
A New Algorithm for Sampling CSP Solutions
Uniformly at Random

Vibhav Gogate and Rina Dechter

Donald Bren School of Information and Computer Science
University of California, Irvine, CA 92697

{vgogate,dechter}@ics.uci.edu

Abstract. The paper presents a method for generating solutions of a constraint
satisfaction problem (CSP) uniformly at random. The main idea is to express the
CSP as a factored probability distribution over its solutions and then generate
samples from this distribution using probabilistic sampling schemes. We sug-
gest parameterized sampling schemes that sample solutions from the output of a
generalized belief propagation algorithm. To speed up the rate at which random
solutions are generated, we augment our sampling algorithms with techniques
used successfully in the CSP literature to improve search such as conflict-directed
back-jumping and no-good learning. The motivation for this tasks comes from
hardware verification. Random test program generation for hardware verification
can be modeled and performed through CSP techniques, and is an application in
which uniform random solution sampling is required.

1 Introduction

The paper presents a method for generating solutions to a constraint network uniformly
at random. The idea is to express the uniform distribution over the set of solutions
as a probability distribution and then generating samples from this distribution using
monte-carlo sampling. We develop novel monte-carlo sampling algorithms that extend
our previous work on monte-carlo sampling algorithms for probabilistic networks [8].
In [8], we developed a parameterized sampling algorithm that samples from the output
of a generalized belief propagation algorithm called Iterative Join Graph propagation
(IJGP) [4, 12]. IJGP was shown empirically to be a very good approximation algorithm
for probabilistic inference [4] and thus sampling from its output is a reasonable choice.

In our prior work [8], we pre-computed the approximate distribution that we sample
from by executing IJGP just once. In this work, we allow re-computation of the distri-
bution that we sample from by executing IJGP periodically as controlled by a parameter
p. This yields a flexible spectrum of accuracy vs time for us to examine such that when
when p=100 we have better accuracy but invest more time while when p=0 we have
less accuracy but invest less time and for other values ofp there is a trade-off between
accuracy and time. Incidentally, when p=0 our scheme coincides with [8]. We refer to
our resulting algorithm as IJGP(i,p)-sampling.

Our preliminary experiments however revealed that IJGP(i,p)-sampling may fail to
output even a single solution for constraint networks that admit few solutions (i.e. for
instances in the phase transition). So we propose to enhance IJGP(i,p)-sampling with

systematic search techniques like conflict directed back-jumping and no-good learning.
To the best of our knowledge, considering sampling as search has not been investi-
gated before and is one the main contributions of this work. We refer to the resulting
search+sampling technique as IJGP(i,p)-search-sampling.

The random solution generation problem is motivated by the task of test program
generation in the field of functional verification. The main vehicle for the verification
of large and complex hardware designs is simulation of a large number of random test
programs [2]. These large hardware designs can be modeled as constraint satisfaction
problems and in this case the test programs are solutions to the constraint satisfaction
problems. The number of solutions of the modeled program could be as large as101000

and the typical number of selected test programs are in the range of103 or 104. The best
test generator is the one that would uniformly sample the space of test programs which
translates to generating solutions to the constraint network uniformly at random.

The two previous approaches for generating random solutions are based on the
WALKSAT algorithm [11] and the mini-bucket approximation (MBE(i)). The latter
converts a constraint network into a belief network and samples from its approxima-
tion [3]. Our work can be seen as an extension to the second approach which uses
generalized belief propagation [12, 4] instead of MBE(i) for approximation. We also
augment MBE(i)-based solution sampler with ideas borrowed from search that improve
the speed at which random solutions are generated.

We tested empirically the performance of our sampling algorithm using two evalua-
tion criteria: (a)accuracywhich measures how random the generated solutions are and
(b) the number of solutionsgenerated in a stipulated amount of time. We experimented
with randomly generated binary constraint networks, randomly generated satisfiability
instances and some benchmark instances from SATLIB.

We compared the performance of IJGP(i,p)-search-sampling with MBE(i)-based
solution sampler [3] and WALKSAT based solution sampler [11]. We found that on
randomly generated binary constraint networks IJGP(i,p)-search-sampling dominates
MBE(i) based solution sampler both in terms of accuracy and the number of solutions.
On randomly generated SAT problems and benchmarks from SATLIB, we found that
IJGP(i,p)-search-sampling is competitive with WALKSAT both in terms of accuracy
and the number of solutions. We observe that the accuracy of the samples generated
increases asp increases while the number of solutions generated decreases. Thusp
gives a user of our algorithm, the option to trade accuracy and time. In our experiments,
we found that increasingi may improve accuracy slightly but the number of solutions
generated decreases.

Note that in this work, we empirically investigate our sampling schemes on factored
probability distributions that express uniform distribution over positive (non-zero) prob-
abilities. However, our sampling schemes are more general and are applicable to any
graphical model that can be expressed as a factored probability distribution (e.g. belief
and markov networks [9]). Thus, the application of this work goes beyond sampling
solutions from a constraint network.

The paper is organized as follows. In section 2, we present some preliminaries.
We then present monte-carlo sampling algorithms that generate solutions uniformly at
random from a constraint network in section 3. In section 4, we explore approximate

techniques for sampling solutions while in section 5, we present techniques that can
be used to improve the performance of approximate sampling algorithms. We present
some experimental results in section 6 and end with a brief summary in section 7.

