Best-First AND/OR Search for 0/1 Integer Programming

Radu Marinescu and Rina Dechter

School of Information and Computer Science
University of California, Irvine, CA 92697-3425
{radum dechter }@cs. uci . edu

Abstract. AND/OR search spaces are a unifying paradigm for advanced algo-
rithmic schemes for graphical models. The main virtue of this repretemta

its sensitivity to the structure of the model, which can translate into exponential
time savings for search algorithms. In this paper we introduce an AND&2Rls
algorithm that explores a context-minimal AND/OR search graph lest-first
manner for solving 0/1 Integer Linear Programs (0/1 ILP). We alsmeiie the

0/1 ILP domain thelepth-firstAND/OR Branch-and-Bound search with caching
algorithm which was recently proposed by [1] for solving optimization tasks
graphical models. The effectiveness of the best-first AND/OR beapproach
compared to the depth-first AND/OR Branch-and-Bound search i9dstmated

on a variety of benchmarks for 0/1 ILPs, including instances from theL\B
library, real-world combinatorial auctions, random uncapacitated veaige lo-
cation problems and MAX-SAT instances.

1 Introduction

In constraint optimizatiorthe goal is to minimize (or maximize) an objective function,
subject to a set of constraints on the possible values of afsatiependent decision
variables. An important class of constraint optimizationlppems are the 0/1 Integer
Linear Programming problems (0/1 ILP) [2] where the objexis to optimize a linear
function of binary integer variables, subject to a set oédinequality or inequality
constraints defined on subsets of variables. The clasgpabach to solving 0/1 ILPs
is the Branch-and-Boundnethod [3] which maintains the best solution found so far,
while discarding partial solutions which cannot improvetioa best.

The AND/OR search space for graphical models [4] is a framkviar search that
is sensitive to the independencies in the model, oftentiaguh exponentially reduced
complexities. It is based on a pseudo-tree that capturepéerdiencies in the graphical
model, resulting in a search space exponential in the ddptiegpseudo-tree, rather
than in the number of variables.

The AND/OR Branch-and-Bound search(BB;) was first introduced by [5] as
a Branch-and-Bound algorithm that explores an AND/OR de#&ee in a depth-first
manner for solving optimization tasks in graphical mod&lsee AND/OR Branch-and-
Bound search with caching algorithitA@BB,) due to [1] improvesAOBB; by allowing
the algorithm to save previously computed results andesstrthem when the same
subproblems are encountered again. These algorithms strected to a static vari-
able ordering determined by the underlying pseudo-treeeMecently, [6, 7] proposed

several extensions &OBB, that incorporate dynamic variable ordering heuristics and
explore dynamic AND/OR search trees. Two such extensiaN®)/OR Branch-and-
Bound with Partial Variable OrderingAOBB;+PVO) andAND/OR Branch-and-Bound
with Full Dynamic Variable Ordering ACBB,+DVO) were shown to outperform signif-
icantly the staticAOBB; algorithm as well as state-of-the-art classic OR Branaftan
Bound algorithms on various domains, including 0/1 ILPs.

In this paper we present and evalute an new AND/OR searchithlgy that ex-
plores an AND/OR search graph inbest-firstmanner for solving 0/1 ILPs. Under
conditions of admissibility and monotonicity of the guidileuristic function, best-
first search is known to expand the minimal number of nodetheaéxpense of using
additional memory [8]. In practice, these savings in nundferodes may often trans-
late into impressive time savings as well. Since variablectien can have a dramatic
impact on search performance, we also introduce a besAfBYOR search algorithm
that explores an AND/OR search tree, rather than a graphc@mbines the AND/OR
decomposition principle with dynamic variable selecti@uhstics, in a similar fashion
as the dynamic AND/OR Branch-and-Bound algorithms desdriin [6, 7]. We also
adapt the stati&OBB,, algorithm for solving 0/1 ILPs.

We demonstrate empirically the efficiency of our best-firtlMDXOR search ap-
proach compared to the depth-first AND/OR Branch-and-Baaadch on several bench-
marks for 0/1 ILP, including test instances from the MIPLiBr&ary, combinatorial auc-
tions simulating radio spectrum allocation, random uncépted warehouse location
problems and MAX-SAT instances from the SATLIB library.

The paper is organized as follows. In Section 2 we preserkgoaand on 0/1 In-
teger Linear Programming and AND/OR search spaces. In@e8tive introduce the
best-first AND/OR search algorithm as well as the extengid®/'1 ILPs of the depth-
first AND/OR Branch-and-Bound search with caching. In Set# we present a best-
first AND/OR search algorithm that incorporates dynamicalale orderings. Section 5
shows our empirical evaluation and Section 6 concludes.

2 Background

2.1 Integer Linear Programming

A Linear Program(LP) consists of a set of continuous variables and a set @&finon-
straints (equalities or inequalities). The goal is to ojera global linear cost function
subject to the constraints. One of the standard forms ofeafiprogram is:

min{c x| Az < b,z >0} 1)

wherec € R, b € R™, A € R™*™ andx € R™. Herec represents the cost vector and
x is the vector of decision variables. The vedi@nd the matrixA define them linear
constraints. Linear programs are usually solved by DaistsignpPLEX method [9].

