
Ann Math Artif Intell (2008) 54:3–51
DOI 10.1007/s10472-009-9132-y

Mixed deterministic and probabilistic networks

Robert Mateescu · Rina Dechter

Published online: 25 April 2009
© Springer Science + Business Media B.V. 2009

Abstract The paper introduces mixed networks, a new graphical model framework
for expressing and reasoning with probabilistic and deterministic information. The
motivation to develop mixed networks stems from the desire to fully exploit the
deterministic information (constraints) that is often present in graphical models.
Several concepts and algorithms specific to belief networks and constraint networks
are combined, achieving computational efficiency, semantic coherence and user-
interface convenience. We define the semantics and graphical representation of
mixed networks, and discuss the two main types of algorithms for processing them:
inference-based and search-based. A preliminary experimental evaluation shows the
benefits of the new model.

Keywords Mixed network · Probabilistic information · Deterministic information ·
Graphical models · Automated reasoning · Inference · Search · AND/OR search

Mathematics Subject Classifications (2000) 68T30 · 68T37 · 68T20 · 62F30 · 62F15

1 Introduction

Modeling real-life decision problems requires the specification of and reasoning
with probabilistic and deterministic information. The primary approach developed in

R. Mateescu (B)
Electrical Engineering Department,
California Institute of Technology, Pasadena, CA 91125, USA
e-mail: mateescu@paradise.caltech.edu

R. Dechter
Donald Bren School of Information and Computer Sciences,
University of California Irvine, Irvine, CA 92697, USA
e-mail: dechter@ics.uci.edu

4 R. Mateescu, R. Dechter

artificial intelligence for representing and reasoning with partial information under
conditions of uncertainty is Bayesian networks. They allow expressing information
such as “if a person has flu, he is likely to have fever.” Constraint networks and
propositional theories are the most basic frameworks for representing and reasoning
about deterministic information. Constraints often express resource conflicts fre-
quently appearing in scheduling and planning applications, precedence relationships
(e.g., “job 1 must follow job 2”) and definitional information (e.g., “a block is clear
iff there is no other block on top of it”). Most often the feasibility of an action is
expressed using a deterministic rule between the pre-conditions (constraints) and
post-conditions that must hold before and after executing an action (e.g., STRIPS
for classical planning).

The two communities of probabilistic networks and constraint networks matured
in parallel with only minor interaction. Nevertheless some of the algorithms and
reasoning principles that emerged within both frameworks, especially those that are
graph-based, are quite related. Both frameworks can be viewed as graphical models,
a popular paradigm for knowledge representation in general.

Markov random fields (MRF) are another type of graphical model commonly used
in statistical machine learning to describe joint probability distributions concisely.
Their key property is that the graph is undirected, leading to isotropic or symmetric
behavior. This is also the key difference compared to Bayesian networks, where a
directed arc carries causal information. While the potential functions of an MRF
are often assumed to be strictly positive, and are therefore not meant to handle
deterministic relationships they can be easily extended to incorporate deterministic
potentials with no need of any modification. Our choice however is the Bayesian
network due to its appeal in semantic clarity and its representation of causal and
directional information. In fact, our mixed networks can be viewed not only as a
hybrid between probabilistic and deterministic information but also as a framework
that permits causal information as well as symmetrical constraints.

Researchers within the logic-based and constraint communities have recognized
for some time the need for augmenting deterministic languages with uncertainty
information, leading to a variety of concepts and approaches such as non-monotonic
reasoning, probabilistic constraint networks and fuzzy constraint networks. The
belief networks community started more recently to look into mixed representation
[15, 24, 32, 38] perhaps because it is possible, in principle, to capture constraint
information within belief networks [37].

In principle, constraints can be embedded within belief networks by modeling
each constraint as a Conditional Probability Table (CPT). One approach is to add
a new variable for each constraint that is perceived as its effect (child node) in
the corresponding causal relationship and then to clamp its value to true [9, 37].
While this approach is semantically coherent and complies with the acyclic graph
restriction of belief networks, it adds a substantial number of new variables, thus
cluttering the structure of the problem. An alternative approach is to designate
one of the arguments of the constraint as a child node (namely, as its effect). This
approach, although natural for functions (the arguments are the causes or parents
and the function variable is the child node), is quite contrived for general relations
(e.g., x + 6 �= y). Such constraints may lead to cycles, which are disallowed in belief
networks. Furthermore, if a variable is a child node of two different CPTs (one may

Mixed deterministic and probabilistic networks 5

be deterministic and one probabilistic) the belief network definition requires that
they be combined into a single CPT.

The main shortcoming, however, of any of the above integrations is compu-
tational. Constraints have special properties that render them computationally
attractive. When constraints are disguised as probabilistic relationships, their com-
putational benefits may be hard to exploit. In particular, the power of constraint
inference and constraint propagation may not be brought to bear.

Therefore, we propose a framework that combines deterministic and probabilistic
networks, called mixed network. The identity of the respective relationships, as
constraints or probabilities, will be maintained explicitly, so that their respective
computational power and semantic differences can be vivid and easy to exploit. The
mixed network approach allows two distinct representations: causal relationships
that are directional and normally quantified by CPTs and symmetrical deterministic
constraints. The proposed scheme’s value is in providing: 1) semantic coherence;
2) user-interface convenience (the user can relate better to these two pieces of
information if they are distinct); and most importantly, 3) computational efficiency.
The results presented in this paper are based on the work in Dechter and Mateescu
[16], Dechter and Larkin [15] and some part of Larkin and Dechter [26].

The paper is organized as follows: Section 2 provides background definitions and
concepts for graphical models; Section 3 presents the framework of mixed networks,
provides motivating examples and extends the notions of conditional independence
to the mixed graphs; Section 4 contains a review of inference and search algorithms
for graphical models; Section 5 describes inference-based algorithms for mixed
networks, based on Bucket Elimination; Section 6 describes search-based algorithms
for mixed networks, based on AND/OR search spaces for graphical models; Section 7
contains the experimental evaluation of inference-based and AND/OR search-based
algorithms; Section 8 describes related work and Section 9 concludes.

2 Preliminaries and background

Notations A reasoning problem is defined in terms of a set of variables taking
values on finite domains and a set of functions defined over these variables. We
denote variables or subsets of variables by uppercase letters (e.g., X, Y, . . .) and
values of variables by lower case letters (e.g., x, y, . . .). Sets are usually denoted
by bold letters, for example X = {X1, . . . , Xn} is a set of variables. An assignment
(X1 = x1, . . . , Xn = xn) can be abbreviated as x̄ = (〈X1, x1〉, . . . , 〈Xn, xn〉) or x̄ =
(x1, . . . , xn). For a subset of variables Y, DY denotes the Cartesian product of the
domains of variables in Y. The projection of an assignment x̄ = (x1, . . . , xn) over a
subset Y is denoted by xY or x[Y]. We will also denote by Y = y (or ȳ for short)
the assignment of values to variables in Y from their respective domains. We denote
functions by letters f , g, h etc.

Graphical models A graphical model M is a 3-tuple, M = 〈X, D, F〉, where:
X = {X1, . . . , Xn} is a finite set of variables; D = {D1, . . . , Dn} is the set of their
respective finite domains of values; F = { f1, . . . , fr} is a set of non-negative real-
valued discrete functions, each defined over a subset of variables Si ⊆ X, called

6 R. Mateescu, R. Dechter

its scope, and denoted by scope(fi). A graphical model typically has an associated
combination operator1 ⊗, (e.g., ⊗ ∈ {∏,

∑
, ��} (product, sum, join)). The graphical

model represents the combination of all its functions: ⊗r
i=1 fi. A graphical model has

an associated primal graph that captures the structural information of the model:

Definition 1 (primal graph) The primal graph of a graphical model is an undirected
graph that has variables as its vertices and an edge connects any two variables that
appear in the scope of the same function. We denote the primal graph by G = (X, E),
where X is the set of variables and E is the set of edges.

Belief networks A belief network is a graphical model B = 〈X, D, G, P〉, where
G = (X, E) is a directed acyclic graph over the variables X. The functions P = {Pi}
are conditional probability tables Pi = {P(Xi | pai)}, where pai = scope(Pi) \ {Xi} is
the set of parents of Xi in G. The primal graph of a belief network obeys the regular
definition, and it can also be obtained as the moral graph of G, by connecting all the
nodes in every pai and then removing direction from all the edges. When the entries
of the CPTs are “0” or “1” only, they are called deterministic or functional CPTs. The
scope of Pi is also called the family of Xi (it includes Xi and its parents).

A belief network represents a probability distribution over X having the product
form PB(x) = P(x1,, xn) = �n

i=1 P(xi | xpai). An evidence set e is an instantiated
subset of variables. The primary query over belief networks is to find the posterior
probability of each single variable given some evidence e, namely to compute
P(Xi|e). Another important query is finding the most probable explanation (MPE),
namely, finding a complete assignment to all the variables having maximum proba-
bility given the evidence. A generalization of the MPE query is maximum a posteriori
hypothesis (MAP), which requires finding the most likely assignment to a subset of
hypothesis variables given the evidence.

Definition 2 (ancestral graph) Given a directed graph G, the ancestral graph relative
to a subset of nodes Y is the undirected graph obtained by taking the subgraph of G
that contains Y and all their non-descendants, and then moralizing the graph.

Example 1 Figure 1a gives an example of a belief network over 6 variables, and
Fig. 1b shows its moral graph . The example expresses the causal relationship
between variables “Season” (A), “The configuration of an automatic sprinkler
system” (B), “The amount of expected rain” (C), “The amount of necessary manual
watering” (D), “How wet is the pavement” (F) and “Is the pavement slippery” (G).
The belief network expresses the probability distribution P(A, B, C, D, F, G) =
P(A) · P(B|A) · P(C|A) · P(D|B, A) · P(F|C, B) · P(G|F).

Constraint networks A constraint network is a graphical model R = 〈X, D, C〉. The
functions are constraints C = {C1, ..., Ct}. Each constraint is a pair Ci = (Si, Ri),
where Si ⊆ X is the scope of the relation Ri. The relation Ri denotes the allowed
combination of values. The primary query over constraint networks is to determine
if there exists a solution, namely, an assignment to all the variables that satisfies all

1The combination operator can also be defined axiomatically [45].

Mixed deterministic and probabilistic networks 7

Fig. 1 Belief network (a, b) A

F

B C

D

G

Season

Sprinkler Rain

Watering Wetness

Slippery

(a) Directed acyclic graph

A

F

B C

D

G

(b) Moral graph

the constraints, and if so, to find one. A constraint network represents the set of
all its solutions. We sometimes denote the set of solutions of a constraint network
R by ϕ(R).

Example 2 Figure 2a shows a graph coloring problem that can be modeled as a
constraint network. Given a map of regions, the problem is to color each region
by one of the given colors {red, green, blue}, such that neighboring regions have
different colors. The variables of the problem are the regions, and each one has
the domain {red, green, blue}. The constraints are the relation “different” between
neighboring regions. Figure 2b shows the constraint graph, and a solution (A=red,
B=blue, C=green, D=green, E=blue, F=blue, G=red) is given in Fig. 2a.

Propositional theories Propositional theories are special cases of constraint net-
works in which propositional variables which take only two values {true, f alse} or
{1, 0}, are denoted by uppercase letters P, Q, R. Propositional literals (i.e., P,¬P)
stand for P = true or P = f alse, and disjunctions of literals, or clauses, are denoted
by α, β etc. For instance, α = (P ∨ Q ∨ R) is a clause. A unit clause is a clause that
contains only one literal. The resolution operation over two clauses (α ∨ Q) and
(β ∨ ¬Q) results in a clause (α ∨ β), thus eliminating Q. A formula ϕ in conjunctive
normal form (CNF) is a set of clauses ϕ = {α1, . . . , αt} that denotes their conjunction.
The set of models or solutions of a formula ϕ, denoted by m(ϕ), is the set of all truth
assignments to all its symbols that do not violate any clause.

Fig. 2 Constraint network
(a,b)

C

A

B

D

E

F

G

(a) Graph coloring problem

A

B
D

C
G

F

E

(b) Constraint graph

8 R. Mateescu, R. Dechter

3 Mixing probabilities with constraints

As shown in the previous section, graphical models can accommodate both proba-
bilistic and deterministic information. Probabilistic information typically associates a
strictly positive number with an assignment of variables, quantifying our expectation
that the assignment may be realized. The deterministic information has a different
semantics, annotating assignments with binary values, either valid or invalid. The
mixed network allows probabilistic information expressed as a belief network and
a set of constraints to co-exist side by side and interact by giving them a coherent
umbrella meaning.

3.1 Defining the mixed network

We give here the formal definition of the central concept of mixed networks,
and discuss its relationship with the auxiliary network that hides the deterministic
information through zero probability assignments.

Definition 3 (mixed networks) Given a belief network B = 〈X, D, G, P〉 that ex-
presses the joint probability PB and given a constraint network R = 〈X, D, C〉 that
expresses a set of solutions ρ(R) (or simply ρ), a mixed network based on B and
R denoted M(B,R) = 〈X, D, G, P, C〉 is created from the respective components of
the constraint network and the belief network as follows. The variables X and their
domains are shared, (we could allow non-common variables and take the union), and
the relationships include the CPTs in P and the constraints in C. The mixed network
expresses the conditional probability PM (X):

PM (x̄) =
{

PB(x̄ | x̄ ∈ ρ), i f x̄ ∈ ρ

0, otherwise.

