An Anytime Scheme for Bounding Posterior Beliefs

Bozhena Bidyuk and Rina Dechter
Donald Bren School of Information and Computer Science
University Of California Irvine

bbi dyuk@ cs.
decht er @cs.

Abstract

This paper presents an any-time scheme for comput-
ing lower and upper bounds on posterior marginals
in Bayesian networks. The scheme draws from two
previously proposed methods, bounded conditioning
(Horvitz, Suermondt, & Cooper 1989) and bound prop-
agation (Leisink & Kappen 2003). Following the prin-
ciples of cutset conditioning (Pearl 1988), our method
enumerates a subset of cutset tuples and applies ex-
act reasoning in the network instances conditioned on
those tuples. The probability mass of the remaining tu-
ples is bounded using a variant of bound propagation.
We show that our new scheme improves on the earlier
schemes.

Introduction

Computing bounds on posterior marginals is a special case
of approximating posterior marginals with a desired degree
of precision which is NP-hard (Dagum & Luby 1993). We
address this hard problem by proposing an any-time bound-
ing framework based on two previously proposed bounding
schemes, bounded conditioning and bound propagation.

Bounded conditioning (BC) (Horvitz, Suermondt, &
Cooper 1989) is founded on the principle of cutset-
conditioning method (Pearl 1988). Given a Bayesian net-
work over X, evidenceE' C X, E=e, and a subset of vari-
ablesC' ¢ X\ E, we can obtain exact posterior marginals by
enumerating over all cutset tuplese D(C), M=|D(C)|,
using the formula:

{\/11 P((I,‘7Ci7e)

i=
' e)

Eﬁ1 P(c

For any assignment=c’, the computation of quantities
P(z,ct, e) andP(ct, e) is linear in the network size if C is a
loop-cutset and exponential inif C is aw-cutset. The lim-
itation of the cutset-conditioning method is that the numbe
of cutset tuples\/ grows exponentially with the cutset size.

Horvitz, Suermondt, and Cooper (1989) observed that of-

ten a small number of tuplés << M contains most of the
probability mass ofP(e) = Zﬁ‘il P(c',e). Subsequently,
they proposed to compute the probabilitiBéz, ¢?, ¢) and

P(zle) = @

Copyright © 2006, American Association for Atrtificial Intelli-
gence (www.aaai.org). All rights reserved.

uci . edu
uci . edu

P(ct, e) exactly only for theh tuples,1 < i < h, with high
prior probabilitiesP(c?), while bounding the rest by their
priors. Bounded conditioning (BC) was the first method to
offer any-time properties and to guarantee convergence to
the exact marginals with time ds—M. The scheme was
validated on the example of Alarm network with 37 nodes
andM =108 loop-cutset tuples. Without evidence, algorithm
computed small bounds intervats0.01 or less, after gen-
erating 40 cutset instances. However, with 3 and 4 nodes
assigned, the bounds interval length rose:t0.15 after pro-
cessing the same 40 tuples. The latter shows how BC bounds
interval increases as probability of eviderféé:) decreases.

In fact, we can show that BC upper bound can becostie
whenP(e) is small (Bidyuk & Dechter 2005).

A related bounding scheme was proposed in (Poole 1996).
Instead of enumerating variables of the cutset, it enuresrat
all variables and uses conflict-counting to update the func-
tion bounding the remaining probability mass.

Bound propagation (BdP) scheme (Leisink & Kappen
2003) obtains bounds by iteratively solving a linear opti-
mization problem for each variable such that the minimum
and maximum of the objective function correspond to lower
and upper bounds on the posterior marginals. They demon-
strated the performance of the scheme on the example of
Alarm network, Ising grid, and regular bi-partite graphs.