An Integer Linear ProgrammingILP) problem is a linear program where all the
decision variables are constrained to have integer valuéseaoptimal solution. An
important special case is a decision variabjehat is integer with) < x; < 1. This
forcesx; to be either O or 1 at the solution. Variables likeare called0/1 or binary

minimize:z=7A+3B-2C +5D -6E +8F
subject ta
3A-12B+C<3
-2B+5C-3D<-2
2A+B-4E<2
A-3E+F<1
AB,C,D,E,F {01}

(@)

Fig. 1. The AND/OR search space.

integer variablesA 0/1 Integer Linear Programmingroblem is an ILP where all the
decision variables are binary. 0/1 ILPs can formulate maagtcal problems such as
capital budgeting [10], cargo loading [11], processoradtion in distributed systems
[12], combinatorial auctions [13, 14] or maximum satisfidpproblems [15, 16].

With every 0/1 ILP instance we can associateirggeraction graphG which has
a node for each variable and connects any two nodes whossblesiappear in the
scope of the same constraint. Timeluced graphof G relative to an ordering of its
variables, denoted:*(d), is obtained by processing the nodes in reverse order of
For each node all its earlier neighbors are connected,dimauneighbors connected by
previously added edges. Given a graph and an ordering dfitss) thevidth of a node
is the number of edges connecting it to nodes lower in therrgleTheinduced width
of a graph, denoted*(d), is the maximum width of nodes in the induced graph.

In the remainder, we will consider thrainimizationof a 0/1 ILP instance defined
by a linear objective function = > | ¢;X; subject tom linear constraintsF =
{Fi, ..., Fn }, overn decision variablest = {Xj, ..., X, } with binary domainD =
{D1,..., D, }. We use the notatiotY’, D, F, z) to refer to any 0/1 ILP instance.

2.2 AND/OR Search Spaces for 0/1 Integer Linear Programs

The common way of solving 0/1 Integer Linear Programs is arag namely to in-
stantiate variables one at a time following a static or dyicarariable ordering. In the
simplest case, this process defines an OR search tree, witisenepresent states in the

space of partial assignments. This search space does noteamlependencies that ap-
pear in the structure of the problem. To remedy this problerAldD/OR search space
was recently introduced in the context of general graphiwadiels [4]. The AND/OR
search space is defined using a backbuseudo-tre¢l7].

Definition 1 (pseudo-tree).Given an undirected grap&’ = (V, E), a directed rooted
treeT = (V, E’) defined on all its nodes is callggbeudo-tred any arc of G which is
not included inE’ is a back-arc, namely it connects a node to an ancestdt.in

We will next specialize the AND/OR search space for a 0/1 ILlitclv is a special
type of a graphical model.

AND/OR Search Trees Given a 0/1 ILP instancéY’, D, F, z), its interaction grapld
and a pseudo-treE of GG, the associated AND/OR search tige has alternating levels
of OR nodes and AND nodes. The OR nodes are labeled jgnd correspond to the
variables. The AND nodes are labeled{®Y;, ;) and correspond to value assignments
in the domains of the variables. The structure of the AND/@#¢ tis based on the
underlying pseudo-tre® of G. The root of the AND/OR search tree is an OR node,
labeled with the root of".

The children of an OR nod&; are AND nodes labeled with assignme(s;, z;),
consistent along the path from the roptth(z;) = ((X1,21), ..., (X;-1,2:-1)). The
children of an AND nod€X;, z;) are OR nodes labeled with the children of variable
X, inT. Semantically, the OR states represent alternative wagslaing the problem,
whereas the AND states represent problem decompositioniridependent subprob-
lems, all of which need be solved. When the pseudo-tree isin,tha AND/OR search
tree coincides with the regular OR search tree.

A solution treeSOLg,. of Sy is an AND/OR subtree such that: (i) it contains the
root of Sp; (ii) if a nonterminal AND node: € Sy is in SOLg,. then all of its children
are inSOLg,.; (iii) if a nonterminal OR nodex € St isin SOLg, then exactly one of
its children is inSOLsg,..

Example 1.For illustration consider the 0/1 ILP with 6 decision vateA, B, C, D, E,
F and 4 linear constraintg; (A, B, C), F»(B,C, D), F3(A, B, E), F4(A, E, F) from
Figure 1(a). The objective function to be minimizedis- TA+ B —2C' +5D —6E +
8F'. The pseudo-tree arrangement of the interaction grapkttiegwith the back-arcs
(dotted lines) are given in Figure 1(b). Figure 1(c) showesabrresponding AND/OR
search tree.

Arc Labels and Node Values The arcs from OR nodeX; to AND nodes(X;, x;) in
the AND/OR search tre€; are annotated bigbelsderived from the objective function.

Definition 2 (label). Given a 0/1 ILP instance with objective functier= >, ¢; X;
and a corresponding AND/OR search tigg, thelabell(n, m) of the arc from the OR
noden = X; to the AND noden = (X;, x;) is defined ag(n, m) = ¢; - z;.

Given a labeled AND/OR search tree, each node can be assbuidh avalue[4].

Definition 3 (value). Thevaluewv(n) of a noden € St is defined recursively as fol-
lows: (i) if n = (X, z;) is a terminal AND node then(n) = 0; (ii) if n = (X, z;)
is an internal AND node then(n) = 3_, ,cc(n) v(m); (iii) if n = X; is an internal
OR node them(n) = min,,csucem) (I(n, m) +v(m)), wheresucc(n) are the children
ofnin Sr.

It is easy to see that the valug¢n) of a node in the AND/OR search treg&- is
the minimal cost solution to the subproblem rooted asubject to the current variable
instantiation along the path from the rootnolf n is the root ofSy, thenwv(n) is the
minimal cost solution to the initial problem [6].

Clearly, the AND/OR search tree can be traversed to commagh rode’s value
either by a depth-first or best-first search algorithm.