2 Preliminaries

We follow the notation of representing sets by bold letters and members of a set by
capital letters. An assignment of a value to a variable is denoted by a small letter while
bold small letters indicate an assignment to a set of variables.

Definition 1 (constraint network). A constraint network (CN) is defined by a 3-tuple,
〈X,D,C〉, whereX is a set of variablesX = {X1, . . . ,Xn}, associated with a set of
discrete-valued domains,D = {D1, . . . ,Dn}, and a set of constraintsC = {C1, . . . ,Cr}.
Each constraintCi is a pair(Si ,Ri), whereRi is a relationRi ⊆DSi defined on a subset
of variablesSi ⊆ X. The relation denotes all compatible tuples ofDSi allowed by the
constraint. A solution is an assignment of values to variablesx = (X1 = x1, . . . ,Xn = xn),
Xi ∈ Di , such that∀ Ci ∈ C, xSi ∈ Ri . The constraint satisfaction problem (CSP) is to
determine if a constraint network has a solution, and if so, to find one. The constraint
network represents its set of solutions. Theprimal graph (also called the constraint
graph) of a constraint network is an undirected graph that has variables as its vertices
and an edge connects any two variables involved in a constraint.

The task of interest in this paper is that of generating solutions to a constraint net-
work uniformly at random and is defined below.

Definition 2 (Random Solution Generation Task).Let sol be the set of solutions to
a constraint networkR = (X,D,C). We define the uniform probability distribution
Pu(x) overR such that for every assignmentx = (X1 = x1, . . . ,Xn = xn) to all the vari-
ables that is a solution, we havePu(x ∈ sol) = 1

|sol| while for non-solutions we have

Pu(x /∈ sol) = 0. The task of random solution generation is the task of generating each
solution toR with probability 1

|sol| .

3 Monte Carlo Sampling for Generating Solutions Uniformly at
Random

In this section, we describe how to generate random solutions using monte-carlo (MC)
sampling. Prior work by Dechter et al. [3] relies on using bucket-elimination or its ap-
proximations via mini-bucket elimination to convert a constraint network into a belief
network and then generating samples from the belief network. Our approach here ex-
tends the work in [3] into a more general scheme.

We first express the constraint networkR (X,D,C) as a uniform probability distri-
butionP over the space of solutions. To do this, we consider the constraintsCi(Si ,Ri)
as cost functionsfi in which we assign a value1 for each allowed tuple in the constraint
and0 for each unallowed tuple. Formally,

P (X) = α∏
i

fi(Si = si) fi(Si = si) = {1 I f Si = si ∈ Ri

0 otherwise

Here,α = 1/∑∏i fi(Si) is the normalization constant. It is easy to see that for any con-
sistent assignmentX = x , P (x) = 1/|sol| where|sol| is the number of solutions to the
constraint network. In other words, any algorithm that generates random samples ac-
cording toP , also generates solutions uniformly at random from the constraint network
R .

Expressing the constraint network as a factored probability distributionP allows us
to use the standard monte-carlo (MC) sampler to sample fromP . In particular, given
an ordering of variableso = 〈X1, . . . ,Xn〉, we can generate samples fromP using the
following scheme:
Algorithm Monte-Carlo Sampling
Input: A factored distributionP and a time-bound.
Output: A collection of samples fromP .
Repeat until the time-bound expires

1. FOR i = 1 to n
(a) SampleXi = xi from P(Xi |X1 = x1, . . . ,Xi−1 = xi−1)

2. End FOR
3. If x1, . . . ,xn is a solution output it.

The conditional distributionP(Xi |X1, . . . ,Xi−1) can be computed by its definition:

P(Xi |X1, . . . ,Xi−1) =
∑Xi+1...Xn P (X)

∑Xi ,...,Xn P (X)
(1)

Hence forth, we will abuse notation and useP to denote the conditional distribution
P(Xi |X1, . . . ,Xi−1). It is clear from equation 1 that computingP is exponential in the
number of variables in the constraint network. If a parameter called the tree-width of
the constraint network is small, we can use bucket elimination to computeP (see [3]).

However, for most real-world constraint networks the tree-width is large and thus
exact methods for computingP are infeasible. This is to be expected since the random
solution generation task is a well known #-complete problem. So we consider various
approximations forP in the next section.

4 Approximating the Conditional Distributions using Iterative
Join Graph Propagation

In this section, we show how to use a generalized belief propagation algorithm [12]
called Iterative Join Graph Propagation (IJGP) [4] to compute an approximation toP.
In an earlier work [8], we used the IJGP approximation to computeP prior to sampling.
In this work, we investigate schemes that recomputeP several times during sampling by
using a control parameterp. Also, prior to that Dechter et al. [3] used mini-bucket elim-
ination (MBE) to convert a constraint network into an approximate belief network and
then generated solution samples from the approximate belief network. Our approach
here extends this earlier work [3, 8] into a more general scheme.