Clearly, PB(x̄ | x̄ ∈ ρ)= PB(x̄)

PB(x̄∈ρ)
. By definition, PM (x̄)=∏n

i=1 P(xi | x̄pai) when x̄ ∈ ρ,
and PM (x̄) = 0 when x̄ /∈ ρ. When clarity is not compromised, we will abbreviate
〈X, D, G, P, C〉 by 〈X, D, P, C〉 or 〈X, P, C〉.

The auxiliary network The deterministic information can be hidden through assign-
ments having zero probability [37]. We now define the belief network that expresses
constraints as pure CPTs.

Definition 4 (auxiliary network) Given a mixed network M(B,R), we define the
auxiliary network S(B,R) to be a belief network constructed by augmenting B with a
set of auxiliary variables defined as follows. For every constraint Ci = (Si, Ri) in R,
we add the auxiliary variable Ai that has a domain of 2 values, “0” and “1”. We also
add a CPT over Ai whose parent variables are the set Si, defined by:

P(Ai = 1 | t) =
{

1, i f t ∈ Ri

0, otherwise.

Mixed deterministic and probabilistic networks 9

S(B,R) is a belief network that expresses a probability distribution PS. It is easy to
see that:

Proposition 1 Given a mixed network M(B,R) and its associated auxiliary network
S = S(B,R) then: ∀x̄ PM (x̄) = PS(x̄ | A1 = 1, ..., At = 1).

3.2 Queries over mixed networks

Belief updating, MPE and MAP queries can be extended to mixed networks straight-
forwardly. They are well defined relative to the mixed probability distribution PM .
Since PM is not well defined for inconsistent constraint networks, we always assume
that the constraint network portion is consistent, namely it expresses a non-empty
set of solutions. An additional relevant query over a mixed network is to find the
probability of a consistent tuple relative to B, namely determining PB(x̄ ∈ ρ(R)).
It is called CNF Probability Evaluation or Constraint Probability Evaluation (CPE).
Note that the notion of evidence is a special type of constraint. We will elaborate on
this next.

The problem of evaluating the probability of CNF queries over belief networks
has various applications. One application is to network reliability described as
follows. Given a communication graph with a source and a destination, one seeks
to diagnose the failure of communication. Since several paths may be available, the
reason for failure can be described by a CNF formula. Failure means that for all
paths (conjunctions) there is a link on that path (disjunction) that fails. Given a
probabilistic fault model of the network, the task is to assess the probability of a
failure [40].

Definition 5 (CPE) Given a mixed network M(B,R), where the belief network is
defined over variables X = {X1, ..., Xn} and the constraint portion is a either a set
of constraints R or a CNF formula (R = ϕ) over a set of subsets Q = {Q1, ...Qr},
where Qi ⊆ X, the constraint (respectively CNF) probability evaluation (CPE) task
is to find the probability PB(x̄ ∈ ρ(R)), respectively PB(x̄ ∈ m(ϕ)), where m(ϕ) are
the models (solutions of ϕ).

Belief assessment conditioned on a constraint network or on a CNF expression is
the task of assessing PB(X|ϕ) for every variable X. Since P(X|ϕ) = α · P(X ∧ ϕ)

where α is a normalizing constant relative to X, computing PB(X|ϕ) reduces to a
CPE task over B for the query ((X = x) ∧ ϕ), for every x. More generally, P(ϕ|ψ) =
αϕ · P(ϕ ∧ ψ) where αϕ is a normalization constant relative to all the models of ϕ.

3.3 Examples of mixed networks

We describe now a few examples that can serve as motivation to combine prob-
abilities with constraints in an efficient way. The first type of examples are real-
life domains involving both type of information whereas some can conveniently
be expressed using probabilistic functions and others as constraints. One such area
emerged often in multi-agent environments. The second source comes from the need
to process deterministic queries over a belief network, or accommodating disjunctive
complex evidence which can be phrased as a propositional CNF sentence or as a

10 R. Mateescu, R. Dechter

constraint formula. As a third case, a pure belief network may involve deterministic
functional CPTs. Those do not present semantical issues but can still be exploited
computationally.

Java bugs Consider the classical naive-Bayes model or, more generally, a two-layer
network. Often the root nodes in the first layer are desired to be mutually exclusive,
a property that can be enforced by all-different constraints. For example, consider
a bug diagnostics system for a software application such as Java Virtual Machine
that contains numerous bug descriptions. When the user performs a search for the
relevant bug reports, the system outputs a list of bugs, in decreasing likelihood of
it being the culprit of the problem. We can model the relationship between each
bug identity and the key words that are likely to trigger this bug as a parent-child
relationship of a two-layer belief network, where the bug identities are the root nodes
and all the key words that may appear in each bug description are the child nodes.
Each bug has a directed edge to each relevant keyword (See Fig. 3). In practice, it
is common to assume that a problem is caused by only one bug and thus, the bugs
on the list are mutually exclusive. We may want to express this fact using a not-equal
relationship between all (or some of) the root nodes. We could have taken care of this
by putting all the bugs in one node. However, this would cause a huge inconvenience,
having to express the conditional probability of each key word given each bug, even
when it is not relevant. Java bug database contains thousands of bugs. It is hardly
sensible to define a conditional probability table of that size. Therefore, in the mixed
network framework we can simply add one not-equal constraint over all the root
variables.

Class scheduling Another source of examples is reasoning about the behavior of an
agent. Consider the problem of scheduling classes for students. A relevant knowledge
base can be built from the point of view of a student, of the administration or of
the faculty. Perhaps, the same knowledge base can serve these multiple reasoning

4255386 46454084210626

secure keys modify table thread disabled caret clicked handle selection

browser file worker reopening editor prevent disabling properties message

hangs resource field menu value closing read-only restart text disappear

started service background switching freeze machines editable listenercomponent

 ≠

≠≠

Fig. 3 Two-layer network with root not-equal constraints (Java Bugs)

Mixed deterministic and probabilistic networks 11

perspectives. The administration (e.g., the chair) tries to schedule the classes so as to
meet the various requirements of the students (allow enough classes in each quarter
for each concentration), while faculty may want to teach their classes in a particular
quarter to maximize (or minimize) the attendance or to better allocate their research
vs. teaching time throughout the academic year.

In Fig. 4 we demonstrate a scenario with 3 classes and 1 student. The variables
corresponding to the student Si can be repeated to model all the students, but we
keep the figure simple. The dotted lines indicate deterministic relationships, and the
solid arrows indicate probabilistic links. The variables are: Enrolled(Si, Cj) meaning
“student Si takes course Cj”; Grade(Si, Cj) denoting the grade (performance) of
student Si in course Cj; Past-Grade(Si, Cj) is the past performance (grade) of student
Si in Cj (if the class was taken); the variable Prof essor(Cj) denotes the professor who
teaches the class Cj in the current quarter, and Type(Si) stands for a collection of
variables denoting student Si’s characteristics (his strengths, goals and inclinations,
time in the program etc.). If we have a restriction on the number of students that
can take a class, we can impose a unary constraint (Class-Size(Ci) ≤ 10). For each
student and for each class, we have a CPT for Grade(Si, Cj) with the parent nodes
Enrolled(Si, Cj), Prof essor(Cj) and Type(Si). We then have constraints between
various classes such as Enrolled(Si, C1) and Enrolled(Si, C2) indicating that both
cannot be taken together due to scheduling conflicts. We can also have all-different
constraints between pairs of Prof essor(Cj) since the same professor may not teach
two classes even if those classes are not conflicting (for clarity we do not express
these constraints in Fig. 4). Finally, since a student may need to take at least 2 and
at most 3 classes, we can have a variable Number-of -Classes(Si) that is the number
of classes taken by the student. If a class is a prerequisite to another we can have a
constraint that limits the enrollment in the follow-up class. For example, in the figure
C5 is a prerequisite to both C2 and C3, and therefore Enrolled(S1, C2) and Past-
Grade(S1, C5) are connected by a constraint. If the past grade is not satisfactory,
or missing altogether (meaning the class was not taken), then the enrollment in C2

and C3 is forbidden. The primary task for this network is to find an assignment that
satisfies all the preferences indicated by the professors and students, while obeying
the constraints. If the scheduling is done once at the beginning of the year for all the

Past-Grade(S1,C4) Past-Grade(S1,C5)

Type(S1) Professor(C1) Enrolled(S1,C1) Professor(C2) Enrolled(S1,C2) Professor(C3) Enrolled(S1,C3)

Grade(S1,C1) Grade(S1,C2) Grade(S1,C3)

Class-Size(C1) Class-Size(C2) Class-Size(C3)Number-of-classes(S1)

Fig. 4 Mixed network for class scheduling

12 R. Mateescu, R. Dechter

three quarters, the probabilistic information related to Grade(Si, Ci) can be used to
predict the eligibility to enroll in follow-up classes during the same year.

Retail data analysis A real life example is provided by the problem of analyz-
ing large retail transaction data sets. Such data sets typically contain millions of
transactions involving several hundred product categories. Each attribute indicates
whether a customer purchased a particular product category or not. Examples of
these product attributes are sports-coat, rain-coat, dress-shirt, tie, etc.
Marketing analysts are interested in posing queries such as “how many customers
purchased a coat and a shirt and a tie?” In Boolean terms this can be expressed (for
example) as the CNF query (sports-coat ∨ rain-coat) ∧ (dress-shirt ∨
casual-shirt) ∧ tie. A query expressed as a conjunction of such clauses repre-
sents a particular type of prototypical transaction (particular combination of items)
and the focus is on discovering more information about customers who had such a
combination of transactions. We can also have ad probabilistic information provid-
ing prior probabilities for some categories, or probabilistic dependencies between
them yielding a belief network. The queries can then become the CNF probability
evaluation problem.

Genetic linkage analysis Genetic linkage analysis is a statistical method for mapping
genes onto a chromosome, and determining the distance between them [34]. This is
very useful in practice for identifying disease genes. Without going into the biology
details, we briefly describe how this problem can be modeled as a reasoning task in a
mixed network.

Figure 5a shows the simplest pedigree, with two parents (denoted by 1 and 2)
and an offspring (denoted by 3). Square nodes indicate males and circles indicate
females. Figure 5c shows the usual belief network that models this small pedigree
for two particular loci (locations on the chromosome). There are three types of
variables, as follows. The G variables are the genotypes (the values are the specific
alleles, namely the forms in which the gene may occur on the specific locus), the
P variables are the phenotypes (the observable characteristics). Typically these are
evidence variables, and for the purpose of the graphical model they take as value the
specific unordered pair of alleles measured for the individual. The S variables are
selectors (taking values 0 or 1). The upper script p stands for paternal, and the m
for maternal. The first subscript number indicates the individual (the number from
the pedigree in Fig. 5a), and the second subscript number indicates the locus. The
interactions between all these variables are indicated by the arcs in Fig. 5c.

Due to the genetic inheritance laws, many of these relationships are actually
deterministic. For example, the value of a selector variable determines the genotype
variable. Formally, if a is the father and b is the mother of x, then:

Gp
x, j =

{
Gp

a, j, if Sp
x, j = 0

Gm
a, j, if Sp

x, j = 1
and Gm

x, j =
{

Gp
b , j, if Sm

x, j = 0

Gm
b , j, if Sm

x, j = 1

The CPTs defined above are in fact deterministic, and can be captured by a
constraint, depicted graphically in Fig. 5b. he only real probabilistic information
appears in the CPTs of two types of variables. The first type are the selector variables
Sp

i, j and Sm
i, j. The second type are the founders, namely the individuals having no

parents in the pedigree, for example Gp
1,2 and Gm

1,2 in our example.

Mixed deterministic and probabilistic networks 13

21

3

(a) Pedigree

pG 1,1
mG 1,1

pG 1,3
pS 1,3

(b) Constraint

pG 1,1
mG 1,1

1,1P

pG 1,2
mG 1,2

1,2P

pG 1,3
mG 1,3

1,3P

pS 1,3
mS 1,3

pG 2,1
mG 2,1

2,1P

pG 2,2
mG 2,2

2,2P

pG 2,3
mG 2,3

2,3P

pS 2,3
mS 2,3

Locus 1

Locus 2

(c) Bayesian network

Fig. 5 Genetic linkage analysis (a–c)

Genetic linkage analysis is an example where we do not “need” the mixed network
formulation, because the constraints are “causal” and can naturally be part of the
directed model. However, it is an example of a belief network that contains many
deterministic or functional relations that can be exploited as constraints. The typical
reasoning task is equivalent to belief updating or computing the probability of the
evidence, or to maximum probable explanation, which can be solved by inference-
based or search-based approaches as we will discuss in the following sections.

3.4 Processing probabilistic networks with determinism by CPE queries

In addition to the need to express non-directional constraints, in practice pure belief
networks often have hybrid probabilistic and deterministic CPTs as we have seen in
the linkage example. Additional example networks appear in medical applications
[36], in coding networks [29] and in networks having CPTs that are causally inde-
pendent [21]. Using constraint processing methods can potentially yield a significant
computational benefit and we can address it using CPE queries as explained next.

Belief assessment in belief networks having determinism can be translated to a
CPE task over a mixed network. The idea is to collect together all the deterministic
information appearing in the functions of P, namely to extract the deterministic

14 R. Mateescu, R. Dechter

information from the CPTs, and then transform it all to one CNF or a constraint
expression that will be treated as a constraint network part relative to the original
belief network. Each entry in a mixed CPT P(Xi|pai), having P(xi|xpai) = 1 (x is a
tuple of variables in the family of Xi), can be translated to a constraint (not allowing
tuples with zero probability) or to clauses xpai → xi, and all such entries constitute a
conjunction of clauses or constraints.

