
An Anytime Scheme for Bounding Posterior Beliefs

Bozhena Bidyuk and Rina Dechter
Donald Bren School of Information and Computer Science

University Of California Irvine
bbidyuk@ics.uci.edu
dechter@ics.uci.edu

Abstract

This paper presents an any-time scheme for comput-
ing lower and upper bounds on posterior marginals
in Bayesian networks. The scheme draws from two
previously proposed methods, bounded conditioning
(Horvitz, Suermondt, & Cooper 1989) and bound prop-
agation (Leisink & Kappen 2003). Following the prin-
ciples of cutset conditioning (Pearl 1988), our method
enumerates a subset of cutset tuples and applies ex-
act reasoning in the network instances conditioned on
those tuples. The probability mass of the remaining tu-
ples is bounded using a variant of bound propagation.
We show that our new scheme improves on the earlier
schemes.

Introduction
Computing bounds on posterior marginals is a special case
of approximating posterior marginals with a desired degree
of precision which is NP-hard (Dagum & Luby 1993). We
address this hard problem by proposing an any-time bound-
ing framework based on two previously proposed bounding
schemes, bounded conditioning and bound propagation.

Bounded conditioning (BC) (Horvitz, Suermondt, &
Cooper 1989) is founded on the principle of cutset-
conditioning method (Pearl 1988). Given a Bayesian net-
work overX, evidenceE ⊂ X, E=e, and a subset of vari-
ablesC ⊂ X\E, we can obtain exact posterior marginals by
enumerating over all cutset tuplesci ∈ D(C), M=|D(C)|,
using the formula:

P (x|e) =

PM

i=1 P (x, ci, e)
PM

i=1 P (ci, e)
(1)

For any assignmentc=ci, the computation of quantities
P (x, ci, e) andP (ci, e) is linear in the network size if C is a
loop-cutset and exponential inw if C is aw-cutset. The lim-
itation of the cutset-conditioning method is that the number
of cutset tuplesM grows exponentially with the cutset size.

Horvitz, Suermondt, and Cooper (1989) observed that of-
ten a small number of tuplesh << M contains most of the
probability mass ofP (e) =

∑M
i=1

P (ci, e). Subsequently,
they proposed to compute the probabilitiesP (x, ci, e) and

Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

P (ci, e) exactly only for theh tuples,1 ≤ i ≤ h, with high
prior probabilitiesP (ci), while bounding the rest by their
priors. Bounded conditioning (BC) was the first method to
offer any-time properties and to guarantee convergence to
the exact marginals with time ash→M . The scheme was
validated on the example of Alarm network with 37 nodes
andM=108 loop-cutset tuples. Without evidence, algorithm
computed small bounds intervals,≈0.01 or less, after gen-
erating 40 cutset instances. However, with 3 and 4 nodes
assigned, the bounds interval length rose to≈ 0.15 after pro-
cessing the same 40 tuples. The latter shows how BC bounds
interval increases as probability of evidenceP (e) decreases.
In fact, we can show that BC upper bound can become>1
whenP (e) is small (Bidyuk & Dechter 2005).

A related bounding scheme was proposed in (Poole 1996).
Instead of enumerating variables of the cutset, it enumerates
all variables and uses conflict-counting to update the func-
tion bounding the remaining probability mass.

Bound propagation (BdP) scheme (Leisink & Kappen
2003) obtains bounds by iteratively solving a linear opti-
mization problem for each variable such that the minimum
and maximum of the objective function correspond to lower
and upper bounds on the posterior marginals. They demon-
strated the performance of the scheme on the example of
Alarm network, Ising grid, and regular bi-partite graphs.

In our work here, we propose a framework, which we
term Any Time Bounds (ATB), that also builds upon the
principles of conditioning exploring fullyh cutset tuples
and bounding the rest of the probability mass, spread over
the unexplored tuples. The scheme improves over bounded
conditioning in several ways. First, it bounds more accu-
rately the mass of the unexplored tuples in polynomial time.
Second, it uses cutset sampling (Bidyuk & Dechter 2003a;
2003b) for finding high-probability cutset tuples. Finally,
utilizing an improved variant of bound propagation as a plu-
gin within our any-time framework yields a scheme that
achieves greater accuracy than either bounded conditioning
or bound propagation. In general, the framework allows to
plugin any bounding scheme to bound the probability mass
over unexplored tuples.

