation is used:(X ,D,F) is the problem with which
the procedure is called andst is the current partial solution
subtree being explored. The algorithm assumes that vari-
ables are selected according to a pseudo-tree arrangement.

If the setX is empty, then the result is trivially computed
(line 1). Else,AOBBg selects a variableXi (i.e. expands the
OR nodeXi) and iterates over its values (line 5) to compute
the OR valuev(Xi). The algorithm attempts to retrieve the
results cached at the AND nodes (line 7). If a valid cache en-
try v is found for the current AND node〈Xi, xi〉 then the OR
valuev(Xi) is updated (line 11) and the search continues
with the next value inXi’s domain. Otherwise, the problem
is decomposed into a set ofq independent subproblems, one
for each childXk of Xi in the pseudo-tree. ProcedureLB
computes the static heuristic functionh(n) for every node in
the search graph.

When expanding the AND node〈Xi, xi〉, AOBBg succes-
sively updates thedynamic heuristic functionfh(m) for ev-
ery ancestor nodem along the active path and terminates the
current search path if, for somem, fh(m) ≥ ub(m). Else,
the independent subproblems are sequentially solved (line
21) and the solutions are accumulated by the AND value

v(Xi, xi) (line 23). After trying all feasible values of vari-
ableXi, the minimal cost solution to the problem rooted by
Xi remains inv(Xi), which is returned (line 31).

Caching Schemes
In this section we present two caching schemes that can
adapt to the current memory limitations. They are based on
contexts, which are pre-computed from the pseudo-tree and
use a parameter calledcache bound(or j-bound) to control
the amount of memory used for storing unifiable nodes.

Naive Caching
The first scheme, callednaive cachingand denoted by
AOBB+C(j), stores nodes at the variables whose context size
is smaller than or equal to the cache boundj. It is easy to
see that whenj equals the induced width of the pseudo-tree
the algorithm explores the context-minimal AND/OR graph.

A straightforward way of implementing the caching
scheme is to have acache tablefor each variableXk record-
ing the context. Specifically, lets assume that the context of
Xk is context(Xk) = {Xi, ...,Xk} and |context(Xk)| ≤
j. A cache table entry corresponds to a particular instan-
tiation {xi, ..., xk} of the variables incontext(Xk) and
records the optimal cost solution to the subproblemPXk

.
However, some tables might never get cache hits. These

are calleddead-caches(Darwiche 2001). In the AND/OR
search graph, dead-caches appear at nodes that have only
one incoming arc.AOBB+C(j) needs to record only nodes
that are likely to have additional incoming arcs, and these
nodes can be determined by inspecting the pseudo-tree.
Namely, if the context of a node includes that of its par-
ent, then there is no need to store anything for that node,
because it would be a dead-cache. For example, nodeB in
the AND/OR search graph from Figure 1(d) is a dead-cache
because its context includes the context of its parentA in the
pseudo-tree from Figure 1(b).

Adaptive Caching
The second scheme, calledadaptive cachingand denoted by
AOBB+AC(j), is inspired by the AND/OR cutset condition-
ing scheme and was first explored in (Mateescu & Dechter
2005). It extends the naive scheme by allowing caching even
at nodes with contexts larger than the given cache bound,
based onadjusted contexts.

We will illustrate the idea with an example. Con-
sider the nodeXk with context(Xk) = {Xi, ...,Xk},
where|context(Xk)| > j. During search, when variables
{Xi, ...,Xk−j} are assigned, they can be viewed as part of a
w-cutset(Pearl 1988). Thew-cutset method consists of enu-
merating all the possible instantiations of a subset of vari-
ables (i.e. cutset), and for each one solving the remaining
easier subproblem withinw-bounded space restrictions.

Therefore, once variables{Xi, ...,Xk−j} are instantiated,
the problem rooted atXk−j+1 can be solved as a simpli-
fied subproblem from the cutset method. In the subproblem,
conditioned on the values{xi, ..., xk−j}, context(Xk) is
{Xk−j+1, ...,Xk} (we call this theadjusted contextof Xk),
so it can be stored within thej-bounded space restrictions.

