
Dynamic Orderings for AND/OR Branch-and-Bound
Search in Graphical Models

Radu Marinescu and Rina Dechter 1

Abstract. AND/OR search spaceshave recently been introduced as
a unifying paradigm for advanced algorithmic schemes for graphi-
cal models. The main virtue of this representation is its sensitivity to
the structure of the model, which can translate into exponential time
savings for search algorithms. Since the variable selection can have
a dramatic impact on search performance when solving optimization
tasks, we introduce in this paper a newdynamicAND/OR Branch-
and-Bound algorithmic framework which accommodates variable or-
dering heuristics. The efficiency of the dynamic AND/OR approach
is demonstrated empirically in a variety of domains.

1 INTRODUCTION

Graphical models(e.g. constraint and belief networks) are a power-
ful representation framework for various automated reasoning tasks.
These models use graphs to capture conditional independencies be-
tween variables, allowing a concise representation of the knowledge,
as well as efficient graph-based query processing algorithms.Con-
straint Optimization Problemssuch as finding a solution that violates
the least number of constraints or finding the most likely state of a
belief network can be defined within this framework and they are
typically tackled with eithersearchor inferencealgorithms [9].

The AND/OR search space for graphical models [8] is a newly
introduced framework for search that is sensitive to the independen-
cies in the model, often resulting in exponentially reduced complex-
ities. It is based on a pseudo-tree that captures independencies in the
graphical model, resulting in a search tree exponential in the depth
of the pseudo-tree, rather than in the number of variables.

The AND/OR Branch-and-Bound algorithm (AOBB) is a new
search method that explores the AND/OR search tree for solving
optimization tasks in graphical models [16]. If restricted to a static
variable ordering, the algorithm was shown to outperform a static
version of the traditional OR Branch-and-Bound. In practice how-
ever, variable selection can have a dramatic influence on search per-
formance for solving constraint satisfaction and optimization tasks
[9]. In the context of OR search spaces there exists a whole line of
research that mitigates this problem and focuses on the practical use
of variable ordering heuristics during search. The most powerful OR
Branch-and-Bound solvers developed in the past years, such as those
maintaining a form directional local consistency [6] or those guided
by bounded tree-clustering inference [7] rely heavily on variable or-
dering heuristics in order to improve efficiency.

In this paper we introduce a collection ofdynamic AND/OR
Branch-and-Bound algorithms that extendAOBB by combining the
AND/OR decomposition principle with variable ordering heuristics.
There are three approaches to incorporating dynamic orderings into

1 University of California, Irvine, USA, email:{radum,dechter}@ics.uci.edu

AOBB. The first one improvesAOBB by applying an independent se-
mantic variable ordering heuristic whenever the partial order dictated
by the static decomposition principle allows. The second, orthogonal
approach gives priority to the semantic variable ordering heuristic
and applies problem decomposition as a secondary principle. Since
the structure of the problem may change dramatically during search
we introduce a third approach that uses a dynamic decomposition
method coupled with semantic variable ordering heuristics.

We apply the dynamic AND/OR Branch-and-Bound algorithms
on two optimization tasks: solving Weighted CSPs [6] and pure 0-
1 Integer Linear Programming problems [17]. We experiment with
various random models and real-world scheduling and resource allo-
cation problems. Our results show conclusively that the new dynamic
AND/OR approach outperforms significantly the classic OR as well
as the existing static AND/OR tree search algorithms.

2 BACKGROUND

A finite Constraint Optimization Problem(COP) is a six-tupleP =
〈X ,D,F ,⊗,⇓, Z〉, whereX = {X1, ..., Xn} is a set of variables,
D = {D1, ..., Dn} is a set of finite domains andF = {f1, ..., fm} is
a set of constraints. Constraints can be eithersoft(cost functions) or
hard (sets of allowed tuples). Without loss of generality we assume
that hard constraints are represented as (bi-valued) cost functions.
Allowed and forbidden tuples have cost0 and∞, respectively. The
scope of functionfi, denotedscope(fi) ⊆ X , is the set of arguments
of fi. The operators⊗ and⇓ are defined as follows:⊗ifi is acombi-
nationoperator,⊗ifi ∈ {

Q

i
fi,

P

i
fi} and⇓

Y
f is anelimination

operator,⇓
Y

f ∈ {maxS−Y f, minS−Y f}, whereS is the scope of
functionf andY ⊆ X . The scope of⇓

Y
f is Y .