Background
Definition 1 (belief networks) Let X={X1, ...,Xn} be a
set of random variables over multi-valued domains

D(X1), ...,D(Xn). A belief network (BN)is a pair (G,P)
where G is a directed acyclic graph onX and P =
{P (Xi|pai)} is the set of conditional probability tables
(CPT) associated with eachXi. An evidencee is an instan-
tiated subset of variablesE⊂X. The parents of a variable
Xi together with its children and parents of its children form
a Markov blanketmai of nodeXi. A graph issingly con-
nected(also called apoly-tree), if its underlying undirected
graph has no cycles. Aloop-cutsetof a directed graph is a
set of vertices that, when removed, the graph is a poly-tree.

Definition 2 (Relevant Subnetwork) An irrelevant nodeof
a node X is a child node Y that is not observed and does not
have observed descendants. Therelevant subnetworkof X is
a subnetwork obtained by removing all irrelevant nodes in
the network.

Architecture for Any-Time Bounds
Polynomial Processing Time
To obtain the any-time bounding scheme, we start with the
cutset conditioning formula. Given a Bayesian network with
a cutset C, letM be the total number of cutset tuples and let
h be the number of generated cutset tuples, 0<h<M . We
can assume without loss of generality that the generatedh
tuples are the firsth cutset tuples. Then, for a variable X with
x′∈D(X), we can re-write Eq.(1) separating the summation
over the generated tuples1 throughh and the rest as:

P (x′|e) =

Ph

i=1 P (x′, ci, e) +
PM

i=h+1 P (x′, ci, e)
Ph

i=1 P (ci, e) +
PM

i=h+1 P (ci, e)
(2)

If C is a loop-cutset,P (x′, ci, e) andP (ci, e), i≤h, can be
computed in polynomial time. The question is how to com-
pute or bound

∑M
i=h+1

P (x′, ci, e) and
∑M

i=h+1
P (ci, e)

without enumerating all tuplesci, i > h.
Consider a fully-expanded search tree of depth|C| over

the cutset search space expanded in the orderC1,...,Cl. A
path from the root to the leaf at depth|C| corresponds to a
cutset tuple. Hence, there is a one-to-one mapping between
each leaf at depth|C| and a fully-instantiated cutset tuple.
If we mark all the tree edges on paths that correspond to the
h generated cutset tuples, then the unexpanded tuples corre-
spond to the unmarked leaves. We can recursively trim all
unmarked leaves until only leaves branching out of marked
nodes remain, thus producing atruncated search tree.

An example of a truncated search tree is shown in Fig-
ure 1. The leaves at depth< |C| in the truncated tree cor-
respond to the partially-instantiated cutset tuples. A path
from the rootC1 to a leafCq at depthq is a tuple denoted
c1:q = {c1, ..., cq} which we will refer to astruncatedor
partially-instantiatedcutset tuples. Since every nodeCj in
the path from rootC1 to leaf Cl can have no more than
|D(Cj)| − 1 emanating leaves,then the number of truncated
tuples, denotedM ′, is polynomially bounded as follows:

Proposition 1 If C is a cutset,d bounds the domain size,
andh is the number of generated cutset tuples, the number
of partially-instantiated cutset tuples in the truncated search
three is bounded byO(h · (d − 1) · |C|).

0 1

C1

1

C2

0 1

C3

0 1

C4

0 2

0 1

C3

0 1

C4

Figure 1: A search tree for cutsetC = {C1, ..., C4}.