In our work here, we propose a framework, which we
term Any Time Bounds AT B), that also builds upon the
principles of conditioning exploring fully: cutset tuples
and bounding the rest of the probability mass, spread over
the unexplored tuples. The scheme improves over bounded
conditioning in several ways. First, it bounds more accu-
rately the mass of the unexplored tuples in polynomial time.
Second, it uses cutset sampling (Bidyuk & Dechter 2003a;
2003b) for finding high-probability cutset tuples. Finally
utilizing an improved variant of bound propagation as a plu-
gin within our any-time framework yields a scheme that
achieves greater accuracy than either bounded conditjonin
or bound propagation. In general, the framework allows to
plugin any bounding scheme to bound the probability mass
over unexplored tuples.

Background

Definition 1 (belief networks) Let X={X1,..., X,,} be a
set of random variables over multi-valued domains

D(X4),...,D(X,). Abelief network (BN)is a pair (G, P)
where G is a directed acyclic graph onX and P
{P(X;|pa;)} is the set of conditional probability tables
(CPT) associated with eacki;. An evidence is an instan-
tiated subset of variableEC X . The parents of a variable
X together with its children and parents of its children form
a Markov blanketma; of nodeX;. A graph issingly con-
nected(also called gpoly-tree), if its underlying undirected
graph has no cycles. bop-cutsetof a directed graph is a
set of vertices that, when removed, the graph is a poly-tree.

Definition 2 (Relevant Subnetwork) Anirrelevant nodef

a node X is a child node Y that is not observed and does not

have observed descendants. Télevant subnetworkf X is
a subnetwork obtained by removing all irrelevant nodes in
the network.

Architecture for Any-Time Bounds

Polynomial Processing Time

To obtain the any-time bounding scheme, we start with the
cutset conditioning formula. Given a Bayesian network with
a cutset C, lef\f be the total number of cutset tuples and let
h be the number of generated cutset tuplesh@ M. We
can assume without loss of generality that the generated
tuples are the firgt cutset tuples. Then, for a variable X with
2'eD(X), we can re-write Eq.(1) separating the summation
over the generated tupléghroughh and the rest as:

P(r/\e) _ E?:1 P(:E'7 Ci7 e) + Z?ih+1 P(xlv Ci7 e)
E?:1 P(Ci7 e) + E?ih+1 P(ct,e)

If C'is a loop-cutsetP(z’, ¢, e) andP(ct, e), i<h, can be
computed in polynomial time. The question is how to com-
pute or boundy), | P(2',cl,e) and YN, | P(c',e)
without enumerating all tuples, i > h.

Consider a fully-expanded search tree of dejgthover
the cutset search space expanded in the atfer.C;. A
path from the root to the leaf at depjifi| corresponds to a

@

Figure 1: A search tree for cuts€t= {C4, ..., Cy}.

We enumerate all partially instantiated tuples froro M’

and denote thg-th tuplec{:qj, whereg; denotes the tuple’s
length. Clearly, the probability mass over the cutset siple
cht1, ...,cM can be captured via the sum of the truncated tu-
ples. Namely>"" | P(cl,e) = Zj”i/l P(d].,,.e) (similar
result can be obtained for a sumBfz, ¢!, e)). Therefore,

we can bound the unexplored tuples in Eq.(2) by bounding
a polynomial number of partially-instantiated tuples.

Bounds
Replacing the summation over tuples- 1 throughM with
summation over the truncated tuples in Eq.(2), we get:
L XL P e + 00 P@ A,)
P(a/|e) = = ——— I
Do Plcie) + 23:1 P(Clij .€)

Assume we have an algorithrdithat, for any partial assign-
mentc;.,, can compute lower and upper bounds, denoted
PYandP¥, onP(c1.4,€) andP(z, c1.q4, €).

A brute force lower bound expression using Eq.(3) can
be obtained by replacing eadh(a’, ci., , e) with its lower

bound (reducing numerator) and eaEt@c{:qj,e) with its

@)

cutset tuple. Hence, there is a one-to-one mapping betweenUPPer bound (increasing denominator) yielding:

each leaf at depthC| and a fully-instantiated cutset tuple.