An optimization task is defined byg(Z) = ⇓
Z
⊗m

i=1fi, where
Z ⊆ X . A global optimizationis the task of finding the best global
cost, namelyZ = ∅. For simplicity we will develop our work as-
suming a COP instance withsummationandminimizationas combi-
nation and elimination operators, and a global cost function defined
by f(X ) = minX

P

m

i=1 fi.
Theconstraint graphof a COP instance has the variablesX as its

nodes and an arc connects any two variables that appear in the scope
of the same function.

3 AND/OR SEARCH TREES

The classical way to do search is to instantiate variables one at a time,
following a static/dynamic variable ordering. In the simplest case,
this process defines a search tree (called here OR search tree), whose
nodes represent states in the space of partial assignments. The tra-
ditional search space does not capture independencies that appear in



A

D

B

EC

F

A

E

C

B

F

D

(a)

OR

AND

OR

AND

OR

OR

AND

AND

A

0

B

0

E

F F

0 1 0 1

0 1

C

D D

0 1 0 1

0 1

1

E

F F

0 1 0 1

0 1

C

D D

0 1 0 1

0 1

1

B

0

E

F F

0 1 0 1

0 1

C

D D

0 1 0 1

0 1

1

E

F F

0 1 0 1

0 1

C

D D

0 1 0 1

0 1

(b)

Figure 1. The AND/OR search space.

the structure of the constraint graph. Introducing AND states into the
search space can capture the structure, decomposing the problem into
independent subproblems by conditioning on values. The AND/OR
search space is defined using a backbonepseudo-tree[10, 1, 8].

DEFINITION 1 (pseudo-tree) Given an undirected graphG =
(V, E), a directed rooted treeT = (V, E′) defined on all its nodes
is calledpseudo-treeif any arc ofG which is not included inE′ is a
back-arc, namely it connects a node to an ancestor inT .

Given a COP instance〈X ,D,F〉, its constraint graphG and a
pseudo-treeT of G, the associated AND/OR search treeST has al-
ternating levels of OR nodes and AND nodes. The OR nodes are
labeled byXi and correspond to the variables. The AND nodes are
labeled by〈Xi, xi〉 and correspond to value assignments in the do-
mains of the variables. The structure of the AND/OR tree is based on
the underlying pseudo-treeT of G. The root of the AND/OR search
tree is an OR node, labeled with the root ofT .

The children of an OR nodeXi are AND nodes labeled with
value assignments〈Xi, xi〉, consistent along the path from the root,
path(Xi, xi) = (〈X1, x1〉, ..., 〈Xi−1, xi−1〉). The children of an
AND node〈Xi, xi〉 are OR nodes labeled with the children of vari-
ableXi in T . In other words, the OR states represent alternative ways
of solving the problem, whereas the AND states represent problem
decomposition into independent subproblems, all of which need be
solved. When the pseudo-tree is a chain, the AND/OR search tree
coincides with the regular OR search tree.

A solution subtreeSolST
of ST is an AND/OR subtree such that:

(i) it contains the root ofST ; (ii) if a nonterminal AND noden ∈ ST

is in SolST
then all its children are inSolST

; (iii) if a nonterminal
OR noden ∈ ST is in SolT then exactly one of its children is in
SolST

.

Example 1 Figure 1(a) shows the constraint graph of a COP in-
stance and a pseudo-tree together with the back-arcs (dotted lines).
Figure 1(b) shows the AND/OR search tree based on the pseudo-tree,
for bi-valued variables. A solution subtree is highlighted.

The AND/OR search tree can be traversed by a depth-first search
algorithm that is guaranteed to have a time complexity exponential in
the depth of the pseudo-tree and can use linear space [16]. The arcs
from Xi to 〈Xi, xi〉 are annotated by appropriatelabelsof the cost
functions. The nodes inST can be associated withvalues, defined
over the subtrees they root.