AND/OR Search Graphs The AND/OR search tree may contain nodes that root iden-
tical subtrees (in particular, subproblems with identigatimal solutions). These are
calledunifiable When unifiable nodes are merged, the search tree becomgseagc

its size becomes smaller. Some unifiable nodes can be iéetéised on the@ontexts

Definition 4 (context).Given a 0/1 ILP instance and the corresponding AND/OR search
tree St relative to a pseudo-tre&, the contextof any AND nod€ X, z;) € Sr, de-
noted bycontext(X;), is defined as the set of ancestorsXgfin 7', including X, that

are connected to descendantsof

It is easy to verify that any two nodes having the same comtpesent the same
subproblem. Therefore, we can soli#g,, the subproblem rooted &f,, once and use
its optimal solution whenever the same subproblem is erteoeah again.

The context-minimaAND/OR search graph, denoted B, is obtained by merg-
ing all the AND nodes that have the same context. It can besithat the size of the
largest context is bounded by the induced widthof the interaction graph, extended
with the pseudo-tree extra arcs, over the ordering giveméylepth-first traversal af
(i.e. induced width of the pseudo-tree). Therefore,

Theorem 1 (complexity).The complexity of any search algorithm traversing a context
minimal AND/OR search graph is time and sp&atexp(w*)), wherew* is the induced
width of the underlying pseudo-tree [4].

Example 2.Consider the context-minimal AND/OR search graph in Figl¢@) of
the pseudo-tree from Figure 1(b). Its size is far smallet that of the AND/OR tree
from Figure 1(c) (16 nodes vs. 36 nodes). The contexts of tles can be read from
the pseudo-tree, as followsontext(A) = {A}, context(B) = {B,A}, context(C) =
{C,B}, context(D) = {D}, context(E) = {E,A} andcontext(F') = {F}.

3 Algorithms Exploring the Context-Minimal AND/OR Graph

In this section we introduce two algorithms that explore ategt-minimal AND/OR
search graph in either @epth-firstor best-firstmanner for solving optimization prob-
lems from the class of 0/1 ILP. First, we present the depgt-iND/OR Branch-and-
Bound search algorithnAOBB,) which extends the 0/1 ILP algorithm presented in [6]

Algorithm 1: ACBB,

Data: AO/LILP P = (X, D, F, z), pseudo-tred’, root s.
Result Minimal cost solution toP.
1. Create a list OPEN, consisting solely of the start nedgetv(s) = co.
2. until s is labeled SOLVEDdo:
(a) Remove the first node from OPEN and add it to CLOSED.
(b) If n is an AND node, then set(n) = cache(n).
(c) Try to prune the subtree below; as follows: if for some ancesten of n in CLOSED, f;, (m) > v(m),
then setw(n) = oo and continue from step (e).
(d) Expand node: generating all its successor nodes For each new node; computeh(n;); if n; is an
AND node then set(n;) = 0, else ifn; is an OR node then set(n;) = oo; addn; on top of OPEN.
(e) Create a séf. If n has no successors then labeSOLVED and add it tc5.
(f) until S is empty,do:
i. Remove the first node: from S.
ii. Update the value (p) of the parenp of m as follows:
A. if pis an AND nodethen v(p) = v(p) + v(m).
B.if p is an OR nod¢hen v(p) = min(v(p), l(p, m) + v(m)). Save the AND value/(m) in cache
by settingcache(m) = v(m), if v(m) # co.
iii. Removem from the successors @f If p has no successors left, laheSOLVED and add it t&5.
Removem from CLOSED.
3.return v(s).

for searching AND/OR trees to searching AND/OR graphs. Therdhm specializes
recent AND/OR graph search algorithms for general congtaatimization problems
described in [1] to the 0/1 ILP case.

3.1 Depth-First AND/OR Branch-and-Bound Search

The AND/OR Branch-and-Bound search algorithm, denoted®8B,, that explores
the context-minimal AND/OR search graph in a depth-first ngains described in Al-
gorithm 1. Its pruning strategy is similar to that of the Brhrand-Bound algorithm
searching AND/OR trees developed in [6]. Specifically, eaotlen along the path
from the root has associatedstatic heuristic function:(n) underestimating(n) that
can be computed efficiently by solving the linear relaxafian relaxing the integrality
restrictions) of the subproblem rootedratThe algorithm also improves the heuristic
function dynamically during search. Thignamic heuristic functioff, (n) is computed
based on the search space betothat has already been explored, as described in [6],
and is used to prune unpromising portions of the search sphateannot improve the
best solution found so far.

AOBB, is restricted to a static variable ordering determined kyutiiderlying pseudo-
tree and explores the context-minimal AND/OR search graplfiu caching The al-
gorithm saves previously computed results and retrie\ers tithen the same nodes are
encountered again, during search. A simple way of implemegrnhe caching mecha-
nism is to have aache tabldor each variableX, recording its context. Specifically, let
us assume that the context®f; is context(Xy) = {X,, ..., Xx }. A cache table entry
corresponds to a particular instantiation;, ...,z } of the variables ircontext(Xy)
and records the optimal cost solution to the subprobigm.

