
Best-First AND/OR Search for 0/1 Integer Programming

Radu Marinescu and Rina Dechter

School of Information and Computer Science
University of California, Irvine, CA 92697-3425

{radum,dechter}@ics.uci.edu

Abstract. AND/OR search spaces are a unifying paradigm for advanced algo-
rithmic schemes for graphical models. The main virtue of this representation is
its sensitivity to the structure of the model, which can translate into exponential
time savings for search algorithms. In this paper we introduce an AND/OR search
algorithm that explores a context-minimal AND/OR search graph in abest-first
manner for solving 0/1 Integer Linear Programs (0/1 ILP). We also extend to the
0/1 ILP domain thedepth-firstAND/OR Branch-and-Bound search with caching
algorithm which was recently proposed by [1] for solving optimization tasksin
graphical models. The effectiveness of the best-first AND/OR search approach
compared to the depth-first AND/OR Branch-and-Bound search is demonstrated
on a variety of benchmarks for 0/1 ILPs, including instances from the MIPLIB
library, real-world combinatorial auctions, random uncapacitated warehouse lo-
cation problems and MAX-SAT instances.

1 Introduction

In constraint optimizationthe goal is to minimize (or maximize) an objective function,
subject to a set of constraints on the possible values of a setof independent decision
variables. An important class of constraint optimization problems are the 0/1 Integer
Linear Programming problems (0/1 ILP) [2] where the objective is to optimize a linear
function of binary integer variables, subject to a set of linear equality or inequality
constraints defined on subsets of variables. The classical approach to solving 0/1 ILPs
is theBranch-and-Boundmethod [3] which maintains the best solution found so far,
while discarding partial solutions which cannot improve onthe best.

The AND/OR search space for graphical models [4] is a framework for search that
is sensitive to the independencies in the model, often resulting in exponentially reduced
complexities. It is based on a pseudo-tree that captures independencies in the graphical
model, resulting in a search space exponential in the depth of the pseudo-tree, rather
than in the number of variables.

The AND/OR Branch-and-Bound search (AOBBt) was first introduced by [5] as
a Branch-and-Bound algorithm that explores an AND/OR search tree in a depth-first
manner for solving optimization tasks in graphical models.The AND/OR Branch-and-
Bound search with caching algorithm (AOBBg) due to [1] improvesAOBBt by allowing
the algorithm to save previously computed results and retrieve them when the same
subproblems are encountered again. These algorithms are restricted to a static vari-
able ordering determined by the underlying pseudo-tree. More recently, [6, 7] proposed

several extensions ofAOBBt that incorporate dynamic variable ordering heuristics and
explore dynamic AND/OR search trees. Two such extensions,AND/OR Branch-and-
Bound with Partial Variable Ordering(AOBBt+PVO) andAND/OR Branch-and-Bound
with Full Dynamic Variable Ordering(AOBBt+DVO) were shown to outperform signif-
icantly the staticAOBBt algorithm as well as state-of-the-art classic OR Branch-and-
Bound algorithms on various domains, including 0/1 ILPs.

In this paper we present and evalute an new AND/OR search algorithm, that ex-
plores an AND/OR search graph in abest-firstmanner for solving 0/1 ILPs. Under
conditions of admissibility and monotonicity of the guiding heuristic function, best-
first search is known to expand the minimal number of nodes, atthe expense of using
additional memory [8]. In practice, these savings in numberof nodes may often trans-
late into impressive time savings as well. Since variable selection can have a dramatic
impact on search performance, we also introduce a best-firstAND/OR search algorithm
that explores an AND/OR search tree, rather than a graph, andcombines the AND/OR
decomposition principle with dynamic variable selection heuristics, in a similar fashion
as the dynamic AND/OR Branch-and-Bound algorithms described in [6, 7]. We also
adapt the staticAOBBg algorithm for solving 0/1 ILPs.

We demonstrate empirically the efficiency of our best-first AND/OR search ap-
proach compared to the depth-first AND/OR Branch-and-Boundsearch on several bench-
marks for 0/1 ILP, including test instances from the MIPLIB library, combinatorial auc-
tions simulating radio spectrum allocation, random uncapacitated warehouse location
problems and MAX-SAT instances from the SATLIB library.

The paper is organized as follows. In Section 2 we present background on 0/1 In-
teger Linear Programming and AND/OR search spaces. In Section 3 we introduce the
best-first AND/OR search algorithm as well as the extension to 0/1 ILPs of the depth-
first AND/OR Branch-and-Bound search with caching. In Section 4 we present a best-
first AND/OR search algorithm that incorporates dynamic variable orderings. Section 5
shows our empirical evaluation and Section 6 concludes.

2 Background

2.1 Integer Linear Programming

A Linear Program(LP) consists of a set of continuous variables and a set of linear con-
straints (equalities or inequalities). The goal is to optimize a global linear cost function
subject to the constraints. One of the standard forms of a linear program is:

min{c>x | Ax ≤ b, x ≥ 0} (1)

wherec ∈ R
n, b ∈ R

m, A ∈ R
m×n andx ∈ R

n. Herec represents the cost vector and
x is the vector of decision variables. The vectorb and the matrixA define them linear
constraints. Linear programs are usually solved by Dantzig’s SIMPLEX method [9].