If we mark all the tree edges on paths that correspond to the
h generated cutset tuples, then the unexpanded tuples corre-

spond to the unmarked leaves. We can recursively trim all
unmarked leaves until only leaves branching out of marked
nodes remain, thus producingrancated search tree

An example of a truncated search tree is shown in Fig-
ure 1. The leaves at depth |C| in the truncated tree cor-
respond to the partially-instantiated cutset tuples. Apat
from the rootC; to a leafC, at depthq is a tuple denoted
c1:4 = {c1, ..., cq} Which we will refer to astruncatedor
partially-instantiatedcutset tuples. Since every nodg in
the path from rootC; to leaf C; can have no more than
|D(C;)| — 1 emanating leaves,then the number of truncated
tuples, denoted/’, is polynomially bounded as follows:

Proposition 1 If C is a cutset,d bounds the domain size,

andh is the number of generated cutset tuples, the number

of partially-instantiated cutset tuples in the truncatedsch
three is bounded b@(h - (d — 1) - |C|).

h M’

ZP(x/,ci,e) + ZP£($/7C{;(IJ7€)

i=1 j=1

M’

h
ZP(CZ, e)+ ZPX(C{:% ,€)
i=1 j=1

However, a tighter bound can be obtained if we apply addi-
tional transformations to Eq. (3) and prove a helpful lemma.

First, we decompos®(cy,,,, ¢), 0 < j < M’, as follows:
P(cly,.€) = P(a' ey) + Y Pla,cly.e) (5)
rF£x!

ReplacingP(c{:qj,e) in Eq.(3) with the right-hand size ex-
pression in Eq. (5), we obtain:

P(z'|e) >

(4)

h M’)
S P, cte)+ > P’ e, e
i=1 i=1 J

P(a|e) = n n (6)
h] M] M]
SR 3 P, 0t Y Y Pl 0
i=1 j=1 wta! =1

We will use the following two lemmas: Any-Time Bounds Framework

Lemma 1 Givena. b, 6>0. if a < b, then: & < @+ m Input: A belief network3 over X, evidenceE' C X, cutsetC' C
n ' ' b = b+o X\ E, truncated search tré@.
. -, . Output: lower bounds. B, upper bound#/ B.
. LU
Lemma 2 Given positive llumber@ b, ¢, che ifa <b 1. Generate cutset tuples:
andcl < ¢ < Y, then: &t < atec < atc] Fori = 1to h do:

brel = btc = btcl ;
e ¢ ‘ ¢' «— GetNextFullyInstantiatedTuple(T)

In Eq.(6) the sums in both numerator and denominator computeP(c’, e)
contain components®(z’,cJ. ,e). Hence, we can ap- |EndFor o _

) ‘) 2. Traverse partially-instantiated tuples:
ply Lemma 2. We will obtain a lower bound by replac- Forj = 1to M’ do
Ing eac_h summandD(a:’,c’Lqi,e) In Eq'_(G) with a lower . c{:qj — GetNextPartiallyInstantiatedTuple(T)
boundj in both nu/meratgr and denomn?ator and replacing compute bounds Oﬁ’(c{:qj,e) andP(mi,c{:qj,e),in cx
P(z, ¢y, €), w7, with its upper bound: End For

3. Compute boundson P(z;|e) Vx; € X using Eq. 4, 7, and 8.

h . M’ .
Z Pz, c",e) + Z Pj(z/,c{:qj,e)
i=1 i=1

P(a'le) > — — — Figure 2: Any-Time Bounds Framework Outline.
ZP(ci’e)+ZP&(I”C{:qjye)«} Z ZP_K(z,c’l:qj,e)
i=1 j=1 aFx! j=1

)
Hence, we have obtained two expressions for lower bound
on P(z'|e), defined in Eq. (4) and (7). In general, neither
bound dominates the other although we can prove that the
second boundpP”2 in Eq. (7), dominatesP”! if we use
A=BdP and if D(X)|=2 (Bidyuk & Dechter 2005).