Let B = 〈X, D, G, P〉 be a belief network having determinism. Given evidence e,
assessing the posterior probability of a single variable X given evidence e requires
computing P(X|e) = α · P(X ∧ e). Let cl(P) be the clauses extracted from the mixed
CPTs. The deterministic portion of the network is now cl(P). We can write: P((X =
x) ∧ e) = P((X = x) ∧ e ∧ cl(P)). Therefore, to evaluate the belief of X = x we can
evaluate the probability of the CNF formula ϕ = ((X = x) ∧ e ∧ cl(P)) over the
original belief network. In this case redundancy is allowed because expressing a
deterministic relation both probabilistically and as a constraint is semantically valid.

3.5 Mixed graphs as I-maps

In this section we define the mixed graph of a mixed network and an accompanying
separation criterion, extending d-separation [37]. We show that a mixed graph is
a minimal I-map (independency map) of a mixed network relative to an extended
notion of separation, called dm-separation.

Definition 6 (mixed graph) Given a mixed network M(B,R), the mixed graph GM =
(G, D) is defined as follows. Its nodes correspond to the variables appearing either in
B or in R, and the arcs are the union of the undirected arcs in the constraint graph D
of R, and the directed arcs in the directed acyclic graph G of the belief network B.
The moral mixed graph is the moral graph of the belief network union the constraint
graph.

The notion of d-separation in belief networks is known to capture conditional
independence [37]. Namely any d-separation in the directed graph corresponds to a
conditional independence in the corresponding probability distribution defined over
the directed graph. Likewise, an undirected graph representation of probabilistic
networks (i.e., Markov random fields) allows reading valid conditional independence
based on undirected graph separation.

In this section we define a dm-separation of mixed graphs and show that it provides
a criterion for establishing minimal I-mapness for mixed networks.

Definition 7 (ancestral mixed graph) Given a mixed graph GM = (G, D) of a mixed
network M(B,R) where G is the directed acyclic graph of B, and D is the undirected
constraint graph of R, the ancestral graph of X in GM is the graph D union the
ancestral graph of X in G.

Mixed deterministic and probabilistic networks 15

Definition 8 (dm-separation) Given a mixed graph, GM and given three subsets of
variables X, Y and Z which are disjoint, we say that X and Y are dm-separated given
Z in the mixed graph GM , denoted < X, Z, Y >dm, iff in the ancestral mixed graph
of X ∪ Y ∪ Z, all the paths between X and Y are intercepted by variables in Z.

The following theorem follows straightforwardly from the correspondence be-
tween mixed networks and auxiliary networks.

Theorem 1 (I-map) Given a mixed network M = M(B,R) and its mixed graph
GM , then GM is a minimal I-map of M relative to dm-separation. Namely, if
< X, Z, Y >dm then PM (X|Y, Z) = PM (X|Z) and no arc can be removed while
maintaining this property.

Proof Assuming < X, Z, Y >dm we should prove PM (X|Y, Z) = PM (X|Z). Namely,
we should prove that PS(X|Y, Z, A = 1) = PS(X|Z, A = 1) , when S = S(B,R), and
A = 1 is an abbreviation to assigning all auxiliary variables in S the value 1 (Propo-
sition 1). Since S = S(B,R) is a regular belief network we can use the ancestral graph
criterion to determine d-separation. It is easy to see that the ancestral graph of the
directed graph of S given X ∪ Y ∪ Z ∪ A is identical to the corresponding ancestral
mixed graph (if we ignore the edges going into the evidence variables A), and
thus dm-separation translates to d-separation and provides a characterization of I-
mapness of mixed networks. The minimality of mixed graphs as I-maps follows from
the minimality of belief networks relative to d-separation applied to the auxiliary
network. ��

Example 3 Figure 6a shows a regular belief network in which X and Y are d-
separated given the empty set. If we add a constraint RPQ between P and Q, we
obtain the mixed network in Fig. 6b. According to dm-separation X is no longer
independent of Y, because of the path X PQY in the ancestral graph. Figure 6c shows
the auxiliary network, with variable A assigned to 1 corresponding to the constraint
between P and Q. D-separation also dictates a dependency between X and Y.

We will next see the first virtue of “mixed” network when compared with the
“auxiliary” network. Namely, it will allow the constraint network to be processed

Fig. 6 Example of
dm-separation (a–c) X

Z

P Q

Y X

Z

P Q

Y X

Z

P Q

Y

A

(a) (b) (c)

16 R. Mateescu, R. Dechter

by any constraint propagation algorithm to yield another, equivalent, well defined,
mixed network.

Definition 9 (equivalent mixed networks) Two mixed networks defined on the same
set of variables X = {X1, ..., Xn} and the same domains, D1, ..., Dn, denoted by M1 =
M(B1,R1) and M2 = M(B2,R2), are equivalent iff they are equivalent as probability
distributions, namely iff PM1 = PM2 (see Definition 3).

Proposition 2 If R1 and R2 are equivalent constraint networks (i.e., they have the
same set of solutions), then for any belief network B, M(B,R1) is equivalent to
M(B,R2).

Proof The proof follows directly from Definition 3. ��

The following two propositions show that if we so desire, we can avoid redundancy
or exploit redundancy by moving deterministic relations from B to R or vice versa.

Proposition 3 Let B be a belief network and P(x|pax) be a deterministic CPT that
can be expressed as a constraint C(x, pax). Let B1 = B \ P(x|pax). Then M(B,φ) =
M(B1,C) = M(B,C).

Proof All three mixed networks M(B,φ), M(B1,C) and M(B,C) admit the same set of
tuples of strictly positive probability. Furthermore, the probabilities of the solution
tuples are defined by all the CPTs of B except P(x|pax). Therefore, the three mixed
networks are equivalent. ��

Corollary 1 Let B = 〈X, D, G, P〉 be a belief network and F a set of constraints
extracted from P. Then M(B,φ) = M(B,F).

In conclusion, the above corollary shows one advantage of looking at mixed
networks rather than at auxiliary networks. Due to the explicit representation of
deterministic relationships, notions such as inference and constraint propagation are
naturally defined and are exploitable in mixed networks.

4 Inference and search for graphical models

In this section we review the two main algorithmic approaches for graphical models:
inference and search. Inference methods process the available information, derive
and record new information (typically involving one less variable), and proceed in
a dynamic programming manner until the task is solved. Search methods perform
reasoning by conditioning on variable values and enumerating the entire solution
space. In Sections 5 and 6 we will show how these methods apply for mixed
deterministic and probabilistic networks.

Mixed deterministic and probabilistic networks 17

4.1 Inference methods

Most inference methods assume an ordering of the variables, that dictates the order
in which the functions are processed. The notion of induced width or treewidth is
central in characterizing the complexity of the algorithms.

Induced graphs and induced width An ordered graph is a pair (G, d) where G is
an undirected graph, and d = X1, ..., Xn is an ordering of the nodes. The width of a
node in an ordered graph is the number of the node’s neighbors that precede it in
the ordering. The width of an ordering d, denoted w(d), is the maximum width over
all nodes. The induced width of an ordered graph, w∗(d), is the width of the induced
ordered graph obtained as follows: nodes are processed from last to first; when node
X is processed, all its preceding neighbors are connected. The induced width of a
graph, w∗, is the minimal induced width over all its orderings. The treewidth of a
graph is the minimal induced width over all orderings.

Bucket elimination As an example of inference methods, we will give a short
review of Bucket Elimination, which is a unifying framework for variable elimination
algorithms applicable to probabilistic and deterministic reasoning [5, 12, 18, 47]. The
input to a bucket-elimination algorithm is a knowledge-base theory specified by a
set of functions or relations (e.g., clauses for propositional satisfiability, constraints,
or conditional probability tables for belief networks). Given a variable ordering, the
algorithm partitions the functions (e.g., CPTs or constraints) into buckets, where a
function is placed in the bucket of its latest argument in the ordering. The algorithm
processes each bucket, from last to first, by a variable elimination procedure that
computes a new function that is placed in an earlier (lower) bucket. For belief
assessment, when the bucket does not have an observed variable, the bucket pro-
cedure computes the product of all the probability tables and sums over the values
of the bucket’s variable. Observed variables are independently assigned to each
function and moved to the corresponding bucket, thus avoiding the creation of new
dependencies. Algorithm 1 shows Elim-Bel, the bucket-elimination algorithm for
belief assessment. The time and space complexity of such algorithms is exponential
in the induced width w∗. For more information see Dechter [13].

Algorithm 1: ELIM -BEL

input : A belief network P1 Pn ; an ordering of the variables, d; observations e.
output : The updated belief P X1 e , and P e .
Partition into bucket1, , bucketn // Initialize1
for p n down to 1 do // Backward2

Let λ1 λ2 λ j be the functions in bucketp
if bucketp contains evidence Xp xp then

for i 1 to j do
Assign Xp xp in λi
Move λi to the bucket of its latest variable

else
Generate λ p

Xp Π j
i 1λi

Add λ p to the bucket of its latest variable

return P X1 e by normalizing the product in bucket1, and P e as the normalizing factor.3

18 R. Mateescu, R. Dechter

4.2 AND/OR search methods

As a framework for search methods, we will use the recently proposed AND/OR
search space framework for graphical models [17]. The usual way to do search (called
here OR search) is to instantiate variables in a static or dynamic order. In the simplest
case this defines a search tree, whose nodes represent states in the space of partial
assignments, and the typical depth first (DFS) algorithm searching this space would
require linear space. If more space is available, then some of the traversed nodes can
be cached, and retrieved when encountered again, and the DFS algorithm would in
this case traverse a graph rather than a tree.

The traditional OR search space however does not capture any of the structural
properties of the underlying graphical model. Introducing AND nodes into the
search space can capture the structure of the graphical model by decomposing the
problem into independent subproblems. The AND/OR search space is a well known
problem solving approach developed in the area of heuristic search, that exploits
the problem structure to decompose the search space. The states of an AND/OR
space are of two types: OR states which usually represent alternative ways of solving
the problem (different variable values), and AND states which usually represent
problem decomposition into subproblems, all of which need to be solved. We will
next present the AND/OR search space for a general graphical model which in
particular applies to mixed networks. The AND/OR search space is guided by a
pseudo tree that spans the original graphical model.

Definition 10 (pseudo tree) A pseudo tree of a graph G = (X, E) is a rooted tree T
having the same set of nodes X, such that every edge in E is a backarc in T (i.e., it
connects nodes on the same path from root).

Given a reasoning graphical model M (e.g., belief network, constraint network,
influence diagram) its primal graph G and a pseudo tree T of G, the associated
AND/OR tree is defined as follows [17].

Definition 11 (AND/OR search tree of a graphical model) Given a graphical model
M = 〈X, D, F〉, its primal graph G and a pseudo tree T of G, the associated
AND/OR search tree has alternating levels of OR and AND nodes. The OR nodes
are labeled Xi and correspond to variables. The AND nodes are labeled 〈Xi, xi〉
(or simply xi) and correspond to value assignments. The structure of the AND/OR
search tree is based on T . The root is an OR node labeled with the root of T . The
children of an OR node Xi are AND nodes labeled with assignments 〈Xi, xi〉 (or xi)
that are consistent with the assignments along the path from the root. The children of
an AND node 〈Xi, xi〉 are OR nodes labeled with the children of Xi in T . A solution
subtree of an AND/OR search graph is a subtree that: (1) contains the root node
of the AND/OR graph; (2) if an OR node is in the subtree, then one and only one
of its children is in the subtree; (3) if an AND node is in the subtree, then all of its
children are in the subtree; (4) the assignment corresponding to the solution subtree
is consistent with respect to the graphical model (i.e., it has a non-zero value with
respect to the functions of the model).

Mixed deterministic and probabilistic networks 19

Example 4 Figure 7 shows an example of an AND/OR search tree. Figure 7a shows
a graphical model defined by four functions, over binary variables, and assuming all
tuples are consistent. When some tuples are inconsistent, some of the paths in the
tree do not exists. Figure 7b gives the pseudo tree that guides the search, from top
to bottom, as indicated by the arrows. The dotted arcs are backarcs from the primal
graph. Figure 7c shows the AND/OR search tree, with the alternating levels of OR
(circle) and AND (square) nodes, and having the structure indicated by the pseudo
tree. In this case we assume that all tuples are consistent.

The AND/OR search tree for a graphical model specializes the notion of
AND/OR search spaces for state-space models as defined in Nilsson [33]. The
AND/OR search tree can be traversed by a depth first search algorithm, thus using
linear space. It was already shown [4, 6, 10, 16, 17, 19] that:

Theorem 2 Given a graphical model M and a pseudo tree T of depth m, the size
of the AND/OR search tree based on T is O(n km), where k bounds the domains
of variables. A graphical model of treewidth w∗ has a pseudo tree of depth at most
w∗ log n, therefore it has an AND/OR search tree of size O(n kw∗ log n).

The AND/OR search tree expresses the set of all possible assignments to the
problem variables (all solutions). The difference from the traditional OR search
space is that a solution is no longer a path from root to a leaf, but rather a subtree.
The AND/OR search tree may contain nodes that root identical subproblems. These
nodes are said to be unifiable. When unifiable nodes are merged, the search space
becomes a graph. Its size becomes smaller at the expense of using additional memory
by the search algorithm. The depth first search algorithm can therefore be modified
to cache previously computed results, and retrieve them when the same nodes are
encountered again.