We enumerate all partially instantiated tuples from1 to M ′

and denote thej-th tuplec
j
1:qj

, whereqj denotes the tuple’s
length. Clearly, the probability mass over the cutset tuples
ch+1, ...,cM can be captured via the sum of the truncated tu-

ples. Namely,
∑M

h+1
P (ci, e) =

∑M ′

j=1
P (cj

1:qj
, e) (similar

result can be obtained for a sum ofP (x, ci, e)). Therefore,
we can bound the unexplored tuples in Eq.(2) by bounding
a polynomial number of partially-instantiated tuples.

Bounds
Replacing the summation over tuplesh + 1 throughM with
summation over the truncated tuples in Eq.(2), we get:

P (x′|e) =

Ph

i=1 P (x′, ci, e) +
PM′

j=1 P (x′, c
j
1:qj

, e)
Ph

i=1 P (ci, e) +
PM′

j=1 P (cj
1:qj

, e)
(3)

Assume we have an algorithmA that, for any partial assign-
ment c1:q, can compute lower and upper bounds, denoted
PL

A andPU
A , onP (c1:q, e) andP (x, c1:q, e).

A brute force lower bound expression using Eq.(3) can
be obtained by replacing eachP (x′, c

j
1:qj

, e) with its lower

bound (reducing numerator) and eachP (cj
1:qj

, e) with its
upper bound (increasing denominator) yielding:

P (x′|e) ≥

h
X

i=1

P (x′
, c

i
, e) +

M′
X

j=1

P
L
A(x′

, c
j
1:qj

, e)

h
X

i=1

P (ci
, e) +

M′
X

j=1

P
U
A (cj

1:qj
, e)

(4)

However, a tighter bound can be obtained if we apply addi-
tional transformations to Eq. (3) and prove a helpful lemma.
First, we decomposeP (cj

1:qj
, e), 0 ≤ j ≤ M ′, as follows:

P (cj
1:qj

, e) = P (x′, c
j
1:qj

, e) +
∑

x6=x′

P (x, c
j
1:qj

, e) (5)

ReplacingP (cj
1:qj

, e) in Eq.(3) with the right-hand size ex-
pression in Eq. (5), we obtain:

P (x
′
|e) =

h
X

i=1

P (x
′
, c

i
, e) +

M′
X

j=1

P (x
′
, c

j
1:qj

, e)

h
X

i=1

P (c
i
, e) +

M′
X

j=1

P (x
′
, c

j
1:qj

, e) +
X

x6=x′

M′
X

j=1

P (x, c
j
1:qj

, e)

(6)

We will use the following two lemmas:

Lemma 1 Givena, b, δ>0, if a < b, then: a
b
≤ a+δ

b+δ
.

Lemma 2 Given positive numbersa, b, c, cL, cU , if a < b

andcL ≤ c ≤ cU , then: a+cL

b+cL ≤ a+c
b+c

≤ a+cU

b+cU

In Eq.(6) the sums in both numerator and denominator
contain componentsP (x′, c

j
1:qj

, e). Hence, we can ap-
ply Lemma 2. We will obtain a lower bound by replac-
ing each summandP (x′, ci

1:qi
, e) in Eq.(6) with a lower

bound in both numerator and denominator and replacing
P (x, c

j
1:qj

, e), x6=x′, with its upper bound:

P (x
′
|e) ≥

h
X

i=1

P (x
′
, c

i
, e) +

M′
X

j=1

P
L
A(x

′
, c

j
1:qj

, e)

h
X

i=1

P (c
i
, e) +

M′
X

j=1

P
L
A(x

′
, c

j
1:qj

, e) +
X

x6=x′

M′
X

j=1

P
U
A (x, c

j
1:qj

, e)

(7)

Hence, we have obtained two expressions for lower bound
on P (x′|e), defined in Eq. (4) and (7). In general, neither
bound dominates the other although we can prove that the
second bound,PL2 in Eq. (7), dominatesPL1 if we use
A=BdP and if |D(X)|=2 (Bidyuk & Dechter 2005).