In a similar manner, replacing’(x’,c{:qj,e) in Eqg.(6)

It performs a guided random walk in the multi-dimentional
space of all cutset instances and can be viewed as a search
algorithm looking for high-probability tuples. This is the
approach we take in the current work.

We generate the cutset tuples usimegcutset sampling
(Bidyuk & Dechter 2003a; 2003b) which applies Gibbs sam-
_ pling over a subset of variables. We found that a brute force
with a corresponding upper bound aﬁdz,cjl:qj,e), x#£a, approach, selecting all unique cutset instances among gen-
with a lower bound, we obtain the upper bound expression: erated samples, was not always effective. This was observed
previously in (Kask & Dechter 1999). For a discrete variable

M’

i P’ ¢t o)+ > PY(el o) C;, the algorithm normally computes probabil®(c;, c_;),
P(a’le) > =1 =1 ’ wherec_;=c\¢;, for eache; €D(C;) yielding a sampling dis-
h M’ M’ : . .
P o)+ S PUG e o)t PL(acd o) tribution P(Cjlc—;). But the selected value is not always
; Z:l “ H g:: ; AR the most probable one and the tuples with higher probability
® may be discarded. Maintaining a listiohighest probability

The derivation of bounds for cutset nodes is similar (S€e tuples computed during sampling (even if the Markov chain
(Bidyuk & Dechter 2005)). The outline fo the framework'is giq not actually visit them), we optimize Gibbs sampling for

givenin F_igure 2. Unlike the res_ultin bounded conditioning search. Figure 3, depicting the % of explored probability
the resultingAT'B upper bound is always 1. We canalso mass ofP(e) as a function of h, shows a typical improve-
show that lower and upper bounds derived above are always men in the performance on the example of Barley network
as good or better thaliC' bounds (Bidyuk & Dechter 2005). ity |E|=7 andP(e)=3E-06. Using the optimized scheme,
Since the number of truncated cutset tuples grows poly- \ye accumulated over 90% of the weight Bfe) in a few
nomially with h (see Proposition 1), thed "B framework thousand tuples in Munin3, cpcs179, and cpcs360b, and 20-

has a polynomial time complexity: 30% in cpcs422b and Munin4.
Theorem 1 (Time Complexity) Given an algorithm deriv-
ing lower and upper bounds on probability of evidetite) e 9%P(e)G
and P(x, e) for any evidencds=e andVz € D(X), in time Barley —a— %P(e)-Gopt
O(T), thenAT B takesO(T - h- (d — 1) - |C|) time to bound g2
all the partially-instantiated cutset tuples. 5101 e
We refer to the proposed bounding scheme, without restrict- § 8)
ing the choice of plugin algorithmt, as AT'B framework. 8 6 A
g e
kS
Searching for High-Probability Tuples £ 0 ‘ ‘ ‘ ‘ ‘
For best results, when usingl’B framework, we need to 0 2000 4000 6000 8000 10000 12000
enumerateh tuples with the highest probabilitieB(c*, e) h

in distribution P(C, e). We can search for high-probability

cutset tuples using, e.g., local greedy search (Kask &]]]
Dechter 1999) and branch-and-bound search. Another op- Figure 3: Performance of Gibb sampling (G) and Gibbs op-
tion is to use a stochastic simulation such as Gibbs sampling timized for search (Gopt) on an instance of Barley network.

Incorporating Bound Propagation

Bound propagation®dP) (Leisink & Kappen 2003) is an
iterative algorithm that utilizes the local network stiuret to
formulate a linear optimization/(P) problem for each vari-
able X such that the minimum and maximum of the objec-
tive function correspond to the lower and upper bounds on
posterior marginal®(z|e). Initializing the boundsP” (z|e)
and PV (x|e) to 0 and 1 for each variable X the algorithm
solves linear minimization and maximization problems for
each variable and updates the bounds until it converges.