An Integer Linear Programming(ILP) problem is a linear program where all the
decision variables are constrained to have integer values at the optimal solution. An
important special case is a decision variablexi that is integer with0 ≤ xi ≤ 1. This
forcesxi to be either 0 or 1 at the solution. Variables likexi are called0/1 or binary

{ }1,0,,,,,

13

242

2352

3123

 :subject to

865237 :minimize

∈
≤+−

≤−+
−≤−+−

≤+−

+−+−+=

FEDCBA

FEA

EBA

DCB

CBA

FEDCBAz

(a)

A

D

B

EC

F

(b)

OR

AND

OR

AND

OR

OR

AND

AND

A

0

B

0

E

F F

0 1 0 1

0 1

C

D

1

0

1

E

F F

0 1 0 1

0 1

C

D

0 1

0

1

B

0

E

F F

0 0 1

0 1

C

D

1

0

1

E

F

0 1

1

C

D

0 1

0

(c)

AOR

0AND

BOR

0AND

OR E

OR F F

AND 0 1

AND 0 1

C

D

0 1

0

1

EC

D

0

1

B

0

E

F F

0 1

C

1

EC

(d)

Fig. 1.The AND/OR search space.

integer variables. A 0/1 Integer Linear Programmingproblem is an ILP where all the
decision variables are binary. 0/1 ILPs can formulate many practical problems such as
capital budgeting [10], cargo loading [11], processor allocation in distributed systems
[12], combinatorial auctions [13, 14] or maximum satisfiability problems [15, 16].

With every 0/1 ILP instance we can associate aninteraction graphG which has
a node for each variable and connects any two nodes whose variables appear in the
scope of the same constraint. Theinduced graphof G relative to an orderingd of its
variables, denotedG∗(d), is obtained by processing the nodes in reverse order ofd.
For each node all its earlier neighbors are connected, including neighbors connected by
previously added edges. Given a graph and an ordering of its nodes, thewidthof a node
is the number of edges connecting it to nodes lower in the ordering. Theinduced width
of a graph, denotedw∗(d), is the maximum width of nodes in the induced graph.

In the remainder, we will consider theminimizationof a 0/1 ILP instance defined
by a linear objective functionz =

∑n

i=1 ciXi subject tom linear constraintsF =
{F1, ..., Fm}, overn decision variablesX = {X1, ...,Xn} with binary domainsD =
{D1, ...,Dn}. We use the notation〈X ,D,F , z〉 to refer to any 0/1 ILP instance.

2.2 AND/OR Search Spaces for 0/1 Integer Linear Programs

The common way of solving 0/1 Integer Linear Programs is by search, namely to in-
stantiate variables one at a time following a static or dynamic variable ordering. In the
simplest case, this process defines an OR search tree, whose nodes represent states in the

space of partial assignments. This search space does not capture independencies that ap-
pear in the structure of the problem. To remedy this problem an AND/OR search space
was recently introduced in the context of general graphicalmodels [4]. The AND/OR
search space is defined using a backbonepseudo-tree[17].

Definition 1 (pseudo-tree).Given an undirected graphG = (V,E), a directed rooted
treeT = (V,E′) defined on all its nodes is calledpseudo-treeif any arc ofG which is
not included inE′ is a back-arc, namely it connects a node to an ancestor inT .

We will next specialize the AND/OR search space for a 0/1 ILP which is a special
type of a graphical model.

AND/OR Search TreesGiven a 0/1 ILP instance〈X ,D,F , z〉, its interaction graphG
and a pseudo-treeT of G, the associated AND/OR search treeST has alternating levels
of OR nodes and AND nodes. The OR nodes are labeled byXi and correspond to the
variables. The AND nodes are labeled by〈Xi, xi〉 and correspond to value assignments
in the domains of the variables. The structure of the AND/OR tree is based on the
underlying pseudo-treeT of G. The root of the AND/OR search tree is an OR node,
labeled with the root ofT .

The children of an OR nodeXi are AND nodes labeled with assignments〈Xi, xi〉,
consistent along the path from the root,path(xi) = (〈X1, x1〉, ..., 〈Xi−1, xi−1〉). The
children of an AND node〈Xi, xi〉 are OR nodes labeled with the children of variable
Xi in T . Semantically, the OR states represent alternative ways ofsolving the problem,
whereas the AND states represent problem decomposition into independent subprob-
lems, all of which need be solved. When the pseudo-tree is a chain, the AND/OR search
tree coincides with the regular OR search tree.

A solution treeSOLST
of ST is an AND/OR subtree such that: (i) it contains the

root ofST ; (ii) if a nonterminal AND noden ∈ ST is in SOLST
then all of its children

are inSOLST
; (iii) if a nonterminal OR noden ∈ ST is in SOLST

then exactly one of
its children is inSOLST

.

Example 1.For illustration consider the 0/1 ILP with 6 decision variables A, B, C, D, E,
F and 4 linear constraintsF1(A,B,C), F2(B,C,D), F3(A,B,E), F4(A,E, F) from
Figure 1(a). The objective function to be minimized isz = 7A+B−2C +5D−6E +
8F . The pseudo-tree arrangement of the interaction graph, together with the back-arcs
(dotted lines) are given in Figure 1(b). Figure 1(c) shows the corresponding AND/OR
search tree.

Arc Labels and Node ValuesThe arcs from OR nodesXi to AND nodes〈Xi, xi〉 in
the AND/OR search treeST are annotated bylabelsderived from the objective function.

Definition 2 (label). Given a 0/1 ILP instance with objective functionz =
∑n

i=1 ciXi

and a corresponding AND/OR search treeST , thelabell(n,m) of the arc from the OR
noden = Xi to the AND nodem = 〈Xi, xi〉 is defined asl(n,m) = ci · xi.

Given a labeled AND/OR search tree, each node can be associated with avalue[4].