However, whenAOBB+AC(j) retracts toXk−j or above, all
the nodes cached at variableXk need to be discarded.

This caching scheme requires only a linear increase in
additional memory, compared toAOBB+C(j), but it has
the potential of exponential time savings. Specifically,
for solving the subproblem rooted byXk in the pseudo-
tree,AOBB+AC(j) requiresO(exp(m)) time andO(exp(j))
space, whereasAOBB+C(j) needsO(exp(hk)) time and lin-
ear space, wherehk is the depth of the subtree rooted atXk

in the pseudo-tree,m = |context(Xk)| andm ≤ hk.
Additional dead-caches in the adaptive scheme can also

be identified by inspecting the pseudo-tree. Consider the
nodeXk from the previous example and letanc(Xk) be the
ancestors ofXk in the pseudo-tree betweenXk andXk−j ,
includingXk. If anc(Xk) contains only the variables in the
adjusted context ofXk thenXk is a dead-cache.

Experiments
In this section we evaluate empirically the performance of
the AND/OR Branch-and-Bound graph search algorithm on
two optimization tasks: solving Weighted CSPs and finding
the Most Probable Explanation (MPE) in belief networks1.

Weighted CSP(de Givry et al. 2005) extends the clas-
sic CSP formalism with so-calledsoft constraintswhich as-
sign positive integer costs to forbidden tuples (allowed tu-
ples have cost 0). The goal is to find a complete assignment
with minimum aggregated cost.

A Belief Network(Pearl 1988) provides a formalism for
reasoning under conditions of uncertainty by representinga
joint probability distribution over the variables of interest via
a directed acyclic graph. A function of the model encodes
theconditional probability distribution(CPT) of a variable
given its parents in the graph. The MPE problem is the task
of finding a complete assignment with maximum probability
that is consistent with the evidence. It is equivalent to solv-
ing a COP instance withmultiplicationandmaximizationas
the combination and elimination operators.

We consider two classes of AND/OR Branch-and-Bound
graph search algorithms guided by the pre-compiled mini-
bucket heuristics (Marinescu & Dechter 2005) and using ei-
ther naiveor adaptivecaching schemes. They are denoted
by AOMB+C(i,j) andAOMB+AC(i,j), respectively. The pa-
rametersi andj denote the mini-bucketi-bound (which con-
trols the accuracy of the heuristic) and the cache bound. The
pseudo-trees were generated using the min-fill heuristic, as
described in (Marinescu & Dechter 2005).

We report the average effort as CPU time (in seconds)
and number of nodes visited, required for proving optimal-
ity of the solution, the induced width (w*) and depth of the
pseudo-tree (h) obtained for the test instances. The best per-
formance points are highlighted. For comparison, we also
report results obtained with the tree version of the algorithms
denoted byAOMB(i). The latter was shown to outperform
significantly the OR Branch-and-Bound version (BBMB) in
various domains (Marinescu & Dechter 2005).

1All our experiments were done on a 2.4GHz Pentium IV with
2GB of RAM, running Windows XP.

Figure 3: Time in seconds and nodes visited to prove optimality for random belief networks with 120 variables.

spot (w*, h) MEDAC AOEDAC (i, j) AOMB(i,j)
j=0 C(j) AC(j)

29 (14, 42) 0.41 1.91 (8, 6) 1.03 1.00 1.06
54 (11, 33) 0.06 1.13 (8, 8) 0.12 0.06 0.06
404 (19, 42) 0.03 2.50 (8, 6) 0.03 0.02 0.02
408 (12, 27) 0.39 8.50 (6, 6) 0.05 0.03 0.03
503 (9, 39) 11.70 2.78 (8, 8) 0.10 0.05 0.03
505 (23, 74) 4,010 75.43 (16, 16) 896.8 23.2 23.1

Table 1: Time in seconds to prove optimality for SPOT5.

Random Belief Networks
We have generated a class of random belief networks us-
ing the parametric model(n, d, c, p) proposed in (Kask &
Dechter 2001). Figure 3 reports the average time results
in seconds and number of nodes visited for 20 random in-
stances of a network withn=120 variables, domain sized=2,
c=110 CPTs andp=2 parents per CPT. The average induced
width and pseudo-tree depth were 20 and 32, respectively.
The i-bound of the mini-bucket heuristic ranged between 2
and 10, and we chose three caching levels as follows:low
(j=2), medium(j=6) andhigh (j=10).