DEFINITION 2 (label) The label l(Xi, xi) of the arc from the OR
nodeXi to the AND node〈Xi, xi〉 is defined as the sum of all the cost
functions values for which variableXi is contained in their scope
and whose scope is fully assigned alongpath(Xi, xi).

function: AOBB(st,X,D,F)
if X = ∅ then return 0;1
else2

Xi ← SelectVar(X);3
v(Xi)←∞;4
foreach xi ∈ Di do5

st′ ← st ∪ (Xi, xi);6
h(Xi, xi)← LB(X ,D,F);7
foreach k = 1..q do8

h(Xk)← LB(Xk,Dk,Fk);9
UpdateContext(out, Xk, lbk);10

end11
if ¬FindCut(Xi,xi,in,out,h(Xi, xi)) then12

v(Xi, xi)← 0;13
foreach k = 1..q do14
D′

k
← LookAhead(Xk,Dk,Fk);15

if ¬EmptyDomain(D′
k
) then16

val←AOBB(st′,Xk,D′
k

,Fk);17
v(Xi, xi)← v(Xi, xi) + val;18

else19
v(Xi, xi)←∞;20
break;21

end22
v(Xi, xi)← v(Xi, xi)+label(Xi,xi);23
UpdateContext(in, v(Xi, xi));24
v(Xi)← min(v(Xi), v(Xi, xi));25

end26
end27
return v(Xi);28

end29

Figure 2. AND/OR Branch-and-Bound search.

DEFINITION 3 (value) Thevaluev(n) of a noden ∈ ST is defined
recursively as follows: (i) ifn = 〈Xi, xi〉 is a terminal AND node
thenv(n) = l(Xi, xi); (ii) if n = 〈Xi, xi〉 is an internal AND node
thenv(n) = l(Xi, xi) +

P

n′∈succ(n) v(n′); (iii) if n = Xi is an

internal OR node thenv(n) = minn′∈succ(n)v(n′), wheresucc(n)
are the children ofn in ST .

Clearly, the value of each node can be computed recursively, from
leaves to root.

PROPOSITION1 Given an AND/OR search treeST of a COP in-
stanceP = (X ,D,F), the valuev(n) of a noden ∈ ST is the
minimal cost solution to the subproblem rooted atn, subject to the
current variable instantiation along the path from root ton. If n is
the root ofST , thenv(n) is the minimal cost solution toP.

4 AND/OR BRANCH-AND-BOUND SEARCH

AND/OR Branch-and-Bound (AOBB) was recently proposed by [16]
as a depth-first Branch-and-Bound that explores an AND/OR search
tree for solving optimization tasks in graphical models. In this section
we overview the static version of the algorithm.

4.1 Lower Bounds on Partial Trees

At any stage during search, a noden along the current path roots a
currentpartial solution subtree, denoted byGsol(n), which must be
connected, must contain its rootn and will have afrontier containing
all those nodes that were generated and not yet expanded. Further-
more, there exists astatic heuristic functionh(n) underestimating
v(n) that can be computed efficiently when noden is first generated.

Given the current partially explored AND/OR search treeST , the
active pathAP(t) is the path of assignments from the root ofST



to the current tip nodet. The inside contextin(AP) of AP(t) con-
tains all nodes that were fully evaluated and are children of nodes
onAP(t). Theoutside contextout(AP) of AP(t), contains all the
frontier nodes that are children of the nodes onAP(t). Theactive
partial subtreeAPT (n) rooted at a noden ∈ AP(t) is the subtree
of Gsol(n) containing the nodes onAP(t) betweenn andt together
with their OR children. Adynamic heuristic evaluation functionof a
noden relative toAPT (n) which underestimatesv(n) is defined as
follows (see [16] for more details).

DEFINITION 4 (dynamic heuristic evaluation function) Given an
active partial treeAPT (n), thedynamic heuristic evaluation func-
tion of n, fh(n), is defined recursively as follows: (i) ifAPT (n)
consists only of a single noden, and ifn ∈ in(AP) thenfh(n) =
v(n) elsefh(n) = h(n); (ii) if n = 〈Xi, xi〉 is an AND node, hav-
ing OR childrenm1, ..., mk thenfh(n) = max(h(n), l(Xi, xi) +
P

k

i=1 fh(mi)); (iii) if n = Xi is an OR node, having an AND child
m, thenfh(n) = max(h(n), fh(m)).

4.2 Static AND/OR Branch-and-Bound

AOBB can calculate alower boundon v(n) for any noden on the
active path, by usingfh(n). It also maintains anupper boundon
v(n) which is the current minimal cost solution subtree rooted atn.
If fh(n) ≥ ub(n) then the search can be safely terminated below the
tip node of the active path.

Figure 2 showsAOBB. The following notation is used:(X ,D,F)
is the problem with which the procedure is called,st is the current
partial solution subtree being explored,in (resp.out) represents the
inside (resp. outside) context of the active path. These contexts are
constantly updated during search. The algorithm assumes that vari-
ables are selected statically according to a pseudo-tree.

