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Abstract. AND/OR search spacémve recently been introduced as ACBB. The first one improve80BB by applying an independent se-

a unifying paradigm for advanced algorithmic schemes for graphi-mantic variable ordering heuristic whenever the partial order dictated
cal models. The main virtue of this representation is its sensitivity toby the static decomposition principle allows. The second, orthogonal
the structure of the model, which can translate into exponential timepproach gives priority to the semantic variable ordering heuristic

savings for search algorithms. Since the variable selection can hawand applies problem decomposition as a secondary principle. Since
a dramatic impact on search performance when solving optimizatiothe structure of the problem may change dramatically during search
tasks, we introduce in this paper a néywnamicAND/OR Branch- ~ we introduce a third approach that uses a dynamic decomposition
and-Bound algorithmic framework which accommodates variable ormethod coupled with semantic variable ordering heuristics.

dering heuristics. The efficiency of the dynamic AND/OR approach We apply the dynamic AND/OR Branch-and-Bound algorithms

is demonstrated empirically in a variety of domains. on two optimization tasks: solving Weighted CSPs [6] and pure O-
1 Integer Linear Programming problems [17]. We experiment with
1 INTRODUCTION various random models and real-world scheduling and resource allo-

cation problems. Our results show conclusively that the new dynamic
Graphical modelge.g. constraint and belief networks) are a power- AND/OR approach outperforms significantly the classic OR as well
ful representation framework for various automated reasoning.taskas the existing static AND/OR tree search algorithms.
These models use graphs to capture conditional independencies be-
tween variables, allowing a concise representation of the knowledg
as well as efficient graph-based query processing algoritos- 62 BACKGROUND
straint Optimization Problemsuch as finding a solution that violates finite Constraint Optimization ProblefCOP) is a six-tuple® =
the least number of constraints or finding the most likely state of a(X,D, F,®,1, Z), whereX = {X1, ..., X,.} is a set of variables,
belief network can be defined within this framework and they arep, _ {Dy,..., Do} is asetof finite domains anél = { f1, ..., fyn } is
typically tackled with eithesearchor inferencealgorithms [9]. a set of constraints. Constraints can be eitfudt(cost functions) or
~ The AND/OR search space for graphical models [8] is & newlyarq (sets of allowed tuples). Without loss of generality we assume
introduced framework for search that is sensitive to the independeny, 5t hard constraints are represented as (bi-valued) cost functions.
cies in the model, often resulting in exponentially reduced complex-jowed and forbidden tuples have castindoo, respectively. The
ities. It is based on a pseudo-tree that captures independencies in tg'@ope of functiory;, denotedscope( f;) C X, is the set of arguments
graphical model, resulting in a search tree exponential in the deptj fi. The operators andl} are defined as followss, f; is acombi-

of the pseudo-tree, rather than in the number of variables. nationoperator®; f; € {[[. fi,>_, fi} andl}, f is anelimination
The AND/OR Branch-and-Bound algorithnA@BB) is a new _ operatorly f € {mazs_y f, mins_y f}, wheres is the scope of
search method that explores the AND/OR search tree for SOIV'n%nctionf andY C X. The scope ofl, fisY.
optimization tasks in graphical models [16]. If restricted to a static  a, optimizatioﬁ task is defined b?(Z) = |,®"™, f;, where
variable ordering, the algorithm was shown to outperform a static, ~ 1 A global optimizatioris the task of finding the best global
version of the traditional OR Branch-and-Bound. In practice NOW-¢oqt namelyz — (. For simplicity we will develop our work as-
ever, variable selection can have a dramatic influence on search p"sﬁ]m%ng a COP instance witummatiorandminimizationas combi-

formance for solving constraint satisfaction and optimization tasks,5tion and elimination operators, and a global cost function defined
[9]. In the context of OR search spaces there exists a whole line qf (X) = minx ™, f;
- 4=1J72"

research that mitigates this problem and focuses on the practical US€ ¢ constraint graphof a COP instance has the variabléss its

of variable ordering heuristics during search. The most powerful OR,5qes and an arc connects any two variables that appear in the scope
Branch-and-Bound solvers developed in the past years, suchsgs tho¢ the same function.