Some unifiable nodes can be identified based on their contexts. We can define
graph based contexts for the variables by expressing the set of ancestor variables in
the pseudo tree that completely determine a conditioned subproblem

A

D

B C

E

f3(ABE)

f2(AB)

f4(BCD)

f1(AC)

(a) Graphical model

A

D

B

CE

(b) Pseudo tree

0

A

B

0

E C

0 1

D

0 1

D

0 1 0 1

1

E C

0 1

D

0 1

D

0 1 0 1

1

B

0

E C

0 1

D

0 1

D

0 1 0 1

1

E C

0 1

D

0 1

D

0 1 0 1

(c) Search tree

Fig. 7 AND/OR search tree (a–c)

20 R. Mateescu, R. Dechter

Definition 12 (context) Given a pseudo tree T of an AND/OR search space,
context(X) = [X1 . . . Xp] is the set of ancestors of X in T , ordered descendingly,
that are connected in the primal graph to X or to descendants of X.

Definition 13 (context minimal AND/OR graph) Given an AND/OR search graph,
two OR nodes n1 and n2 are context unifiable if they have the same variable label
X and the assignments of their contexts are identical. Namely, if π1 is the partial
assignment of variables along the path to n1, and π2 is the partial assignment of
variables along the path to n2, then their restriction to the context of X is the same:
π1|context(X) = π2|context(X). The context minimal AND/OR graph is obtained from the
AND/OR search tree by merging all the context unifiable OR nodes.

It was already shown [4, 10, 17] that:

Theorem 3 Given a graphical model M , its primal graph G and a pseudo tree T , the
size of the context minimal AND/OR search graph based on T is O(n kw∗

T (G)), where
w∗

T (G) is the induced width of G over the depth first traversal of T , and k bounds the
domain size.

Example 5 For Fig. 8 we refer to the model in Fig. 7a, assuming that all assignments
are valid and that variables take binary values. Figure 8a shows the pseudo tree
derived from ordering d = (A, B, E, C, D). The context of each node appears in
square brackets, and the dotted arcs are backarcs. Figure 8b shows the context
minimal AND/OR graph.

4.2.1 Weighted AND/OR graphs

In Dechter and Mateescu [17] it was shown how the probability distribution of a
given belief network can be expressed using AND/OR graphs, and how queries of
interest, such as computing the posterior probability of a variable or the probability
of the evidence, can be computed by a depth-first search traversal. All we need
is to annotate the OR-to-AND arcs with weights derived from the relevant CPTs,
such that the product of weights on the arc of any solution subtree is equal to the
probability of that solution according to the belief network.

Formally, given a belief network B = 〈X, D, G, P〉 and a pseudo tree T , the
bucket of Xi relative to T , denoted BT (Xi), is the set of functions whose scopes
contain Xi and are included in pathT (Xi), which is the set of variables from the root
to Xi in T . Namely, BT (Xi) = {Pj ∈ P|Xi ∈ scope(Pj), scope(Pj) ⊆ pathT (Xi)}. A

Fig. 8 AND/OR search
graph (a, b)

A

D

B

CE

[]

[A]

[AB]

[BC]

[AB]

(a) Pseudo tree

0

A

B

0

E C

0 1

D

0 1

D

0 1 0 1

1

E C

0 1

D

0 1

D

0 1 0 1

1

B

0

E C

0 1 0 1

1

E C

0 1 0 1

(b) Context minimal graph

Mixed deterministic and probabilistic networks 21

CPT belongs to the bucket of a variable Xi iff its scope has just been fully instantiated
when Xi was assigned. Combining the values of all functions in the bucket, for the
current assignment, gives the weight of the OR-to-AND arc:

Definition 14 (OR-to-AND weights) Given an AND/OR graph of a belief network
B, the weight w(n,m)(Xi, xi) of arc (n, m) where Xi labels n and xi labels m, is the com-
bination of all the CPTs in BT (Xi) assigned by values along the current path to the
AND node m, πm. Formally, w(n,m)(Xi, xi) = ⊗P j∈BT (Xi) Pj(asgn(πm)[scope(Pj)]).

Definition 15 (weight of a solution subtree) Given a weighted AND/OR graph of a
belief network B, and given a solution subtree t having the OR-to-AND set of arcs
arcs(t), the weight of t is defined by w(t) = ⊗e∈arcs(t)w(e).

Example 6 Figure 9 shows a weighted AND/OR tree for a belief network. Figure 9a
shows the primal graph, Fig. 9b is the pseudo tree, and Fig. 9c shows the conditional
probability tables. Figure 9d shows the weighted AND/OR search tree. Naturally,
this tree could be transformed into the context minimal AND/OR graph, similar to
the one in Fig. 8b.

Value of a node When solving a reasoning task, each node of the AND/OR graph
can be associated with a value. The value could be the number of solutions restricted
below the node, or the probability of those solutions. Whenever a subproblem is

A

D

B C

E

(a) Belief network

A

D

B

CE

(b) Pseudo tree (c) CPTs

0

A

B

0

E C

0

D

0 1

1

D

0 1

0 1

1

E C

0

D

0 1

1

D

0 1

0 1

1

B

0

E C

0

D

0 1

1

D

0 1

0 1

1

E C

0

D

0 1

1

D

0 1

0 1

(d) Labeled AND/OR tree

Fig. 9 Labeled AND/OR search tree for belief networks (a–c)

22 R. Mateescu, R. Dechter

0

A

B

0

E C

0

D

1

1

D

1

0

1

E C

0

D

1

1

D

1

0

1

B

0

E C

0

D

1

1

D

1

0

1

E C

0

D

1

1

D

1

0

P(D=1,E=0) = .24408

Fig. 10 AND/OR search tree with final node values

solved, the solution value is recorded and pointed to by the context assignment of the
node. Whenever the same context assignment is encountered again along a different
path, the recorded solution value is retrieved.

Example 7 We refer again to the example in Fig. 9. Considering a constraint network
that imposes that D = 1 and E = 0 (this can also be evidence in the belief network),
the trace of the depth first search algorithm without caching (algorithm AND-OR-
cpe, described later in Section 6) is given in Fig. 10. To make the computation
straightforward, the consistent leaf AND nodes are given a value of 1 (shown under
the square node). The final value of each node is shown to its left, while the OR-
to-AND weights are shown close to the arcs. The computation of the final value
is detailed for one OR node (along the path A = 0, B = 1, C) and one AND node
(along the path A = 1, B = 1).

In Sections 5 and 6 we will extend the inference and search algorithms to solve the
CPE query over the new framework of mixed networks.

5 Inference algorithms for processing mixed networks

We will focus on the CPE task of computing P(ϕ), where ϕ is the constraint
expression or CNF formula, and show how we can answer the query using inference.
A number of related tasks can be easily derived by changing the appropriate operator
(e.g. using maximization for maximum probable explanation - MPE, or summation
and maximization for maximum a posteriori hypothesis - MAP). The results in this
section are based on the work in Dechter and Larkin [15] and some of the work in
Larkin and Dechter [26].

5.1 Inference by bucket elimination

We will first derive a bucket elimination algorithm for mixed networks when the
deterministic component is a CNF formula and latter will show how it generalizes to

Mixed deterministic and probabilistic networks 23

any constraint expression. Given a mixed network M(B,ϕ), where ϕ is a CNF formula
defined on a subset of variables Q, the CPE task is to compute:

PB(ϕ) =
∑

x̄Q∈models(ϕ)

P(x̄Q).

Using the belief network product form we get:

P(ϕ) =
∑

{x̄|x̄Q∈models(ϕ)}

n∏

i=1

P(xi|xpai).

We assume that Xn is one of the CNF variables, and we separate the summation over
Xn and X \ {Xn}. We denote by γn the set of all clauses that are defined on Xn and by
βn all the rest of the clauses. The scope of γn is denoted by Qn, we define Sn = X \ Qn

and Un is the set of all variables in the scopes of CPTs and clauses that are defined
over Xn. We get:

P(ϕ) =
∑

{x̄n−1|x̄Sn ∈models(βn)}

∑

{xn|x̄Qn ∈models(γn)}

n∏

i=1

P(xi|xpai).

Denoting by tn the set of indices of functions in the product that do not mention Xn

and by ln = {1, . . . , n} \ tn we get:

P(ϕ) =
∑

{x̄n−1|x̄Sn ∈models(βn)}

∏

j∈tn

Pj ·
∑

{xn|x̄Qn ∈models(γn)}

∏

j∈ln

Pj.

Therefore:

P(ϕ) =
∑

{x̄n−1|x̄Sn ∈models(βn)}

⎛

⎝
∏

j∈tn

Pj

⎞

⎠ · λXn ,

where λXn is defined over Un − {Xn}, by

λXn =
∑

{xn|x̄Qn ∈models(γn)}

∏

j∈ln

P j. (1)

The case of observed variables When Xn is observed, or constrained by a literal, the
summation operation reduces to assigning the observed value to each of its CPTs and
to each of the relevant clauses. In this case Eq. 1 becomes (assume Xn = xn and P=xn

is the function instantiated by assigning xn to Xn):

λxn =
∏

j∈ln

P j=xn
, i f x̄Qn ∈ m(γn ∧ (Xn = xn)). (2)

Otherwise, λxn = 0. Since x̄Qn satisfies γn ∧ (Xn = xn) only if x̄Qn−Xn satisfies γ xn =
resolve(γn, (Xn = xn)), we get:

λxn =
∏

j∈ln

P j=xn
i f x̄Qn−Xn ∈ m(γ xn

n). (3)

Therefore, we can extend the case of observed variable in a natural way: CPTs are
assigned the observed value as usual while clauses are individually resolved with the
unit clause (Xn = xn), and both are moved to appropriate lower buckets.

24 R. Mateescu, R. Dechter

In general, when we don’t have evidence in the bucket of Xn we should compute
λXn . We need to collect all CPTs and clauses mentioning Xn and then compute the
function in Eq. 1. The computation of the rest of the expression proceeds with Xn−1

in the same manner. This yields algorithm Elim-CPE described in Algorithm 2 with
Procedure Process-bucketp. The elimination operation is denoted by the general
operator symbol ⇓ that instantiates to summation for the current query.

Algorithm 2: ELIM -CPE

input : A belief network P1 Pn ; a CNF formula on k propositions ϕ α1 αm
defined over k propositions; an ordering of the variables, d X1 Xn .

output : The belief P ϕ .
Place buckets with unit clauses last in the ordering (to be processed first). // Initialize1
Partition and ϕ into bucket1 bucketn , where bucketi contains all the CPTs and clauses
whose highest variable is Xi.
Put each observed variable into its appropriate bucket. Let S1 Sj be the scopes of the CPTs,
and Q1 Qr be the scopes of the clauses. (We denote probabilistic functions byλ s and clauses
by αs).
for p n down to 1 do // Backward2

Let λ1 λ j be the functions and α1 αr be the clauses in bucketp
Process-bucketp(, (λ1 λ j),(α1 αr))

return P ϕ as the result of processing bucket1.3

Procedure Process-bucketp(, (λ1 λ j),(α1 αr))

if bucketp contains evidence Xp xp (or a unit clause) then
1. Assign Xp xp to each λi and put each resulting function in the bucket of its latest
variable
2. Resolve each αi with the unit clause, put non-tautology resolvents in the buckets of their
latest variable and move any bucket with unit clause to top of processing

else
Generate λ p

xp xUp models α1 αr
j
i 1 λi

Add λ p to the bucket of the latest variable inUp, where Up
j
i 1 Si

r
i 1 Qi Xp

For every ordering of the propositions, once all the CPTs and clauses are parti-
tioned (each clause and CPT is placed in the bucket of the latest variable in their
scope), the algorithm process the buckets from last to first. It process each bucket
as either evidence bucket, if we have a unit clause (evidence), or as a function
computation bucket, otherwise. Let λ1, ...λt be the probabilistic functions in bucket
P over scopes S1, ..., St and α1, ...αr be the clauses over scopes Q1, ..., Qr. The
algorithm computes a new function λP over U p = S ∪ Q − {Xp} where S = ∪i Si, and
Q = ∪ jQ j, defined by:

λP =
∑

{xp|x̄Q∈models(α1,...,αr)}

∏

j

λ j (4)

From our derivation we can already conclude that:

Theorem 4 (correctness and completeness) Algorithm Elim-CPE is sound and com-
plete for the CPE task.

Mixed deterministic and probabilistic networks 25

Fig. 11 Belief network (a, b) A

F

B C

D

G

(a) Directed acyclic graph

A

F

B C

D

G

(b) Moral graph

Example 8 Consider the belief network in Fig. 11 and the query ϕ = (B ∨ C) ∧
(G ∨ D) ∧ (¬D ∨ ¬B). The initial partitioning into buckets along the ordering d =
A, C, B, D, F, G, as well as the output buckets are given in Fig. 12. We compute:

In bucket G: λG(f, d) = ∑
{g|g∨d=true} P(g| f)

In bucket F: λF(b , c, d) = ∑
f P(f |b , c)λG(f, d)

In bucket D: λD(a, b , c) = ∑
{d|¬d∨¬b=true} P(d|a, b)λF(b , c, d)

In bucket B: λB(a, c) = ∑
{b |b∨c=true} P(b |a)λD(a, b , c)λF(b , c)

In bucket C: λC(a) = ∑
c P(c|a)λB(a, c)

In bucket A: λA = ∑
a P(a)λC(a)

The result is P(ϕ) = λA.

For example λG(f, d = 0) = P(g = 1| f), because if d = 0 g must get the value “1”,
while λG(f, d = 1) = P(g = 0| f) + P(g = 1| f).