Iterative Join Graph Propagation (IJGP) [4](presented for completeness sake in Fig-
ure 1) takes as input two quantities: (1) a collection of functions whose normalized

Algorithm IJGP(i)
Input: A factored probability distributionP (X) = ∏i Fi(Si) whereSi ⊆ X. Evidence variablesI = i whereI ⊆ X
Output: A join graph containing original functions along with messages received from all its neighbors

1. Convert the factored-distributionP into a join-graph< JG,χ,ψ >,JG= (V,E) using a method given in [4].
Select an Activation scheduled = (u1,v1), . . . ,(u2∗|E|,v2∗|E|).
Denote byh(u,v) the message from vertexu to v.
cluster(u) = ψ(u)∪{h(v,u)|(v,u) ∈ E}, clusterv(u) = cluster(u) excluding message fromv to u.
Let h(u,v)(j) beh(u,v) computed during the j-th iteration of IJGP.

2. Process observed variables:
Assign relevant evidence to allRk ∈ ψ(u) χ(u) := χ(u)− I , ∀u∈V.

3. Repeat iterations of IJGP:

– Along d, for each edge(ui ,vi) in the ordering,
– compute

h(ui ,vi) = α ∑
χ(ui)−sep(ui ,vi)

∏
f∈clustervi (ui)

f

4. until :
– Max number of iterations is exceeded
– The algorithm converges i.e. KL distance between old and new messages is less than some threshold.

Fig. 1. Algorithm IJGP(i)

product is a probability distributionP (X) (i.e. a belief or a markov network) and (2)
EvidenceE = ewhereE⊆X. It then decomposes these functions into a graph structure
called a join-graph satisfying the following independence properties:

Definition 3 (Join-Graph). [4] Given a factored distributionP (X) = ∏i Ci(Si) where
Si ⊆ X andCi ∈C are the set of functions or factors of the distribution, a join-graph for
R is a triple JG=< G,χ,ψ >, whereG = (V,E) is a graph, andχ andψ are labeling
functions which associate with each vertexU ∈ V two sets, variable labelχ(U) ⊆ X
and function labelψ(U)⊆ C: (1) For each functionCi ∈ C, there is exactly one vertex
U ∈ V such thatCi ∈ ψ(U), andSi ⊆ χ(U) and (2) For each variableXi ∈ X, the set
{U ∈ V|Xi ∈ χ(V)} induces a connected subgraph ofG.

Example 1.Figure 2 shows a constraint network and a possible join graph for the constraint
network. The functions associated with each cluster are written on the top of each cluster.

IJGP (see Figure 1) is a form of sum-product belief propagation [12, 4] in which mes-
sages are passed between adjacent clusters of the join-graph by taking a product of
messages and functions in each cluster and projecting it to the labeled edge between the
two clusters. IJGP performs message-passing until a pre-specified number of iterations
has been reached or until it converges (i.e. the messages do not change between sub-
sequent iterations). If the number of variables in each cluster is bounded byi (referred
to as thei-bound), we refer to IJGP as IJGP(i). The time and space complexity of one
iteration of IJGP(i) is bounded exponentially byi (see [4] for details).

Example 2.Initially in Figure 2, no messages are exchanged between any clusters. The first
message exchanged between cluster (ABD) and (ABC) is given below.

M(ABD→ ABC) = α∑
BD

[6= (A,B)∗ 6= (B,D)]

Fig. 2. (a) Constraint Network with not-equal constraints (b) Join-graph with a i-bound of 3
.

= α∗∑
BD

[(0,1,1,1,0,1,1,1,0)∗ (0,1,1,1,0,1,1,1,0)]

= α∗∑
BD

[0,0,0,1,0,1,1,1,0,0,1,1,0,0,0,1,1,0,0,1,1,1,0,1,0,0,0]

= α(4,4,4) = (0.33,0.33,0.33)

The output of IJGP(i) is a collection of functions and messages, each bounded expo-
nentially byi. We can use the output of IJGP to compute an approximationQ(Xj |e) of
P(Xj |e) whereXj ∈ X \E by selecting a clusteru in the join-graph such thatXj ∈ χ(u),
and using the following equation:

Q(Xj |e) = α ∑
χ(u)−{Xj}

(∏
f∈cluster(u)

f) (2)

ALGORITHM IJGP-SAMPLING (i,p)
Input: A constraint networkR and i-boundi.
Output: A set of randomly generated solutions.

1. Write the constraint networkR as a probability distributionP
2. Repeat Until there is time
3. FOR j=1 to n do

(a) Run IJGP(i) with evidenceX1 = x1, . . . ,Xj−1 = x j−1 andP as input.
(b) ComputeQ(Xj |X1 = x1, . . . ,Xj−1 = x j−1) from the output of IJGP(i) using equation 2.
(c) SampleXj = x j from Q(Xj |X1 = x1, . . . ,Xj−1 = x j−1)

4. End FOR
5. If X1 = x1, . . . ,Xn = xn is a solution output it
6. End Repeat

Fig. 3. Algorithm IJGP-Sampling to randomly generate solutions of a CSP

Next we show how to use IJGP to approximate the conditional distributionP at
each step of our monte-carlo sampler. This algorithm IJGP(i)-sampling (see also [8]) is
presented in Figure 3. At each step of sampling, we run IJGP(i) overP with evidence
X1 = x1, . . . ,Xj = x j and compute the approximationQ(Xj |X1, . . . ,Xj−1) (using equa-
tion 2) from the output of IJGP(i) and then sampleXj from Q. We repeat this process
until a given time-bound expires.