maintaining a form directional local consistency [6] or those guided

by bounded tree-clustering inference [7] rely heavily on variable or-

dering heuristics in order to improve efficiency. 3 AND/OR SEARCH TREES
In this paper we introduce a collection dfynamic AND/OR

Branch-and-Bound algorithms that exteA@BB by combining the

AND/OR decomposition principle with variable ordering heuristics.

There are three approaches to incorporating dynamic orderings in

The classical way to do search is to instantiate variables one at a time,
following a static/dynamic variable ordering. In the simplest case,
tIg)ﬂs process defines a search tree (called here OR search tree, whos
nodes represent states in the space of partial assignments. The tra-
1 University of California, Irvine, USA, emaikradum,decht¢r@ics.uci.edu  ditional search space does not capture independencies that appear in




function: ACBB( st, X, D, F)
1 if X = @ thenreturnQ;

2 ese
3 X, < Sel ectVar(X);
4 v(X;) — oo
5 foreach z; € D; do
6 st! — stU (X, z;);
7 h(X;,z;) — LB( X, D, F);
8 foreach k = 1..qg do
9 h(Xy) « LB( Xy, Dy, Fi) ;
10 Updat eCont ext (out, X, lbg) ;
11 end
. 12 if =Fi ndCut ( X;,z;,in,out,h(X;, z;)) then
Figurel. The AND/OR search space. 13 (X4, x;) — 0;
14 foreach k = 1..q do
) ) ) 15 Dy, <+ LookAhead( X, Dy, Fy) ;
the structure of the constraint graph. Introducing AND states into the ¢ if ~Enpt yDomai n( D},) then
search space can capture the structure, decomposing the problem intaz val «—AOBB( st’, Xy, D}, . Fi) ;
independent subproblems by conditioning on values. The AND/OR 18 (X5, %) — v(X5, 3;) +val;
search space is defined using a backhmseido-tre¢10, 1, 8]. 19 else
20 v(Xi, ;) — oo;
. . 21 break;
DEFINITION 1 (pseudo-tree) Given an undirected graplG = 2 end
(V, E), a directed rooted tre€ = (V, E’) defined on all its nodes 23 (X, x5) — v(Xs, ;) H abel ( Xi,z;);
is calledpseudo-tredf any arc ofG which is not included ir?’ is a 24 Updat eCont ext (in, v(X;, :)) ;
back-arc, namely it connects a node to an ancestdr.in ;: en;)(X'i)  min(v(Xs), v(Xi, 2:));
. . . . 27  end
Given a COP instancéX, D, F), its constraint grapltz and a 28 return v(X;);
pseudo-tred” of GG, the associated AND/OR search tige has al- 29 end

ternating levels of OR nodes and AND nodes. The OR nodes are
labeled byX; and correspond to the variables. The AND nodes are
labeled by(X;, z;) and correspond to value assignments in the do-
mains of the variables. The structure of the AND/OR tree is based on
the underlying pseudo-tre of G. The root of the AND/OR search  peginiTioN 3 (value) Thevaluew(n) of a noden € St is defined
tree is an OR node, labeled with the root/af recursively as follows: (i) il = (X;, ;) is a terminal AND node
The children of an OR node&; are AND nodes labeled with  theny(n) = I(X;, 2:); (i) if n = (X, 2:) is an internal AND node
value assignmentSX;, x;), consistent along the path _from the root, thenu(n) = I(X;,z:) + > e suee(n) o(n'); (i) if n = X, is an
path(Xi,z:) = ((X1,21), ..., (Xi—1,xi-1)). The children of an ;1amal OR node then(n) = min,: csycem)v(n'), wheresuce(n)
AND node(X;, z;) are OR nodes labeled with the children of vari- o the children of. in Sr.
ableX; inT. In other words, the OR states represent alternative ways
of solving the problem, whereas the AND states represent problem Clearly, the value of each node can be computed recursively, from
decomposition into independent subproblems, all of which need b&aves to root.
solved. When the pseudo-tree is a chain, the AND/OR search tree
coincides with the regular OR search tree. PropPoOsITION1 Given an AND/OR search tre€r of a COP in-
A solution subtreeSols,. of St is an AND/OR subtree such that: stanceP = (X, D, F), the valuev(n) of a noden € Sr is the
(i) it contains the root o671 ; (ii) if a nonterminal AND node: € St minimal cost solution to the subproblem rootednatsubject to the
is in Sols,. then all its children are iSols..; (iii) if a nonterminal current variable instantiation along the path from root#o If n is
OR noden € Sy is in Solr then exactly one of its children is in the root ofSt, thenv(n) is the minimal cost solution t&.
Sols,.