However, some tables might never get cache hits. These léed daad-cachefl8,

1]. In the context-minimal AND/OR search graph, dead-cacigpear at nodes that
have only one incoming aré&A\OBB, needs to record only nodes that are likely to have

Algorithm 2 : ACBF,,

Data: AO/LILP P = (X, D, F, z), pseudo-tred’, root s.
Result Minimal cost solution toP.
1. Create explicit grapli/., consisting solely of the start nodeSetv(s) = h(s).
2. until s is labeled SOLVEDdo:
(a) Compute goartial solution treeby tracing down thenarkedarcs inG/- from s and select any nonterminal
tip noden.
(b) Expand node: and add any new successor nadgeto G7.. For each new node; setv(n;) = h(n;).
Label SOLVED any of these successors that are terminal nodes.
(c) Create a sef containing node.
(d) until S is empty,do:
i. Remove fromS a nodem such thatm has no descendants @i, still in S.
ii. Revise the value/(m) as follows:
A. if mis an AND nodeghenv(m) = >
SOLVED, then label noden SOLVED.
B. if m is an OR nod¢hen v(m) = minm].eg,‘m(m)(l(m, mj) + v(m;)) and mark the arc
through which this minimum is achieved. If the marked successor is labeledEIthen labelmn
SOLVED.
iii. If m has been marked SOLVED or if the revised valuen) is different than the previous one, then add
to S all those parents af: such thatn is one of their successors through a marked arc.
3.return v(s).

v(m;). If all the successor nodes are labeled

m Esuce(m)

additional incoming arcs, and some of these nodes can berde&al by inspecting the
pseudo-tree. Namely, if the context of a node includes thiéd parent, then there is no
need to store anything for that node, because it would be @-daehe. For example,
node B in the AND/OR search graph from Figure 1(d) is a dead-cacluadse its
context includes the context of its parehin the pseudo-tree from Figure 1(b).

If the memory requirements are prohibitive, rather thamgigull caching ACBB,,
can be modified to use a memory bounded caching scheme tlest@ialy those nodes
whose context size can fit in the available memory, as sugddst[1].

3.2 Best-First AND/OR Search

The context-minimal AND/OR search graph can be traversediest-first rather than
depth-first manner to compute the optimal cost solution télalCP. It is known that
under conditions of admissibility and monotonicity of thaiding heuristic function,
best-first search algorithms are guaranteed to expand thienalinumber of nodes, at
the expense of using additional memory [8].

Our best-first AND/OR graph search algorithm, denoted\oBF,, that traverses
the context-minimal AND/OR search graph is described inofithm 1. It specializes
Nillson’s AO* algorithm [19] to solving 0/1 ILPs and interleaves forwargbansion of
the best partial solution tree with a cost revision stepubpdiates estimated node values.
First, a top-down, graph-growing operati@at @p 2. a) finds the best partial solution
tree by tracing down through the marked arcs of the explitDAOR search graph
G’.. These previously computed marks indicate the current fesial solution tree
from each node iid7/.. One of the nonterminal leaf nodesof this best partial solution
tree is then expanded, and a static heuristic estifn@te) is assigned to its successors
(step 2.b). The successors of an AND node= (X, z;) are X;’s children in the
pseudo-tree, while the successors of an OR node X; correspond toX;’s domain
values. Notice that when expanding an OR node, the algouibes not generate AND

children that are already present in the explicit searcply(@.. All these identical
AND nodes inG. are easily recognized based on their contexts.

The second operation BOBF, is a bottom-up, cost revision, arc marking, SOLVE-
labeling procedurest ep 2. c). Starting with the node just expandegdthe procedure
revises its value(n) (using the newly computed values of its successors) andsanark
the outgoing arcs on the estimated best path to terminalsanddes revised value is
then propagated upwards in the graph. The revisedwdegtis an updated estimate of
the cost of an optimal solution to the subproblem rooted. at we assume the mono-
tone restriction orh, the algorithm considers only those ancestors that rodtdaetal
solution subtrees containing descendants with revisatesadt ep 2. d.iii). The
optimal cost solution to the initial problem is obtained whbke root node is solved.

The static heuristic functioh(n) is obtained by solving the linear relaxation of
the subproblemP, rooted at node: in the search graph, subject to the current vari-
able instantiation of the best partial solution treeP)f is infeasible then we assume
h(n) = oo. The bottom-up operation okOBF, will then propagate this high cost
upward, which eliminates any chances that a subtree camgathis node might be
selected as an estimated best solution subtree.

4 Dynamic Variable Orderings

Itis well known that variable selection may influence dransly search performance.
Recent work by [6, 7] showed how several dynamic variableongs affect depth-first
Branch-and-Bound search on AND/OR trees. One extensitiedc&dND/OR Branch-
and-Bound with Partial Variable Ordering@BB;+PVO) that orders dynamically the
variables forming chains in the pseudo-tree, was shown tpesiorm significantly
static AND/OR as well as state-of-the-art OR Branch-andigbsolvers for general
COPs and in particular for 0/1 ILPs [6, 7]. Next, we extendithea of partial variable
ordering to best-first search on AND/OR trees.

Partial Variable Orderings ACBF, described in the previous section is restricted to a
static variable ordering determined by the pseudo-tremgament. The mechanism of
identifying unifiable AND nodes based solely on their cotdeg hard to extend when
variables are instantiated in a different order than thetatied by the pseudo-tree, and
therefore it cannot be used to accommodate dynamic vareabirings. If we explore
the AND/OR search tree we can use dynamic variable orderimgle exploring the
AND/OR search tree in a best-first manner.

