
Best-First AND/OR Search for Most Probable Explanations

Radu Marinescu and Rina Dechter
School of Information and Computer Science

University of California, Irvine, CA 92697-3425
{radum,dechter}@ics.uci.edu

Abstract

The paper evaluates the power ofbest-first search
over AND/OR search spaces for solving the Most
Probable Explanation (MPE) task in Bayesian
networks. The main virtue of the AND/OR
representation of the search space is its sen-
sitivity to the structure of the problem, which
can translate into significant time savings. In
recent years depth-first AND/OR Branch-and-
Bound algorithms were shown to be very effec-
tive when exploring such search spaces, espe-
cially when using caching. Since best-first strate-
gies are known to be superior to depth-first when
memory is utilized, exploring the best-first con-
trol strategy is called for. The main contribution
of this paper is in showing that a recent extension
of AND/OR search algorithms from depth-first
Branch-and-Bound to best-first is indeed very ef-
fective for computing the MPE in Bayesian net-
works. We demonstrate empirically the superi-
ority of the best-first search approach on various
probabilistic networks.

1 INTRODUCTION

Belief networks [1] are a class of graphical models that pro-
vide a formalism for reasoning about partial beliefs under
conditions of uncertainty. They are defined by a directed
acyclic graph over nodes representing random variables of
interest. The arcs signify the existence of direct causal in-
fluences between linked variables quantified by conditional
probabilities that are attached to each cluster of parents-
child nodes in the network. The Most Probable Explanation
(MPE) task in belief networks calls for finding a complete
assignment to the variables having maximum probability,
given the evidence. It is typically tackled with eitherinfer-
enceor searchalgorithms [1, 2, 3].

The AND/OR search space for graphical models [4] is a
framework for search that is sensitive to the independencies

in the model, often resulting in reduced search spaces. The
impact of the AND/OR search to optimization in graphical
models and in particular to the MPE task was explored in
recent years focusing exclusively on depth-first search.

The AND/OR Branch-and-Bound first introduced by [3]
traverses the AND/OR search tree in a depth-first manner.
The memory intensive Branch-and-Bound algorithm [5]
explores an AND/OR search graph, rather than a tree, by
caching previously computed results and retrieving them
when the same subproblems are encountered again. The
depth-first AND/OR search algorithms were shown to out-
perform dramatically state-of-the-art Branch-and-Bound
algorithms searching the traditional OR space.

In a recent paper [6] we introduced best-first AND/OR
search algorithms for solving 0-1 Integer Programming
problems, and demonstrated that, given enough memory,
they are superior to Branch-and-Bound algorithms we de-
veloped earlier [7]. Subsequently, in [8] we extended this
approach for Weighted CSP (WCSP) problems when using
best-first AND/OR search guided by bounded mini-bucket
heuristics. We demonstrated, again, that the best-first al-
gorithms are more efficient than their Branch-and-Bound
counterparts for various hard WCSP benchmarks.

In this paper we shift our attention to probabilistic net-
works, focusing on the MPE tasks. The extension of best-
first AND/OR search from WCSP to Bayesian networks is
straightforward. Hence, the main contribution of the cur-
rent paper is in its empirical evaluation of the scheme over
a wide range of probabilistic networks, including random
networks, coding networks as well as hard instances from
genetic linkage analysis. We show that this class of algo-
rithms improves on the most competitive complete MPE
solvers, thus it can potentially push the landmark of com-
putation further, assuming memory is available.

The paper is organized as follows. Section 2 gives back-
ground on belief networks and AND/OR search spaces.
Section 3 describes the best-first AND/OR search algo-
rithm. Section 4 presents an extensive empirical evaluation
and Section 5 concludes.



A

E

C

B

F

D

(a) Network

A

D

B

EC

F

[A]

[AB]

[CB]

[D] [F]

[EA]

(b) Pseudo-tree

OR

AND

OR

AND

OR

OR

AND

AND

A

0

B

0

E

F F

0 1 0 1

0 1

C

D D

0 1 0 1

0 1

1

E

F F

0 1 0 1

0 1

C

D D

0 1 0 1

0 1

1

B

0

E

F F

0 1 0 1

0 1

C

D D

0 1 0 1

0 1

1

E

F F

0 1 0 1

0 1

C

D D

0 1 0 1

0 1

(c) AND/OR search tree

AOR

0AND

BOR

0AND

OR E

OR F F

AND
0 1

AND 0 1

C

D D

0 1

0 1

1

EC

D D

0 1

1

B

0

E

F F

0 1

C

1

EC

(d) AND/OR search graph

Figure 1: AND/OR search spaces for belief networks.