Note that in IJGP(i)-sampling (see Figure 3), IJGP(i) should be executedn times,
one for each instantiation of variableXj in order to generate one full sample. This
process may be slow because the complexity of running IJGP(i) is exponential ini
and therefor the complexity of generatingN samples isO(N ∗n∗exp(i)). To speed-up
the sampling process, in Gogate and Dechter [8] we pre-computed the approximation
P of Q by executing IJGP(i) just once yielding a complexity ofO(N ∗n+ exp(i)) for
generatingN samples.

In our preliminary empirical testing, we observed that changing only one (or a few)
variables to become instantiated often does not impact the approximationQ computed
by IJGP(i). Since these reruns of IJGP can present a significant overhead, it can be more
cost-effective to rerun IJGP only periodically during sample generation. Therefore, we
introduce a control parameterp which allows running IJGP(i) everyp% of the possible
n variable instantiations. We will refer to the resulting algorithm as IJGP(i,p)-sampling
which can be obtained by replacing line 3(a) in Figure 3 by the following:

– If 100%j = p OR if j = 1 Then
Run IJGP(i) with evidenceX1 = x1, . . . ,Xj−1 = x j−1 andP as input.

Note that whenp = 0, our scheme coincides with the scheme presented in our pre-
vious work [8]. Also note that if we use mini-bucket-elimination (MBE(i)) instead of
IJGP(i) with p = 0, our scheme coincides with the one presented in [3]. In principle,
one could use any policyp to rerun IJGP(i) for a subset of the possiblen variable in-
stantiations. Here, we investigate a periodic policy.

Theorem 1. The time required to generateN samples using IJGP(i,p)-sampling is
O([p

100 ∗ n∗ exp(i) ∗N] + N ∗ n+ exp(i)) wheren is the number of variables andN
is the number of samples generated.

An important property of completeness is expressed in the following theorem.

Theorem 2 (Completeness).IJGP(i,p)-sampling has a non-zero probability of gener-
ating any arbitrary solution to a constraint satisfaction problem.

Proof. According to the monte-carlo sampling theory[7], if any approximationQ of P
satisfiesP > 0⇒Q > 0, then the monte-carlo sampling algorithm that samples fromQ
will reach all consistent assignments i.e. (P (X = x) > 0) with a non-zero probability. It
was proved in[5] that all zero probabilities inferred by IJGP are sound. In other words,
for any IJGP approximationP > 0⇒Q > 0 and so the theorem follows.

5 Improving the Approximate Sampling Algorithm

5.1 Rejection of Samples

It is important to note that when the conditional distributionsP are exact in our monte-
carlo sampler, all samples generated are guaranteed to be solutions to the constraint net-

work. However, when we approximateP such guarantees do not exist and our scheme
will attempt to generate samples that are not consistent. Specifically when using IJGP
to approximateP, samples will be rejected because of IJGP’s inability to infer a proba-
bility of zero for some partial assignments that cannot be extended to a solution.

Our preliminary experiments showed us that the rejection rate of IJGP(i,p)-sampling
was very low for networks that admit relatively large number of solutions (under-
constrained instances) but was quite high for constraint networks that admit few so-
lutions (phase transition instances). So in this section, we discuss how to decrease the
rejection rate of IJGP(i,p)-sampling by utilizing pruning schemes used in systematic
search such as conflict-directed backjumping and no-good learning.

5.2 Introducing Backjumping

Traditional sampling algorithms often assume that the probability distribution we sam-
ple from is completely positive. However, it is often the case that in probabilistic rea-
soning the distribution has a lot of zero probabilities (determinism). This is obviously
the case when we sample from a constraint-based distribution. Therefore, we can inte-
grate ideas from backtracking search and its pruning techniques into the naive sample
generation schemes. Whenever a sample gets rejected, naive sampling algorithms start
sampling anew from the first variable in the ordering. Instead, we could backtrack to
the previous variable, update the conditional distribution to reflect the dead-end and
re-sample the previous variable. For example,

Example 3.Let us assume that for a variableXj with domain{1,2,3}, the conditional distribution
isQ(Xj |X1 = x1, . . . ,Xj−1 = x j−1)= (0.33,0.33,0.33). LetXj = 2be a sampled value ofXj which
causes a dead-end inXj+1. Conventional monte-carlo sampler would then start sampling anew
from variableX1. Instead we could change the conditional distributionQ′(Xj |X1 = x1, . . . ,Xj−1 =
x j−1) = (0.5,0,0.5) to reflect the fact thatXj 6= 2 and sampleXj from Q′.

We propose to use conflict-directed back-jumping instead of pure chronological back-
tracking for obvious efficiency reasons. An important thing to note is that once a solu-
tion is generated (i.e. an assignment that satisfies all constraints), we start anew from
the first variable in the ordering to generate the next solution (sample).

5.3 Utilizing Separators

The time required to generate each sample in IJGP-Sampling can be improved by utiliz-
ing graph separators. A separator is a set of variables that separates the join graph into
two or more connected components. The idea is that after a separator is instantiated, we
can recursively assign values to variables in different connected components by running
IJGP just once. For example,

Example 4.Let us assume thatp= 100for algorithm IJGP(i,p)-Sampling. Without taking advan-
tage of graph separation, IJGP(i) should be invoked6 times one for each instantiation of variables
{A,B,C,D,F,G} for the join-graph shown in Figure 2. After instantiating the separatorCDF in the
join graph of Figure 2 by running IJGP(i) thrice, we can instantiateA andG simultaneously by
running IJGP(i) just once. Later, we instantiateB by running IJGP(i) one more time. Thus IJGP(i)
is run for 5 times.