In a similar manner, replacingP (x′, c
j
1:qj

, e) in Eq.(6)

with a corresponding upper bound andP (x, c
j
1:qj

, e), x6=x′,
with a lower bound, we obtain the upper bound expression:

P (x
′
|e) ≥

h
X

i=1

P (x
′
, c

i
, e) +

M′
X

j=1

P
U
A (x

′
, c

j
1:qj

, e)

h
X

i=1

P (c
i
, e) +

M′
X

j=1

P
U
A (x

′
, c

j
1:qj

, e) +
X

x6=x′

M′
X

j=1

P
L
A(x, c

j
1:qj

, e)

(8)

The derivation of bounds for cutset nodes is similar (see
(Bidyuk & Dechter 2005)). The outline fo the framework is
given in Figure 2. Unlike the result in bounded conditioning,
the resultingATB upper bound is always≤ 1. We can also
show that lower and upper bounds derived above are always
as good or better thanBC bounds (Bidyuk & Dechter 2005).

Since the number of truncated cutset tuples grows poly-
nomially with h (see Proposition 1), theATB framework
has a polynomial time complexity:

Theorem 1 (Time Complexity) Given an algorithm deriv-
ing lower and upper bounds on probability of evidenceP (e)
andP (x, e) for any evidenceE=e and∀x ∈ D(X), in time
O(T), thenATB takesO(T ·h · (d−1) · |C|) time to bound
all the partially-instantiated cutset tuples.

We refer to the proposed bounding scheme, without restrict-
ing the choice of plugin algorithmA, asATB framework.

Searching for High-Probability Tuples
For best results, when usingATB framework, we need to
enumerateh tuples with the highest probabilitiesP (ci, e)
in distributionP (C, e). We can search for high-probability
cutset tuples using, e.g., local greedy search (Kask &
Dechter 1999) and branch-and-bound search. Another op-
tion is to use a stochastic simulation such as Gibbs sampling.

Any-Time Bounds Framework
Input: A belief networkB overX, evidenceE ⊂ X, cutsetC ⊂
X\E, truncated search treeT .
Output: lower boundsLB, upper boundsUB.
1. Generate cutset tuples:
For i = 1 to h do:

ci ← GetNextFullyInstantiatedTuple(T)
computeP (ci, e)

End For
2. Traverse partially-instantiated tuples:
For j = 1 to M ′ do

c
j
1:qj
← GetNextPartiallyInstantiatedTuple(T)

compute bounds onP (cj
1:qj

, e) andP (xi, c
j
1:qj

, e), ∀xi ∈ X

End For
3. Compute boundsonP (xi|e) ∀xi ∈ X using Eq. 4, 7, and 8.

Figure 2: Any-Time Bounds Framework Outline.

It performs a guided random walk in the multi-dimentional
space of all cutset instances and can be viewed as a search
algorithm looking for high-probability tuples. This is the
approach we take in the current work.

We generate the cutset tuples usingw-cutset sampling
(Bidyuk & Dechter 2003a; 2003b) which applies Gibbs sam-
pling over a subset of variables. We found that a brute force
approach, selecting all unique cutset instances among gen-
erated samples, was not always effective. This was observed
previously in (Kask & Dechter 1999). For a discrete variable
Ci, the algorithm normally computes probabilityP (ci, c−i),
wherec−i=c\ci, for eachci∈D(Ci) yielding a sampling dis-
tribution P (Ci|c−i). But the selected value is not always
the most probable one and the tuples with higher probability
may be discarded. Maintaining a list ofh highest probability
tuples computed during sampling (even if the Markov chain
did not actually visit them), we optimize Gibbs sampling for
search. Figure 3, depicting the % of explored probability
mass ofP (e) as a function of h, shows a typical improve-
ment in the performance on the example of Barley network
with |E|=7 andP (e)=3E-06. Using the optimized scheme,
we accumulated over 90% of the weight ofP (e) in a few
thousand tuples in Munin3, cpcs179, and cpcs360b, and 20-
30% in cpcs422b and Munin4.