2 BACKGROUND

2.1 Belief Networks

DEFINITION 1 (belief network) A belief (or Bayesian)
network is a quadrupleP = 〈X,D,F 〉, where X =
{X1, ...,Xn} is a set of variables over multi-valued do-
mains D = {D1, ...,Dn}. Given a directed acyclic
graph DAG over X as nodes,F = {Pi}, wherePi =
{P (Xi|pa(Xi))} are conditional probability tables (CPTs
for short) associated with each variableXi, and pa(Xi)
are the parents ofXi in the acyclic graphDAG. A belief
network represents a joint probability distribution overX,
P (x1, ..., xn) =

∏n

i=1 P (xi|xpa(Xi)). An evidence sete
is an instantiated subset of variables. Themoral graph (or
primal graph)of a belief network is the undirected graph
obtained by connecting the parent nodes of each variable
and eliminating direction.

A common optimization query over belief networks is find-
ing theMost Probable Explanation(MPE), namely, finding
a complete assignment to all variables having maximum
probability, given the evidence. A generalization of the
MPE query isMaximum a Posteriori Hypothesis(MAP),
which calls for finding the most likely assignment to a sub-
set of hypothesis variables, given the evidence.

DEFINITION 2 (most probable explanation) Given a be-
lief network and evidencee, theMost Probable Explanation
(MPE) task is to find an assignment(xo

1, ..., x
o
n) such that:

P (xo
1, ..., x

o
n) = maxX1,...,Xn

∏n

k=1 P (Xk|pa(Xk), e).

The MPE task appears in applications such as diagnosis,
abduction and explanation. For example, given data on
clinical findings, MPE can postulate on a patient’s prob-
able afflictions. In decoding, the task is to identify the most
likely message transmitted over a noisy channel given the
observed output.

2.2 AND/OR Search Spaces for Graphical Models

The common way to solve the MPE task in belief networks
is by search, namely to instantiate variables, following a
static or dynamic variable ordering. In the simplest case,
this process defines an OR search tree, whose nodes repre-

sent partial assignments. This search space does not cap-
ture the structure of the underlying graphical model. How-
ever, to remedy this problem, AND/OR search spaces for
graphical models were recently introduced by [4]. They are
defined using a backbonepseudo-tree[9].

DEFINITION 3 (pseudo-tree) Given an undirected graph
G = (V,E), a directed rooted treeT = (V,E′) defined
on all its nodes is calledpseudo-treeif any arc ofG which
is not included inE′ is a back-arc, namely it connects a
node to an ancestor inT .

AND/OR Search Trees Given a belief networkP =
〈X,D,F 〉, its primal graphG and a pseudo-treeT of G,
the associated AND/OR search tree, denotedST , has al-
ternating levels of OR nodes and AND nodes. The OR
nodes are labeledXi and correspond to the variables. The
AND nodes are labeled〈Xi, xi〉 and correspond to value
assignments in the domains of the variables. The root of
the AND/OR search tree is an OR node, labeled with the
root of the pseudo-treeT .

The children of an OR nodeXi are AND nodes labeled
with assignments〈Xi, xi〉, consistent along the path from
the root, path(Xi, xi) = (〈X1, x1〉, ..., 〈Xi−1, xi−1〉).
The children of an AND node〈Xi, xi〉 are OR nodes la-
beled with the children of variableXi in T . Semantically,
the OR states represent alternative solutions, whereas the
AND states represent problem decomposition into indepen-
dent subproblems, all of which need be solved. When the
pseudo-tree is a chain, the AND/OR search tree coincides
with the regular OR search tree.

A solution treeSolST
of ST is an AND/OR subtree such

that: (i) it contains the root ofST ; (ii) if a nonterminal
AND noden ∈ ST is in SolST

then all its children are in
SolST

; (iii) if a nonterminal OR noden ∈ ST is in SolST

then exactly one of its children is inSolST
.

EXAMPLE 1 Figures 1(a) and 1(b) show a belief network
and its pseudo-tree together with the back-arcs (dotted
lines). Figure 1(c) shows the AND/OR search tree based
on the pseudo-tree, for bi-valued variables.

Weighted AND/OR Search Trees The arcs from OR
nodesXi to AND nodes〈Xi, xi〉 in the AND/OR search



treeST are annotated byweightsderived from the condi-
tional probability tables inF .

DEFINITION 4 (weight) The weight w(n,m) of the arc
from the OR noden = Xi to the AND nodem = 〈Xi, xi〉
is the product of all the CPTs whose scope includesXi and
is fully assigned alongpath(Xi, xi), evaluated at the val-
ues along the path.

Given a weighted AND/OR search tree, each node can be
associated with avalue[4].

DEFINITION 5 (value) Thevaluev(n) of a noden ∈ ST

is defined recursively as follows: (i) ifn = 〈Xi, xi〉 is a
terminal AND node thenv(n) = 1; (ii) if n = 〈Xi, xi〉
is an internal AND node thenv(n) =

∏
m∈succ(n) v(m);

(iii) if n = Xi is an internal OR node thenv(n) =
maxm∈succ(n)(w(n,m) · v(m)), wheresucc(n) are the
children ofn in ST .