Definition 3 (value). Thevaluev(n) of a noden ∈ ST is defined recursively as fol-
lows: (i) if n = 〈Xi, xi〉 is a terminal AND node thenv(n) = 0; (ii) if n = 〈Xi, xi〉
is an internal AND node thenv(n) =

∑
m∈succ(n) v(m); (iii) if n = Xi is an internal

OR node thenv(n) = minm∈succ(n)(l(n,m)+ v(m)), wheresucc(n) are the children
of n in ST .

It is easy to see that the valuev(n) of a node in the AND/OR search treeST is
the minimal cost solution to the subproblem rooted atn, subject to the current variable
instantiation along the path from the root ton. If n is the root ofST , thenv(n) is the
minimal cost solution to the initial problem [6].

Clearly, the AND/OR search tree can be traversed to compute each node’s value
either by a depth-first or best-first search algorithm.

AND/OR Search Graphs The AND/OR search tree may contain nodes that root iden-
tical subtrees (in particular, subproblems with identicaloptimal solutions). These are
calledunifiable. When unifiable nodes are merged, the search tree becomes a graph and
its size becomes smaller. Some unifiable nodes can be identified based on theircontexts.

Definition 4 (context).Given a 0/1 ILP instance and the corresponding AND/OR search
treeST relative to a pseudo-treeT , thecontextof any AND node〈Xi, xi〉 ∈ ST , de-
noted bycontext(Xi), is defined as the set of ancestors ofXi in T , includingXi, that
are connected to descendants ofXi.

It is easy to verify that any two nodes having the same contextrepresent the same
subproblem. Therefore, we can solvePXi

, the subproblem rooted atXi, once and use
its optimal solution whenever the same subproblem is encountered again.

Thecontext-minimalAND/OR search graph, denoted byGT , is obtained by merg-
ing all the AND nodes that have the same context. It can be shown [4] that the size of the
largest context is bounded by the induced widthw∗ of the interaction graph, extended
with the pseudo-tree extra arcs, over the ordering given by the depth-first traversal ofT
(i.e. induced width of the pseudo-tree). Therefore,

Theorem 1 (complexity).The complexity of any search algorithm traversing a context-
minimal AND/OR search graph is time and spaceO(exp(w∗)), wherew∗ is the induced
width of the underlying pseudo-tree [4].

Example 2.Consider the context-minimal AND/OR search graph in Figure1(d) of
the pseudo-tree from Figure 1(b). Its size is far smaller that that of the AND/OR tree
from Figure 1(c) (16 nodes vs. 36 nodes). The contexts of the nodes can be read from
the pseudo-tree, as follows:context(A) = {A}, context(B) = {B,A}, context(C) =
{C,B}, context(D) = {D}, context(E) = {E,A} andcontext(F) = {F}.

3 Algorithms Exploring the Context-Minimal AND/OR Graph

In this section we introduce two algorithms that explore a context-minimal AND/OR
search graph in either adepth-firstor best-firstmanner for solving optimization prob-
lems from the class of 0/1 ILP. First, we present the depth-first AND/OR Branch-and-
Bound search algorithm (AOBBg) which extends the 0/1 ILP algorithm presented in [6]

Algorithm 1 : AOBBg

Data: A 0/1 ILPP = (X ,D,F , z), pseudo-treeT , roots.
Result: Minimal cost solution toP .

1. Create a list OPEN, consisting solely of the start nodes. Setv(s) = ∞.
2. until s is labeled SOLVED,do:

(a) Remove the first noden from OPEN and add it to CLOSED.
(b) If n is an AND node, then setv(n) = cache(n).
(c) Try to prune the subtree belown, as follows: if for some ancestorm of n in CLOSED,fh(m) ≥ v(m),
then setv(n) = ∞ and continue from step (e).
(d) Expand noden generating all its successor nodesni. For each new nodeni computeh(ni); if ni is an
AND node then setv(ni) = 0, else ifni is an OR node then setv(ni) = ∞; addni on top of OPEN.
(e) Create a setS. If n has no successors then labeln SOLVED and add it toS.
(f) until S is empty,do:

i. Remove the first nodem from S.
ii. Update the valuev(p) of the parentp of m as follows:

A. if p is an AND nodethen v(p) = v(p) + v(m).
B. if p is an OR nodethen v(p) = min(v(p), l(p, m) + v(m)). Save the AND valuev(m) in cache
by settingcache(m) = v(m), if v(m) 6= ∞.

iii. Removem from the successors ofp. If p has no successors left, labelp SOLVED and add it toS.
Removem from CLOSED.

3. return v(s).

for searching AND/OR trees to searching AND/OR graphs. The algorithm specializes
recent AND/OR graph search algorithms for general constraint optimization problems
described in [1] to the 0/1 ILP case.

3.1 Depth-First AND/OR Branch-and-Bound Search

The AND/OR Branch-and-Bound search algorithm, denoted byAOBBg, that explores
the context-minimal AND/OR search graph in a depth-first manner is described in Al-
gorithm 1. Its pruning strategy is similar to that of the Branch-and-Bound algorithm
searching AND/OR trees developed in [6]. Specifically, eachnoden along the path
from the root has associated astaticheuristic functionh(n) underestimatingv(n) that
can be computed efficiently by solving the linear relaxation(i.e. relaxing the integrality
restrictions) of the subproblem rooted atn. The algorithm also improves the heuristic
function dynamically during search. Thedynamic heuristic functionfh(n) is computed
based on the search space belown that has already been explored, as described in [6],
and is used to prune unpromising portions of the search spacethat cannot improve the
best solution found so far.