Figure2. AND/OR Branch-and-Bound search.

Example 1 Figure 1(a) shows the constraint graph of a COP in- 4 AND/OR BRANCH-AND-BOUND SEARCH

stance and a pseudo-tree together with the back-arcs (dotted linesAND/OR Branch-and-Bound¥OBB) was recently proposed by [16]
Figure 1(b) shows the AND/OR search tree based on the pseudo-treas a depth-first Branch-and-Bound that explores an AND/OR search
for bi-valued variables. A solution subtree is highlighted. tree for solving optimization tasks in graphical models. In this section
we overview the static version of the algorithm.
The AND/OR search tree can be traversed by a depth-first search
algorithm that is guaranteed to have a time (_:omplexity exponential "11.1 L ower Bounds on Partial Trees
the depth of the pseudo-tree and can use linear space [16]. The arcs
from X; to (X, z;) are annotated by appropridtelsof the cost At any stage during search, a nodelong the current path roots a
functions. The nodes 87 can be associated witialues defined  currentpartial solution subtreedenoted byG..;(n), which must be
over the subtrees they root. connected, must contain its raeeind will have grontier containing
all those nodes that were generated and not yet expanded. Further-
DEFINITION 2 (label) Thelabel [(X;, ;) of the arc from the OR  more, there exists atatic heuristic functionh(n) underestimating
nodeX; to the AND nodé.X;, x;) is defined as the sum of all the cost v(n) that can be computed efficiently when nods first generated.
functions values for which variabl&; is contained in their scope Given the current partially explored AND/OR search tfge the
and whose scope is fully assigned algngh(X;, x;). active pathAP(t) is the path of assignments from the root$#



to the current tip node Theinside contexin(AP) of AP(t) con-  min-domain, max-degree, min-dom/deg) that aim at shrinking the

tains all nodes that were fully evaluated and are children of nodesearch space. These two forces are orthogonal, namely we can use

on AP(t). Theoutside contexbut(AP) of AP(t), contains all the  one as the primary goal and break ties based on the other. Moreover,

frontier nodes that are children of the nodes.4®(t). Theactive  we can use each class statically or dynamically. We present next three

partial subtree AP7 (n) rooted at a node € AP(t) is the subtree  ways of combining efficiently these two classes of heuristics.

of Gs01(n) containing the nodes aAP(t) betweem andt together

with their OR children. Adynamic heuristic evaluation functiai a : : :

noden relative to.AP7 (n) which underestimates(n) is defined as 51 Partial Variable Ordering (PVO)

follows (see [16] for more details). The first approach, calleAND/OR Branch-and-Bound with Partial
Variable Ordering(AOBB+PVO) combines the static graph-based de-

DEFINITION 4 (dynamic heuristic evaluation function) Given an  composition given by a pseudo-tree with a dynamic semantic order-

active partial treeAP7 (n), thedynamic heuristic evaluation func- ing heuristic. It is an adaptation of the ordering heuristics developed

tion of n, fxn(n), is defined recursively as follows: (i) AP7 (n) by [11] and [15] for solving large-scale SAT problem instances.