It easy to see that the valuev(n) of a node in the AND/OR
search treeST is the most probable explanation of the sub-
problem rooted atn, subject to the current variable instan-
tiation along the path from the root ton. If n is the root of
ST , thenv(n) is the most probable explanation value of the
initial problem (see [3, 4] for more details).

AND/OR Search Graphs The AND/OR search tree may
contain nodes that root identical subtrees (in particular,
subproblems with identical optimal solutions) which can
be unified. When unifiable nodes are merged, the search
tree becomes a graph and its size becomes smaller. Some
unifiable nodes can be identified based on theircontexts.

DEFINITION 6 (context) Given a belief network and the
corresponding AND/OR search treeST relative to a
pseudo-treeT , the contextof any AND node〈Xi, xi〉 ∈
ST , denoted bycontext(Xi), is defined as the set of an-
cestors ofXi in T , includingXi, that are connected to de-
scendants ofXi.

It is easy to verify that any two nodes having the same
context represent the same subproblem. Therefore, we can
solveP〈Xi,xi〉, the subproblem rooted at〈Xi, xi〉, once and
use its optimal solution whenever the same subproblem is
encountered again.

The context-minimalAND/OR search graph based on a
pseudo-treeT , denotedGT , is obtained from the AND/OR
search tree by merging all the AND nodes that have the
same context. It can be shown [4] that the size of the largest
context is bounded by the induced widthw∗ of the prob-
lem’s primal graph.

THEOREM 2.1 (complexity) The complexity of any search
algorithm traversing a context-minimal AND/OR search
graph (by context-based caching) is time and space

O(exp(w∗)), wherew∗ is the induced width of the under-
lying pseudo-tree [4].

EXAMPLE 2 Consider the context-minimal AND/OR
search graph in Figure 1(d) of the pseudo-tree from
Figure 1(b) (the square brackets indicate the context of the
variables). Its size is far smaller than that of the AND/OR
tree from Figure 1(c) (16 nodes vs. 36 nodes).

2.3 Searching the AND/OR Search Space

Recently, depth-first AND/OR Branch-and-Bound (AOBB)
search algorithms that explore the context-minimal
AND/OR search graph via full caching were shown to be
highly effective for solving the MPE task in belief net-
works [3, 5]. The efficiency of these algorithms also de-
pends on the accuracy of astatic heuristic functionwhich
can be either pre-compiled or generated during search for
each node in the search space. Furthermore, we showed
[3] that AOBB can improve its guiding heuristic function
dynamically, by learning from portions of the search space
that were already explored. This updateddynamic heuris-
tic evaluation functionis guaranteed to be tighter than the
static one [3], and therefore it can prune the search space
more effectively. The primary static heuristic function we
experimented with, especially in the context of the MPE
task was themini-bucketheuristic [2].

The Mini-bucket Heuristics is a general scheme for gen-
erating heuristic estimates for search that has been inves-
tigated in recent years, especially in the context of belief
networks [2, 3, 5]. The scheme is parameterized by the
mini-bucketi-bound which controls the trade-off between
heuristic strength and its computational overhead. The
heuristics can be pre-compiled from the augmented bucket
structure processed by the Mini-Bucket algorithm. When
compiled before search they are referred to asstatic mini-
buckets(hereafter denoted bySMB) and they were shown
to be very powerful, especially for relatively large values
of the i-bound. When the mini-bucket heuristics are com-
puted dynamically during search, referred to asdynamic
mini-buckets(DMB) they are generally more accurate than
the static ones. However, due to their computational over-
head, they were shown to be cost effective only for rela-
tively smalli-bounds.

3 BEST-FIRST AND/OR SEARCH

In this section we direct our attention to abest-firstrather
than depth-first control strategy for traversing the context-
minimal AND/OR graph and describe a best-first AND/OR
search algorithm for solving the MPE task in belief net-
works. The algorithm uses similar amounts of memory
as the depth-first AND/OR Branch-and-Bound with full
caching and therefore the comparison is warranted.



Algorithm 1: AOBF
Data: A belief networkP = 〈X, D, F 〉, pseudo-treeT , roots.
Result: Most Probable Explanation ofP.

1. Create explicit graphG′

T , consisting solely of the start node
s. Setv(s) = h(s).
2. until s is labeled SOLVED,do:

(a) Compute apartial solution treeby tracing down the
markedarcs inG′

T from s and select any nonterminal tip
noden.
(b) Expand noden and add any new successor nodeni to
G′

T . For each new nodeni setv(ni) = h(ni). Label
SOLVED any of these successors that are terminal nodes.
(c) Create a setS containing noden.
(d) until S is empty,do:

i. Remove fromS a nodem such thatm has no
descendants inG′

T still in S.
ii. Revise the valuev(m) as follows:

A. if m is an AND nodethen
v(m) =

∏
mj∈succ(m)

v(mj). If all the successor

nodes are labeled SOLVED, then label nodem
SOLVED.
B. if m is an OR nodethen
v(m) = maxmj∈succ(m)(w(m, mj) · v(mj)) and
mark the arc through which this maximum is achieved.
If the marked successor is labeled SOLVED, then label
m SOLVED.

iii. If m has been marked SOLVED or if the revised value
v(m) is different than the previous one, then add toS all
those parents ofm such thatm is one of their successors
through a marked arc.