AOBBg is restricted to a static variable ordering determined by the underlying pseudo-
tree and explores the context-minimal AND/OR search graph via full caching. The al-
gorithm saves previously computed results and retrieves them when the same nodes are
encountered again, during search. A simple way of implementing the caching mecha-
nism is to have acache tablefor each variableXk recording its context. Specifically, let
us assume that the context ofXk is context(Xk) = {Xi, ...,Xk}. A cache table entry
corresponds to a particular instantiation{xi, ..., xk} of the variables incontext(Xk)
and records the optimal cost solution to the subproblemPXk

.
However, some tables might never get cache hits. These are called dead-caches[18,

1]. In the context-minimal AND/OR search graph, dead-caches appear at nodes that
have only one incoming arc.AOBBg needs to record only nodes that are likely to have

Algorithm 2 : AOBFg

Data: A 0/1 ILPP = (X ,D,F , z), pseudo-treeT , roots.
Result: Minimal cost solution toP .

1. Create explicit graphG′

T , consisting solely of the start nodes. Setv(s) = h(s).
2. until s is labeled SOLVED,do:

(a) Compute apartial solution treeby tracing down themarkedarcs inG′

T from s and select any nonterminal
tip noden.
(b) Expand noden and add any new successor nodeni to G′

T . For each new nodeni setv(ni) = h(ni).
Label SOLVED any of these successors that are terminal nodes.
(c) Create a setS containing noden.
(d) until S is empty,do:

i. Remove fromS a nodem such thatm has no descendants inG′

T still in S.
ii. Revise the valuev(m) as follows:

A. if m is an AND nodethen v(m) =
P

mj∈succ(m) v(mj). If all the successor nodes are labeled

SOLVED, then label nodem SOLVED.
B. if m is an OR nodethen v(m) = minmj∈succ(m)(l(m, mj) + v(mj)) and mark the arc
through which this minimum is achieved. If the marked successor is labeled SOLVED, then labelm
SOLVED.

iii. If m has been marked SOLVED or if the revised valuev(m) is different than the previous one, then add
to S all those parents ofm such thatm is one of their successors through a marked arc.

3. return v(s).

additional incoming arcs, and some of these nodes can be determined by inspecting the
pseudo-tree. Namely, if the context of a node includes that of its parent, then there is no
need to store anything for that node, because it would be a dead-cache. For example,
nodeB in the AND/OR search graph from Figure 1(d) is a dead-cache because its
context includes the context of its parentA in the pseudo-tree from Figure 1(b).

If the memory requirements are prohibitive, rather than using full caching,AOBBg

can be modified to use a memory bounded caching scheme that saves only those nodes
whose context size can fit in the available memory, as suggested by [1].

3.2 Best-First AND/OR Search

The context-minimal AND/OR search graph can be traversed ina best-first rather than
depth-first manner to compute the optimal cost solution to a 0/1 ILP. It is known that
under conditions of admissibility and monotonicity of the guiding heuristic function,
best-first search algorithms are guaranteed to expand the minimal number of nodes, at
the expense of using additional memory [8].

Our best-first AND/OR graph search algorithm, denoted byAOBFg, that traverses
the context-minimal AND/OR search graph is described in Algorithm 1. It specializes
Nillson’s AO∗ algorithm [19] to solving 0/1 ILPs and interleaves forward expansion of
the best partial solution tree with a cost revision step thatupdates estimated node values.
First, a top-down, graph-growing operation (step 2.a) finds the best partial solution
tree by tracing down through the marked arcs of the explicit AND/OR search graph
G′

T . These previously computed marks indicate the current bestpartial solution tree
from each node inG′

T . One of the nonterminal leaf nodesn of this best partial solution
tree is then expanded, and a static heuristic estimateh(ni) is assigned to its successors
(step 2.b). The successors of an AND noden = 〈Xj , xj〉 areXj ’s children in the
pseudo-tree, while the successors of an OR noden = Xj correspond toXj ’s domain
values. Notice that when expanding an OR node, the algorithmdoes not generate AND

children that are already present in the explicit search graph G′
T . All these identical

AND nodes inG′
T are easily recognized based on their contexts.

The second operation inAOBFg is a bottom-up, cost revision, arc marking, SOLVE-
labeling procedure (step 2.c). Starting with the node just expandedn, the procedure
revises its valuev(n) (using the newly computed values of its successors) and marks
the outgoing arcs on the estimated best path to terminal nodes. This revised value is
then propagated upwards in the graph. The revised costv(n) is an updated estimate of
the cost of an optimal solution to the subproblem rooted atn. If we assume the mono-
tone restriction onh, the algorithm considers only those ancestors that root best partial
solution subtrees containing descendants with revised values (step 2.d.iii). The
optimal cost solution to the initial problem is obtained when the root nodes is solved.

The static heuristic functionh(n) is obtained by solving the linear relaxation of
the subproblemPn rooted at noden in the search graph, subject to the current vari-
able instantiation of the best partial solution tree. IfPn is infeasible then we assume
h(n) = ∞. The bottom-up operation ofAOBFg will then propagate this high cost
upward, which eliminates any chances that a subtree containing this node might be
selected as an estimated best solution subtree.

4 Dynamic Variable Orderings

It is well known that variable selection may influence dramatically search performance.
Recent work by [6, 7] showed how several dynamic variable orderings affect depth-first
Branch-and-Bound search on AND/OR trees. One extension, called AND/OR Branch-
and-Bound with Partial Variable Ordering (AOBBt+PVO) that orders dynamically the
variables forming chains in the pseudo-tree, was shown to outperform significantly
static AND/OR as well as state-of-the-art OR Branch-and-Bound solvers for general
COPs and in particular for 0/1 ILPs [6, 7]. Next, we extend theidea of partial variable
ordering to best-first search on AND/OR trees.