Note that some saving due to constraints can be obtained in each function
computation. Consider the bucket D that has functions over 4 variables. Brute force
computation would require enumerating 16 tuples, because the algorithm has to look
at all possible assignments of four binary variables. However since the processing
should be restricted to tuples where b and d cannot both be true, there is a potential

Fig. 12 Execution of
Elim-CPE

Bucket G: P(G|F,D)

Bucket F: P(F|B,C)

Bucket D: P(D|A,B)

Bucket B: P(B|A)

Bucket C: P(C|A)

Bucket A: P(A)

)(CB ∨),,(CBADλ

)(DG ∨

)(BD ¬∨¬

),(CABλ

)(ACλ

),,(DCBfλ

),(DFGλ

)(ϕP

26 R. Mateescu, R. Dechter

for restricting the computation to 12 tuples only. We will elaborate on this more later
when discussing sparse function representations.

We can exploit constraints in Elim-CPE in two ways following the two cases for
processing a bucket either as evidence-bucket, or as a function-computation bucket.

Exploiting constraints in evidence bucket Algorithm Elim-CPE is already explicit in
how it takes advantage of the constraints when processing an evidence bucket. It in-
cludes a unit resolution step whenever possible (see Procedure Process-bucketp)
and a dynamic reordering of the buckets that prefers processing buckets that include
unit clauses. These two steps amount to applying unit propagation which is known to
be a very effective constraint propagation algorithm for processing CNF formulas.
This may have a significant computational impact because evidence buckets are
easy to process, because unit propagation increases the number of buckets that will
have evidence and because treating unit clauses as evidence avoids the creation new
dependencies. To further illustrate the possible impact of inferring unit clauses we
look at the following example.

Example 9 Let’s extend the example by adding ¬G to our earlier query. This will
place ¬G in the bucket of G. When processing bucket G, unit resolution creates the
unit clause D, which is then placed in bucket D. Next, processing bucket F creates a
probabilistic function on the two variables B and C. Processing bucket D that now
contains a unit clause will assign the value D to the CPT in that bucket and apply unit
resolution, generating the unit clause ¬B that is placed in bucket B. Subsequently,
in bucket B we can apply unit resolution again, generating C placed in bucket C,
and so on. In other words, aside from bucket F, we were able to process all buckets
as observed buckets, by propagating the observations. (See Fig. 13.) To incorporate
dynamic variable ordering, after processing bucket G, we move bucket D to the top
of the processing list (since it has a unit clause). Then, following its processing, we
process bucket B and then bucket C, then F, and finally A.

Exploiting constraints in function computation Sometimes there is substantial de-
terminism present in a network that cannot yield a significant amount of unit clauses

Fig. 13 Execution of
Elim-CPE (evidence ¬G)

Bucket G: P(G|F,D)

Bucket D: P(D|A,B)

Bucket B: P(B|A),P(F|B,C),

Bucket C: P(C|A)

Bucket F:

Bucket A:

)(CB ∨),(BADλ

),(CFBλ

)(1 ABλ

G)(¬∨ DG

D),(), (DFBD Gλ¬∨¬

)(FCλ

)(2 ABλ)(ACλ Fλ

C

)(ϕP

B¬

)(FDλ

Mixed deterministic and probabilistic networks 27

or shrink the domains of variables. For example, consider the case when the network
is completely connected with equality constraints. Any domain value for any single
variable is feasible, but there are still only k solutions, where k is the domain size.
We can still exploit such constraints in the function-computation. To facilitate this
we may need to consider different data structures, other than tables, to represent the
CPT functions.

In Larkin and Dechter[26] we focused on this aspect of exploiting constraints. We
presented the bucket-elimination algorithm called Elim-Sparse for the CPE query,
that uses a sparse representation of the CPT functions as a relation. Specifically,
instead of recording a table as large as the product of the domain sizes of all the
variables, a function is maintained as a relation of non-zero probability tuples. In the
above example, with the equality constraints, defining the function as a table would
require a table of size kn where n is the number of variables in the scope of the
function, but only nk (k tuples of size n each) as a relation. Efficient operations to
work with these functions are also available. These are mainly based on the Hash-
Join procedure which is well-known in database theory [25] as described in Larkin
and Dechter [26].

In Elim-Sparse, the constraints are absorbed into the (relation-based) CPTs
(e.g., in a generalized arc-consistency manner) and then relational operators can be
applied. Alternatively, one can also devise efficient function-computation procedures
using constraint-based search schemes. We will assume the sparse function represen-
tation explicitly in the constraint-based CPE algorithm Elim-ConsPE(i) described in
Section 5.2.2.

5.2 Extensions of Elim-CPE

Unit propagation and any higher level of constraint processing can also be applied a
priori on the CNF formula before we apply Elim-CPE. This can yield stronger CNF
expressions in each bucket with more unit clauses. This can also improve the function
computation in non-evidence buckets. Elim-CPE(i) is discussed next.

5.2.1 Elim-CPE(i)

One form of constraint propagation is bounded resolution [43]. It applies pair-wise
resolution to any two clauses in the CNF theory iff the resolvent size does not
exceed a bounding parameter, i. Bounded-resolution algorithms can be applied until
quiescence or in a directional manner, called BDR(i). After partitioning the clauses
into ordered buckets, each one is processed by resolution relative to the bucket’s
variable, with bound i.

This suggests extending Elim-CPE into a parameterized family of algorithms
Elim-CPE(i) that incorporates BDR(i). All we need is to include Procedure BDR(i)
described below in the “else” branch of the Procedure Process-bucketp.

Procedure BDR(i)

if the bucket does not have an observed variable then
for each pair α Qj β Q j bucketp do

if the resolvent γ α β contains no more than i propositions then
place the resolvent in the bucket of its latest variable

28 R. Mateescu, R. Dechter

5.2.2 Probability of relational constraints

When the variables in the belief network are multi-valued, the deterministic query
can be expressed using a constraint expression with relational operators. The set of
solutions of a constraint network can be expressed using the join operator. The join
of two relations RAB and RBC denoted RAB �� RBC is the largest set of solutions
over A, B, C satisfying the two constraints RAB and RBC. The set of solutions of the
constraint expression R = {R1, ...Rt} is sol(R) =��

t
i=1 Ri.

Given a belief network and a constraint expression R we may be interested in
computing P(x̄ ∈ sol(R)). A bucket-elimination algorithm for computing this task
is a simple generalization of Elim-CPE, except that it uses the relational operators
as expressed in Algorithm 4. Algorithm Elim-ConsPE uses the notion of arc-
consistency which generalizes unit propagation and it is also parameterized to allow
higher levels of directional i-consistency (DIC(i)) [14], generalizing BDR(i) (see step
1 of the “else” part of the process-bucket-rel procedure). The algorithm assumes
sparse function representation and constraint-exploiting computation for the bucket-
functions.

Clearly, in both Elim-CPE(i) and its generalized constraint-based version Elim-
ConsPE(i), higher levels of constraint propagation may desirably infer more unit
and non-unit clauses. They may also require more computation however and it is
hard to assess in advance what level of i will be cost-effective. It is known that the
complexity of BDR(i) and DIC(i) are O(exp(i)) and therefore, for small levels of i
the computation is likely to be dominated by generating the probabilistic function
rather than by BDR(i).

Moreover, whether or not we use high level of directional consistency to yield
more evidence, a full level of directional consistency is achieved anyway by the func-
tion computation. In other words, the set of positive tuples generated in each bucket’s
function computation is identical to the set of consistent tuples that would have
been generated by full directional consistency (also known as adaptive-consistency
or directional-consistency) with the same set of constraints. Thus, full directional i-
consistency is not necessary for the sake of function computation. It can still help
inferring significantly more unit clauses (evidence) over the constraints, requiring a
factor of 2 at the most for the processing of each bucket.

Algorithm 4: ELIM -CONS PE

input : A belief network P1 Pn where Pi s are assume to have a sparse
representation; A constraint expression over k variables, RQ1 RQt an
ordering d X1 Xn

output : The belief P .
Place buckets with observed variables last in d (to be processed first) // Initialize1
Partition and into bucket1 bucketn, where bucketi contains all CPTs and constraints
whose highest variable is Xi
Let S1 S j be the scopes of the CPTs, and Q1 Qt be the scopes of the constraints.
We denote probabilistic functions asλs and constraints by Rs
for p n down to 1 do // Backward2

Let λ1 λ j be the functions and R1 Rr be the constraints in bucketp
Process-bucket-RELp(, (λ1 λ j),(R1 Rr))

return P as the result of processing bucket1.3

Mixed deterministic and probabilistic networks 29

Procedure Process-bucket-RELp(, (λ1 λ j),(R1 Rr))

if bucketp contains evidence Xp xp then
1. Assign Xp xp to each λi and put each resulting function in the bucket of its latest
variable
2. Apply arc-consistency (or any constraint propagation) over the constraints in the bucket.
Put the resulting constraints in the buckets of their latest variable and move any bucket
with single domain to top of processing

else
1. Apply directional i-consistency (DIC(i))
2. Generate λ p

xp xUp jR j
j
i 1 λi with specialized sparse operations or search-based

methods.
Add λ p to the bucket of the latest variable inUp, where Up

j
i 1 Si

r
i 1 Qi Xp

5.3 Complexity

As usual, the worst-case complexity of bucket elimination algorithms is related to
the number of variables appearing in each bucket, both in the scopes of probability
functions as well as in the scopes of constraints [13]. The worst-case complexity is
time and space exponential in the maximal number of variables in a bucket, which
is captured by the induced-width of the relevant graph. Therefore, the complexity of
Elim-CPE and Elim-ConsPE is O(r · exp(w∗)), where w∗ is the induced width of the
moral mixed ordered graph and r is the total number of functions [23]. In Fig. 14 we
see that while the induced width of the moral graph of the belief network is just 2
(Fig. 14a), the induced width of the mixed graph of our example is 3 (Fig. 14b).

We can refine the above analysis to capture the role of constraints in generating
unit clauses by constraint propagation. We can also try to capture the power of
constraint-based pruning obtained in function computation. To capture the simpli-
fication associated with observed variables, we will use the notion of an adjusted
induced graph. The adjusted induced graph is created by processing the variables
from last to first in the given ordering and connecting the parents of each non-
observed variables, only. The adjusted induced width is the width of the adjusted

Fig. 14 Induced graphs:
a moral graph; b mixed graph;
c adjusted (for ¬G) graph

G

F

D

B

C

A

G

F

D

B

C

A

G

F

D

B

C

A

(a) (b) (c)

30 R. Mateescu, R. Dechter

induced-graph. Figure 14c shows the adjusted induced-graph relative to the evidence
¬G. We see that the induced width, adjusted for this observation, is just 2 (Fig. 14c).
Notice that adjusted induced-width can be computed once we observe the evidence
set obtained as a result of our propagation algorithm. In summary:

Theorem 5 [15] Given a mixed network, M , of a belief network over n variables, a
constraint expression and an ordering o, algorithm Elim-CPE is time and space O(n ·
exp(w∗

M (o))), where w∗
M (o) is the width along o of the adjusted moral mixed induced

graph.

Capturing in our analysis the efficiency obtained when exploiting constraints in
function-computation is harder. The overall complexity depends on the amount of
determinism in the problem. If enough is present to yield small relational CPTs, it can
be fairly efficient, but if not, the overhead of manipulating nearly full tuple lists can
be larger than when dealing with a table. Other structured function representations,
such as decision trees [7] or rule-based systems [39] might also be appropriate for
sparse representation of the CPTs.

6 AND/OR search algorithms for mixed networks

Proposition 2 ensures the equivalence of mixed networks defined by one belief
network and by different constraint networks that are equivalent (i.e., that have the
same set of solutions). In particular, this implies that we can process the deterministic
information separately (e.g., by enforcing some consistency level, which results
in a tighter representation), without losing any solution. Conditioning algorithms
(search) offer a natural approach for exploiting constraints. The intuitive idea is
to search in the space of partial variable assignments, and use the wide range of
readily available constraint processing techniques to limit the actual traversed space.
We will describe the basic principles in the context of AND/OR search spaces
[17]. We will first describe the AND-OR-cpe Algorithm. Then, we will discuss
how to incorporate in AND-OR-cpe techniques exploiting determinism, such as:
(1) constraint propagation (look-ahead), (2) backjumping and (3) good and nogood
learning.

6.1 AND-OR-cpe algorithm

Algorithm 5, AND-OR-cpe, presents the basic depth-first traversal of the AND/OR
search tree (or graph, if caching is used) for solving the CPE task over a mixed
network. The algorithm is similar to the one presented in Dechter and Mateescu
[17]. The input is a mixed network, a pseudo tree T of the moral mixed graph
and the context of each variable. The output is the probability that a random tuple
generated from the belief network distribution satisfies the constraint query. AND-
OR-cpe traverses the AND/OR search tree or graph corresponding to T in a DFS
manner. Each node maintains a value v which accumulates the computation resulted
from its subtree. OR nodes accumulate the summation of the product between each
child’s value and its OR-to-AND weight, while AND nodes accumulate the product
of their children’s values. For more information see Dechter and Mateescu [17].