Barley

0

2

4

6

8

10

12

0 2000 4000 6000 8000 10000 12000

h

%
 o

f
P

(e
)

ac
cu

m
u

la
te

d

%P(e)-G

%P(e)-Gopt

Figure 3: Performance of Gibb sampling (G) and Gibbs op-
timized for search (Gopt) on an instance of Barley network.

Incorporating Bound Propagation
Bound propagation (BdP) (Leisink & Kappen 2003) is an
iterative algorithm that utilizes the local network structure to
formulate a linear optimization (LP) problem for each vari-
ableX such that the minimum and maximum of the objec-
tive function correspond to the lower and upper bounds on
posterior marginalsP (x|e). Initializing the boundsPL(x|e)
andPU (x|e) to 0 and 1 for each variable X the algorithm
solves linear minimization and maximization problems for
each variable and updates the bounds until it converges.

We cannot pluginBdP directly to boundP (c1:q, e) be-
cause it only bounds conditional probabilities. Thus, we fac-
torize the joint probabilityP (c1:q, e) as follows:

P (c1:q, e) =
∏

ej∈E

P (ej |e1:j−1, c1:q)P (c1:q)

where e1:j−1={e1, ..., ej−1}. We know how to compute
P (c) if c is an assignment to all loop-cutset variables. We
can also compute joint probabilityP (c1:q) where c1:q =
{c1, ..., cq}, q < |C|, is a subset of firstq cutset nodes in
topological order.

Theorem 2 If C is a topologically ordered loop-cutset of a
Bayesian network andC1:q = {C1, ..., Cq} is a subset ofC,
q < |C|, then the relevant subnetwork ofC1:q, consisting
of loop-cutset nodes in subsetC1:q and their ancestors, are
singly-connected.

Proof. We obtain a proof by showing that the relevant sub-
network of anyCj ∈ C is singly-connected when variables
C1, ..., Cj−1 are observed. Proof is by contradiction. If
the relevant subnetwork ofCj is not singly-connected, then
there is a loopL with a sinkS s.t. eitherS is observed or
S has an observed descendant (otherwiseS would be irrele-
vant). Since only variablesC1, ..., Cj are observed, then ob-
served node isCq, 1 ≤ q ≤ j. By definition of loop-cutset,
∃Cm ∈ L s.t. Cm 6= S andCm ∈ C. Then,Cm is ances-
tor of Cq. Since variables are topologically ordered and all
loop-cutset nodes precedingCq are observed, thenCm must
be observed, thus, breaking the loop. Contradiction.

Since the relevant subnetwork overc1:q is singly-connected,
we can compute jointP (c1, ..., cq) in linear time using be-
lief propagation algorithm (Pearl 1988). We can applyBdP
algorithm for eachEj∈E to boundP (ej |e1:j−1, c1:q) yield-
ing an upper bound:

PU
BdP (c1:q, e) ,

∏

ej∈E

PU
BdP (ej |e1:j−1, c1:q)P (c1:q) (9)

The factorization forP (x, c1:q, e) is similar except it con-
tains an additional factorPBdP (x|e, c1:q) which we also
bound usingBdP . The lower bound derivation is similar.

Algorithm BdP+

The size of theBdP linear optimization problems grows ex-
ponentially with the size of the Markov blanket. In order to
limit BdP demands for memory and time, we can bound the
maximum length of the Markov conditional probability table
by a constantk and, thus, the maximum number of variables

in LP problem. For variables, whose Markov blanket size
exceeds the maximum, the lower and upper bound remain
equal to their input values (usually, 0 and 1).

The performance ofBdP can be improved also by re-
stricting the Markov blanket ofXi to its relevant subnet-
work. Further, if the relevant subnetwork of a node is singly-
connected, then its posteriors should be computed exactly
and fixed. We denote asBdP+ the BdP algorithm that
takes advantage of the network structure as described above.
(Bidyuk & Dechter 2006) show emprically that proposed
improvements result in substantial gains in accuracy and
speed in practice.