Partial Variable Orderings AOBFg described in the previous section is restricted to a
static variable ordering determined by the pseudo-tree arrangement. The mechanism of
identifying unifiable AND nodes based solely on their contexts is hard to extend when
variables are instantiated in a different order than that dictated by the pseudo-tree, and
therefore it cannot be used to accommodate dynamic variableorderings. If we explore
the AND/OR search tree we can use dynamic variable orderingswhile exploring the
AND/OR search tree in a best-first manner.

Best-first AND/OR search with Partial Variable Ordering (AOBFt+PVO) traverses
an AND/OR search tree by combining the static graph-based problem decomposition
given by a pseudo-tree with a dynamic semantic variable selection heuristic. We illus-
trate the idea with an example. Consider the pseudo-tree from Figure 1(a) inducing the
following variable group ordering:{A,B}, {C,D}, {E,F}; which dictates that variables
{A,B} should be considered before{C,D} and{E,F}. Variables in each group can be
dynamically ordered based on a second, independent semantic heuristic (e.g., min re-
duced cost, min pseudo cost, etc.). Notice that after variables{A,B} are instantiated, the
problem decomposes into two independent components that can be solved separately.

5 Experiments

In this section we evaluate empirically the performance of the best-first AND/OR search
algorithms on several benchmarks for 0/1 ILPs including problem instances from the
MIPLIB library1, combinatorial auctions, uncapacitated warehouse location problems
and MAX-SAT problems. All our experiments were done on a 2.4GHz Pentium IV with
2GB of RAM, running Windows XP.

We consider two classes of best-first search algorithms exploring an AND/OR search
tree and using either a static variable ordering (SVO) or a partial variable ordering
(PVO). The algorithms are denoted byAOBFt+SVO and AOBFt+PVO, respectively.
We also consider two classes of depth-first and best-first search algorithms travers-
ing context-minimal AND/OR search graphs, both restrictedto a static variable or-
dering and denoted byAOBBg+SVO andAOBFg+SVO, respectively. For comparison
we include results obtained with two depth-first AND/OR Branch-and-Bound algo-
rithms without caching developed recently in [6] and denoted by AOBBt+SVO and
AOBBt+PVO, respectively. The guiding heuristic of the AND/OR search algorithms is
computed by solving the linear relaxation of the current subproblem. We used theSIM-
PLEX implementation from the open-sourcelp solve2 library. The guiding pseudo-
tree used by the AND/OR algorithms was constructed using thehypergraph partitioning
heuristic described in [6].

For reference, we also report results obtained with the classic depth-first OR Branch-
and-Bound algorithm, denoted byBB. BB traverses an OR search tree using linear re-
laxations to guide the search and is available from thelp solve library.

The algorithmsBB, AOBBt+PVO andAOBFt+PVO used a dynamic semantic vari-
able selection heuristic based onreduced costs(i.e. dual values) [2]. Specifically, the
next fractional variable to instantiate has the smallest reduced cost. Ties are broken
lexicographically.

We report the average effort, as CPU time (in seconds) and number of nodes visited
(which is equivalent to the number of times theSIMPLEX routine was called to solve
the linear relaxation of the current subproblem), requiredfor proving optimality of the
solution. We also record the number of variables (n), the number of constraints (c), the
depth of the pseudo-trees (h) and the induced width of the graphs (w∗) obtained for the
test instances. The best performance points are highlighted.

5.1 MIPLIB

MIPLIB is a library of Mixed Integer Linear Programming instances that is commonly
used for benchmarking integer programming algorithms. Forour purpose we selected
4 0/1 ILP instances of increasing difficulty. Table 1 reportsa summary of the experi-
ment. We see that, overall the best-first AND/OR search algorithms explore the small-
est search space, which sometimes translates into significant time savings. For exam-
ple, onlseu, one of the hardest instances,AOBFt+SVO causes a speedup of 2.5 over
AOBBt+SVO, while exploring a search space 3 times smaller. Similarly,AOBFg+SVO

1 available at http://miplib.zib.de/miplib2003.php
2 lp solve 5.5.0.9 is available at http://lpsolve.sourceforge.net/5.5/

Table 1.Results for MIPLIB problem instances.

miplib n w
∗ BB AOBBt AOBFt AOBBg AOBFg AOBBt AOBFt

c h (lp solve) SVO SVO SVO SVO PVO PVO
p0033 33 19 time 5.34 0.31 0.27 0.19 0.39 0.28 0.33

15 21 nodes 15,832 438 403 339 281 428 374
p0040 40 19 time 0.08 0.11 0.11 0.11 0.09 0.27 0.18

23 23 nodes 134 113 100 113 100 142 121
p0201 201 120 time 98.21 91.36 71.62 90.52 76.05 84.36 91.45

133 142 nodes 23,742 15,187 10,387 15,130 10,387 9,653 8,261
lseu 89 57 time 282.27 89.04 35.44 86.88 36.50 44.85 36.45

28 68 nodes 386,122 70,322 21,396 63,906 19,69230,202 18,383

Table 2.Results for combinatorial auction problem instances.