3. return v(s).

Best-First Search Best-first search is a search algorithm
which optimizes breath-first search by expanding the node
whose heuristic evaluation function is the best among all
nodes encountered so far. Its main virtue is that it never
expands nodes whose cost is beyond the optimal one, un-
like depth-first search algorithms, and therefore is superior
among memory intensive algorithms employing the same
heuristic evaluation function [10].

Best-First AND/OR Graph Search Our best-first
AND/OR graph search algorithm, denoted byAOBF, that
traverses the context-minimal AND/OR search graph is de-
scribed in Algorithm 1. It specializes Nilsson’sAO∗ al-
gorithm [11] to AND/OR spaces in graphical models, in
particular to finding the MPE in belief networks.

The algorithm maintains a frontier of partial solution trees
found so far, and interleaves forward expansion of the best
partial solution tree with a cost revision step that updates
estimated node values. First, a top-down, graph-growing
operation (step 2.a) finds the best partial solution tree
by tracing down through the marked arcs of the explicit
AND/OR search graphG′

T . These previously computed
marks indicate the current best partial solution tree from
each node inG′

T . One of the nonterminal leaf nodesn of
this best partial solution tree is then expanded, and a static
heuristic estimateh(ni), overestimatingv(ni), is assigned

to its successors (step 2.b). The successors of an AND
noden = 〈Xj , xj〉 areXj ’s children in the pseudo-tree,
while the successors of an OR noden = Xj correspond to
Xj ’s domain values. Notice that when expanding an OR
node, the algorithm does not generate AND children that
are already present in the explicit search graphG′

T . All
these identical AND nodes inG′

T are easily recognized
based on their contexts, so only pointers to the existing
nodes are created.

The second operation inAOBF is a bottom-up, cost re-
vision, arc marking, SOLVE-labeling procedure (step
2.c). Starting with the node just expandedn, the proce-
dure revises its valuev(n) (using the newly computed val-
ues of its successors) and marks the outgoing arcs on the
estimated best path to terminal nodes. This revised value
is then propagated upwards in the graph. The revised cost
v(n) is an updated estimate of the most probable expla-
nation probability of the subproblem rooted atn. If we
assume the monotone restriction onh, the algorithm con-
siders only those ancestors that root best partial solution
subtrees containing descendants with revised values. The
most probable explanation value of the initial problem is
obtained when the root nodes is solved.

AOBF versus AOBB We describe next the main differ-
ences betweenAOBF andAOBB search.

1 AOBF with the same heuristic function asAOBB is
likely to expand the smallest number of nodes [10],
but empirically this depends on how quicklyAOBB
will find an optimal solution.

2 AOBB is able to improve its heuristic function dynam-
ically during search [3] based on the explicated por-
tion of the search space, whileAOBF may not because
it uses only the static functionh(n), which can be pre-
computed or generated during search.

3 AOBB can use far less memory avoiding dead-caches
for example (e.g., when the search graph is a tree),
while AOBF has to keep the explicated search graph
in memory prior to termination.

All the above points show that the relative merit of best-first
vs depth-first over context-minimal AND/OR search spaces
cannot be determined by the theory in [10] and empirical
evaluation is essential.

4 EXPERIMENTS

We evaluate the performance of the best-first AND/OR
search algorithm on the task of finding the Most Probable
Explanation in belief networks [1]. We implemented our
algorithms in C++ and ran all experiments on a 2.4GHz
Pentium IV with 2GB of RAM.

We consider a class of best-first AND/OR search al-
gorithms guided by the static and dynamic mini-bucket



heuristics. They are denoted byAOBF+SMB(i) and
AOBF+DMB(i), respectively. We compare them against
the depth-first AND/OR Branch-and-Bound algorithms
with static/dynamic mini-bucket heuristics and full caching
introduced in [5] and denoted byAOBB+SMB(i) and
AOBB+DMB(i) respectively. The parameteri represents
the mini-bucketi-bound and controls the accuracy of the
heuristic. All algorithms traverse the context-minimal
AND/OR search graph and are restricted to a static vari-
able ordering determined by the pseudo-tree. In our cur-
rent implementation the AND/OR search algorithms do not
exploit the determinism present in the networks by using
any form of constraint propagation such as generalized arc-
consistency or unit propagation.