Best-first AND/OR search with Partial Variable OrderirAOBF;+PVO) traverses
an AND/OR search tree by combining the static graph-baseblgmn decomposition
given by a pseudo-tree with a dynamic semantic variableSeteheuristic. We illus-
trate the idea with an example. Consider the pseudo-tree figure 1(a) inducing the
following variable group orderingtA,B}, {C,D}, {E,F}; which dictates that variables
{A,B} should be considered befof€,D} and{E,F}. Variables in each group can be
dynamically ordered based on a second, independent senmenfiistic (e.g., min re-
duced cost, min pseudo cost, etc.). Notice that after viemsdla\,B } are instantiated, the
problem decomposes into two independent components thdtecaolved separately.

5 Experiments

In this section we evaluate empirically the performancéettest-first AND/OR search
algorithms on several benchmarks for 0/1 ILPs includingofm instances from the
MIPLIB library!, combinatorial auctions, uncapacitated warehouse meatioblems
and MAX-SAT problems. All our experiments were done on a H4®entium IV with
2GB of RAM, running Windows XP.

We consider two classes of best-first search algorithm®exglan AND/OR search
tree and using either a static variable ordering (SVO) or rigdavariable ordering
(PVO). The algorithms are denoted BYOBF;+SVO and AOBF;+PVQ, respectively.
We also consider two classes of depth-first and best-firstlseslgorithms travers-
ing context-minimal AND/OR search graphs, both restridiech static variable or-
dering and denoted b&OBB,+SVO and AOBF,+SVO, respectively. For comparison
we include results obtained with two depth-first AND/OR Brarand-Bound algo-
rithms without caching developed recently in [6] and deddiy AOBB;+SVO and
AOBB,+PVOQ, respectively. The guiding heuristic of the AND/OR searlgodthms is
computed by solving the linear relaxation of the currenfsablem. We used thgeim-
PLEX implementation from the open-sourtp_sol ve? library. The guiding pseudo-
tree used by the AND/OR algorithms was constructed usingypergraph partitioning
heuristic described in [6].

For reference, we also report results obtained with thesidaepth-first OR Branch-
and-Bound algorithm, denoted IBB. BB traverses an OR search tree using linear re-
laxations to guide the search and is available from ghesol ve library.

The algorithm$BB, AOBB,+PVO and AOBF;+PVO used a dynamic semantic vari-
able selection heuristic based mduced cost$i.e. dual values) [2]. Specifically, the
next fractional variable to instantiate has the smalledticed cost. Ties are broken
lexicographically.

We report the average effort, as CPU time (in seconds) andbauof nodes visited
(which is equivalent to the number of times theMPLEX routine was called to solve
the linear relaxation of the current subproblem), requfoegroving optimality of the
solution. We also record the number of variables (n), thebemof constraints (c), the
depth of the pseudo-trees (h) and the induced width of thehgré*) obtained for the
test instances. The best performance points are hightighte

51 MIPLIB

MIPLIB is a library of Mixed Integer Linear Programming iasices that is commonly
used for benchmarking integer programming algorithms.demrpurpose we selected
4 0/1 ILP instances of increasing difficulty. Table 1 rep@tsummary of the experi-
ment. We see that, overall the best-first AND/OR search dlgos explore the small-
est search space, which sometimes translates into significae savings. For exam-
ple, onl seu, one of the hardest instance&)BF,;+SVO causes a speedup of 2.5 over
AOBB;+SVO, while exploring a search space 3 times smaller. Simil#GBF ,+SVO

! available at http://miplib.zib.de/miplib2003.php
2 |p_solve 5.5.0.9 is available at http://Ipsolve.sourceforge.net/5.5/

Table 1.Results for MIPLIB problem instances.

miplib| n |w* BB|AOBB; AOBF;|AOBB, AOBF,|AOBB; AOBF;
cl|h (p_solve) SVO Svg SVO SvO PVO PVO
p0033 33| 19 |time 534 031 027 019 039 0.28 0.33
15|21 |nodes 15,832 438 403 339 281 428 374
p0040 40| 19 |time 0.08 0.112 0.11 0.1 0.09 0.27 0.18

23| 23 |nodes 134 113 10d 113 100 142 121
p0201201120time 98.21 91.36 71.62 90.52 76.05 84.36 91.4
133142nodes 23,742 15,187 10,38 15,130 10,387 9,653 8,26
Iseu | 89|57 |time 282.21 89.04 35.44 86.88 36.50 44.85 36.4
28| 68 |nodes 386,122 70,322 21,39663,906 19,69230,202 18,38

o Ot =t

Table 2. Results for combinatorial auction problem instances.

auction | n |w* BB|AOBB; AOBF;|AOBB, AOBF,|AOBB; AOBF;
cl|h (p_solve) SVO Svg SVO SvO PVO PVO
reg-upv |203145time 595 7.83 6.82 8.08 6.79 7.02 3.66

b200g50| 87 |162nodes 658 500 31d 500 310 5833 189
reg-upv |251j166time 45.42 19.24 1492 19.37 15.07Y 16.59 8.31
b250975(124190nodes 3,321 663 333 663 333 620 170
reg-upv |304{173time 198.07 155.76 90.61 148.34 91.67125.95 48.67
b300g100157204nodes 7,75 2,561 1,084 2,561 1,084 2,617 569
reg-npv |202/14Qtime 441 458 352 456 364 475 1.66
b200g50| 88 |161nodes 491 280 158 280 158 367 64
reg-npv |251{16Q0time 18.04 15.52 10.06 15.39 10.21 15.35 4.55
b250975(|120187nodes 1,177 593 250 593 250 659 95
reg-npv |302/172time 185.65 69.81 50.55 69.27 51.24 62.17 24.14
b300g100156206nodes 7,131 1,195 537 1,195 537 1,335 237

is 2.4 times faster thaAOBB,+SVO, while AOBF,+PVO s only slightly better than
AOBB;+PVQ. This observation verifies the theory because best-firstlda likely
to expand the smallest number of nodes at the search frdretiéng relatively weak
heuristic estimates.