We cannot pluginBdP directly to boundP(c;.4,€) be-
cause it only bounds conditional probabilities. Thus, we fa
torize the joint probabilityP(c;.4, €) as follows:

P(erge) = [] Plejlersj—1,crq) Plery)
SJEE

wheree;y.;_1={e1,....,e;_1}. We know how to compute
P(c) if ¢ Is an assignment to all loop-cutset variables. We
can also compute joint probabilit(c;.,) wherecy.,, =
{c1,..,¢q}, ¢ < |C|, is a subset of firsy cutset nodes in
topological order.

Theorem 2 If C is a topologically ordered loop-cutset of a
Bayesian network an@., = {C4, ..., C,} is a subset of’,

g < |C], then the relevant subnetwork 6f.,, consisting
of loop-cutset nodes in subs@t., and their ancestors, are
singly-connected.

Proof. We obtain a proof by showing that the relevant sub-
network of anyC; € C is singly-connected when variables
Cy,...,C;_; are observed. Proof is by contradiction. If
the relevant subnetwork @f; is not singly-connected, then
there is a loopl with a sink S s.t. eitherS is observed or

S has an observed descendant (othensiseould be irrele-
vant). Since only variableS,, ..., C; are observed, then ob-
served node ig’;, 1 < g < j. By definition of loop-cutset,
ic,, € Ls.t. C,, # SandC,, € C. Then,C,, is ances-
tor of C,. Since variables are topologically ordered and all
loop-cutset nodes precedingy are observed, thefl,,, must

be observed, thus, breaking the loop. Contradiction.

Since the relevant subnetwork over, is singly-connected,
we can compute joinP(c, ..., ¢4) in linear time using be-
lief propagation algorithm (Pearl 1988). We can applyP
algorithm for each; € E to boundP (e, |e1.;—1, ¢1.4) Yield-
ing an upper bound:

PgdP(Cltme) 2 H PgdP(ejleltj*hCl:q)P(cl:q))
e; el

The factorization forP(z, c1.4, €) is similar except it con-
tains an additional factoPgqp(xle, c1.4) Which we also
bound usingBdP. The lower bound derivation is similar.

Algorithm BdP+

The size of theBd P linear optimization problems grows ex-
ponentially with the size of the Markov blanket. In order to
limit BdP demands for memory and time, we can bound the
maximum length of the Markov conditional probability table
by a constank and, thus, the maximum number of variables

in LP problem. For variables, whose Markov blanket size
exceeds the maximum, the lower and upper bound remain
equal to their input values (usually, 0 and 1).

The performance oBdP can be improved also by re-
stricting the Markov blanket ofX; to its relevant subnet-
work. Further, if the relevant subnetwork of a node is singly
connected, then its posteriors should be computed exactly
and fixed. We denote aBdP+ the BdP algorithm that
takes advantage of the network structure as described above
(Bidyuk & Dechter 2006) show emprically that proposed
improvements result in substantial gains in accuracy and
speed in practice.

Algorithm ABdP+

When BdP+ is plugged intoAT' B, we need to bound a
large number of tuples. Hence, we need to solve a large
number of LP problems. Using the simplex method becomes
infeasible, as our preliminary tests confirmed. Thus, we
solve a relaxed. P problem, which can be described as frac-
tional packing and covering with multiple knapsacks, using
afast greedy algorithm that finds a lower bound that is less or
equal to optimal and an upper bound that is greater or equal
to optimal. We denote the scheme with an approxiniate
solver asA Bd P+. Bidyuk and Dechter (2006) show empri-
cally thatA BdP+ achieves 10-100 times speed-up loosing
only a little in the bounds accuracy.

Algorithm BBdP+

ABdP+ andBd P+ performance depends on the initial val-
ues of the lower and upper bounds, usually setto 0 and 1. We
can boost the performance &fd P+ by using the bounds
computed byAT B, instead of 0 and 1, to initialize its lower
and upper bounds. We experiment with “boostéil P+,
denotedB Bd P+, in the empirical section.