Algorithm ABdP+

When BdP+ is plugged intoATB, we need to bound a
large number of tuples. Hence, we need to solve a large
number of LP problems. Using the simplex method becomes
infeasible, as our preliminary tests confirmed. Thus, we
solve a relaxedLP problem, which can be described as frac-
tional packing and covering with multiple knapsacks, using
a fast greedy algorithm that finds a lower bound that is less or
equal to optimal and an upper bound that is greater or equal
to optimal. We denote the scheme with an approximateLP
solver asABdP+. Bidyuk and Dechter (2006) show empri-
cally thatABdP+ achieves 10-100 times speed-up loosing
only a little in the bounds accuracy.

Algorithm BBdP+

ABdP+ andBdP+ performance depends on the initial val-
ues of the lower and upper bounds, usually set to 0 and 1. We
can boost the performance ofBdP+ by using the bounds
computed byATB, instead of 0 and 1, to initialize its lower
and upper bounds. We experiment with “boosted”BdP+,
denotedBBdP+, in the empirical section.

Experiments
To evaluate the performance of our any-time bounds frame-
work empirically, we use bound propagation with approx-
imate LP solver, i.e.,ABdP+, in place of algorithmA.
We refer to the resulting algorithm asATB. We compare
bounds obtained byATB, BdP+, and BoostedBdP+
(BBdP+). We also computed the minimum length ofBC
bounds interval by plugging into the framework the brute
force 0 lower bounds and priorP (c) upper bounds. It
remained>0.75 for all benchmarks.Where applicable, we
compare our bounds with those in (Larkin 2003).

Methodology
We measure the quality of the bounds via the average length
of the intervalI between lower and upper bound.

We report all results forBdP+ ”upon convergence”; its
computation time is a function ofk and the number of itera-
tions needed to converge. The computation time ofATB is
controlled via parameterh.

We control the time and memory of bound propagation by
restricting the maximum lengthk of the conditional proba-
bility tables over the Markov blanket of a node. The maxi-
mum length tested wask=219. ForATB with ABdP+ and

BBdP+ k was fixed at 1025 so thatATB andBBdP+
average bounds length was measured as a function ofh.
BBdP+ computation time includesATB time.

Our benchmarks are 6 networks from UAI repository
listed in Table 1. Evidence is selected at random. All ex-
act posterior marginals were obtained by bucket elimina-
tion (Dechter 1999) using min-fill heuristics. The algorithm
ATB explores a subset of loop-cutset tuples in each net-
work where the loop-cutset is obtained usingmga algorithm
of (Becker & Geiger 1996). TheBdP+ algorithm uses a
simplex solver from COIN-OR libraries (CLP). The experi-
ments were conducted on 1.8Ghz CPU with 512 MB RAM.

Table 1: Benchmarks’ parameters:N -number of nodes,w∗-
induced width, |LC|-loop-cutset size,|DLC |-loop-cutset
state space size,TBE andTLC-exact computation time via
bucket elimination and loop-cutset conditioning.
network N w

∗ |LC| |DLC| TBE TLC

Alarm 37 4 5 108 0.01 sec 0.05 sec
Barley 48 7 12 >2E+6 50 sec >22 hrs1

cpcs360b 360 21 26 226 20 min > 8 hrs1

cpcs422b 422 22 47 247 50 min > 2E+9 hrs1

Munin3 1044 7 30 > 230 8 sec > 1700 hrs1

Munin4 1041 8 49 > 249 70 sec > 1E+8 hrs1

Results

We summarize results for each benchmark in a chart show-
ing the convergence of the bounds interval length with time.
Alarm network. Alarm network has 37 nodes and 108 loop-
cutset tuples. Its exact posterior marginals can be obtained
using either bucket elimination or cutset conditioning in less
than a second. We only used this benchmark to relate to
previous results of bounded conditioning and bound propa-
gation. We experimented with 20 instances of the network
with 1-4 evidence nodes.BdP+ obtained an average inter-
val length of 0.44 within 3 seconds (using maximumk since
all Markov blankets are small).ATB computed a more ac-
curate bound interval of 0.31 starting withh=34, obtained
within 0.039 sec, an order of magnitude faster thanBdP+.