auction n w
∗ BB AOBBt AOBFt AOBBg AOBFg AOBBt AOBFt

c h (lp solve) SVO SVO SVO SVO PVO PVO
reg-upv 203 145 time 5.95 7.83 6.82 8.08 6.79 7.02 3.66
b200g50 87 162 nodes 658 500 310 500 310 533 189
reg-upv 251 166 time 45.42 19.24 14.92 19.37 15.07 16.59 8.31
b250g75 124 190 nodes 3,321 663 333 663 333 620 170
reg-upv 304 173 time 198.07 155.76 90.61 148.34 91.67125.95 48.67
b300g100157 204 nodes 7,756 2,561 1,084 2,561 1,084 2,617 569
reg-npv 202 140 time 4.41 4.58 3.52 4.56 3.64 4.75 1.66
b200g50 88 161 nodes 491 280 158 280 158 367 64
reg-npv 251 160 time 18.04 15.52 10.06 15.39 10.21 15.35 4.55
b250g75 120 187 nodes 1,177 593 250 593 250 659 95
reg-npv 302 172 time 185.65 69.81 50.55 69.27 51.24 62.17 24.14
b300g100156 206 nodes 7,131 1,195 537 1,195 537 1,335 237

is 2.4 times faster thanAOBBg+SVO, while AOBFt+PVO is only slightly better than
AOBBt+PVO. This observation verifies the theory because best-first search is likely
to expand the smallest number of nodes at the search frontierhaving relatively weak
heuristic estimates.

5.2 Combinatorial Auctions

In combinatorial auctions (CA), an auctioneer has a set of goods,M = {1, 2, ...,m}
to sell and the buyers submit a set of bids,B = {B1, B2, ..., Bn}. A bid is a tuple
Bj = 〈Sj , pj〉, whereSj ⊆ M is a set of goods andpj ≥ 0 is a price. The winner
determination problem is to label the bids as winning or loosing so as to maximize the
sum of the accepted bid prices under the constraint that eachgood is allocated to at
most one bid. We used the 0/1 ILP formulation described in [6].

Table 2 shows the results for experiments with 6 classes of moderate size combi-
natorial auctions from [6]. These auctions were drawn from theregions distribution

Fig. 2.Results forregions-upv auctions with 100 goods and increasing number of bids.

of the CATS 2.0 test suite [14] and simulate the auction of radio spectrum in which a
government sells the right to use specific segments of spectrum in different geographi-
cal areas. We observe thatAOBFt+PVO is the best performing algorithm, exploring the
smallest search space. If we look for example at the 300 bid problem instances from the
reg-npv distribution,AOBFt+PVO is on average about 2.5 times faster than the other
AND/OR algorithms and the search space explored is about 4 times smaller. When com-
pared with the classic OR Branch-and-Bound algorithm,AOBFt+PVO causes an even
higher speedup, exploring a search space 30 times smaller. Notice that the AND/OR
graph search algorithmsAOBBg+SVO andAOBFg+SVO expanded the same number of
nodes as the AND/OR tree search algorithmsAOBBt+SVO andAOBFt+SVO, respec-
tively. This indicates that, for these problem classes, thecontext-minimal AND/OR
search graph is a tree and all cache entries are actually dead.

Figure 2 displays the results for experiments withregions-upv auctions having
100 goods and increasing number of bids. Each data point represents an average over
10 random samples. We observe thatAOBFt+PVO is the best performing algorithm
and, on some of the hardest instances, it outperforms its competitors with up to one
order of magnitude in terms of both CPU time and size of the search space explored.
When comparing the best-first versus the depth-first search algorithm traversing the
context minimal AND/OR search graph, the savings in the number of nodes caused by
AOBFg+SVO overAOBBg+SVO do translate into time savings as well, especially when
the number of bids increases.

5.3 Uncapacitated Warehouse Location Problems

In the uncapacitated warehouse location problem(UWLP) a company considers
openingm warehouses at some candidate locations in order to supply its n existing
stores. The objective is to determine which warehouse to open, and which of these
warehouses should supply the various stores, such that the sum of the maintenance and
supply costs is minimized. Each store must be supplied by exactly one warehouse. We
used the 0/1 ILP formulation from [6].

Table 3.Results for uncapacitated warehouse location problem instances.

uwlp n w
∗ BB AOBBt AOBFt AOBBg AOBFg AOBBt AOBFt

50x200 c h (lp solve) SVO SVO SVO SVO PVO PVO
uwlp00110,050 50 time 48.61 69.55 44.39 69.53 42.70 25.63 20.22

10,500123 nodes 86 62 20 62 20 20 7
uwlp00410,050 50 time 61.08 46.39 37.58 46.42 36.27 17.47 15.49

10,500123 nodes 142 46 24 46 24 10 3
uwlp01310,050 50 time 13693.76 116.19 111.28 116.25 105.72 78.86 74.53

10,500123 nodes 14,846 44 26 44 26 24 13
uwlp01810,050 50 time 1477.74 161.03 54.58 161.05 52.41 59.52 32.33

10,500123 nodes 2,666 146 21 146 21 37 8
uwlp02010,050 50 time 2179.39 190.77 87.58 190.81 83.70 68.91 48.33

10,500123 nodes 3,668 138 33 138 33 36 10
uwlp02410,050 50 time 2177.67 125.85 86.64 125.86 82.27 28.19 25.89