For reference, we include results obtained with the
SAM IAM 2.3.2 software package1. SAM IAM is a public
implementation of Recursive Conditioning [13] which can
also be viewed as an AND/OR search algorithm.

We report the average CPU time in seconds (t) and num-
ber of nodes visited (#), required for proving optimality of
the solution. We also record the number of variables (n),
number of evidence variables (e), the depth of the pseudo-
trees (h) and the induced width of the graphs (w∗) obtained
for the test instances. The pseudo-trees were generated
using the min-fill heuristic, as described in [3]. All com-
peting algorithms were alloted a 2GB memory limit. The
best performance points are highlighted. In each table, ”-
/out” denotes that the respective algorithm exceeded the
time/memory limit.

Random Belief Networks We have generated a class
of random belief networks using the parametric model
(n, d, c, p) proposed in [2]. Figure 2 reports the average
time results in seconds and number of nodes visited for 20
random instances of a network withn = 120 variables, do-
main sized = 2, c = 110 probability tables (CPTs) and
p = 2 parents per CPT. The average induced width and
pseudo-tree depth were 20 and 32, respectively. The mini-
bucketi-bound ranged between 2 and 16.

When comparing the best-first versus the depth-first al-
gorithms using static mini-bucket heuristics, we observe
that AOBF+SMB(i) is better thanAOBB+SMB(i) only
for relatively smalli-bounds (i.e.,i ∈ {2, 3, 4}) which
generate relatively weak heuristic estimates. As thei-
bound increases and the heuristics become strong enough
to cut the search space substantially, the difference between
Branch-and-Bound and best-first search decreases, because
Branch-and-Bound finds close to optimal solutions fast,
and therefore will not explore solutions whose cost is below
the optimum, like best-first search.

When looking at the algorithms using dynamic mini-bucket
heuristics, we notice thatAOBF+DMB(i) is slightly bet-

1Available at http://reasoning.cs.ucla.edu/samiam. We used
thebatchtool 1.5 provided with the package.

Figure 2: CPU time in seconds and number of nodes visited
for solving random belief networks with 120 nodes. Time
limit 180 seconds, average induced widthw∗ = 20.

ter thanAOBB+DMB(i) only for the smallest reportedi-
bound, namelyi = 2. This is because these heuristics are
more accurate compared to the static ones, and the savings
in number of nodes caused by best-first search do not trans-
form into time savings as well. When comparing the static
versus dynamic mini-bucket heuristic we observe that the
latter is competitive only for relatively smalli-bounds (i.e.,
i ∈ {2, 3, 4, 5, 6}). At higher levels of thei-bound, the
accuracy of the dynamic heuristic does not outweigh its
computational overhead. For this reason, in the remain-
ing experiments we only consider the algorithms guided by
pre-compiled mini-bucket heuristics.

Coding Networks For this domain we experimented with
random coding networks from the class oflinear block
codes. They can be represented as 4-layer belief networks
with n nodes in each layer (i.e., the number of input bits).
The second and third layers correspond to input informa-
tion bits and parity check bits respectively. Each parity
check bit represents an XOR function of the input bits. The
first and last layers correspond to transmitted information
and parity check bits respectively. Input information and
parity check nodes are binary, while the output nodes are
real-valued. Given a number of input bitsn, number of
parentsp for each XOR bit, and channel noise varianceσ2,
a coding network structure is generated by randomly pick-
ing parents for each XOR node. Then we simulate an input
signal by assuming a uniform random distribution of infor-
mation bits, compute the corresponding values of the parity



Figure 3: CPU time in seconds for solving coding networks with channel noise varianceσ2 ∈ {0.22, 0.28, 0.32, 0.36}.
Time limit 300 seconds, average induced widthw∗ = 54.

check bits, and generate an assignment to the output nodes
by adding Gaussian noise to each information and parity
check bit.

Figure 3 displays the average time results in seconds for
20 random coding instances withn = 128 input bits,
p = 4 parents for each XOR bit and channel noise variance
σ2 ∈ {0.22, 0.28, 0.32, 0.36} (we omitted the number of
nodes due to space limitations). The average induced width
and depth of the pseudo-tree was 54 and 71, respectively.
The mini-bucketi-bound varied between 10 and 20. We ob-
serve thatAOBF+SMB(i) is far better thanAOBB+SMB(i)
for this domain. The difference in CPU time between the
best-first and depth-first search approaches is more promi-
nent on the hardest problem instances having higher chan-
nel noise variance (i.e.,σ2 ∈ {0.32, 0.36}), across all re-
portedi-bounds. SAM IAM was not able to solve any of
these problems due to exceeding the memory limit.

Grid Networks In grid networks, the nodes are arranged
in an n × n square and each CPT is generated uniformly
randomly. We experimented with problem instances devel-
oped by [14] for whichn ranged between 10 and 38, and
90% of the CPTs were deterministic (i.e., constraints).