5.2 Combinatorial Auctions

In combinatorial auctions (CA), an auctioneer has a set of good$,= {1,2,...,m}
to sell and the buyers submit a set of bitks= {Bj, Ba, ..., B, }. A bid is a tuple
B; = (S;,p;), whereS; C M is a set of goods ang; > 0 is a price. The winner
determination problem is to label the bids as winning or llo@so0 as to maximize the
sum of the accepted bid prices under the constraint that gactl is allocated to at
most one bid. We used the 0/1 ILP formulation described in [6]

Table 2 shows the results for experiments with 6 classes ofenade size combi-
natorial auctions from [6]. These auctions were drawn frbertegi ons distribution

4000

10
——e—— BB (lp_solve) ——&—— BB (p_solve)
o AOBBg+SVO A o AOBBg+SVO
——-¥-—— AOBFg+sVO ——-¥-—— AOBFg+sVO
3000 7 — —A-—- AOBBt+PVO !/ 10°3 —.—A—.- AOBBt+PVO
/

— —® — AOBFt+PVO — —B — AOBFt+PVO

2000

time (sec)
nodes

1000 o

Fig. 2. Results for egi ons- upv auctions with 100 goods and increasing number of bids.

of the CATS 2.0 test suite [14] and simulate the auction ofaagectrum in which a
government sells the right to use specific segments of spedir different geographi-
cal areas. We observe thaDBF,+PVOis the best performing algorithm, exploring the
smallest search space. If we look for example at the 300 lodl@m instances from the
r eg- npv distribution,AOBF;+PVOis on average about 2.5 times faster than the other
AND/OR algorithms and the search space explored is abontestsmaller. When com-
pared with the classic OR Branch-and-Bound algorit&@BF,+PVO causes an even
higher speedup, exploring a search space 30 times smafldceNthat the AND/OR
graph search algorithm&0BB,+SVO andAOBF ,+SVO expanded the same number of
nodes as the AND/OR tree search algoritha@BB,+SVO and AOBF;+SVQ, respec-
tively. This indicates that, for these problem classes,dbtext-minimal AND/OR
search graph is a tree and all cache entries are actually dead

Figure 2 displays the results for experiments withgi ons- upv auctions having
100 goods and increasing number of bids. Each data poirgsepts an average over
10 random samples. We observe tW&aBF,+PVO is the best performing algorithm
and, on some of the hardest instances, it outperforms itpettors with up to one
order of magnitude in terms of both CPU time and size of theckespace explored.
When comparing the best-first versus the depth-first seaggritdim traversing the
context minimal AND/OR search graph, the savings in the remolb nodes caused by
AOBF,+SVOover AOBB,+SVOdo translate into time savings as well, especially when
the number of bids increases.

5.3 Uncapacitated Warehouse Location Problems

In the uncapacitated warehouse location problem(UWLP) a company considers
openingm warehouses at some candidate locations in order to supty ekisting
stores. The objective is to determine which warehouse tm,oped which of these
warehouses should supply the various stores, such thatithesthe maintenance and
supply costs is minimized. Each store must be supplied bgtlyxane warehouse. We
used the 0/1 ILP formulation from [6].

Table 3. Results for uncapacitated warehouse location problem instances.

uwlp n |w* BB|AOBB; AOBF;|AOBB, AOBF,|AOBB; AOBF;
50x200| c h (p-solve) SVO SvVg SVO SvQ PVO PVQ
uwlp00110,05Q 50 |time 48.61 69.55 44.39 69.53 42.70 25.63 20.22
10,500123nodes 86 62 20 62 20 20 7
uwlp00410,05Q 50 |time 61.08 46.39 37.58 46.42 36.27 17.47 15.49
10,500123nodes 142, 46 24 46 24 10 3

uwlp01310,05Q 50 |time |13693.76 116.19 111.28116.25 105.72 78.86 74.53
10,500123nodes 14,846 44 26 44 26 24 13
uwlp01810,050Q 50 time | 1477.74 161.03 54.58161.05 52.4]1 59.52 32.33
10,500123nodes 2,666 146 21 146 21 37 8
uwlp02010,05Q 50 time | 2179.39 190.77 87.58190.81 83.70 68.91 48.33
10,500123nodes 3,669 138 33 138 33 36 10
uwlp02410,050Q 50 time | 2177.67 125.85 86.64125.86 82.2f 28.19 25.89
10,500123nodes 3,288 71 3] 71 3] 16 4

Table 3 displays the results obtained on 6 randomly gerektd¥®LP problem in-
stanced with 50 warehouses and 200 stores. The warehouse openirggaedsupply
costs were chosen uniformly randomly between 0 and 100Gs€Taee large problems
with 10,050 variables and 10,500 constraints, but havitatively shallow pseudo-
trees with depths of 123. We can see tA&@BF;+PVO dominates in all test cases,
outperforming the classiBB with several orders of magnitude in terms of both run-
ning time and size of the search space exploredwhp013 for example, one of the
hardest instance#&OBF;+PVO causes a speed-up of 186 over the classic OR Branch-
and-Bound algorithm, exploring a search tree 1,142 timeallem When comparing
the best-first AND/OR search algorithms with the depth-f&BID/OR Branch-and-
Bound algorithms we observe only minor time savings. Thisisause the correspond-
ing AND/OR search spaces are already small enough and tligsan number of
nodes caused by the best-first AND/OR search algorithms tidrawaslate into time
savings as well. Notice that for this problem class the cdmténimal AND/OR search
graph explored by thaOBB,+SVO and ACBF,+SVO algorithms is in fact a tree and
therefore all cache entries are dead.