consists only of a single node and ifn € in(AP) then f,(n) = Let us illustrate the idea with an example. Consider the pseudo-

v(n) elsefr(n) = h(n); (i) if n = (X;,x;) is an AND node, hav- tree from Figure 1(a) inducing the following variable group ordering:

ing OR childrenmy, ..., my, then f,(n) = max(h(n), (X, z:) + {A,B}, {C,D}, {E,F}; which dictates that variablefA,B} should

S°%, fu(ma)); (i) if n = X; is an OR node, having an AND child  be considered beforeC,D} and{E,F}. Variables in each group can

m, then fi.(n) = max(h(n), fn(m)). be dynamically ordered based on a second, independent semantic-
based heuristic. Notice that after variables,B} are instantiated,

4.2 Static AND/OR Branch-and-Bound the problem decomposes into independent components that can be
solved separately.

AOBB can calculate dower boundon v(n) for any noden on the AOBB+PVO is similar to the algorithm from Figure 2 traversing

active path, by using’,(n). It also maintains ampper boundon an AND/OR search tree guided by a pre-computed pseudo-tree. Pro-
v(n) which is the current minimal cost solution subtree rooted.at cedureSel ect Var in this case implements the dynamic semantic
If f,(n) > ub(n) then the search can be safely terminated below theordering heuristic which selects next the best scoring variable from
tip node of the active path. the current variable group of the pseudo-tree.
Figure 2 show#\OBB. The following notation is used:X’, D, F)
is th_e probl_em with which _the procedure is called,s the current 5.2 Dynamic Variable Ordering (DVO)
partial solution subtree being explored, (resp.out) represents the
inside (resp. outside) context of the active path. These contexts afehe second, orthogonal approach to PVO caliédD/OR Branch-
constantly updated during search. The algorithm assumes that vagnd-Bound with Dynamic Variable OrderingdVO+AOBB), gives
ables are selected statically according to a pseudo-tree. priority to the dynamic semantic ordering heuristic and applies static
If the setX is empty, then the result is trivially computed (line problem decomposition as a secondary principle during search. This
1). Else, AOBB selects a variableX; (i.e. expands the OR node idea was also explored by [2] in the context of SAT model counting.
X;) and iterates over its values (line 5) to compute the OR value DVO+AOBB is also based on the algorithm from Figure 2. It in-
v(X5). For each valuer; the problem rooted by the AND node stantiates variables dynamically using a semantic ordering heuristic
(Xi,z;) is decomposed into a set gfindependent subproblems while constantly updating the problem graph structure. Specifically,
P, = (X, Dr, Fr), one for each childX;, of X; in the pseudo- after variableX; is selected by proceduBel ect Var , DVO+AOBB
tree. Procedur&B computes the static heuristic functidrin) for tentatively removesX; from the graph and, if disconnected compo-
every noden in the search tree. nents are detected their corresponding subproblems are then solved
When expanding the AND nodéX;, z;), AOBB successively separately and the results combined in an AND/OR manner (lines
computes thelynamic heuristic evaluation functiofy, (m) for ev- 14-22). It easy to see that in this case a variable may have the best
ery ancestor node: along the active path and terminates the currentsemantic heuristic to tighten the search space, yet, it may not yield a
search path if, for some, fr(m) > ub(m). Else, the independent good decomposition for the remaining of the problem, in which case
subproblems are solved recursively (lines 14-22) and the results athe algorithm would explore primarily an OR space.
cumulated by the AND value(X;, z;) (line 18). A lookahead pro-

cedure is also executed in which unfeasible values are removed fro . .
future domains (line 15). After trying all feasible values of variable %'3 Dynamic Separator Ordering (DSO)