The correctness of this scheme is due to the theorem below [6]:

Theorem 3. Let G(V,E) be the join-graph of a constraint network, letW ⊆ V be a
subset of vertices that separates the graphG[V\W] into two or more connected com-
ponentsR1, . . . ,Rm. LetX ⊆ Ri andY ⊆V\(W∪Ri), i 6= j and letQ be the distribution
computed by running IJGP on graphG. ThenQ(X|W = w,Y = y) = Q(X|W = w).

5.4 No-good learning

Conventional monte-carlo sampling methods do not learn no-good from dead-ends once
a sample is rejected. Thus they are subjected to thrashing as happens during systematic
search. So we augment our sampling schemes that employ back-jumping search with
no-good learning schemes as in [1]. Consistent with ouri-bounded inference, we pro-
pose to learn no-goods or conflict sets that are bounded byi [1].

Since each no-good can be considered as a constraint, they can be inserted into
any cluster in the join graph that includes the scope of the no-good. Indeed, in our
preliminary experiments we found that the approximation toP computed by IJGP(i)
with learnt no-goods was better than the approximation computed by IJGP(i) without
learnt no-goods. So each time a no-good bounded byi is discovered, we check if the
no-good can be added to a cluster in the join-graph without changing its structure (see
definition 3) and subsequent runs of IJGP utilizes this no-good.

We refer to the algorithm resulting from adding back-jumping search and no-good
learning to IJGP(i,p)-sampling as IJGP(i,p)-search-sampling.

6 Experimental Evaluation

We tested the performance of IJGP(i,p)-search-sampling on randomly generated binary
constraint networks, randomly generated satisfiability (SAT) instances and hard satis-
fiability (SAT) benchmarks available from SATLIB1. The specific algorithms that we
experimented with are discussed below.

6.1 Competing Algorithms

IJGP(i,p)-search-sampling Note that at a higher level of abstraction, IJGP(i,p)-search-
sampling can be looked at as a search procedure in which at each decision of value
selection for a variableXj , IJGP(i) is run and a value is selected forXj by samplingXj

from the conditional distributionQ(Xj |X1 = x1, . . . ,Xj−1 = x j−1) computed using Equa-
tion 2. We refer to this process of selecting a value as value sampling (just like value
ordering except that we select a value using sampling). This view allows using any of-
the-shelf search algorithm for our sampling scheme by running the IJGP(i,p)-sampling
scheme only for some value selection points.

Therefore, in order to be competitive on SAT problems, we implemented IJGP(i)
in C++ and integrated it as a value sampling scheme with the RELSAT solver [1]. All
experiments on SAT instances are performed using this RELSAT-based-sampler.

1 http://www.satlib.org/

We also implemented IJGP(i) as a value sampling scheme in a MAC-based binary
CSP solver by Tudor Hulubei2 for solving binary constraint satisfaction problems. All
experiments on random binary CSP instances are performed using this MAC-based-
sampler.

We implemented our own no-good learner on top of these two solvers. Note that our
no-good learner was used to improve the estimates of IJGP(i) and not integrated with
the constraint/SAT solver3. This can be done in future enhancements. We experimented
with i-bounds of3 and6 for all the problems while parameterp was selected from the
set{0,10,50,100}. Without loss of generality, we will refer to both RELSAT based
solution sampler and MAC based solution sampler as IJGP(i,p)-search-sampling.

MBE(i)-search-sampling We also implemented mini-bucket-elimination or MBE(i)
using C++ and used it as a value sampling scheme in the MAC-based CSP solver men-
tioned above. Note that unlike IJGP(i,p)-search-sampling our current MBE(i) sampler
does not have a parameterp. We experimented withi-bounds of3and6 for MBE(i). Our
current implementation of MBE(i)-based random solution generator uses backtracking
(CBJ to be precise) search while the MBE(i)-based random solution generator used in
the previous paper by Dechter et al. [3] does not perform any backtracking. We refer to
our current implementation as MBE(i)-search-sampling.

WALKSAT On all SAT instances, we ran an implementation of WALKSAT available
on Wei Wei’s web-site4. The WALKSAT solution sampler uses a random walk proce-
dure for generating random solution samples. It starts with a random truth assignment.
Assuming this randomly guessed assignment does not already satisfy the formula, one
selects an unsatisfied clause at random, and flips the truth assignment of one of the vari-
ables in that clause. This will cause the clause to become satisfied but, of course, one or
more other clauses may become unsatisfied. Such flips are repeated until one reaches
an assignment that satisfies all clauses or until a pre-defined maximum number of flips
are made. WALKSAT has numerous heuristics for flipping variables in a clause. Here
we chose to use the heuristic SABEST which selects with probability p a random walk
style move and with probability 1 - p, a simulated annealing step. This heuristic was
shown to have a superior performance than other heuristics (see [11] for details).