5.4 MAX-SAT Problems

Given a set of Boolean variables the goahmiximum satisfiability (MAX-SAT) is to
find a truth assignment to the variables that violates thst leamber of clauses. The
MAX-SAT problem can be formulated as a 0/1 ILP as describefl#}. We exper-
imented with problem classew et andduboi s from the SATLIB* library, which
were previously shown to be difficult for 0/1 ILP solvers [28]. For comparison,
we also ran three specialized MAX-SAT solveMaxSol ver [16], a DPLL-based
algorithm that uses a 0/1 non-linear integer formulatiorthef MAX-SAT problem,

% Problem generator from http://www.mpi-sb.mpg.de/units/ag1/projecistinearks/UflLib/
4 http://www.satlib.org/

Table 4. Results fopr et MAX-SAT problem instances.

pret n |w* MaxSolver toolbar3 PBS BB|AOBB; AOBF;|AOBB, AOBF,|AOBB; AOBF;
c|h (Ipsolve) SVO SVQ SVO SVOQ PVO PVQ
pret60-40| 60| 6 [time 9.47| 53.89 0.00 27208.09 7.88 7.56 7.38 358 841 8.7(
160| 13 |nodes 7,297,773 565(4,194,302 1,255 1,202 1,216 568 1,216 1,326
pret60-60| 60| 6 |time 9.48 53.66 0.00/ 27628.52 856 8.08 7.30 356 8.70 8.31
160 13 |nodeg 7,297,773 495/4,194,302 1,259 1,184 1,140 538 1,247 1,206
pret60-75| 60| 6 |time 9.37 53.52 0.00/ 26990.70 6.97 7.3 6.34 3.08 6.80 8.47
160| 13 |nodes 7,297,773 5434,194,302 1,124 1,145 1,067 506 1,089 1,149
pret150-40150| 6 [time - -1 0.02 -l 95.11 101.78 75.19 19.70 108.84 101.9y
400| 15 |nodeg 2,592 6,625 6,535 5,625 1,379 7,152 6,246
pret150-60150 6 |time - -| 0.01 -| 98.88 106.36 78.25 19.75 112.64 102.28
400| 15 |nodes 2,873 6,851 6,728 5,813 1,398 7,347 6,37%
pret150-7%150) 6 |time - -| 0.02 -| 108.14 98.95 84.97 20.95 115.16 103.08
400| 15 |nodes 2,898 7,311 6,282 6,114 1,430 7,452 6,394
12000 107
——e—— AOBBH+SVO ——e—— AOBBH+SVO
o AOBFt+SVO o AOBFt+SVO
100007 __ 4 —— AOBBg+SVO P | ——-v—— noBBg+svo
——A—- AOBFg+SVO 10°3 —.—A—-- AOBFg+sVO
— - — AOBB:PVO /0 — & — AOBB:+PVO
80001 5 AOBFtPVO d ——O—— AOBFt+PVO
———— PBS /] ——%—— res

6000

time (sec)
nodes

4000 4

2000

degree degree

Fig. 3. Results foduboi s MAX-SAT problem instances.

t ool bar 3 [20], a classic OR Branch-and-Bound algorithm that solvésMSAT as
a Weighted CSP problem, afBS [21], a specialized pseudo-Boolean optimizer.

Table 4 shows the results for experiments withr&t instances. These are unsat-
isfiable instances of graph 2-coloring with parity consttai The size of these prob-
lems is relatively small (60 variables with 160 clausesgdpet 60 and 150 variables
with 400 clauses fopr et 150, respectively). We observe that, for this problem class,
AOBF,+SVO s the best performing algorithm amongst the 0/1 ILP solvEs ex-
ample, onpr et 150- 75, the hardest instancéOBF,+SVO is 4 times faster than
AOBB,+SVOand the search space explored is 6 times smaller. This isodihe prob-
lem structure which is partially captured by a very smallteghwith size 6 and a
shallow pseudo-tree with depth 13. Over&BS offers the best performance on this
dataset. However, the search space exploreddBF,+SVO appears to be the small-
est. This indicates that the computational overhead@dF,+SVOis due to evaluating
its guiding lower bound (i.e., solving the linear relaxatiof the current subproblem
via sIMPLEX). Notice thatBB, MaxSol ver andt ool bar 3 solvers were not able to
solve any of ther et 150 instances within a 10 hour time limit.

Figure 3 displays the results for experiments with randhrboi s instances with
increasing number of variables. These are hard 3-SAT instawith3 x degree vari-
ables an® x degree clauses, each of them having 3 literals. As in the previcsistese,
theduboi s instances have very small contexts of size 6 and shallowdgstraes with
depths ranging from 10 to 20. We can see th@BF,+SVO takes full advantage of
the relatively small context-minimal AND/OR search grapid,zon some of the larger
instances, it outperforms its 0/1 ILP competitors with upotee order of magnitude
in terms of both running time and number of nodes expanEB8.is again the overall
best-performing algorithm, however it fails to solve 4 festances (e.gduboi s130,
duboi s180, duboi s200 andduboi s260) due to exceeding the memory limit. We
observe that in this domain al#s0BF,+SVO explores the smallest search space as
compared td’BS, but its computational overhead does not pay off in termsiohing
time.BB, MaxSol ver andt ool bar 3 performed very poorly on this dataset and they
were not able to solve any of test instances within a 10 howe timit. Notice that in
some test cases the best-first search algorithms travers#ND/OR search tree (i.e.,
AOBF;+SVO, AOBF;+PVO) expand more nodes than their Branch-and-Bound coun-
terparts. We suspect that this is because the guiding LPrlbaend is not monotone
which causes the best-first search to expand a non-minimabeuof nodes.