Experiments

To evaluate the performance of our any-time bounds frame-
work empirically, we use bound propagation with approx-
imate LP solver, i.e.ABdP+, in place of algorithmA.

We refer to the resulting algorithm a&I'B. We compare
bounds obtained byiT'B, BdP+, and BoostedBdP+
(BBdP+). We also computed the minimum length B
bounds interval by plugging into the framework the brute
force O lower bounds and prioP(c) upper bounds. It
remained>0.75 for all benchmarks.Where applicable, we
compare our bounds with those in (Larkin 2003).

Methodology

We measure the quality of the bounds via the average length
of the intervall between lower and upper bound.

We report all results foBd P+ "upon convergence”; its
computation time is a function d@f and the number of itera-
tions needed to converge. The computation timd 1B is
controlled via parameter.

We control the time and memory of bound propagation by
restricting the maximum length of the conditional proba-
bility tables over the Markov blanket of a node. The maxi-
mum length tested was=2'°. For AT B with ABdP+ and

BBdP+ k was fixed at 1025 so thatT B and BBdP+
average bounds length was measured as a function of
BBdP+ computation time included7' B time.

Our benchmarks are 6 networks from UAI repository
listed in Table 1. Evidence is selected at random. All ex-
act posterior marginals were obtained by bucket elimina-
tion (Dechter 1999) using min-fill heuristics. The algonith
AT B explores a subset of loop-cutset tuples in each net-
work where the loop-cutset is obtained usinga algorithm
of (Becker & Geiger 1996). Th&dP-+ algorithm uses a
simplex solver from COIN-OR libraries (CLP). The experi-
ments were conducted on 1.8Ghz CPU with 512 MB RAM.

Table 1: Benchmarks’ parameterS-number of nodegp*-
induced width, | LC|-loop-cutset size,|Dy¢|-loop-cutset
state space sizd,p andTc-exact computation time via
bucket elimination and loop-cutset conditioning.

[network [N[w" [[LC[[[Dc[] TsE] TLc|
Alarm 37| 4 5 108|0.01 sea¢ 0.05 seq
Barley 48] 7| 12|>2E+6] 50sed >22hrd
cpcs3600] 360] 21| 26 2761 20 min > 8 hrd
cpcsd22l| 422] 22| 47 2771 50 min| > 2E+9 hrs
Munin3 [[1044] 7| 30| > 2%°] 8sed > 1700 hrs
Munind [[1041] 8] 49| > 2*] 70sed > 1E+8 hr
Results

We summarize results for each benchmark in a chart show-
ing the convergence of the bounds interval length with time.
Alarm network. Alarm network has 37 nodes and 108 loop-
cutset tuples. Its exact posterior marginals can be oltaine
using either bucket elimination or cutset conditioningdad
than a second. We only used this benchmark to relate to
previous results of bounded conditioning and bound propa-
gation. We experimented with 20 instances of the network
with 1-4 evidence noded3d P+ obtained an average inter-
val length of 0.44 within 3 seconds (using maximirsince

all Markov blankets are small)AT' B computed a more ac-
curate bound interval of 0.31 starting with-34, obtained
within 0.039 sec, an order of magnitude faster tiahP+.

Barley, N=48, w*=7, |LC|=12, |E|=4-8 —— ATB
—=— BdP+

—=— BBdP+

0.3

A

\\1\

—2

0.26

0.22

0.18

M

Avg Bounds Interval

0.14 4

0.1 T T T
40 60 80 100

Time (sec)

Figure 4: Barley/ as a function of time.

Times are extrapolated.