If the setX is empty, then the result is trivially computed (line
1). Else,AOBB selects a variableXi (i.e. expands the OR node
Xi) and iterates over its values (line 5) to compute the OR value
v(Xi). For each valuexi the problem rooted by the AND node
〈Xi, xi〉 is decomposed into a set ofq independent subproblems
Pk = (Xk,Dk,Fk), one for each childXk of Xi in the pseudo-
tree. ProcedureLB computes the static heuristic functionh(n) for
every noden in the search tree.

When expanding the AND node〈Xi, xi〉, AOBB successively
computes thedynamic heuristic evaluation functionfh(m) for ev-
ery ancestor nodem along the active path and terminates the current
search path if, for somem, fh(m) ≥ ub(m). Else, the independent
subproblems are solved recursively (lines 14-22) and the results ac-
cumulated by the AND valuev(Xi, xi) (line 18). A lookahead pro-
cedure is also executed in which unfeasible values are removed from
future domains (line 15). After trying all feasible values of variable
Xi, the minimal cost solution to the problem rooted byXi remains
in v(Xi), which is returned (line 28).

5 DYNAMIC AND/OR BRANCH-AND-BOUND

In this section we go beyond static orderings and introduce a collec-
tion of dynamicAND/OR Branch-and-Bound algorithms that incor-
porate variable ordering heuristics used in the classic OR space. Sim-
ilar structure-aware variable ordering heuristics have been previously
investigated in the context of SAT and model counting [2, 11, 15].

We distinguish two classes of variable ordering heuristics.Graph-
based heuristics (e.g. pseudo-tree arrangements) that try to max-
imize problem decomposition andsemantic-based heuristics (e.g.

min-domain, max-degree, min-dom/deg) that aim at shrinking the
search space. These two forces are orthogonal, namely we can use
one as the primary goal and break ties based on the other. Moreover,
we can use each class statically or dynamically. We present next three
ways of combining efficiently these two classes of heuristics.

5.1 Partial Variable Ordering (PVO)

The first approach, calledAND/OR Branch-and-Bound with Partial
Variable Ordering(AOBB+PVO) combines the static graph-based de-
composition given by a pseudo-tree with a dynamic semantic order-
ing heuristic. It is an adaptation of the ordering heuristics developed
by [11] and [15] for solving large-scale SAT problem instances.

Let us illustrate the idea with an example. Consider the pseudo-
tree from Figure 1(a) inducing the following variable group ordering:
{A,B}, {C,D}, {E,F}; which dictates that variables{A,B} should
be considered before{C,D} and{E,F}. Variables in each group can
be dynamically ordered based on a second, independent semantic-
based heuristic. Notice that after variables{A,B} are instantiated,
the problem decomposes into independent components that can be
solved separately.
AOBB+PVO is similar to the algorithm from Figure 2 traversing

an AND/OR search tree guided by a pre-computed pseudo-tree. Pro-
cedureSelectVar in this case implements the dynamic semantic
ordering heuristic which selects next the best scoring variable from
the current variable group of the pseudo-tree.

5.2 Dynamic Variable Ordering (DVO)

The second, orthogonal approach to PVO calledAND/OR Branch-
and-Bound with Dynamic Variable Ordering(DVO+AOBB), gives
priority to the dynamic semantic ordering heuristic and applies static
problem decomposition as a secondary principle during search. This
idea was also explored by [2] in the context of SAT model counting.
DVO+AOBB is also based on the algorithm from Figure 2. It in-

stantiates variables dynamically using a semantic ordering heuristic
while constantly updating the problem graph structure. Specifically,
after variableXi is selected by procedureSelectVar, DVO+AOBB
tentatively removesXi from the graph and, if disconnected compo-
nents are detected their corresponding subproblems are then solved
separately and the results combined in an AND/OR manner (lines
14-22). It easy to see that in this case a variable may have the best
semantic heuristic to tighten the search space, yet, it may not yield a
good decomposition for the remaining of the problem, in which case
the algorithm would explore primarily an OR space.