X, the minimal cost solution to the problem rooted Ky remains  The third approach, calledND/OR Branch-and-Bound with Dy-
in v(X;), which is returned (line 28). namic Separator Ordering(AOBB+DSO), combines a dynamic
graph-based decomposition heuristic with a dynamic semantic or-
5 DYNAMIC AND/OR BRANCH-AND-BOUND dering heuristic giving priority to the first. The idea is supported by
the constraint propagation (e.g. lookahead) procedure which may de
In this section we go beyond static orderings and introduce a collectect singleton variables (i.e. with only one feasible value left in their
tion of dynamicAND/OR Branch-and-Bound algorithms that incor- domains). When the value of a variable is known, we can remove
porate variable ordering heuristics used in the classic OR space. Sint-from the corresponding subproblem. Therefore, we may expect a
ilar structure-aware variable ordering heuristics have been previouslgetter decomposition based on a simplified constraint graph.
investigated in the context of SAT and model counting [2, 11, 15]. AOBB+DSOis also based on the algorithm from Figure 2. It cre-
We distinguish two classes of variable ordering heuris@raph ates and maintains a separatbpof the current constraint graph. A
based heuristics (e.g. pseudo-tree arrangements) that try to magraph separator can be computed using the hypergraph partitioning
imize problem decomposition angkmantiebased heuristics (e.g. method presented in [15]. The next variable is chosen dynamically
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Figure3. Time in seconds to prove optimality for random binary WCSPs.

from .S by the semantic ordering heuristic until a.II variables are in- Tablel. Time in seconds to prove optimality for SPOT5 benchmarks.
stantiated and the current problem decomposes into several subprob-

lems. These independent subproblems are then solved separately an BB [ AOBB | AOBB+ | DVO+ | AOBB+
i ; ; ; i spot | (w*,h) PVO | AOBB DSO
their solutions co_mblned in an AND_/OR_ _fashlon. The separator of time time time time time
each component is created from a simplified subgraph resulted from ‘2‘2 %g ‘21% 0.41 191 1.93 ‘%gg 0.68
previous constraint propagation steps and it may differ for different | 54 12°16) | 006 | 1.13 107 | 003 0.08
i i i i i 404 | (20,25) | 0.03 2.50 2.50 0.02 0.03

value assignments. Clearl_y, if no smglgton vanabl_es are _dlsco_vered 503 | (1123 | 11.70 58 58 0.05 013
by the lookahead steps this approach is computationally identical to | 505 | (27,42) | 4010 | 75.43 75.37 | 17.28 82.74

AOBB+PVO, although it may have a higher overhead due to the dy-

namic generation of the separators. ) ) . o
We report the average CPU time required for proving optimality

of the solution (the nodes visited are not shown for space reasons),
6 EXPERIMENTS the induced width (w*) and depth of the pseudo-tree (h) obtained for

. . L the test instances. The best performance points are highlighted.
In this section we evaluate empirically the performance of the dy-

namic AND/OR Branch-and-Bound algorithms on two optimization
tasks: solving Weighted CSPs and pure 0-1 Integer Linear Progran.1 Random Weighted CSPs
ming problem$. For comparison, we include results obtained with
the classic OR Branch-and-Bouri8R) algorithm.

BB explores an OR search tree in a depth-first manner maintainin

We have generated 4 classes of binary random WCSPs with do-
gain size and penalty weight set to 10 (Sparse-Loose, Sparse-Tight,
A . Dense-Loose, Dense-Tight) as proposed in [6]. Figure 3 gives the
an upper bound, the best solution cost found so far, and a he““Stt‘fme results in seconds (each data point represents an average over

evaluation function (i.e. lower bound) of the optimal extension of ) . )
. : mples). When comparidgBB+PVOwith staticAOBB we no-
the current partial assignment. The subtree below the current paﬁ\o samples) en compa Owith staticAGBB we no

is pruned as soon as the lower bound exceeds the upper bound. T %e a considerable improvement in terms of both running time and
pru ) X . ppe . _.Size of search space exploréd®BB+DSOhas a similar performance