6.2 Performance Criteria

For each network, we compute the exact marginal distribution for each variable in the

constraint network usingPe(Xi = xi) = Nxi
N whereNxi is the number of solutions that

the assignmentXi = xi participates in andN is the number of solutions. The number
of solutions for the SAT problems were computed using RELSAT while the number of
solutions for binary constraint networks were computed using the MAC implementation
by Tudor Hulubei. After running our sampling algorithms, we get a set of solution

2 www.hulubei.net/tudor
3 The SAT solver RELSAT however has a no-good learner which we turned off
4 http://www.cs.cornell.edu/ weiwei/

samples sayφ from which compute the approximate marginal distribution:Pa(Xi =
xi) =

Nφ(xi)
|φ| whereNφ(xi) is the number of solutions in the setφ with Xi assigned the

valuexi . We then compare the exact distribution with the approximate distribution using
two error measures: (a)Mean Square error- the square of the difference between the
approximate and the exact, averaged over all values, all variables and all problems and
(b) KL distance- Pe(xi)∗ log(Pe(xi)/Pa(xi)) averaged over all values, all variables and
all problems.

Mean-Square Error and K-L distance provide us with an estimate of how close to
the uniform distribution our samples are while another important criteria is also the
number of solutions generated which we report for each set of experiments.

Problems Time IJGP(i,p)-search-sampling IJGP(i,p)-search-sampling MBE
(N,K,C,T) No learning learning

p=0 p=10 p=50 p=100 p=0 p=10 p=50 p=100 p=0
KL KL KL KL KL KL KL KL KL

MSE MSE MSE MSE MSE MSE MSE MSE MSE
#S #S #S #S #S #S #S #S #S

i=3
50,4,150,4 300s 0.02110.02840.01920.0076 0.01870.01020.0112 0.009 0.102

0.00310.00470.00270.0003 0.00280.00190.00210.0003 0.089
138322 72744 47278 19002162387 97560 38281 15347 78218

50,4,180,4 300s 0.02780.03430.02210.0092 0.02850.01190.01850.00910.1116
0.00380.00470.00350.0006 0.00280.00240.00290.00060.0695
88329 59209 37012 23671 74126 61822 24102 11438 45829

100,4,350,41000s 0.03460.03190.0108 0.011 0.04030.0172 0.013 0.0053 0.134
0.00740.00610.00280.0017 0.00860.00480.00260.0008 0.073
82290 42398 19032 11792103690 37923 25631 9872 93823

100,4,370,41000s 0.02490.02350.02670.0156 0.01670.01880.01430.0106 0.107
0.00890.00620.00840.0037 0.00580.00610.00490.00190.0332
18894 17883 2983 1092 28346 14894 3329 1981 33895

i=6
50,4,150,4 300s 0.01780.0182 0.011 0.0078 0.093 0.084 0.088 0.009 0.065

0.00270.00170.00090.0007 0.00110.00160.00080.0003 0.089
145936 18942 9832 1923 108943 28304 7827 2872 88378

50,4,180,4 300s 0.02450.02950.01780.0109 0.01760.02090.01480.0073 0.093
0.00570.00390.00280.0068 0.00830.00570.00290.00040.0457
89542 23392 8232 1895 87356 45228 9237 1093 75643

100,4,330,41000s 0.03070.03460.01530.0129 0.03860.01510.01760.00080.0925
0.00710.00680.00180.0014 0.00770.00560.00330.0011 0.073
72306 18383 12832 1038 63594 17387 2382 1822 43872

100,4,370,41000s 0.01780.02130.01910.0141 0.02170.01190.00930.00840.1058
0.00770.00940.00760.0054 0.00830.00680.00580.00270.0333
20395 19032 8983 1982 27823 10832 6290 782 14383

Table 1.Performance of IJGP(i,p)-sampling and MBE(i)-sampling on random binary CSPs.

6.3 Results on randomly generated CSPs

We experimented with two-sets of randomly generated constraint networks; one hav-
ing 50-variables and the second having 100-variables. All problems are consistent.
The benchmarks are generated according to the well-known four-parameter(N,K =
4,C,T = 4) model-B generator [10] where N is the number of variables, K is the num-
ber of values, C is the tightness (number of disallowed tuples) and T is the number of

Fig. 4. Effect of increasing p on accuracy (K-L distance) of IJGP(3,p)-search-sampling

constraints. We had to stay with relatively small problems in order to apply the MAC al-
gorithm to count the solutions that each variable-value pair participates in. All approx-
imate sampling algorithms were given the same amount of time to generate solution
samples which is given by the columnTime in Table 1. The results are averaged over
1000 instances each for 50-variable problems and 100 instances each for 100 variable
problems.

Note that the problems become harder as we increase the number of constraints for
a fixed number of variables (phase transition). The results are summarized in Table 1
which gives MSE and K-L distance, the time-bound for each problem set and the num-
ber of solutions generated for each algorithm. We can see that in the case of IJGP(i,p)-
search-sampling, for a fixedi-bound both error measures decrease as we increasep (see
Figure 4). However, it can also be seen that as we increasep, the number of solutions
computed decrease considerably. Thus, we clearly have a trade-off between accuracy
and the number of solutions generated as we changep. It is clear from Table 1 that our
new scheme IJGP(i,0)-search-sampling is better than MBE(i)-search-sampling both in
terms of the number of solutions generated and also in terms of the error measures.
Increasing thei-bound from3 to 6 (see Table 1) increases accuracy slightly. However
the savings are not cost-effective because the number of solutions generated decreases
considerably as we increasei (except for p=0). It can be seen from Table 1 that no-good
learning improves the accuracy of IJGP(i,p)-search-sampling in most cases.