We observe that naive caching improves when the heuris-
tic is relatively weak (corresponding to smalli-bounds).
As the i-bound increases and the heuristics become strong
enough to cut the search space substantially, the added sav-
ings in the number of nodes caused by caching do not trans-
late into time savings as well. In Figure 3(c) we compare
the two caching schemes, in terms of CPU time, for differ-
ent values of thei-bound (i ∈{2,4,6}). We observe only a
minor improvement of the adaptive scheme over the naive
one, more noticeable for smalli andj-bounds.

Earth Observing Satellites
The problem of scheduling an Earth observing satellite is to
select from a set of candidate photographs, the best subset
such that a set of imperative constraints are satisfied and the
total importance of the selected photographs is maximized.
We experimented with problem instances from the SPOT5
benchmark (Bensana, Lemaitre, & Verfaillie 1999) which
can be formulated as non-binary WCSPs. For our purpose
we considered a simplified MAX-CSP version of the prob-
lem where the goal is to minimize the number of imperative
constraints violations.

Table 1 shows a summary of the results obtained for 6

ped (w*, h) VEC SUPER (i, j) AOMB(i,j)
LINK j=0 C(j) AC(j)

1 (15, 61) 24.62 131.3 (10, 10) 0.609 0.249 0.218
20 (24, 69) 1,304 12.44 (16, 16) 480.2 182.0 192.0
23 (23, 38) 1,144 6,809 (16, 18) 16.60 11.33 11.29
30 (26, 51) 26,719 28,740 (20, 22) 61.57 38.85 38.81
38 (17, 59) 15,860 62.18 (12, 12) 1,212 104.4 124.7
50 (18, 58) 85,637 716.6 (10, 12) 83.52 29.72 36.41

Table 2: Time in seconds to prove optimality for pedigrees.

scheduling problems. In addition, we consider MEDAC
and AOEDAC which are the OR and AND/OR Branch-and-
Bound algorithms maintaining Existential Directional Arc
Consistency (EDAC) (de Givryet al. 2005) and are not re-
stricted to a static variable ordering. We experimented with
a wide range of values for thei andj bounds, but we report
only the (i,j) combination for which we obtained the best
results. BothAOMB+C(i,j) andAOMB+AC(i,j) are the best
performing algorithms in this domain. The impact of the
caching schemes is minor for most of the test instances. This
is due the accuracy of the heuristic estimates which prune the
search space very effectively. In505 however, the hardest
instance,AOMB+AC(16,16) improves dramatically the per-
formance causing a speedup of 39 overAOMB(16).

Genetic Linkage Analysis
Themaximum likelihood haplotypeproblem in genetic link-
age analysis is the task of finding a joint haplotype configu-
ration for all members of the pedigree which maximizes the
probability of data. It has been shown to be equivalent to
finding the MPE of a belief network which represents the
pedigree data (Fishelson & Geiger 2002).

Table 2 displays a summary of the results obtained for
6 hard linkage analysis networks2. For comparison, we in-
clude results obtained withVEC andSUPERLINKv1.5. SU-
PERLINK is currently the most efficient solver for genetic
linkage analysis, is dedicated to this domain, uses a com-
bination of variable elimination and conditioning, and takes
advantage of the determinism in the network.VEC is our
implementation of the elimination/conditioning hybrid and
is not sensitive to determinism. As both algorithms use non-
deterministic algorithms for computing the elimination or-
der, their running time may vary significantly from one run

2http://bioinfo.cs.technion.ac.il/superlink/

Figure 4: Detailed time results in seconds comparing the naive vs. adaptive caching for genetic linkage analysis.

to the next. We therefore report an average over 5 runs.
We observe thatAOMB+C(i,j) andAOMB+AC(i,j) are the

best performing algorithms in this domain. The time savings
caused by both naive and adaptive caching schemes are sig-
nificant and in some cases the differences add up to several
orders of magnitude over bothVEC and SUPERLINK (e.g.
ped-23, ped-50). Figure 4 provides an alternative view
comparing the two caching schemes, in terms of CPU time,
for a smalleri-bound of the mini-bucket heuristic. We notice
that adaptive caching improves significantly over the naive
scheme especially for relatively smallj-bounds. This may
be important because smallj-bounds mean restricted space.
At largej-bounds the two schemes are identical.