algorithm uses a dynamic semantic-based variable ordering heunsug'sAGBB+PVOindicatin that both algorithms use decompositions of
Weighted CSRWCSP) [6] extends the classic CSP formalism g 9 P

with so-calledsoft constraintsvhich assign a positive integer penalt similar quality. The best performance of all 4 problem classes is of-
. gnap gerp Y fered byDVO+ACOBB andBB with no clear winner between the two.
cost to each forbidden tuple (allowed tuples have cost 0). The goal $his imoli . . L .
his implies that the semantic ordering heuristic is powerful and it

to find a complete assignment with minimum aggregated cost. does not leave much room for additional problem decompositions
A pure 0-1 Integer Linear Programmin@®-1 ILP) [17] consists P P '

of a set of integer decision variables (restricted to values 0 or 1) and
a set of linear constraints (equalities or inequalities). The goal is t®@.2 Earth Observing Satellites
minimize a global linear cost function subject to the constraints.

The semantic-based variable ordering and heuristic evaluatio he problem of scheduling an Earth observing satellite is to select

function used in each domain by the OR and AND/OR Branch- r;)_m a sett_ of candtlda_u? photog;_apf)_hz, thz Lohes'i stu:)_set sutch thatf?hset
and-Bound algorithms are as follows. For WCSPs we usertine ohimperative constraints are satistied and the total importance of the
selected photographs is maximized. We experimented with problem

dom/degheuristic (which selects the variable with the smallest ratio .
of the domain size divided by the future degree) and the heuristidStances from the SPOTS benchmark [3] which can be formulated as

evaluation function is computed by maintaining Existential Direc- non-binary WC_SPS [3]. For our purpose we cons!dered _a_S|r_an|f|ed
tional Arc Consistency (EDAC) [6]. For 0-1 ILPs we use thac- MAX-CSP _versmn_of the prob_lem v_vher_e the goal is to minimize the
tion heuristic (which selects the fractional variable closest to 0.5)number of imperative constraints V|olat|on§.

and the heuristic evaluation function is computed by solving the lin- Ta_ble 1 shows_the results f_or 6 scheduling prqblems. We observe
ear relaxation of the current subproblem with th&pLEX® method that in this domaerVO+A(BB Is the best performing algorlt_hm: In

[5, 17]. Ties were broken lexicographically. The pseudo-tree thatSpOt -42, the hardest instanc&VOrACBB proves optimality in

guidesAOBB andAOBB+PVOas well as the graph separator used by about one and a half hours, thus demonstrating the power of aug-

AOBB+DSOwere generated based on the recursive decomposition o’Per_‘t_'”g a_se_rnantlc-based orderl_ng heuristic with a static decpm-
osition principle. The other algorithms exceeded the 10 hour time

h h ion of th lem [11, 15]. POS . ; .
a hypergraph representation of the problem [11, 15] limit. AOBB+DSO is the second best algorithm, always exploring

2 All experiments were done on a 2.4GHz Pentium IV with 2GB of RAM
3 Our code used theimMPLEX implementation from the open source library | p_sol ve 5. 5 available at http:/groups.yahoo.com/groupgigve/



Table2. Time in seconds to prove optimality for CELAR6 benchmarks.

BB | AOBB | AOBB+ | DVO+ | AOBB+

celaré (w*,h) PVO | AOBB DSO
time time time time time

sub0 7,8 0.88 0.73 0.81 0.92 0.71
subl 9,9 2260 3101 2200 2182 2246
subl1-24 9,9 136 171 128 127 132
sub2 10, 12 4696 | 10963 7047 4024 6696
sub3 10, 13) | 14687 | 32439 28252 | 11131 28407
sub4-20 | (11, 15 681 137 157 70 179

captured by a shallow pseudo-tree with depth 123 and induced width
50.DVO+AOBB has a similar performance B8 (it is slower tharBB

due to its computational overhead), indicating that these problems do
not break into disconnected components when semantic variable or-
dering has higher priority than problem decomposition.