10,500123 nodes 3,288 71 31 71 31 16 4

Table 3 displays the results obtained on 6 randomly generated UWLP problem in-
stances3 with 50 warehouses and 200 stores. The warehouse opening andstore supply
costs were chosen uniformly randomly between 0 and 1000. These are large problems
with 10,050 variables and 10,500 constraints, but having relatively shallow pseudo-
trees with depths of 123. We can see thatAOBFt+PVO dominates in all test cases,
outperforming the classicBB with several orders of magnitude in terms of both run-
ning time and size of the search space explored. Inuwlp013 for example, one of the
hardest instances,AOBFt+PVO causes a speed-up of 186 over the classic OR Branch-
and-Bound algorithm, exploring a search tree 1,142 times smaller. When comparing
the best-first AND/OR search algorithms with the depth-firstAND/OR Branch-and-
Bound algorithms we observe only minor time savings. This isbecause the correspond-
ing AND/OR search spaces are already small enough and the savings in number of
nodes caused by the best-first AND/OR search algorithms do not translate into time
savings as well. Notice that for this problem class the context minimal AND/OR search
graph explored by theAOBBg+SVO andAOBFg+SVO algorithms is in fact a tree and
therefore all cache entries are dead.

5.4 MAX-SAT Problems

Given a set of Boolean variables the goal ofmaximum satisfiability (MAX-SAT) is to
find a truth assignment to the variables that violates the least number of clauses. The
MAX-SAT problem can be formulated as a 0/1 ILP as described in[15]. We exper-
imented with problem classespret anddubois from the SATLIB4 library, which
were previously shown to be difficult for 0/1 ILP solvers [20,16]. For comparison,
we also ran three specialized MAX-SAT solvers:MaxSolver [16], a DPLL-based
algorithm that uses a 0/1 non-linear integer formulation ofthe MAX-SAT problem,

3 Problem generator from http://www.mpi-sb.mpg.de/units/ag1/projects/benchmarks/UflLib/
4 http://www.satlib.org/

Table 4.Results forpret MAX-SAT problem instances.

pret n w∗ MaxSolver toolbar3 PBS BB AOBBt AOBFt AOBBg AOBFg AOBBt AOBFt

c h (lp solve) SVO SVO SVO SVO PVO PVO
pret60-40 60 6 time 9.47 53.89 0.00 27208.09 7.88 7.56 7.38 3.58 8.41 8.70

160 13 nodes 7,297,773 565 4,194,302 1,255 1,202 1,216 568 1,216 1,326
pret60-60 60 6 time 9.48 53.66 0.00 27628.52 8.56 8.08 7.30 3.56 8.70 8.31

160 13 nodes 7,297,773 495 4,194,302 1,259 1,184 1,140 538 1,247 1,206
pret60-75 60 6 time 9.37 53.52 0.00 26990.70 6.97 7.38 6.34 3.08 6.80 8.42

160 13 nodes 7,297,773 543 4,194,302 1,124 1,145 1,067 506 1,089 1,149
pret150-40150 6 time - - 0.02 - 95.11 101.78 75.19 19.70 108.84 101.97

400 15 nodes 2,592 6,625 6,535 5,625 1,379 7,152 6,246
pret150-60150 6 time - - 0.01 - 98.88 106.36 78.25 19.75 112.64 102.28

400 15 nodes 2,873 6,851 6,723 5,813 1,393 7,347 6,375
pret150-75150 6 time - - 0.02 - 108.14 98.95 84.97 20.95 115.16 103.03

400 15 nodes 2,898 7,311 6,282 6,114 1,430 7,452 6,394

Fig. 3.Results fordubois MAX-SAT problem instances.

toolbar3 [20], a classic OR Branch-and-Bound algorithm that solves MAX-SAT as
a Weighted CSP problem, andPBS [21], a specialized pseudo-Boolean optimizer.

Table 4 shows the results for experiments with 6pret instances. These are unsat-
isfiable instances of graph 2-coloring with parity constraints. The size of these prob-
lems is relatively small (60 variables with 160 clauses forpret60 and 150 variables
with 400 clauses forpret150, respectively). We observe that, for this problem class,
AOBFg+SVO is the best performing algorithm amongst the 0/1 ILP solvers. For ex-
ample, onpret150-75, the hardest instance,AOBFg+SVO is 4 times faster than
AOBBg+SVO and the search space explored is 6 times smaller. This is due to the prob-
lem structure which is partially captured by a very small context with size 6 and a
shallow pseudo-tree with depth 13. Overall,PBS offers the best performance on this
dataset. However, the search space explored byAOBFg+SVO appears to be the small-
est. This indicates that the computational overhead ofAOBFg+SVO is due to evaluating
its guiding lower bound (i.e., solving the linear relaxation of the current subproblem
via SIMPLEX). Notice thatBB, MaxSolver andtoolbar3 solvers were not able to
solve any of thepret150 instances within a 10 hour time limit.

Figure 3 displays the results for experiments with randomdubois instances with
increasing number of variables. These are hard 3-SAT instances with3 × degree vari-
ables and8×degree clauses, each of them having 3 literals. As in the previous test case,
thedubois instances have very small contexts of size 6 and shallow pseudo-trees with
depths ranging from 10 to 20. We can see thatAOBFg+SVO takes full advantage of
the relatively small context-minimal AND/OR search graph and, on some of the larger
instances, it outperforms its 0/1 ILP competitors with up toone order of magnitude
in terms of both running time and number of nodes expanded.PBS is again the overall
best-performing algorithm, however it fails to solve 4 testinstances (e.g.,dubois130,
dubois180, dubois200 anddubois260) due to exceeding the memory limit. We
observe that in this domain alsoAOBFg+SVO explores the smallest search space as
compared toPBS, but its computational overhead does not pay off in terms of running
time.BB, MaxSolver andtoolbar3 performed very poorly on this dataset and they
were not able to solve any of test instances within a 10 hour time limit. Notice that in
some test cases the best-first search algorithms traversingthe AND/OR search tree (i.e.,
AOBFt+SVO, AOBFt+PVO) expand more nodes than their Branch-and-Bound coun-
terparts. We suspect that this is because the guiding LP lower-bound is not monotone
which causes the best-first search to expand a non-minimal number of nodes.