6.4 Results on randomly generated SAT problems

We experimented with two sets of randomly generated 3-SAT problems, one having 50-
variables and the second having 100-variables. All problems are consistent. Again, we
had to stay with relatively smaller problems because when the number of solutions are
large, our complete algorithm RELSAT takes a lot of time to count them. The results are
based on 1000 instances of 50-variable SAT problems and 100 instances of 100 variable
SAT problems.

ProblemsTime IJGP(i,p)-search-sampling IJGP(i,p)-search-sampling WALKSAT
(N,K,C,T) No learning learning

p=0 p=10 p=50 p=100 p=0 p=10 p=50 p=100 p=0
KL KL KL KL KL KL KL KL KL

MSE MSE MSE MSE MSE MSE MSE MSE MSE
#S #S #S #S #S #S #S #S #S

i=3
50,150 20s 0.124 0.092 0.083 0.088 0.109 0.089 0.085 0.073 0.114

0.019 0.007 0.006 0.006 0.013 0.006 0.005 0.005 0.017
28002 18203 9032 1033 31093 11903 7392 1208 45838

50,200 20s 0.117 0.087 0.086 0.08960.1068 0.085 0.084 0.078 0.103
0.018 0.00690.00620.00520.01240.0055 0.005 0.0057 0.016
48917 18772 8944 1292 50962 12636 7793 1172 42950

100,350 100s 0.123 0.089 0.074 0.082 0.127 0.088 0.074 0.068 0.14
0.022 0.009 0.008 0.008 0.023 0.009 0.007 0.005 0.024
89029 54832 17945 1833 79293 42894 27983 2094 103934

100,400 100s 0.107 0.077 0.049 0.024 0.128 0.059 0.039 0.019 0.093
0.029 0.00840.00750.0038 0.039 0.00810.0077 0.0023 0.019
70298 28901 11309 1003 60934 39782 9462 1284 93024

i=6
50,150 20s 0.112 0.104 0.093 0.099 0.134 0.091 0.085 0.073 0.114

0.016 0.012 0.009 0.011 0.023 0.009 0.005 0.005 0.017
24083 2420 1038 378 27910 1983 1123 392 45838

50,200 20s 0.129 0.092 0.102 0.093 0.13 0.079 0.08 0.077 0.103
0.021 0.008 0.016 0.008 0.024 0.006 0.006 0.004 0.016
32001 3467 875 297 26801 5487 907 176 42950

100,350 100s0.1327 0.093 0.066 0.086 0.136 0.088 0.074 0.0713 0.14
0.022 0.00860.00790.0087 0.023 0.00820.00770.00771 0.024
29841 5216 1828 154 29914 4312 2827 252 103934

100,400 100s 0.109 0.0785 0.052 0.039 0.086 0.057 0.035 0.032 0.093
0.028 0.00790.00520.0045 0.019 0.007 0.0049 0.0037 0.019
25603 7355 946 190 30079 5459 1361 243 93024

Table 2. Performance of IJGP(i,p)-search-sampling and WALKSAT on randomly generated 3-
SAT problems.

The results are summarized in Table 2 which gives MSE and K-L distance, the time-
bound for each problem set and the number of samples generated. In terms of changing
p and i, the results on SAT problems are similar to those on random binary csps (see
Table 2) and so we do not comment on it here.

When we compare the results of IJGP(i,p)-search-sampling with WALKSAT, we see
that the performance of WALKSAT is slightly better than IJGP(i,p)-search-sampling
when p = 0 in terms of both error measures. However, as we increasep, the perfor-
mance of IJGP(i,p)-search-sampling is better than WALKSAT. It is easy to see that
WALKSAT dominates IJGP(i,p)-search-sampling by an order of magnitude in terms of
the number of solutions computed forp = 50,100. However forp = 0,10 the number
of solutions generated by WALKSAT are comparable to IJGP(i,p)-search-sampling.

6.5 Results on SAT benchmarks from SATLIB

We also experimented with some benchmark problems available from SATLIB. Here,
we only experimented with our best performing algorithm IJGP(i,p)-search-sampling
with i=3 and p=10 (considering a combination of the number of solutions computed
and the error measures). In particular, we experimented with3 logistics instances and
2 instances from the Verification domain (Tables 3 and 4 respectively) On all the SAT

Logistics.a Logistics.b Logistics.d
N=828,Time=1000s N=843,Time=1000s N=4713,Time=1000s
IJGP(3,10) WALK IJGP(3,10) WALK IJGP(3,10) WALK

No Learn Learn No Learn Learn No Learn Learn
KL 0.009780.001930.01233 0.003930.00403 0.0102 0.0009 0.0003 0.0008

MSE 0.0011670.000330.00622 0.001940.00243 0.0097 0.000730.00041 0.0002
#S 23763 32893 882 11220 21932 93932 10949 19203 28440

Table 3. KL distance, Mean-squared Error and number of solutions generated by IJGP(3,10)-
sampling and Walksat on logistics benchmarks