5.3 Dynamic Separator Ordering (DSO)

The third approach, calledAND/OR Branch-and-Bound with Dy-
namic Separator Ordering(AOBB+DSO), combines a dynamic
graph-based decomposition heuristic with a dynamic semantic or-
dering heuristic giving priority to the first. The idea is supported by
the constraint propagation (e.g. lookahead) procedure which may de-
tect singleton variables (i.e. with only one feasible value left in their
domains). When the value of a variable is known, we can remove
it from the corresponding subproblem. Therefore, we may expect a
better decomposition based on a simplified constraint graph.
AOBB+DSO is also based on the algorithm from Figure 2. It cre-

ates and maintains a separatorS of the current constraint graph. A
graph separator can be computed using the hypergraph partitioning
method presented in [15]. The next variable is chosen dynamically



Figure 3. Time in seconds to prove optimality for random binary WCSPs.

from S by the semantic ordering heuristic until all variables are in-
stantiated and the current problem decomposes into several subprob-
lems. These independent subproblems are then solved separately and
their solutions combined in an AND/OR fashion. The separator of
each component is created from a simplified subgraph resulted from
previous constraint propagation steps and it may differ for different
value assignments. Clearly, if no singleton variables are discovered
by the lookahead steps this approach is computationally identical to
AOBB+PVO, although it may have a higher overhead due to the dy-
namic generation of the separators.

6 EXPERIMENTS

In this section we evaluate empirically the performance of the dy-
namic AND/OR Branch-and-Bound algorithms on two optimization
tasks: solving Weighted CSPs and pure 0-1 Integer Linear Program-
ming problems2. For comparison, we include results obtained with
the classic OR Branch-and-Bound (BB) algorithm.
BB explores an OR search tree in a depth-first manner maintaining

an upper bound, the best solution cost found so far, and a heuristic
evaluation function (i.e. lower bound) of the optimal extension of
the current partial assignment. The subtree below the current path
is pruned as soon as the lower bound exceeds the upper bound. The
algorithm uses a dynamic semantic-based variable ordering heuristic.

Weighted CSP(WCSP) [6] extends the classic CSP formalism
with so-calledsoft constraintswhich assign a positive integer penalty
cost to each forbidden tuple (allowed tuples have cost 0). The goal is
to find a complete assignment with minimum aggregated cost.

A pure 0-1 Integer Linear Programming(0-1 ILP) [17] consists
of a set of integer decision variables (restricted to values 0 or 1) and
a set of linear constraints (equalities or inequalities). The goal is to
minimize a global linear cost function subject to the constraints.

The semantic-based variable ordering and heuristic evaluation
function used in each domain by the OR and AND/OR Branch-
and-Bound algorithms are as follows. For WCSPs we use themin-
dom/degheuristic (which selects the variable with the smallest ratio
of the domain size divided by the future degree) and the heuristic
evaluation function is computed by maintaining Existential Direc-
tional Arc Consistency (EDAC) [6]. For 0-1 ILPs we use thefrac-
tion heuristic (which selects the fractional variable closest to 0.5)
and the heuristic evaluation function is computed by solving the lin-
ear relaxation of the current subproblem with theSIMPLEX3 method
[5, 17]. Ties were broken lexicographically. The pseudo-tree that
guidesAOBB andAOBB+PVO as well as the graph separator used by
AOBB+DSO were generated based on the recursive decomposition of
a hypergraph representation of the problem [11, 15].

2 All experiments were done on a 2.4GHz Pentium IV with 2GB of RAM.
3 Our code used theSIMPLEX implementation from the open source library

Table 1. Time in seconds to prove optimality for SPOT5 benchmarks.

BB AOBB AOBB+ DVO+ AOBB+
spot (w*,h) PVO AOBB DSO

time time time time time
29 (15, 22) 0.41 1.91 1.93 0.33 0.68
42 (38, 46) - - - 4709 -
54 (12, 16) 0.06 1.13 1.07 0.03 0.08
404 (20, 25) 0.03 2.50 2.50 0.02 0.03
503 (11, 21) 11.70 2.78 2.78 0.03 0.13
505 (27, 42) 4010 75.43 75.37 17.28 82.74

We report the average CPU time required for proving optimality
of the solution (the nodes visited are not shown for space reasons),
the induced width (w*) and depth of the pseudo-tree (h) obtained for
the test instances. The best performance points are highlighted.