In summary, the effect of caching (either naive or adap-
tive) is more prominent for relatively weak guiding heuris-
tics estimates. The merit of adaptive caching over naive one
is evident when thej-bound is much smaller than the in-
duced width and there is a relatively small number of dead-
caches. This translates sometimes into impressive time sav-
ings for the Branch-and-Bound algorithms.

Conclusion
In this paper we extended the AND/OR Branch-and-Bound
algorithm to traversing an AND/OR search graph rather than
an AND/OR search tree by equipping it with an efficient
caching mechanism. We investigated two flexible context-
based caching schemes that can adapt to the current memory
restrictions. The efficiency of the new AND/OR Branch-
and-Bound graph search algorithms is demonstrated empiri-
cally on various benchmarks including the very challenging
ones from the field of genetic linkage analysis.
Related Work: AOBB graph search is related to the Branch-
and-Bound method proposed by (Kanal & Kumar 1988) for
acyclic AND/OR graphs and game trees. BTD developed
in (Jegou & Terrioux 2004) can also be interpreted as an
AND/OR graph search algorithm with a caching mechanism
based on the separators of the guiding tree-decomposition.
When compared with BTD,AOBBg with naive/adaptive
caching uses parameterized cache bounds and can adapt to
various memory needs, unlike BTD which must use space
exponential in the separator size. Only under full caching
BTD andAOBBg are computationally identical because the
context of a node in the AND/OR search space and the sepa-
rator in the tree-decomposition used by BTD are equivalent.

Acknowledgments
This work was supported by the NSF grant IIS-0412854.

References
Bacchus, F.; Dalmao, S.; and Pittasi, T. 2003. Value elim-
ination: Bayesian inference via backtracking search. In
UAI, 20–28.
Bayardo, R., and Miranker, D. 1995. On the space-time
trade-off in solving constraint satisfaction problems. InIJ-
CAI, 558–562.
Bensana, E.; Lemaitre, M.; and Verfaillie, G. 1999. Earth
observation satellite management.Constraints4(3):293–
299.
Darwiche, A. 2001. Recursive conditioning.Artificial
Intelligence126(1-2):5–41.
de Givry, S.; Heras, F.; Larrosa, J.; and Zytnicki, M. 2005.
Existential arc consistency: getting closer to full arc con-
sistency in weighted csps. InIJCAI, 84–89.
Dechter, R., and Mateescu, R. 2004. Mixtures of
deterministic-probabilistic networks. InUAI, 120–129.
Dechter, R., and Rish, I. 2003. Mini-buckets: A general
scheme for approximating inference.J. ACM.
Dechter, R. 2003.Constraint Processing. MIT Press.
Fishelson, M., and Geiger, D. 2002. Exact genetic linkage
computations for general pedigrees.Bioinformatics.
Freuder, E., and Quinn, M. 1985. Taking advantage of
stable sets of variables in constraint satisfaction problems.
In IJCAI, 1076–1078.
Jegou, P., and Terrioux, C. 2004. Decomposition and good
recording for solving max-csps. InECAI, 196–200.
Kanal, L., and Kumar, V. 1988.Search in artificial intelli-
gence.Springer-Verlag.
Kask, K., and Dechter, R. 2001. A general scheme for au-
tomatic generation of search heuristics from specification
dependencies.Artificial Intelligence129:91–131.
Marinescu, R., and Dechter, R. 2005. And/or branch-and-
bound for graphical models. InIJCAI, 224–229.
Mateescu, R., and Dechter, R. 2005. And/or cutset condi-
tioning. In IJCAI, 230–235.
Pearl, J. 1988.Probabilistic Reasoning in Intelligent Sys-
tems.Morgan-Kaufmann.