Verification1 Verification2
N=2654,Time=10000s N=4713,Time=10000s

IJGP (3,10) WALK IJGP (3,10) WALK
No Learn Learn No Learn Learn

KL 0.00440.0037 0.003 0.01990.0154 0.01
MSE 0.00350.0021 0.0012 0.009 0.0088 0.0073

#S 1394 945 11342 1893 1038 8390

Table 4. KL distance, Mean-squared Error and number of solutions generated by IJGP(3,10)-
sampling and Walksat on verification benchmarks

benchmarks that we experimented with, we had to reduce the number of solutions that
each problem admits by adding unary clauses. This is because when the number of solu-
tions is large, RELSAT takes a lot of time to count them and note that we have to count
the number of solutions that each variable-value pair participates in. From Tables 3 and
4, we can see that our best performing algorithm IJGP(3,10)-search-sampling is com-
petitive with WALKSAT both in terms of the error measures and also in terms of the
number of solutions generated. In particular, on the logistics benchmarks, IJGP(3,10)-
search-sampling is slightly better than WALKSAT both in terms of both error measures
while on the verification benchmarks WALKSAT is slightly better than IJGP(3,10)-
search-sampling in terms of both error measures. WALKSAT however dominates our
algorithms in terms of the number of solutions generated except for the modified Lo-
gistics.a instance (see Table 3).

7 Summary and Conclusion

The paper presents a new algorithm for generating random, uniformly distributed so-
lutions for constraint satisfaction problems. The origin of this task is the use of CSP
based methods for the random test program generation. The algorithms that we develop
fall under the class of monte-carlo sampling algorithms that sample from the output
of a generalized belief propagation algorithm called Iterative Join Graph Propagation
(IJGP) and extend our previous work [8]. Using a parameterp∈ [0,100], we develop
novel sampling algorithms such that whenp = 100, we have a sampling algorithm that
is more accurate but takes more time to generate each sample while whenp = 0 we
have an algorithm that is less accurate but takes very little time to generate each sample
while for other values ofp∈ [1,99] we see a trade-off between accuracy and the num-
ber of solutions generated. Thusp gives a user of our algorithms, the option to trade
accuracy and time.

Dechter et al. [3] present a method to generate near random solutions using mini-
bucket elimination (MBE). In this work, we show empirically that sampling from the
output of IJGP yields better results than MBE. We also augment the algorithm presented
in [3] with systematic search.

Specifically, we show how to improve upon conventional monte-carlo sampling
methods by integrating sampling with back-jumping search and no-good learning and is
the main contribution of our work. This has the potential of improving the performance
of monte-carlo sampling methods used in the belief network literature [13, 8], especially
on networks having large number of zeros probabilities. Note that unlike WALKSAT,
our search+sampling schemes are applicable to any graphical model (constraint, belief
and markov networks).

Our results look promising in that we are consistently able to generate uniform
random solution samples. Our best-performing schemes are competitive with the state-
of-the-art SAT solution samplers [11] in terms of accuracy and thus presents a Monte-
carlo (MC) style alternative to random walk solution samplers like WALKSAT and
Markov Chain Monte Carlo (MCMC) methods like Simulated Annealing.

References

1. R. Bayardo and D. Miranker. A complexity analysis of space-bound learning algorithms
for the constraint satisfaction problem. InAAAI-96: Proceedings of the Thirteenth National
Conference on Artificial Intelligence, pages 298–304, 1996.

2. J Bergeron.Writing Testbenches: Functional Verification of HDL Models. Kluwer Academic
Publishers, 2000.

3. Rina Dechter, Kalev Kask, Eyal Bin, and Roy Emek. Generating random solutions for con-
straint satisfaction problems. InAAAI, 2002.

4. Rina Dechter, Kalev Kask, and Robert Mateescu. Iterative join graph propagation. InUAI
’02, pages 128–136. Morgan Kaufmann, August 2002.

5. Rina Dechter and Robert Mateescu. A simple insight into iterative belief propagation’s
success.UAI-2003, 2003.

6. Rina Dechter and Robert Mateescu. Mixtures of deterministic-probabilistic networks and
their and/or search space. InAUAI ’04: Proceedings of the 20th conference on Uncertainty
in artificial intelligence, pages 120–129, Arlington, Virginia, United States, 2004. AUAI
Press.

7. John Geweke. Bayesian inference in econometric models using monte carlo integration.
Econometrica, 57(6):1317–39, 1989.

8. Vibhav Gogate and Rina Dechter. Approximate inference algorithms for hybrid bayesian
networks with discrete constraints.UAI-2005, 2005.

9. J. Pearl.Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann, 1988.
10. Barbara Smith. The phase transition in constraint satisfaction problems: A CLoser look at

the mushy region. InProceedings ECAI’94, 1994.
11. Wei Wei, Jordan Erenrich, and Bart Selman. Towards efficient sampling: Exploiting random

walk strategies. InAAAI, 2004.
12. Jonathan S. Yedidia, William T. Freeman, and Yair Weiss. Generalized belief propagation.

In NIPS, pages 689–695, 2000.
13. C. Yuan and M. J. Druzdzel. Importance sampling algorithms for Bayesian networks: Prin-

ciples and performance.To appear in Mathematical and Computer Modelling, 2005.