Barley, N=48, w*=7, |LC|=12, |E|=4-8

0.1

0.14

0.18

0.22

0.26

0.3

0 20 40 60 80 100

Time (sec)

A
vg

 B
o

u
n

d
s

In
te

rv
al

ATB

BdP+

BBdP+

Figure 4: Barley,I as a function of time.

1Times are extrapolated.

Barley network. The average bounds interval length is
plotted as a function of time in Figure 4. Within 100 sec,
ATB processesh=4000 out of>2 million cutset tuples
which account for≈0.2% of the weight ofP (e). BdP+
yields an average bounds length of 0.23 in<2 sec for∀k ∈
[210, 219]. ATB bounds converge with time but slowly, de-
creasing from 0.27 to 0.23 after 90 sec. ATB takes about 80
sec to achieve the same accuracy asBdP+. Using ATB
results as a spring-board and having a small computation
overhead, 2 sec per instance,BBdP+ improves consider-
ably over bothATB andBdP+. It computesI=0.17 in 25
sec and 0.14 in 90 sec. Although exact bucket elimination is
superior (takes 50 sec), loop-cutset conditioning, using the
same amount of space, takes over 22 hrs.

cpcs360b, N=360, |LC|=26, w*=21, |E|=11-23

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

0 10 20 30 40

Time (sec)
A

vg
 B

o
u

n
d

s
In

te
rv

al

ATB

BdP+

BBdP+

cpcs422b, N=422, |LC|=47, w*=22, |E|=4-10

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0 20 40 60 80 100 120 140

Time (sec)

A
vg

 B
o

u
n

d
s

In
te

rv
al

ATB

BdP+

BBdP+

Figure 5: cpcs360b and cpcs422b,I as a function of time.

Results for CPCS networks. The results for cpcs net-
works are given in Figure 5, averaged over 20 instances of
each network with different evidence.

cpcs360bloop-cutset has226 cutset tuples, prohibitively
many for complete enumeration. Its exact computation time
by bucket elimination is about 20 min. We have compared
the performance of all bounding algorithms within 60 sec.
ATB converged fast, covering≈98% of probability mass at
h ≈ 1000, and outperformedBdP+ after 2 sec. In 60 sec,
ATB computedI=0.0001, two orders of magnitude smaller
thanBdP+. BBdP+ performance is similar toATB. It
improves onATB results, but not enough to compensate for
the time overhead. Larkin’s (2003) algorithm, when applied
to cpcs360b, computedI=0.03 in 10 sec. Within the same
time,ATB computesI≈0.001. However, the comparison is
not on the same instances.

cpcs422bhas large induced width ofw∗=22 and247 loop-
cutset tuples. Computing exact marginals requires 50 min by
bucket elimination and>2E+9 hrs by cutset conditioning.
ATB outperformsBdP+ in 30 sec. Within 2 min,BdP+
computesI=0.19 andATB producesI=0.15. BBdP+
computes the first data point only after 35 sec, but it is the
best algorithm after that. The results ofATB andBdP+ are
comparable toI=0.15, obtained in 30 sec, in (Larkin 2003).

Munin3, N=1044, |LC|=30, w*=7, |E|=257

0.01

0.10

1.00

0 20 40 60 80 100

Time (sec)

A
vg

 B
o

u
n

d
s

In
te

rv
al

ATB

BdP+

BBdP+

Munin4, N=1041, |LC|=49, w*=8, |E|=235

0.0

0.1

0.2

0.3

0.4

0 50 100 150 200 250

Time (sec)

A
vg

 B
o

u
n

d
s

In
te

rv
al

ATB

BdP+

BBdP+

Figure 6: Munin3 and Munin4,I as a function of time.