6.1 Random Weighted CSPs

We have generated 4 classes of binary random WCSPs with do-
main size and penalty weight set to 10 (Sparse-Loose, Sparse-Tight,
Dense-Loose, Dense-Tight) as proposed in [6]. Figure 3 gives the
time results in seconds (each data point represents an average over
20 samples). When comparingAOBB+PVO with staticAOBB we no-
tice a considerable improvement in terms of both running time and
size of search space explored.AOBB+DSO has a similar performance
asAOBB+PVO indicating that both algorithms use decompositions of
similar quality. The best performance of all 4 problem classes is of-
fered byDVO+AOBB andBB with no clear winner between the two.
This implies that the semantic ordering heuristic is powerful and it
does not leave much room for additional problem decompositions.

6.2 Earth Observing Satellites

The problem of scheduling an Earth observing satellite is to select
from a set of candidate photographs, the best subset such that a set
of imperative constraints are satisfied and the total importance of the
selected photographs is maximized. We experimented with problem
instances from the SPOT5 benchmark [3] which can be formulated as
non-binary WCSPs [3]. For our purpose we considered a simplified
MAX-CSP version of the problem where the goal is to minimize the
number of imperative constraints violations.

Table 1 shows the results for 6 scheduling problems. We observe
that in this domainDVO+AOBB is the best performing algorithm. In
spot-42, the hardest instance,DVO+AOBB proves optimality in
about one and a half hours, thus demonstrating the power of aug-
menting a semantic-based ordering heuristic with a static decom-
position principle. The other algorithms exceeded the 10 hour time
limit. AOBB+DSO is the second best algorithm, always exploring

lp solve 5.5 available at http://groups.yahoo.com/group/lpsolve/



Table 2. Time in seconds to prove optimality for CELAR6 benchmarks.

BB AOBB AOBB+ DVO+ AOBB+
celar6 (w*,h) PVO AOBB DSO

time time time time time
sub0 (7, 8) 0.88 0.73 0.81 0.92 0.71
sub1 (9, 9) 2260 3101 2200 2182 2246
sub1-24 (9, 9) 136 171 128 127 132
sub2 (10, 12) 4696 10963 7047 4024 6696
sub3 (10, 13) 14687 32439 28252 11131 28407
sub4-20 (11, 15) 681 137 157 70 179

fewer nodes than the other AND/OR algorithms. Its computational
overhead of computing the separators dynamically did not pay off in
some test cases (e.g.spot-505).

6.3 Radio Link Frequency Assignment Problem

RLFAP is a communication problem where the goal is to assign fre-
quencies to a set of radio links in such a way that all links may oper-
ate together without noticeable interferences [4]. It can be naturally
casted as a binary WCSP where each forbidden tuple has an asso-
ciated penalty cost. Table 2 compares the OR and AND/OR algo-
rithms for solving 6 publicly available RLFAP subinstances called
CELAR6-SUBi (i = 1, ..., 4). We observe that in this domain also
DVO+AOBB offers the best performance. On average, the speedups
caused byDVO+AOBB over the other algorithms are as follows: 1.9x
over AOBB, 1.6x overAOBB+PVO and 2.5x overBB. AOBB+DSO
performs similarly toAOBB+PVO indicating that the quality of the
dynamic problem decomposition is comparable to the static one.

6.4 Uncapacitated Warehouse Location Problem

In UWLP a company considers openingm warehouses at some can-
didate locations in order to supply itsn existing stores. The objective
is to determine which warehouse to open, and which of these ware-
houses should supply the various stores, such that the sum of the
maintenance and supply costs is minimized. Each store must be sup-
plied by exactly one warehouse. UWLP is typically formulated as a
pure 0-1 integer linear program [17].

Table 3. Time in seconds to prove optimality for UWLP benchmarks.

uwlp BB AOBB AOBB+ DVO+
PVO AOBB

time time time time
1 6.27 15.72 6.28 7.23
2 11.34 17.22 5.78 11.75
3 73.66 15.78 5.83 77.94
4 836.52 27.94 11.97 904.15
5 2501.75 32.69 16.98 2990.19
6 43.36 18.70 8.03 45.99
7 1328.40 27.89 8.53 1515.48
8 76.88 25.20 13.70 88.38
9 224.33 46.06 17.17 367.14
10 7737.65 28.03 9.13 9276.98

Table 3 displays the results obtained for 10 randomly generated
UWLP problem instances4 with 50 warehouses and 200 stores. The
warehouse opening and store supply costs were chosen uniformly
randomly between 0 and 1000. These are large problems with 10,050
variables and 10,500 constraints. We can see thatAOBB+PVO dom-
inates in all test cases, outperformingBB (resp.DVO+AOBB) with
several orders of magnitude in terms of running time and size of the
search space explored. This is due to the problem’s structure partially

4 We used the random problem generator from http://www.mpi-
sb.mpg.de/units/ag1/projects/benchmarks/UflLib/

captured by a shallow pseudo-tree with depth 123 and induced width
50.DVO+AOBB has a similar performance asBB (it is slower thanBB
due to its computational overhead), indicating that these problems do
not break into disconnected components when semantic variable or-
dering has higher priority than problem decomposition.