Barley network. The average bounds interval length is
plotted as a function of time in Figure 4. Within 100 sec,
AT B processesh=4000 out of >2 million cutset tuples
which account for=0.2% of the weight ofP(e). BdP+
yields an average bounds length of 0.23<i# sec forvk €
[210.219], AT B bounds converge with time but slowly, de-
creasing from 0.27 to 0.23 after 90 sec. ATB takes about 80
sec to achieve the same accuracyBaP+. Using AT B
results as a spring-board and having a small computation
overhead, 2 sec per instand@3d P+ improves consider-
ably over bothAT' B and BdP+. It computes/=0.17 in 25
sec and 0.14 in 90 sec. Although exact bucket elimination is
superior (takes 50 sec), loop-cutset conditioning, usiy t
same amount of space, takes over 22 hrs.

cpcs360b, N=360, |LC|=26, w*=21, [E|=11-23 | > ATB
1E+00 =—BdP+
= —=— BBdP+
>
& 1E-01 Pu
= \\
2]
2 1E02 ‘\
>
[=]
g \‘ﬂm
o 180 T e
>
<
1.E-04 ‘ ‘ ‘
0 10 20 30 40
Time (sec)
cpcs422b, N=422, |LC|=47, w*=22, |E|=4-10 [—a—ATB
0.30 —a—BdP+
A\ —s— BBdP+
B 0.25
>
8 -Alr‘—-\
0
-g 015 D\\S‘S\B‘B\Q\—Q‘Q\E
>
R 0.10
2
< 0.05
0.00 ; ‘ ‘ ‘ ‘ ‘
0 20 40 60 80 100 120 140
Time (sec)

Figure 5: cpcs360b and cpcs422tas a function of time.

Results for CPCS networks. The results for cpcs net-
works are given in Figure 5, averaged over 20 instances of
each network with different evidence.

cpcs360bloop-cutset hag?® cutset tuples, prohibitively
many for complete enumeration. Its exact computation time
by bucket elimination is about 20 min. We have compared
the performance of all bounding algorithms within 60 sec.
AT B converged fast, covering98% of probability mass at
h =~ 1000, and outperformedd P+ after 2 sec. In 60 sec,
AT B computed/=0.0001, two orders of magnitude smaller
than BdP+. BBdP+ performance is similar tolT'B. It
improves onAT B results, but not enough to compensate for
the time overhead. Larkin’s (2003) algorithm, when applied
to cpcs360b, computet=0.03 in 10 sec. Within the same
time, AT B computed~0.001. However, the comparison is
not on the same instances.

cpcs422khas large induced width ef*=22 and2*” loop-
cutset tuples. Computing exact marginals requires 50 min by
bucket elimination and>2E+9 hrs by cutset conditioning.
AT B outperformsBd P+ in 30 sec. Within 2 minBdP+
computes/=0.19 andAT B produces/=0.15. BBdP+
computes the first data point only after 35 sec, but it is the
best algorithm after that. The results4f' B andBd P+ are
comparable td=0.15, obtained in 30 sec, in (Larkin 2003).

Munin3, N=1044, |LC|=30, w*=7, |E|=257 |——ATB
1.00 —a— BdP+
= —=— BBdP+
©
2
Qo
IS
» 0.10
©
c
=}
o
0
: \;ﬁ%ﬂ__ﬁ_ﬂ_ﬂ
>
< 0.01 T ‘ ‘ ‘
0 20 40 60 80 100
Time (sec)
Munin4, N=1041, |LC|=49, w*=8, |E|=235 |—a— ATB
- 0.4 —=— BdP+
> \ —=— BBdP+
o 03
c
& * s -
g 02 S
>
@
> 01
>
<
0.0 T T T T
0 50 100 150 200 250
Time (sec)

Figure 6: Munin3 and Munin4] as a function of time.