Table 1 shows detailed results for experiments with 8 grid
networks of increasing difficulty. For each networke
nodes were picked randomly and instantiated as evidence.
We notice again the superiority ofAOBF+SMB(i) over
AOBB+SMB(i), especially for relatively weak heuristic es-
timates which are generated at relatively smalli-bounds.

For example, on90-34-1, one of the hardest instances,
best-first search with the smallest reportedi-bound (i =
12) finds the most probable explanation in about 8 min-
utes (495 seconds) while the depth-first Branch-and-Bound
with the same heuristics exceeds the 1 hour time limit. The
best performance point on this test instance is achieved for
i = 18, whereAOBF+SMB(18) is 9 times faster than
AOBB+SMB(18) and explores a search space 23 times
smaller. Notice that SAM IAM is able to solve relatively ef-
ficiently only the first 3 test instances and runs out of mem-
ory on the remaining ones.

Genetic Linkage Analysis Themaximum likelihood hap-
lotype problem in genetic linkage analysis is the task of
finding a joint haplotype configuration for all members of
the pedigree which maximizes the probability of data. It
is equivalent to finding the most probable explanation of a
belief network which represents the pedigree data [15].

Table 2 displays the results obtained for 12 hard linkage
analysis networks2. For comparison, we include results ob-
tained with SUPERLINK 1.6. SUPERLINK is currently one
the most efficient solvers for genetic linkage analysis, is
dedicated to this domain, uses a combination of variable
elimination and conditioning, and takes advantage of the
determinism in the network.

We observe again thatAOBF+SMB(i) is the best perform-
ing algorithm. For instance, on thep42 linkage instance,
AOBF+SMB(14) is 18 times faster thanAOBB+SMB(14)

2http://bioinfo.cs.technion.ac.il/superlink/



grid n w* SamIam AOBB+SMB(i) AOBF+SMB(i)
e h v. 2.3.2 i=8 i=10 i=12 i=14 i=16 i=8 i=10 i=12 i=14 i=16

90-10-1 100 16 t 0.13 0.23 0.19 0.08 0.11 0.19 0.22 0.14 0.08 0.09 0.19
0 26 # 4,396 3,681 1,231 760 101 1,788 1,046 517 312 100

90-14-1 196 23 t 11.97 19.95 12.52 8.83 1.22 0.78 8.24 5.97 2.20 1.02 0.70
0 37 # 215,723 156,387 112,962 14,842 4,209 46,153 35,537 13,990 5,137 1,163

90-16-1 256 26 t 147.19 1223.55 130.47 11.09 11.25 2.38 133.19 47.72 9.91 10.53 2.97
0 42 # 13,511,366 1,469,593 135,746 123,841 18,230673,238 250,098 55,112 52,644 11,854

i=12 i=14 i=16 i=18 i=20 i=12 i=14 i=16 i=18 i=20

90-24-1 576 36 t out 1237.19 285.63 75.02 22.83 20.78 34.21 38.35 13.49 9.08 21.00
20 61 # 6,922,516 2,051,503 547,401 110,144 15,400125,962 149,445 49,261 14,390 8,155

90-26-1 676 35 t out - - 634.59 85.11 49.97 out out 57.66 29.08 32.95
40 64 # 4,254,454 455,404 169,942 190,527 66,429 24,487

90-30-1 900 38 t out - - 365.69 145.86 37.39 out out 40.80 40.67 36.00
60 68 # 2,837,671 936,463 32,637 136,576 121,561 13,217

90-34-1 1154 43 t out - - 974.65 534.10 522.05 494.69 175.85 88.24 59.39 90.19
80 79 # 5,555,182 2,647,012 2,430,599 705,922 303,782 189,340 112,955 115,553

90-38-1 1444 47 t out - 81.27 657.91 734.46 133.06 478.02 22.80 47.14 43.74 78.05
120 86 # 259,405 1,505,849 1,478,903 161,156 580,623 38,376 80,177 52,209 35,294

Table 1: CPU time in seconds and number of nodes visited for solving grid networks. Time limit 1 hour.

ped n w* SamIam Superlink AOBB+SMB(i) AOBF+SMB(i)
h v. 2.3.2 v. 1.6 i=6 i=8 i=10 i=12 i=14 i=6 i=8 i=10 i=12 i=14

p1 299 15 t 5.44 54.73 4.19 2.17 0.39 0.65 1.36 1.30 2.17 0.26 0.87 1.54
61 # 69,751 33,908 4,576 6,306 4,494 7,314 13,784 1,177 4,016 3,119

p38 582 17 t out 28.36 5946.44 1554.65 2046.95 272.69 out 134.41 216.94 103.17
59 # 34,828,046 8,986,648 11,868,672 1,412,976 348,723 583,401 242,429

p50 479 18 t out - 4140.29 2493.75 66.66 52.11 78.53 36.03 12.75 38.52
58 # 28,201,843 15,729,294 403,234 110,302 204,886 104,289 25,507 5,766