In summary, for WCSP instances with relatively low connectivity
(e.g. random WCSPs, SPOT5 networks) as well as for instances with
higher graph density (e.g. CELAR6 networks)DVO+AOBB outper-
forms significantly both its OR and AND/OR competitors. For sparse
0-1 integer programs (e.g. UWLP) which yield extremely shallow
pseudo-treesAOBB+PVO appears to be the preferred choice.

7 CONCLUSION

In this paper we extended the AND/OR Branch-and-Bound algo-
rithmic framework with dynamic orderings for combining efficiently
variable ordering heuristics with problem decomposition principles.
The effectiveness of the dynamic AND/OR approach is demonstrated
empirically in a variety of domains including random models as well
as hard real-world problem instances.
Related Work: AOBB is related to the Branch-and-Bound method
proposed by [13] for acyclic AND/OR graphs and game trees, as well
as to the pseudo-tree search algorithm proposed in [14] for boosting
Russian Doll search. BTD algorithm developed in [12] for semi-ring
CSPs can also be interpreted as an AND/OR graph search algorithm.

ACKNOWLEDGEMENTS

This work was supported by the NSF grant IIS-0412854.

REFERENCES
[1] R. Bayardo and D. Miranker, ‘On the space-time trade-off in solving

constraint satisfaction problems.’, inIJCAI, pp. 558–562, (1995).
[2] R. Bayardo and J. D. Pehoushek, ‘Counting models using connected

components’, inAAAI/IAAI, pp. 157–162, (2000).
[3] E. Bensana, M. Lemaitre, and G. Verfaillie, ‘Earth observation satellite

management.’,Constraints, 4(3), 293–299, (1999).
[4] B. Cabon, S. de Givry, L. Lobjois, T. Schiex, and J. Warners, ‘Radio

link frequency assignment.’,Constraints, 1(4), 79–89, (1999).
[5] G.B. Dantzig, ‘Maximization of a linear function of variables subject

to linear inequalities.’,Activity Analysis of Production and Allocation,
(1951).

[6] S. de Givry, F. Heras, J. Larrosa, and M. Zytnicki, ‘Existential arc con-
sistency: getting closer to full arc consistency in weighted csps.’, in
IJCAI, pp. 84–89, (2005).

[7] R. Dechter, K. Kask, and J. Larrosa, ‘A general scheme for multiple
lower bound computation in constraint optimization’, inCP, pp. 346–
360, (2001).

[8] R. Dechter and R. Mateescu, ‘Mixtures of deterministic-probabilistic
networks.’, inUAI, pp. 120–129, (2004).

[9] Rina Dechter,Constraint Processing, MIT Press, 2003.
[10] E. Freuder and M. Quinn, ‘Taking advantage of stable sets of variables

in constraint satisfaction problems.’, inIJCAI, pp. 1076–1078, (1985).
[11] J. Huang and A. Darwiche, ‘A structure-based variable ordering heuris-

tic.’, in IJCAI, pp. 1167–1172, (2003).
[12] P. Jegou and C. Terrioux, ‘Decomposition and good recording for solv-

ing max-csps.’, inECAI, (2004).
[13] L. Kanal and V. Kumar,Search in artificial intelligence., Springer-

Verlag., 1988.
[14] J. Larrosa, P. Meseguer, and M. Sanchez, ‘Pseudo-tree search with soft

constraints.’, inECAI, pp. 131–135, (2002).
[15] W. Li and P. van Beek, ‘Guiding real-world sat solving with dynamic

hypergraph separator decomposition.’, inICTAI, pp. 542–548, (2004).
[16] R. Marinescu and R. Dechter, ‘And/or branch-and-boundfor graphical

models.’, inIJCAI, pp. 224–229, (2005).
[17] G. Nemhauser and L. Wolsey,Integer and combinatorial optimization.,

Wiley, 1988.