Munin’s benchmarks. Munin3 and Munin4 networks
are large, with 1044 and 1041 nodes, but have small induced
width of w*=7 andw*=8. Subsequently, exact inference by
bucket elimination is easy and takes 8 sec in Munin3 and
70 sec in Munin4 (see Table 1). The empirical results are
summarized in Figure 6. The behavior of the algorithms in
Munin3 and Munin4 is similarBd P+ computes bounds in-
terval of 0.24 for Munin3 and 0.23 for Munin4 within 12 and
15 sec respectively. In Munin3{7' B outperformsBd P+
by a wide margin yielding a bounds interval of 0.05 in 12
sec. In Munin4, the loop-cutset is larger and covergence
of AT'B is slower. In 15 secAT' B computes bounds in-
terval length of 0.37. Ad increases, it decreases to 0.19.
AT B outperformsBd P+ after 90 sec. Taking\T B results
as input,BBdP+ considerably improves!T B bounds in
Munin4, compensating for the computation overhead, and
outperforms botdT B and Bd P+ timewise.

Conclusions

In this paper we present an anytime framework for bound-
ing the posterior beliefs of every variable. The scheme is
parametrized by a fixed number of cutset tugleser which

it applies exact computation using cutset conditioning. We
find A high probability tuples using Gibbs sampling. We de-
veloped expressions to bound the rest of the probabilitysmas
using any off-the-shelve bounding algorithm (worst-case w
can plug in 0 and priors). The resulting scheme, denoted by
AT By, (A) (usingh cutset tuples and plug-in algorithsh),
can be viewed as a boosting schemeAor

AT By (A) can make any existing bounding scheme any-
time and improve it. In this paper we focused on a specific
algorithm, A=Bd P+, which is a variant of bound propa-
gation. Our empirical results demonstrate the power of this
anytime enhancement on several benchmarks.

Finally, we showed that for iterative bounding algorithms,
such asBdP+, another boosting step is feasible by taking
the results ofAT B;,(.A) and plugging them back intd.

Acknowledgments

This work has been partially supported by the NSF grant
11S-0412854.

References
Becker, A., and Geiger, D. 1996. A sufficiently fast algo-
rithm for finding close to optimal junction trees. Umncer-
tainty in Al, 81-89.
Bidyuk, B., and Dechter, R. 2003a. Cycle-cutset sampling
for bayesian networks. I8anadian Conf. on AR97-312.
Bidyuk, B., and Dechter, R. 2003b. Empirical study of
w-cutset sampling for bayesian networks.UAl, 37-46.
Bidyuk, B., and Dechter, R. 2005. An any-time scheme
for bounding posterior beliefs. Technical report, UCI,
http://lwww.ics.uci.edu/"bbidyuk/bounds.html.
Bidyuk, B., and Dechter, R. 2006. Improving bound prop-
agation. InEuropean Conf. on Al (ECAI)
COmputational INfrastructure for Operations Research
http://www.coin-or.org.
Dagum, P., and Luby, M. 1993. Approximating proba-
bilistic inference in bayesian belief networks is np-hard.
Artificial Intelligence60(1):141-153.
Dechter, R. 1999. Bucket elimination: A unifying frame-
work for reasoningAtrtificial Intelligence113:41-85.
Horvitz, E. J.; Suermondt, H. J.; and Cooper, G. F. 1989.
Bounded conditioning: Flexible inference for decisions un
der scarce resources. Workshop on UAI181-193.
Kask, K., and Dechter, R. 1999. Stochastic local search
for Bayesian networks. IWorkshop on Al and Statistics
113-122. Morgan Kaufmann.
Larkin, D. 2003. Approximate decomposition: A method
for bounding and estimating probabilistic and determiaist
queries. InProceedings of UAI346—353.
Leisink, M. A. R., and Kappen, H. J. 2003. Bound propa-
gation.J. of Al Researci9:139-154.
Pearl, J. 1988Probabilistic Reasoning in Intelligent Sys-
tems Morgan Kaufmann.
Poole, D. 1996. Probabilistic conflicts in a search algo-
rithm for estimating posterior probabilities in bayesiaat-n
works. Artificial Intelligence88(1-2):69-100.