Mixed deterministic and probabilistic networks 31

Algorithm 5: AND-OR- CPE

input : A mixed network X D G P C ; a pseudo tree of the moral mixed graph,
rooted at X1; parents pai (OR-context) for every variable Xi; set to true or
f alse.

output : The probability P x ρ that a tuple satisfies the constraint query.
if true then // Initialize cache tables1

Initialize cache tables with entries of 12

v X1 0; X1 // Initialize the stack3
while φ do4

top ; remove from5
if true and is OR, labeled Xi and Cache asgn πn pai 1 then // If6
in cache

v Cache asgn πn pai // Retrieve value7
successors φ // No need to expand below8

else // Expand search (forward)9
if is an OR node labeled Xi then // OR-expand10

successors ConstraintPropagation(X D C asgn πn)
11

// CONSTRAINT PROPAGATION
v Xi xi

f B Xi

f asgn πn pai , for all Xi xi successors
12

if is an AND node labeled Xi xi then // AND-expand13
successors children Xi14
v Xi 0 for all Xi successors15

Add successors to top of16

while successors φ do // Update values (backtrack)17
if is an OR node labeled Xi then18

if Xi X1 then // Search is complete19
return v20

if true then21
Cache asgn πn pai v // Save in cache22

let be the parent of23
v v v24
if v 0 then // Check if is dead-end25

remove successors from26
successors φ27

if is an AND node labeled Xi xi then28
let be the parent of29
v v v ;30

remove from successors31
32

Procedure ConstraintPropagation(, xi)

input : A constraint network X D C ; a partial assignment path xi to variable Xi.
output : reduced domain Di of Xi; reduced domains of future variables; newly inferred

constraints.
This is a generic procedure that performs the desired level of constraint propagation, for
example forward checking, unit propagation, arc consistency over the constraint network and
conditioned on xi.
return reduced domain of Xi

32 R. Mateescu, R. Dechter

Example 10 We refer back to the example in Fig. 9. Consider a constraint network
that is defined by the CNF formula ϕ = (A ∨ C) ∧ (B ∨ ¬E) ∧ (B ∨ D). The trace of
algorithm AND-OR-cpe without caching is given in Fig. 15. Notice that the clause
(A ∨ C) is not satisfied if A = 0 and C = 0, therefore the paths that contain this
assignment cannot be part of a solution of the mixed network. The value of each
node is shown to its left (the leaf nodes assume a dummy value of 1, not shown in
the figure). The value of the root node is the probability of ϕ. Figure 15 is similar to
Fig. 10. In Fig. 10 the evidence can be modeled as the CNF formula with unit clauses
D ∧ ¬E.

The following theorems are implied immediately from the general properties of
AND/OR search algorithms [17].

Theorem 6 Algorithm AND-OR-cpe is sound and exact for the CPE task.

Theorem 7 Given a mixed network M with n variables having domain sizes bounded
by k and a pseudo tree T of depth m of its moral mixed graph, the time complexity of
AND-OR-cpe with no caching is O(n · km), while the space required is linear. A mixed
network of treewidth w∗ has an AND/OR search tree whose size is O(exp(w∗ · log n)).

6.2 Constraint propagation in AND-OR-cpe

As we already observed, Proposition 2 provides an important justification for using
mixed networks as opposed to auxiliary networks. The constraint portion can be
processed by a wide range of constraint processing techniques, both statically before
search or dynamically during search [14].

We discuss here the use of constraint propagation during search, also known as
look-ahead. This is a well known idea used in any constraint or SAT solver. In
general, constraint propagation helps to discover (using limited computation) what
variable and what value to instantiate next. The incorporation of these methods on
top of AND/OR search is straightforward. For illustration, we will only consider a
static variable ordering, based on a pseudo tree.

0

A

B

0

E C

1

D

1

0

1

E C

1

D

0 1

0 1

1

B

0

E C

0

D

1

1

D

1

0

1

E C

0

D

0 1

1

D

0 1

0 1

.9 .5 .7.8 .9 .5

.4 .5 .7 .2.8 .8 .1 .9 .1 .9

.4 .6 .1 .9

.6 .4

.5 .8

.5 .3 .5
.9

.9

1

1

.8 .9

.8 .9

1 1

1 1

.4 1 .7 1.72 .8 .89

.288 .8 .623 1

.5952 .9623

P((A C) (B E) (B D)) = .74204

.5952 .9623

> > >>> ⎤

1

Fig. 15 Mixed network defined by the query ϕ = (A ∨ C) ∧ (B ∨ ¬E) ∧ (B ∨ D)

Mixed deterministic and probabilistic networks 33

In Algorithm AND-OR-cpe, line 11 contains a call to the generic
ConstraintPropagation procedure consulting only the constraint subnetwork
R, conditioned on the current partial assignment. The constraint propagation is
relative to the current set of constraints, the given path that defines the current
partial assignment, and the newly inferred constraints, if any, that were learned
during the search. Using a polynomial time algorithm, ConstraintPropagation
may discover some variable values that cannot be extended to a full solution. These
values in the domain of a variables are marked as inconsistent and can be removed
from the current domain of the variable. All the remaining values are returned by
the procedure as good candidates to extend the search frontier. Of course, not all
the values returned by ConstraintPropagation are guaranteed to lead to a
solution.

We therefore have the freedom to employ any procedure for checking the
consistency of the constraints of the mixed network. The simplest case is when no
constraint propagation is used, and only the initial constraints of R are checked for
consistency, and we denote this algorithm by AO-C.

In the empirical evaluation, we used two forms of constraint propagation on top of
AO-C. The first, yielding algorithm AO-FC, is based on forward checking, which is
one of the weakest forms of propagation. It propagates the effect of a value selection
to each future uninstantiated variable separately, and checks consistency against the
constraints whose scope would become fully instantiated by just one such future
variable.

The second algorithm we used is called AO-RFC, and performs a variant of
relational forward checking. Rather than checking only constraints whose scope
becomes fully assigned, AO-RFC checks all the existing constraints by looking at
their projection on the current path. If the projection is empty an inconsistency is
detected. AO-RFC is computationally more expensive than AO-FC, but its search
space is smaller.

SAT solvers One possibility that was explored with success (e.g., Allen and
Darwiche [1]) is to delegate the constraint processing to a separate off-the-shelf
SAT solver. In this case, for each new variable assignment the constraint portion
is packed and fed into the SAT solver. If no solution is reported, then that value
is a dead-end. If a solution is found by the SAT solver, then the AND/OR search
continues (remember that for some tasks we may have to traverse all the solutions of
the graphical model, so the one solution found by the SAT solver does not finish the
task). The worst-case complexity of this level of constraint processing, at each node,
is exponential.

The popular variant of unit propagation that was exploited in Elim-CPE can be
effective here too. This can also be implemented by the unit resolution engine of
an available SAT solver. Such hybrid use of search and a specialized efficient SAT
(or constraint) solver can be very useful, and it underlines further the power that
the mixed network representation has in delimiting the constraint portion from the
belief network.

Example 11 Figure 16a shows the belief part of a mixed network, and Fig. 16b the
constraint part. All variables have the same domain, {1,2,3,4}, and the constraints
express “less than” relations. Figure 16c shows the search space of AO-C. Figure 16d

34 R. Mateescu, R. Dechter

A

D

B C

E F

G H I K

(a) Belief network

A

D

B C

E F

G H I K

>

>

>

>>

>
> >

>

(b) Constraint network

1 2

A

C

3 4

B B

2 3 4

ED

3 4 3 4

HG

4 4

G I

4

I

D

4

G

D

2 3 4

FF

4

K

F

4

K

3

K

4

3 4

4

G

D D

B

4

D

B

OR

AND

OR

AND

OR

AND

AND

OR

(c) Constraint checking

1 2

A

C

3

B B

2 3

ED

3 3

HG

4 4

I

4

D

2 3

FF

3

K

4

3

D

B

OR

AND

OR

AND

OR

AND

AND

OR

(d) Forward checking

1

A

CB

2

ED

3 3

HG

4 4

I

4

2

F

3

K

4

OR

AND

OR

AND

OR

AND

AND

OR

(e) Maintaining arc consistency

Fig. 16 Traces of AND-OR-cpe with various levels of constraint propagation (a–e)

shows the space traversed by AO-FC. Figure 16e shows the space when consistency
is enforced with Maintaining Arc Consistency (which enforces full arc-consistency
after each new instantiation of a variable).

6.3 Backjumping

Backjumping algorithms [4, 14, 20, 41] are backtracking search algorithms applied to
the OR space, which uses the problem structure to jump back from a dead-end as far
back as possible. They have been known for a long time in the constraint processing
community. For probabilistic models, backjumping is very useful in the context of
determinism.

In graph-based backjumping (GBJ) each variable maintains a graph-based in-
duced ancestor set which ensures that no solutions are missed by jumping back to
its deepest variable. If the ordering of the OR space is a DFS ordering of the primal
graph, it is known [14] that all the backjumps are from a variable to its DFS parent.
In Mateescu and Dechter [27] it was shown that this means that a simple AND/OR

Mixed deterministic and probabilistic networks 35

search automatically incorporates graph-based backjumping, when the pseudo tree
is a DFS tree of the primal graph.

When the pseudo tree is not a DFS tree of the primal graph, it may happen that the
parent of a node in the pseudo tree is not the node where graph-based backjumping
would retreat in the case of OR search. An example is provided in Fig. 17. Figure 17a
shows a graphical model, Fig. 17b a pseudo tree and 17c a chain driving the OR search
(top down). If a dead-end is encountered at variable 3, graph-based backjumping
retreats to 8 (see Fig. 17c), while simple AND/OR would retreat to 1, the pseudo
tree parent. When the dead-end is encountered at 2, both algorithms backtrack to
3 and then to 1. Therefore, in such cases, augmenting AND/OR with a graph-based
backjumping mechanism can provide some improvement.

We want to emphasize that the graph-based backjumping behavior is in most cases
intrinsic to AND/OR search. The more advanced and computationally intensive
forms of conflict directed backjumping [14, 41] are not captured by the AND/OR
graph, and can be implemented on top of it by analyzing the constraint portion only.

6.4 Good and nogood learning

When a search algorithm encounters a dead-end, it can use different techniques to
identify the ancestor variable assignments that caused the dead-end, called a conflict-
set. It is conceivable that the same assignment of that set of ancestor variables may
be encountered in the future, and they would lead to the same dead-end. Rather than
rediscovering it again, if memory allows, it is useful to record the dead-end conflict-
set as a new constraint (or clause) over the ancestor set that is responsible for it.
Recording dead-end conflict-sets is sometimes called nogood learning.

One form of nogood learning is graph-based, and it uses the same technique
as graph-based backjumping to identify the ancestor variables that generate the
nogood. The information on conflicts is generated from the primal graph information
alone. Similar to the case of backjumping, it is easy to see that AND/OR search
already provides this information in the context of the nodes. Therefore saving
the information about the nogoods encountered amounts to graph-based nogood
learning in the case of OR search.

Fig. 17 Graph-based
backjumping and AND/OR
search (a–d)

4 61

3 2 7 5

8

2 7

1

4

3 5

6

8

(a)

(b) (c)

2

6

1

4

3

5

7

8

(d)

2

6

1

4

3

5

7

8

36 R. Mateescu, R. Dechter

If deeper types of nogood learning are desirable, they need to be implemented on
top of the AND/OR search. In such a case, a smaller set than the context of a node
may be identified as a culprit assignment, and may help discover future dead-ends
much earlier than when context-based caching alone is used. Needless to say, deep
learning is computationally more expensive and it can be facilitated via a focus on
the constraint portion of the mixed network.

Traversing the context-based AND/OR graph can be understood as learning (and
saving) not only the nogoods but also their logical counterparts, the goods (namely
the consistent assignments). This is a feature that was proposed in recent years by
several schemes [10, 17, 44]. This is in fact the well known technique of caching that
became appealing recently due to the availability of computer memory, when the
task to be solved requires the enumeration of many solutions. The idea is to store
the value of a solved conditioned subproblem, associating it with a minimal set of
ancestor assignments that are guaranteed to root the same conditioned subproblem,
and retrieve that value whenever the same set of ancestor assignments is encountered
again during search.

7 Empirical evaluation

In this section we present an empirical evaluation of the inference and AND/OR
search methods discussed in the previous sections.

Exploiting determinism in BE vs. search We do not advocate here that one type
of algorithms is better than the other. In fact, as an extension of the results in
Mateescu and Dechter [27], it can be shown that search and inference are in general
incomparable, when both are equipped with determinism exploiting tools. Like
AND/OR search, bucket-elimination that uses sparse function representation can
be shown to also traverse the context minimal AND/OR graph, but in a different
direction and assuming a different control strategy. Inference is bottom up and
breadth first, while AND/OR search is top down and depth first. As a result, we
can imagine mixed networks where the determinism reveals itself close to the root of
the pseudo tree, making the job of AND/OR search easier, while Bucket Elimination
has to traverse all the layers bottom up, only to discover that most of the messages
it has processed contain invalid tuples. Another example could show the opposite: if
the determinism is closer to the leaves of the pseudo tree, then the performance of
the two methods is reversed.

We should emphasize again that in making this claim about inference we assume
that the CPTs use a sparse representation. In practice the impact of determinism
would be manifested in generating tight functions that are sent from one bucket to
another. If we consider the case discussed after Example 8, a full table representation
for four binary variables would contain 16 tuples, but a restriction to only the valid
tuples might be a relational representation for only 12 of them.

Because, as explained, inference and search are in general incomparable, we will
offer an experimental evaluation of each type separately, evaluating the advantages
of expressing and exploiting the constraint portion separately as part of the mixed
network framework.