i=10 i=12 i=14 i=16 i=18 i=10 i=12 i=14 i=16 i=18

p23 310 23 t out 9146.19 53.70 49.33 8.77 2.73 3.04 35.49 29.29 10.59 3.59 3.48
37 # 486,991 437,688 85,721 14,019 7,089 185,761 150,214 52,710 11,414 5,790

p37 1032 21 t out 64.17 39.16 488.34 301.78 67.83 29.16 38.41 95.27 62.97
61 # 222,747 4,925,737 2,798,044 82,239 72,868 102,011 223,398 12,296

i=12 i=14 i=16 i=18 i=20 i=12 i=14 i=16 i=18 i=20

p18 1184 21 t 157.05 139.06 - 406.88 52.91 23.83 20.60 out 127.41 42.19 19.85 19.91
119 # 3,567,729 397,934 118,869 2,972 542,156 171,039 53,961 2,027

p20 388 23 t out 14.72 7243.43 5560.63 37.28 95.13 out out 33.33 121.91
42 # 63,530,037 46,858,127 279,804 554,623 144,212 466,817

p25 994 29 t out - - - - 2041.64 693.74 out out out out 198.49
53 # 6,117,320 1,925,152 468,723

p30 1016 25 t out 13095.83 1440.26 597.88 1023.90 151.96 43.83 186.77 58.38 85.53 49.38 33.03
51 # 11,694,534 5,580,555 10,458,174 1,179,236 146,896692,870 253,465 350,497 179,790 37,705

p33 581 26 t out - 886.05 370.41 26.31 33.11 54.89 out 194.78 24.16 32.55 58.52
48 # 8,426,659 4,032,864 229,856 219,047 83,360 975,617 102,888 101,862 57,593

p39 1272 23 t out 322.14 - - 968.03 61.20 93.19 out out 68.52 41.69 87.63
94 # 7,880,928 313,496 83,714 218,925 79,356 14,479

p42 448 25 t out 561.31 - - 2364.67 out out 133.19
76 # 22,595,247 93,831

Table 2: CPU time in seconds and number of nodes visited for genetic linkage analysis. Time limit 3 hours.

bn n w* SamIam AOBB+SMB(i) AOBF+SMB(i)
h v. 2.3.2 i=16 i=18 i=20 i=21 i=22 i=16 i=18 i=20 i=21 i=22

BN 031 1153 46 t out 1183.49 541.82 217.80 83.08 145.55 187.95 125.94 83.89 71.53 132.55
160 # 3,990,212 2,131,977 889,782 94,507 97,721427,788 292,293 114,046 25,392 30,067

BN 033 1441 43 t - 1717.53 157.17 190.77 129.74 154.16 80.58 41.25 73.70 94.52 143.58
163 # 2,156,432 210,552 256,191 89,308 46,312 124,453 41,865 49,760 22,256 14,894

BN 035 1441 41 t - 67.74 133.28 58.81 80.64 157.83 27.25 36.75 51.20 75.53 158.17
168 # 174,370 243,533 65,657 58,973 45,758 31,460 34,987 15,953 18,048 18,461

BN 037 1441 45 t - 34.77 21.28 45.20 90.35 144.60 12.80 19.25 45.88 90.30 146.61
169 # 69,326 33,475 8,815 16,400 12,507 16,304 11,046 4,315 5,610 4,798

BN 039 1441 48 t - - 1727.89 475.26 246.60 653.83 out 254.25 113.97 112.69 211.84
162 # 3,448,072 1,043,378 518,011 3,045,139 725,738 213,676 127,872 239,838

BN 041 1441 49 t - 257.96 56.66 54.36 78.74 130.94 36.22 22.20 43.56 69.91 121.24
164 # 354,822 77,653 38,467 31,763 38,088 94,220 20,485 16,549 11,648 16,533

BN 127 512 57 t out 1798.57 - - 128.55 113.06 54.03 58.84 64.53 66.34 121.53
74 # 17,583,748 860,026 93,543 235,416 251,134 166,741 84,007 70,351

BN 129 512 52 t out 640.29 - 1439.32 222.17 155.63 out 200.47 135.60 out 231.95
68 # 6,150,175 13,437,762 1,747,613 671,931 922,831 537,371 622,449

BN 131 512 48 t out - 43.06 51.16 - 156.11 19.67 50.58 36.66 65.75 99.20
72 # 396,234 303,818 759,649 82,780 209,748 73,163 120,153 46,662

BN 134 512 52 t out - - - - 234.38 out 86.80 96.21 97.28 112.63
70 # 1,438,986 373,081 377,064 214,591 102,530

Table 3: CPU time in seconds and number of nodes visited for solving UAI’06. Time limit 30 minutes.



and explores a search space 240 times smaller. On some in-
stances (e.g.,p1, p23, p30) the best-first search algorithm
AOBF+SMB(i) is several orders of magnitude faster than
SUPERLINK. The performance of SAM IAM was very poor
on this dataset and it was able to solve only 2 instances.