6 Conclusion

The contribution of this paper is three-fold. First, we antuced an AND/OR search
algorithm that explores a context-minimal AND/OR seardipgrin abest-firstmanner
for solving 0/1 ILPs. Second, we extended the algorithm tmiporate dynamic vari-
able orderingsAOBF;+PVO augments a static pseudo-tree based problem decomposi-
tion with a dynamic semantic variable selection heuristigile exploring an AND/OR
search tree in a best-first manner. Third, we adapted théxrdiegpt AND/OR Branch-
and-Bound algorithm with full caching to the 0/1 ILP domadur empirical evaluation
demonstrated on a variety of 0/1 ILP benchmark problemsttieabest-first AND/OR
search algorithms are promising candidate solvers, diatpeing the depth-first OR
and AND/OR Branch-and-Bound algorithms with several of nimagle in terms of both
running time and size of the search space explored.

Our best-first AND/OR search approach leaves room for futopeovements, which
are likely to make it more efficient in practice. For instanicean be modified to in-
corporatecutting planego tighten the linear relaxation of the current subprobl&he
space required by the best-first AND/OR search can be enardae to the fact that all
the nodes generated by the algorithm have to be saved piiemtnation. Therefore,
the algorithm can be extended to incorporate a memory bagraiheme similar to the
one suggested in [22].

Acknowledgments

We would like to thank the anonymous reviewers for commentin an earlier version
of the paper. This work has been partially supported by thE diant 11S-0412854.

References

n

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

R. Marinescu and R. Dechter. Memory intensive branch-anddaeearch for graphical
models.In National Conference on Artificial Intelligence (AAAI'Q&006.

G. Nemhauser and L. Wolseipnteger and combinatorial optimizationViley, 1988.

E. Lawler and D. Wood. Branch-and-bound methods: A surv®perations Research
14(4):699-719, 1966.

R. Dechter and R. Mateescu. And/or search spaces for grapiichls. Artificial Intelli-
gence 2006.

R. Marinescu and R. Dechter. And/or branch-and-bound fgyhjcal models.In Interna-
tional Joint Conference on Atrtificial Intelligence (IJCAI'Q%ages 224-229, 2005.

R. Marinescu and R. Dechter. And/or branch-and-bound séargiure 0/1 integer linear
programming problemdn International Conference on Integration of Al and OR Techniques
in Constraint Programming for Combinatorial Optimization (CPAIOR’Ofdges 152—-166,
2006.

R. Marinescu and R. Dechter. Dynamic orderings for and/or brand-bound search in
graphical modelsln European Conference on Atrtificial Intelligence (ECAI'0Opages 138—
142, 2006.

R. Dechter and J. Pearl. Generalized best-first search stratadiésesoptimality of a*.In
Journal of ACM 32(3):505-536, 1985.

G.B. Dantzig. Maximization of a linear function of variables subject todinaequalities.
Activity Analysis of Production and Allocatiph951.

M. Vasquez and J. Hao. A hybrid approach for the 0/1 multidimenslorapsack approach.
In International Joint Conference on Atrtificial Intelligence (IJCAI'Qpages 328—-333, 2001.
W. Shih. A branch-and-bound method for the multiconstraint 0/ps$aek problemJournal

of the Operational Research Socigdp:369-378, 1979.

B. Gavish and H. Pirkul. Allocation of data bases and processordigtriouted computing
system.Management of Distributed Data Processii3d:215-231, 1982.

T. Sandholm. An algorithm for optimal winner determination in combii@tauctions.In
International Joint Conference on Atrtificial Intelligence (IJCAI'99pges 542547, 1999.
K. Leyton-Brown, M. Pearson, and Y. Shoham. Towards aausai test suite for combina-
torial auction algorithmsln ACM Electronic Commercgages 66—76, 2000.

S. Joy, J. Mitchell, and B. Borchers. A branch and cut algorithnmfax-sat and weighted
max-sat.In Satisfiability Problem: Theory and Applicationzages 519-536, 1997.

Z. Xing and W. Zhang. Efficient strategies for (weighted) maximatisgability. In Con-
straint Programming (CP’04)pages 660—705, 2004.

E. Freuder and M. Quinn. Taking advantage of stable sets of iesigbconstraint satisfac-
tion problemsIn International Joint Conference on Atrtificial Intelligence (IJCAI'85ages
1076-1078, 1985.

A. Darwiche. Recursive conditioningvrtificial Intelligence 126(1-2):5-41, 2001.

K. Nillson. Principles of Artificial IntelligenceTioga, 1980.

S. de Givry, J. Larrosa, and T. Schiex. Solving max-sat ashiegigcsp. In Constraint
Programming (CP’03)2003.

F. Aloul, A. Ramani, |. Markov, and K. Sakallah. Pbs: A backtraerch pseudo-boolean
solver. In Symposium on the Theory and Applications of Satisfiability Testing (3AT0
2002.

P. Chakrabati, S. Ghose, A. Acharya, and S. de Sarkar. iessarch in restricted memory.
In Artificial Intelligence 3(41):197-221, 1989.