Mixed deterministic and probabilistic networks 37

7.1 Inference algorithms

We compared empirically five algorithms: (1) Elim-CPE (which is the same as Elim-
CPE(0), which does no constraint propagation except for unit propagation); (2)
Elim-CPE(i); (3) Elim-CPE-D (which derives CNF clauses from mixed CPTs and
then applies Elim-CPE); (4) Elim-Hidden (this algorithm expresses each clause as a
CPT with a new hidden variable, adds evidence to the hidden nodes and performs
the variable elimination algorithm). All these algorithms assume that the CPTs are
implemented as tables, with no sparse representation. The fifth algorithm we tested
is Elim-Sparse that uses a sparse relational representation of the CPTs. We tested
the algorithms on some random networks, as well as realistic networks: Insurance,
Water, Mildew, Hailfinder, Munin1 and Diabetes. All algorithms use min-degree
order, computed by repeatedly removing the node with the lowest degree from
the graph and connecting all its neighbors. For more information see Dechter and
Larkin [15].

The generator of random networks that we used is divided in two parts. The first
creates a random belief network using a tuple < n, f, d > as a parameter, where n
is the number of variables, f is the maximum family size, and d is the fraction of
deterministic entries in CPTs. Parents are chosen at random from the preceding
variables in a fixed ordering. The entries of the CPTs are filled in randomly. The
second part generates a 3-CNF query using a pair of parameters < c, e > where c
is the number of 3-CNF clauses (clauses are randomly chosen and each is given a
random truth value) and e is the number of observations.

We first show a comparison of Elim-CPE-D and Elim-CPE on some random
networks, in Fig. 18. As mentioned before, the difference between the two algorithms
is that Elim-CPE-D extracts deterministic information from CPTs. The figure shows
a scatter plot of running times measured in seconds. The results show that extracting
deterministic information is beneficial on these instances.

We tested the algorithms on the Insurance network, which is a realistic network
for evaluating car insurance risks that contains deterministic information. It has 27
variables. In the experiments reported in Table 1, Elim-CPE-D outperformed Elim-

Fig. 18 Random networks; 48
instances; network parameters
< 80, 4, 0.75 > and query
parameters < 0, 10 >

38 R. Mateescu, R. Dechter

Table 1 Insurance network
(27 variables); 50 test
instances; query parameters
< 20, 5 >

Algorithm Time mf C. U. F.

Elim-CPE-D: 48 8 210 1 302
Elim-CPE(15): 64 9 12 1 0
Elim-CPE(0): 61 9 6 0 0
Elim-Hidden: 104 10 0 0 0

CPE substantially. Figure 19 contrasts Elim-CPE with Elim-Hidden on the Insurance
network.

We also tried the Hailfinder network, another benchmark that has 56 variables
and includes deterministic information. It is a normative system that forecasts severe
summer hail in northeast Colorado. The results are reported in Table 2. Here again
the results are consistent with earlier observations that Elim-CPE-D was the most
efficient. In both of these networks we have determinism created by the network and
the query.

We also present here some results that include the algorithm Elim-Sparse [26],
where the CPTs are represented in relational form, by storing only the valid tuples.
Table 3 shows a comparison of Elim-Bel (EB), Elim-CPE (EC) and Elim-Sparse
(ES). We generated 50 random queries for each network, testing the three algorithms
on each. The last two columns show the ratio of times of Elim-Bel to Elim-Sparse
(B/S), and of Elim-CPE to Elim-Sparse (C/S). Elim-Sparse was considerably faster
than Elim-CPE on Insurance, Water, Mildew, and Munin1 (by a factor of 4 or
more), but less so on Hailfinder and Diabetes (less than twice as fast). In general
Elim-Sparse is more efficient than Elim-CPE especially with increasing determinism.
However, the high constant factor due to manipulation of tuple lists may prove to be
too big an overhead for low determinism.

7.2 AND/OR search algorithms

We provide here an evaluation of AND/OR search algorithms for mixed networks.
We ran our algorithms on mixed networks generated randomly uniformly given a
number of input parameters: N—number of variables; K—number of values per

Fig. 19 Insurance network; 50
test instances; query
parameters < 15, 5 >

Mixed deterministic and probabilistic networks 39

Table 2 Hailfinder network
(56 variables); 50 test
instances; query parameters
< 15, 15 >

Algorithm Time mf C. U. F.

Elim-CPE-D: 4 4 269 1 501
Elim-CPE(15): 16 6 7 1 0
Elim-CPE(0): 16 6 7 1 0
Elim-Hidden: 33 7 0 0 0

variable; R—number of root nodes for the belief network; P—number of parents
for a CPT; C—number of constraints; S—the scope size of the constraints; t—the
tightness (percentage of the allowed tuples per constraint). (N,K,R,P) defines the
belief network and (N,K,C,S,t) defines the constraint network. We report the time
in seconds, number of nodes expanded and number of dead-ends encountered (in
thousands), and the number of consistent tuples of the mixed network (#sol). In
tables, w∗ is the induced width and h is the height of the pseudo tree.

We compared four algorithms: 1) AND-OR-cpe, denoted here AO-C; 2) AO-FC
and 3) AO-RFC (described in previous section); 4) BE—bucket elimination (which
is equivalent to Elim-Bel) on the auxiliary network; the version we used in BE is the
basic one for belief networks, without any constraint propagation and any constraint
testing, namely we did not use the Elim-cpe type algorithms that exploit determinism.
We tried different levels of caching for the AND/OR algorithms, denoted in the
tables by i (i-bound, this is the maximum scope—– size of the tables that are stored).
i = 0 stands for linear space search. Caching is implemented based on context as
described in Section 6.

Tables 4, 5, and 6 show a comparison of the linear space and caching algorithms
exploring the AND/OR space with varying levels of constraint propagation. We ran
a large number of cases and this is a typical sample. Notice that the domain size is
increased to K = 3.

Table 4 shows a medium sized mixed network, across the full range of tightness
for the constraint network. For linear space (i = 0), we see that more constraint
propagation helps for tighter networks (t = 20), AO-RFC being faster than AO-
FC. As the constraint network becomes loose, the effort of AO-RFC does not pay
off anymore. When almost all tuples become consistent, any form of constraint
propagation is not cost effective, AO-C being the best choice in such cases (t =
80, 100). For each type of algorithm, caching improves the performance. We can see
the general trend given by the bold figures.

Table 5 shows results for large mixed networks (w∗ = 28, 41). These problems
have an inconsistent constraint portion (t = 10, 20, 30). AO-C was much slower in
this case, so we only include results for AO-FC and AO-RFC. For the smaller
network (w∗ = 28), AO-RFC is only slightly better than AO-FC. For the larger

Table 3 Average times Network EB EC ES B/S C/S

Insurance 3.56 1.05 0.24 14.83 4.38
Water 4.65 3.22 0.29 16.03 11.10
Mildew 7.64 4.51 0.94 8.15 4.81
Hailfinder 1.99 1.14 0.99 2.01 1.15
Munin1 15.92 3.58 0.84 18.95 4.26
Diabetes 18.77 12.20 9.67 1.94 1.26

40 R. Mateescu, R. Dechter

Table 4 AND/OR search algorithms (1): random networks; induced width 12; pseudo tree depth 19;
averages taken over 20 instances

N=40, K=2, R=2, P=2, C=10, S=4, 20 instances, w*=12, h=19

t i Time Nodes (*1000) Dead-ends (*1000) #sol
AO- AO- AO-

C FC RFC C FC RFC C FC RFC

20 0 0.671 0.056 0.022 153 4 1 95 3 1 2E+05
3 0.619 0.053 0.019 101 3 1 95 3 1
6 0.479 0.055 0.022 75 3 1 57 3 1
9 0.297 0.053 0.019 52 3 1 10 3 1

12 0.103 0.044 0.016 17 2 1 3 2 0
40 0 2.877 0.791 1.094 775 168 158 240 40 36 8E+07

3 2.426 0.663 0.894 330 57 52 240 40 36
6 1.409 0.445 0.544 183 35 32 107 28 24
9 0.739 0.301 0.338 119 24 21 20 12 10

12 0.189 0.142 0.149 28 9 7 3 4 3
60 0 6.827 4.717 7.427 1,975 1,159 1,148 362 163 159 6E+09

3 5.560 3.908 6.018 673 351 346 362 163 159
6 2.809 2.219 3.149 347 184 180 151 89 86
9 1.334 1.196 1.535 204 106 102 19 25 23

12 0.255 0.331 0.425 36 23 22 3 5 5
80 0 14.181 14.199 21.791 4,283 3,704 3,703 370 278 277 1E+11

3 11.334 11.797 17.916 1,320 1,109 1,107 370 278 277
6 5.305 6.286 9.061 626 519 518 128 98 97
9 2.204 2.890 3.725 336 274 273 17 21 20

12 0.318 0.543 0.714 44 40 40 1 3 3
100 0 23.595 27.129 41.744 7,451 7,451 7,451 0 0 0 1E+12

3 19.050 22.842 34.800 2,161 2,161 2,161 0 0 0
6 8.325 11.528 16.636 957 957 957 0 0 0
9 3.153 4.863 6.255 484 484 484 0 0 0

12 0.366 0.681 0.884 51 51 51 0 0 0

one (w∗ = 41), we see that more propagation helps. Caching doesn’t improve either
of the algorithms here. This means that for these inconsistent problems, constraint
propagation is able to detect many of the nogoods easily, so the overhead of caching
cancels out its benefits (only nogoods can be cached for inconsistent problems). Note
that these problems are infeasible for brute-force BE that does not include constraint
propagation, due to high induced width. They may still be feasible for Elim-CPE(i)
or Elim-Sparse though.

Table 6 shows a comparison between search algorithms and brute-force BE. All
instances for t < 40 were inconsistent and the AO algorithms were much faster than
BE, even with linear space. Between t = 40 − 60 we see that BE becomes more
efficient than AO, and may be comparable only if AO is given the same amount
of space as BE.

There is an expected trend with respect to the size of the traversed space and the
dead-ends encountered. We see that the more advanced the constraint propagation
technique, the less nodes the algorithm expands, and the less dead-ends it encounters.
More caching also has a similar effect.

Mixed deterministic and probabilistic networks 41

Table 5 AND/OR search algorithms (2): random networks; induced width 28 and 41; pseudo tree
depth 38 and 51; averages over 20 instances

t i Time Nodes (*1000) Dead-ends (*1000) #sol

AO-FC AO-RFC AO-FC AO-RFC AO-FC AO-RFC

N=100, K=2, R=10, P=2, C=30, S=3, 20 instances, w*=28, h=38
10 0 1.743 1.743 15 15 15 15 0

10 1.748 1.746 15 15 15 15
20 1.773 1.784 15 15 15 15

20 0 3.193 3.201 28 28 28 28 0
10 3.195 3.200 28 28 28 28
20 3.276 3.273 28 28 28 28

30 0 69.585 62.911 805 659 805 659 0
10 69.803 62.908 805 659 805 659
20 69.275 63.055 805 659 687 659

N=100, K=2, R=5, P=3, C=40, S=3, 20 instances, w*=41, h=51

10 0 1.251 0.382 7 2 7 2 0
10 1.249 0.379 7 2 7 2
20 1.265 0.386 7 2 7 2

20 0 22.992 15.955 164 113 163 111 0
10 22.994 15.978 162 110 162 111
20 22.999 16.047 162 110 162 110

30 0 253.289 43.255 2093 351 2046 304 0
10 254.250 42.858 2026 283 2032 289
20 253.439 43.228 2020 278 2026 283

7.3 AND/OR solution counting

We present here results on pure constraint networks, for the task of solution
counting. While this may seem to bias our mixed representation to an extreme,
the results are in fact very relevant for processing mixed networks. The amount of
computation (number of nodes explored in the AND/OR space) is the same as in the
case where a belief network would exist on top of the constraint network. The only
missing part here is the computation of probabilities (or weights) corresponding to
partial assignments. Instead, we compute a count of the solutions. These results also
show a comparison of AND/OR search with the traditional type of OR search that
does not exploit problem structure but follows a chain pseudo tree.

Tables 7 and 8 show an ample comparison of the algorithms on moderate size
problems which allowed bucket elimination to run. The bolded time numbers show
the best values in each column. The most important thing to note is the vast
superiority of AND/OR space over the traditional OR space. Only for the very
tight problems (t = 10%−40%), which are also inconsistent, the two search spaces
seem to be comparable. The picture is clearer if we look at the number of expanded
nodes and number of dead-ends. When the problems are loose and have a large
number of solutions AND/OR algorithms are orders of magnitudes better (see #n,
#d bolded figures for i=9 in Table 7, and for i=13 in Table 8, where A/O FC
explores a space two orders of magnitude smaller than that of OR FC, resulting
in a time two orders of magnitude smaller). In Table 7 we also see the impact of
more constraint propagation. The RFC algorithms always explore a smaller space
than the FC, but this comes with an overhead cost, and may not always be faster.