UAI’06 Evaluation Dataset We also experimented with
10 belief networks from the UAI’06 Evaluation Dataset3.
We were not able to obtain the code from the other com-
petitors (i.e., Teams 1 and 2) in the MPE evaluation, and
therefore we only compare againstAOBB and SAMIAM.

Table 3 displays a summary of the results. We observe that
AOBF+SMB(i) is the best performing algorithm on this
dataset. While on the first 6 instancesAOBF+SMB(i) im-
proves only slightly causing on average a 2.5 speed-up over
AOBB+SMB(i), on the remaining 4 instances, the differ-
ence between best-first and depth-first search is more dra-
matic. For example,AOBF+SMB(18) solves theBN 134
instance in less than 2 minutes, whileAOBB+SMB(18) ex-
ceeds the 30 minute time limit. We notice that in some
cases (e.g.BN 127, BN 129), especially for large mini-
bucketi-bounds (e.g.i = 22) which generate very accurate
heuristic estimates, the savings in number of nodes caused
by AOBF+SMB(i) do not outweigh its overhead.

Summary of experiments. In summary, best-first
AND/OR search with static/dynamic mini-bucket heuris-
tics improves dramatically over depth-first AND/OR
Branch-and-Bound search, especially for relatively weak
heuristic estimates which are generated for relatively small
mini-bucketi-bounds. This is significant because it allows
the best-first search algorithms to push the landmark of
computation further as the induced width of the problems
increases.

5 CONCLUSION

In this paper we evaluated a best-first AND/OR search
algorithm which extends the classicAO∗ algorithm and
traverses a context-minimal AND/OR search graph for
solving the MPE task in belief networks. The algo-
rithm is guided by mini-bucket heuristics which can be ei-
ther pre-compiled or assembled dynamically during search.
The efficiency of the best-first AND/OR search approach
compared to the depth-first AND/OR Branch-and-Bound
search is demonstrated empirically on various random and
real-world benchmarks, including the very challenging
ones that arise in the field of genetic linkage analysis.

Our approach leaves room for further improvements. The
space required byAOBF can be enormous, due to the fact
that all the nodes generated by the algorithm have to be
saved prior to termination. Therefore,AOBF can be ex-
tended to incorporate a memory bounding scheme similar
to the one suggested in [16].

3http://ssli.ee.washington.edu/bilmes/uai06InferenceEvaluation

Acknowledgments
This work was supported by the NSF grant IIS-0412854.

References

[1] J. Pearl. Probabilistic Reasoning in Intelligent Sys-
tems.Morgan-Kaufmann, 1988.

[2] K. Kask and R. Dechter. A general scheme for auto-
matic generation of search heuristics from specifica-
tion dependencies.Artificial Intelligence, 2001.

[3] R. Marinescu and R. Dechter. And/or branch-and-
bound for graphical models.In IJCAI, pages 224–
229, 2005.

[4] R. Dechter and R. Mateescu. And/or search spaces
for graphical models.Artificial Intelligence, 2006.

[5] R. Marinescu and R. Dechter. Memory intensive
branch-and-bound search for graphical models.In
AAAI, 2006.

[6] R. Marinescu and R. Dechter. Best-first and/or search
for 0-1 integer programming.In CPAIOR, 2007.

[7] R. Marinescu and R. Dechter. And/or branch-and-
bound search for pure 0/1 integer linear programming
problems.In CPAIOR, pages 152–166, 2006.

[8] R. Marinescu and R. Dechter. Best-first and/or search
for graphical models.In AAAI, 2007.

[9] E. Freuder and M. Quinn. Taking advantage of stable
sets of variables in constraint satisfaction problems.
In IJCAI, pages 1076–1078, 1985.

[10] R. Dechter and J. Pearl. Generalized best-first search
strategies and the optimality of a*.In Journal of
ACM, 32(3):505–536, 1985.

[11] Nils J. Nilsson. Principles of Artificial Intelligence.
Tioga, 1980.

[12] R. Dechter and I. Rish. Mini-buckets: A general
scheme for approximating inference.ACM, 2003.

[13] A. Darwiche. Recursive conditioning.Artificial In-
telligence, 126(1-2):5–41, 2001.

[14] T. Sang, P. Beame, and H. Kautz. Solving Bayesian
networks by weighted model counting.In AAAI,
pages 475–482, 2005.

[15] M. Fishelson, N. Dovgolevsky, and D. Geiger. Max-
imum likelihood haplotyping for general pedigrees.
Human Heredity, 2005.

[16] P. Chakrabati, S. Ghose, A. Acharya, and S. de Sarkar.
Heuristic search in restricted memory.In Artificial
Intelligence, 3(41):197–221, 1989.