In summary, for WCSP instances with relatively low connectivity
(e.g. random WCSPs, SPOT5 networks) as well as for instances with
higher graph density (e.g. CELAR6 network3yYO+AOBB outper-
forms significantly both its OR and AND/OR competitors. For sparse
0-1 integer programs (e.g. UWLP) which yield extremely shallow

fewer nodes than the other AND/OR algorithms. Its Compmationalpseudo-treeAO38+PVOappears to be the preferred choice.
overhead of computing the separators dynamically did not pay off in

some test cases (egpot - 505).

6.3 Radio Link Frequency Assignment Problem

7 CONCLUSION

In this paper we extended the AND/OR Branch-and-Bound algo-
rithmic framework with dynamic orderings for combining efficiently

RLFAP is a communication problem where the goal is to assign frevariable ordering heuristics with problem decomposition principles.
quencies to a set of radio links in such a way that all links may operThe effectiveness of the dynamic AND/OR approach is demonstrated
ate together without noticeable interferences [4]. It can be naturallempirically in a variety of domains including random models as well
casted as a binary WCSP where each forbidden tuple has an assts hard real-world problem instances.

ciated penalty cost. Table 2 compares the OR and AND/OR algoRelated Work: AOBB is related to the Branch-and-Bound method
rithms for solving 6 publicly available RLFAP subinstances called proposed by [13] for acyclic AND/OR graphs and game trees, as well
CELARG- SUB; (i = 1,...,4). We observe that in this domain also as to the pseudo-tree search algorithm proposed in [14] for boosting
DVO+AQOBB offers the best performance. On average, the speedupRussian Doll search. BTD algorithm developed in [12] for semi-ring
caused bypDVO+AOBB over the other algorithms are as follows: 1.9x CSPs can also be interpreted as an AND/OR graph search algorithm.

over AOBB, 1.6x overAOBB+PVO and 2.5x overBB. AOBB+DSO

performs similarly toAOBB+PVO indicating that the quality of the  ACck NOWLEDGEMENTS

dynamic problem decomposition is comparable to the static one.

This work was supported by the NSF grant [1S-0412854.

6.4 Uncapacitated Warehouse L ocation Problem

In UWLP a company considers openingwarehouses at some can- 1]
didate locations in order to supply itsexisting stores. The objective

is to determine which warehouse to open, and which of these waref2]
houses should supply the various stores, such that the sum of the
maintenance and supply costs is minimized. Each store must be sup[g’]
plied by exactly one warehouse. UWLP is typically formulated as a 4]
pure 0-1 integer linear program [17].

[8]
Table3. Time in seconds to prove optimality for UWLP benchmarks.

uwip BB | AOBB | AOBB+ DVO+ (6]
PVO | AOBB
time time time time

T 6.27 15.72 6.28 7.23 [71
2 1134 | 17.22 5.78 11.75
3 73.66 | 15.78 5.83 77.94
4 836.52 | 27.94 11.97 904.15

5 2501.75 | 32.69 16.98 | 2990.19 [8]
6 43.36 | 18.70 8.03 45.99
7 1328.40 | 27.89 853 | 1515.48

8 76.88 | 25.20 13.70 88.38 [9]

9 224.33 | 46.06 17.17 367.14 [10]
10 | 7737.65| 28.03 9.13 | 9276.98

[11]

Table 3 displays the results obtained for 10 randomly generateld?2]
UWLP problem instancésawith 50 warehouses and 200 stores. The
warehouse opening and store supply costs were chosen uniform[l%/g’]
randomly between 0 and 1000. These are large problems with 10,094)
variables and 10,500 constraints. We can seeABB+PVO dom-
inates in all test cases, outperformiBg (resp.DVO+AOBB) with
several orders of magnitude in terms of running time and size of th
search space explored. This is due to the problem’s structure partialty

[17]

[15]

4 We used the random problem generator from http:/www.mpi-
sh.mpg.de/units/agl/projects/benchmarks/UfILib/
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