Munin’s benchmarks. Munin3 and Munin4 networks
are large, with 1044 and 1041 nodes, but have small induced
width of w∗=7 andw∗=8. Subsequently, exact inference by
bucket elimination is easy and takes 8 sec in Munin3 and
70 sec in Munin4 (see Table 1). The empirical results are
summarized in Figure 6. The behavior of the algorithms in
Munin3 and Munin4 is similar.BdP+ computes bounds in-
terval of 0.24 for Munin3 and 0.23 for Munin4 within 12 and
15 sec respectively. In Munin3,ATB outperformsBdP+
by a wide margin yielding a bounds interval of 0.05 in 12
sec. In Munin4, the loop-cutset is larger and covergence
of ATB is slower. In 15 sec,ATB computes bounds in-
terval length of 0.37. Ash increases, it decreases to 0.19.
ATB outperformsBdP+ after 90 sec. TakingATB results
as input,BBdP+ considerably improvesATB bounds in
Munin4, compensating for the computation overhead, and
outperforms bothATB andBdP+ timewise.

Conclusions
In this paper we present an anytime framework for bound-
ing the posterior beliefs of every variable. The scheme is
parametrized by a fixed number of cutset tuplesh over which

it applies exact computation using cutset conditioning. We
find h high probability tuples using Gibbs sampling. We de-
veloped expressions to bound the rest of the probability mass
using any off-the-shelve bounding algorithm (worst-case we
can plug in 0 and priors). The resulting scheme, denoted by
ATBh(A) (usingh cutset tuples and plug-in algorithmA),
can be viewed as a boosting scheme forA.

ATBh(A) can make any existing bounding scheme any-
time and improve it. In this paper we focused on a specific
algorithm,A=BdP+, which is a variant of bound propa-
gation. Our empirical results demonstrate the power of this
anytime enhancement on several benchmarks.

Finally, we showed that for iterative bounding algorithms,
such asBdP+, another boosting step is feasible by taking
the results ofATBh(A) and plugging them back intoA.

Acknowledgments
This work has been partially supported by the NSF grant
IIS-0412854.

References
Becker, A., and Geiger, D. 1996. A sufficiently fast algo-
rithm for finding close to optimal junction trees. InUncer-
tainty in AI, 81–89.
Bidyuk, B., and Dechter, R. 2003a. Cycle-cutset sampling
for bayesian networks. InCanadian Conf. on AI, 297–312.
Bidyuk, B., and Dechter, R. 2003b. Empirical study of
w-cutset sampling for bayesian networks. InUAI, 37–46.
Bidyuk, B., and Dechter, R. 2005. An any-time scheme
for bounding posterior beliefs. Technical report, UCI,
http://www.ics.uci.edu/˜bbidyuk/bounds.html.
Bidyuk, B., and Dechter, R. 2006. Improving bound prop-
agation. InEuropean Conf. on AI (ECAI).
COmputational INfrastructure for Operations Research.
http://www.coin-or.org.
Dagum, P., and Luby, M. 1993. Approximating proba-
bilistic inference in bayesian belief networks is np-hard.
Artificial Intelligence60(1):141–153.
Dechter, R. 1999. Bucket elimination: A unifying frame-
work for reasoning.Artificial Intelligence113:41–85.
Horvitz, E. J.; Suermondt, H. J.; and Cooper, G. F. 1989.
Bounded conditioning: Flexible inference for decisions un-
der scarce resources. InWorkshop on UAI, 181–193.
Kask, K., and Dechter, R. 1999. Stochastic local search
for Bayesian networks. InWorkshop on AI and Statistics,
113–122. Morgan Kaufmann.
Larkin, D. 2003. Approximate decomposition: A method
for bounding and estimating probabilistic and deterministic
queries. InProceedings of UAI, 346–353.
Leisink, M. A. R., and Kappen, H. J. 2003. Bound propa-
gation.J. of AI Research19:139–154.
Pearl, J. 1988.Probabilistic Reasoning in Intelligent Sys-
tems. Morgan Kaufmann.
Poole, D. 1996. Probabilistic conflicts in a search algo-
rithm for estimating posterior probabilities in bayesian net-
works. Artificial Intelligence88(1–2):69–100.