6 Conclusion

The contribution of this paper is three-fold. First, we introduced an AND/OR search
algorithm that explores a context-minimal AND/OR search graph in abest-firstmanner
for solving 0/1 ILPs. Second, we extended the algorithm to incorporate dynamic vari-
able orderings.AOBFt+PVO augments a static pseudo-tree based problem decomposi-
tion with a dynamic semantic variable selection heuristic,while exploring an AND/OR
search tree in a best-first manner. Third, we adapted the depth-first AND/OR Branch-
and-Bound algorithm with full caching to the 0/1 ILP domain.Our empirical evaluation
demonstrated on a variety of 0/1 ILP benchmark problems thatthe best-first AND/OR
search algorithms are promising candidate solvers, outperforming the depth-first OR
and AND/OR Branch-and-Bound algorithms with several of magnitude in terms of both
running time and size of the search space explored.

Our best-first AND/OR search approach leaves room for futureimprovements, which
are likely to make it more efficient in practice. For instance, it can be modified to in-
corporatecutting planesto tighten the linear relaxation of the current subproblem.The
space required by the best-first AND/OR search can be enormous, due to the fact that all
the nodes generated by the algorithm have to be saved prior totermination. Therefore,
the algorithm can be extended to incorporate a memory bounding scheme similar to the
one suggested in [22].

Acknowledgments

We would like to thank the anonymous reviewers for commenting on an earlier version
of the paper. This work has been partially supported by the NSF grant IIS-0412854.

References

1. R. Marinescu and R. Dechter. Memory intensive branch-and-bound search for graphical
models.In National Conference on Artificial Intelligence (AAAI’06), 2006.

2. G. Nemhauser and L. Wolsey.Integer and combinatorial optimization.Wiley, 1988.
3. E. Lawler and D. Wood. Branch-and-bound methods: A survey.Operations Research,

14(4):699–719, 1966.
4. R. Dechter and R. Mateescu. And/or search spaces for graphicalmodels.Artificial Intelli-

gence, 2006.
5. R. Marinescu and R. Dechter. And/or branch-and-bound for graphical models.In Interna-

tional Joint Conference on Artificial Intelligence (IJCAI’05), pages 224–229, 2005.
6. R. Marinescu and R. Dechter. And/or branch-and-bound searchfor pure 0/1 integer linear

programming problems.In International Conference on Integration of AI and OR Techniques
in Constraint Programming for Combinatorial Optimization (CPAIOR’06), pages 152–166,
2006.

7. R. Marinescu and R. Dechter. Dynamic orderings for and/or branch-and-bound search in
graphical models.In European Conference on Artificial Intelligence (ECAI’06), pages 138–
142, 2006.

8. R. Dechter and J. Pearl. Generalized best-first search strategies and the optimality of a*.In
Journal of ACM, 32(3):505–536, 1985.

9. G.B. Dantzig. Maximization of a linear function of variables subject to linear inequalities.
Activity Analysis of Production and Allocation, 1951.

10. M. Vasquez and J. Hao. A hybrid approach for the 0/1 multidimensional knapsack approach.
In International Joint Conference on Artificial Intelligence (IJCAI’01), pages 328–333, 2001.

11. W. Shih. A branch-and-bound method for the multiconstraint 0/1 knapsack problem.Journal
of the Operational Research Society, 30:369–378, 1979.

12. B. Gavish and H. Pirkul. Allocation of data bases and processors in adistributed computing
system.Management of Distributed Data Processing, 31:215–231, 1982.

13. T. Sandholm. An algorithm for optimal winner determination in combinatorial auctions.In
International Joint Conference on Artificial Intelligence (IJCAI’99), pages 542–547, 1999.

14. K. Leyton-Brown, M. Pearson, and Y. Shoham. Towards a universal test suite for combina-
torial auction algorithms.In ACM Electronic Commerce, pages 66–76, 2000.

15. S. Joy, J. Mitchell, and B. Borchers. A branch and cut algorithm for max-sat and weighted
max-sat.In Satisfiability Problem: Theory and Applications, pages 519–536, 1997.

16. Z. Xing and W. Zhang. Efficient strategies for (weighted) maximum satisfiability. In Con-
straint Programming (CP’04), pages 660–705, 2004.

17. E. Freuder and M. Quinn. Taking advantage of stable sets of variables in constraint satisfac-
tion problems.In International Joint Conference on Artificial Intelligence (IJCAI’85), pages
1076–1078, 1985.

18. A. Darwiche. Recursive conditioning.Artificial Intelligence, 126(1-2):5–41, 2001.
19. K. Nillson. Principles of Artificial Intelligence.Tioga, 1980.
20. S. de Givry, J. Larrosa, and T. Schiex. Solving max-sat as weighted csp. In Constraint

Programming (CP’03), 2003.
21. F. Aloul, A. Ramani, I. Markov, and K. Sakallah. Pbs: A backtracksearch pseudo-boolean

solver. In Symposium on the Theory and Applications of Satisfiability Testing (SAT’02),
2002.

22. P. Chakrabati, S. Ghose, A. Acharya, and S. de Sarkar. Heuristic search in restricted memory.
In Artificial Intelligence, 3(41):197–221, 1989.