42 R. Mateescu, R. Dechter

Table 6 AND/OR search vs. bucket elimination; random networks; averages over 20 instances

t i Time Nodes (*1000) Dead-ends (*1000) #sol

BE AO-FC AO-RFC AO-FC AO-RFC AO-FC AO-RFC

N=70, K=2, R=5, P=2, C=30, S=3, 20 instances, w*=22, h=30
40 0 26.4 2.0 1.3 49 21 35 19 0

10 1.9 1.2 30 18 29 18
20 1.9 1.3 26 17 21 16

50 0 30.7 35.6 2,883 2,708 1,096 1,032 1E+12
10 18.6 18.9 557 512 342 302
20 12.4 12.1 245 216 146 130

60 0 396.8 511.4 51,223 50,089 13,200 12,845 7E+14
10 167.9 182.5 5,881 5,708 2,319 2,241
20 80.5 83.6 1,723 1,655 718 697

N=60, K=2, R=5, P=2, C=40, S=3, 20 instances, w*=23, h=31

40 0 67.3 0.7 0.6 9 9 8 7 0
10 0.6 0.6 6 5 5 5
20 0.6 0.6 5 5 4 4

50 0 3.2 3.0 58 55 41 38 6E+04
10 3.0 2.8 31 28 28 25
20 2.7 2.6 25 23 20 18

60 0 65.2 70.2 2,302 2,292 1,206 1,195 8E+08
10 54.1 56.4 791 781 660 649
20 39.6 40.7 459 449 319 309

For BE we only report time, which is not sensitive to the tightness of the problem,
so we see that for tight networks search can be faster than BE, if BE is insensitive
to determinism. Clearly, a comparison with Elim-CPE(i) or Elim-Sparse may show a
different picture.

Caching doesn’t seem to play a big role in this first set of problems. Especially,
for inconsistent networks, caching doesn’t improve performance. This is probably
because the type of networks we generate turn out to be fairly easy for forward
checking, so even without caching the nogoods of the inconsistent networks, forward
checking is able to easily detect them.

Table 9 shows an example where caching is useful. This is again a smaller problem
for which A/O FC could be run even for t = 100%. When problems become loose,
caching is essential to speed up the search.

8 Related work

The idea of combining probabilistic information with deterministic relationships is
fundamental, and has been explored in different communities, as we have already
mentioned in the introduction and throughout the paper. In the following subsections
we present the related work structured along two directions: 1) languages that com-
bine logic and probabilities; 2) computational issues of processing mixed probabilistic
and deterministic information.

Mixed deterministic and probabilistic networks 43

T
ab

le
7

A
N

D
/O

R
se

ar
ch

vs
.O

R
se

ar
ch

vs
.b

uc
ke

te
lim

in
at

io
n;

ra
nd

om
ne

tw
or

ks
;a

ve
ra

ge
s

ov
er

20
in

st
an

ce
s

N
=2

0,
K

=3
,C

=2
0,

S=
4,

20
in

st
an

ce
s,

w
*=

9,
h=

14
t

10
%

20
%

30
%

40
%

50
%

60
%

70
%

#s
ol

ut
io

ns
0

0
0

49
3,

84
2

12
6,

95
7

2,
85

6,
06

4

T
im

e
(s

ec
on

ds
)

B
E

0.
10

11
0

0.
10

15
5

0.
10

11
5

0.
10

02
5

0.
10

00
0

0.
08

97
0

0.
08

80
5

i=
0

A
/O

F
C

0.
00

65
0

0.
01

25
0

0.
02

45
0

0.
06

55
5

0.
22

94
0

1.
09

35
5

5.
81

74
0

A
/O

R
F

C
0.

00
35

0
0.

01
00

5
0.

02
55

5
0.

07
66

0
0.

27
49

0
1.

33
29

5
6.

94
85

0
O

R
F

C
0.

00
50

5
0.

01
20

0
0.

02
75

5
0.

08
67

0
0.

52
62

0
5.

49
72

0
65

.6
87

75
O

R
R

F
C

0.
00

40
0

0.
01

25
5

0.
02

80
0

0.
09

87
0

0.
56

04
0

5.
72

63
5

67
.9

42
75

i=
3

A
/O

F
C

0.
00

55
0

0.
01

21
0

0.
02

55
5

0.
06

41
0

0.
22

92
5

1.
09

50
5

5.
79

48
5

A
/O

R
F

C
0.

00
30

0
0.

01
30

5
0.

02
55

0
0.

07
81

0
0.

27
85

0
1.

33
70

5
6.

90
19

0
O

R
F

C
0.

00
55

5
0.

01
25

0
0.

02
75

0
0.

08
76

5
0.

52
40

5
5.

48
50

0
65

.8
31

90
O

R
R

F
C

0.
00

40
0

0.
01

00
0

0.
02

81
0

0.
09

82
0

0.
56

40
0

5.
72

88
0

67
.9

85
20

i=
6

A
/O

F
C

0.
00

50
0

0.
01

25
0

0.
02

40
5

0.
06

45
5

0.
21

37
0

0.
91

37
5

4.
33

87
5

A
/O

R
F

C
0.

00
50

0
0.

01
10

0
0.

02
75

0
0.

07
55

5
0.

25
93

0
1.

09
62

5
5.

08
37

5
O

R
F

C
0.

00
45

0
0.

01
25

0
0.

02
96

0
0.

08
86

0
0.

49
92

0
4.

66
98

5
49

.7
75

30
O

R
R

F
C

0.
00

30
0

0.
01

05
0

0.
03

20
0

0.
09

80
5

0.
53

62
5

4.
87

52
0

51
.2

49
10

i=
9

A
/O

F
C

0.
00

45
5

0.
01

15
5

0.
02

50
0

0.
06

40
5

0.
17

24
0

0.
48

86
5

1.
22

13
5

A
/O

R
F

C
0.

00
45

0
0.

00
95

0
0.

02
60

0
0.

07
31

0
0.

20
53

0
0.

58
83

0
1.

46
26

5
O

R
F

C
0.

00
55

0
0.

01
35

5
0.

02
95

0
0.

08
16

0
0.

40
01

0
2.

98
98

0
23

.3
95

55
O

R
R

F
C

0.
00

45
0

0.
01

15
0

0.
03

02
0

0.
09

41
5

0.
43

62
0

3.
15

51
5

24
.2

53
00

44 R. Mateescu, R. Dechter

T
ab

le
7

(c
on

ti
nu

ed
)

N
um

be
r

of
ex

pa
nd

ed
no

de
s

(#
n)

/N
um

be
r

of
de

ad
-e

nd
s

(#
d)

#
n

#
d

#
n

#
d

#
n

#
d

#
n

#
d

#
n

#
d

#
n

#
d

#
n

#
d

i=
0

A
/O

F
C

22
5

45
3

51
8

10
32

11
92

23
30

35
52

65
79

16
00

3
24

40
2

10
66

51
11

90
59

73
51

53
55

38
20

A
/O

R
F

C
15

4
31

1
38

7
77

1
10

52
20

56
34

07
63

07
15

73
7

23
98

7
10

66
17

11
89

89
73

51
53

55
38

20
O

R
F

C
22

5
45

3
51

9
10

40
12

03
24

08
38

10
74

76
28

07
9

44
63

4
41

44
63

44
80

55
65

33
67

4
44

99
15

9
O

R
R

F
C

15
4

31
1

38
7

77
7

10
62

21
26

36
64

71
83

27
80

1
44

07
8

41
44

28
44

79
86

65
33

67
4

44
99

15
9

i=
3

A
/O

F
C

22
5

45
3

51
8

10
32

11
92

23
30

35
52

65
79

16
00

3
24

40
2

10
66

51
11

90
59

73
51

53
55

38
20

A
/O

R
F

C
15

4
31

1
38

7
77

1
10

52
20

56
34

07
63

07
15

73
7

23
98

7
10

66
17

11
89

89
73

51
53

55
38

20
O

R
F

C
22

5
45

3
51

9
10

40
12

03
24

08
38

10
74

76
28

07
9

44
63

4
41

44
63

44
80

55
65

33
67

4
44

99
15

9
O

R
R

F
C

15
4

31
1

38
7

77
7

10
62

21
26

36
64

71
83

27
80

1
44

07
8

41
44

28
44

79
86

65
33

67
4

44
99

15
9

i=
6

A
/O

F
C

22
4

45
1

51
2

10
21

11
62

22
85

33
06

62
69

12
76

5
21

12
9

70
27

3
88

58
9

43
65

54
36

81
11

A
/O

R
F

C
15

4
31

1
38

4
76

5
10

28
20

19
31

75
60

12
12

56
2

20
77

6
70

23
8

88
51

9
43

65
54

36
81

11
O

R
F

C
22

5
45

3
51

9
10

40
12

03
24

08
37

64
74

18
24

70
0

41
19

4
29

45
25

34
93

50
39

31
07

8
30

68
92

0
O

R
R

F
C

15
4

31
1

38
7

77
7

10
62

21
26

36
18

71
24

24
42

2
40

63
8

29
44

91
34

92
81

39
31

07
8

30
68

92
0

i=
9

A
/O

F
C

22
4

44
9

49
9

97
8

10
93

21
12

28
83

52
88

88
73

14
19

3
28

03
8

33
21

0
79

94
6

60
14

4
A

/O
R

F
C

15
3

30
8

37
1

72
2

96
2

18
57

27
61

50
63

87
05

13
89

9
28

00
3

33
14

1
79

94
6

60
14

4
O

R
F

C
22

5
45

3
51

8
10

32
11

92
23

33
36

04
68

74
18

72
9

30
99

2
16

69
12

20
38

54
15

16
97

6
12

59
12

0
O

R
R

F
C

15
4

31
1

38
7

77
1

10
52

20
58

34
61

65
97

18
45

7
30

47
7

16
68

77
20

37
84

15
16

97
6

12
59

12
0

Mixed deterministic and probabilistic networks 45

T
ab

le
8

A
N

D
/O

R
se

ar
ch

vs
.O

R
se

ar
ch

vs
.b

uc
ke

te
lim

in
at

io
n;

ra
nd

om
ne

tw
or

ks
;a

ve
ra

ge
s

ov
er

20
in

st
an

ce
s

N
=4

0,
K

=3
,C

=5
0,

S=
3,

20
in

st
an

ce
s,

w
*=

13
,h

=2
0

t
10

%
20

%
30

%
40

%
50

%
60

%
#

so
lu

ti
on

s
0

0
0

0
46

58
2

14
78

98
57

5

T
im

e
(s

ec
on

ds
)

B
E

8.
67

4
8.

71
4

8.
88

9
8.

70
9

8.
53

1
8.

63
7

i=
0

A
/O

F
C

0.
01

1
0.

03
0

0.
11

0
0.

45
4

3.
12

9
32

.9
31

O
R

F
C

0.
00

9
0.

03
1

0.
11

3
0.

51
1

14
.6

15
97

37
.8

23
i=

3
A

/O
F

C
0.

01
1

0.
03

1
0.

11
1

0.
45

3
3.

10
3

31
.2

77
O

R
F

C
0.

00
9

0.
03

0
0.

11
2

0.
50

9
14

.4
74

90
27

.3
65

i=
6

A
/O

F
C

0.
01

1
0.

02
9

0.
11

0
0.

45
4

3.
00

6
25

.1
40

O
R

F
C

0.
01

0
0.

03
2

0.
11

3
0.

50
8

13
.8

42
72

93
.4

72
i=

9
A

/O
F

C
0.

01
0

0.
03

0
0.

11
4

0.
45

3
2.

89
5

21
.5

58
O

R
F

C
0.

01
0

0.
03

1
0.

11
1

0.
50

9
12

.3
36

58
09

.9
17

i=
13

A
/O

F
C

0.
01

1
0.

03
0

0.
11

1
0.

45
7

2.
60

5
11

.9
74

O
R

F
C

0.
01

0
0.

03
2

0.
12

3
0.

49
4

8.
70

3
11

70
.2

03

N
um

be
r

of
ex

pa
nd

ed
no

de
s

(#
n)

/N
um

be
r

of
de

ad
-e

nd
s

(#
d)

#
n

#
d

#
n

#
d

#
n

#
d

#
n

#
d

#
n

#
d

#
n

#
d

i=
0

A
/O

F
C

78
15

9
26

5
53

3
99

9
19

94
47

35
92

29
60

16
3

10
11

35
16

01
67

4
17

11
94

7
O

R
F

C
78

15
9

26
5

53
3

10
00

20
03

49
47

98
97

27
35

47
40

73
50

38
41

20
80

7
32

45
45

90
8

i=
3

A
/O

F
C

78
15

9
26

5
53

3
98

6
19

90
45

25
91

66
46

76
3

98
41

3
68

91
54

16
25

07
5

O
R

F
C

78
15

9
26

5
53

3
10

00
20

03
49

47
98

97
22

47
39

39
92

10
22

86
67

36
3

28
77

01
07

9
i=

6
A

/O
F

C
78

15
9

26
5

53
3

98
1

19
71

44
67

89
91

41
87

6
85

58
3

48
73

20
91

76
12

O
R

F
C

78
15

9
26

5
53

3
10

00
20

03
49

47
98

97
18

54
22

32
97

54
14

16
10

99
0

20
81

59
06

8
i=

9
A

/O
F

C
78

15
9

26
5

53
3

98
1

19
58

44
51

88
66

37
31

4
70

33
7

36
20

24
58

03
25

O
R

F
C

78
15

9
26

5
53

3
10

00
20

03
49

47
98

97
14

73
29

27
04

46
10

23
16

41
7

13
56

55
35

3
i=

13
A

/O
F

C
78

15
9

26
5

53
3

98
1

19
55

44
15

85
33

30
61

0
50

22
8

17
08

27
18

11
57

O
R

F
C

78
15

9
26

5
53

3
99

9
19

94
47

61
92

83
99

92
3

17
66

30
16

21
00

28
20

01
88

23

46 R. Mateescu, R. Dechter

T
ab

le
9

T
he

im
pa

ct
of

ca
ch

in
g

(A
/O

F
C

);
ra

nd
om

ne
tw

or
ks

;a
ve

ra
ge

s
ov

er
20

in
st

an
ce

s

N
=4

0,
K

=2
,C

=4
0,

S=
3,

20
in

st
an

ce
s,

w
*=

10
,h

=1
7

t
10

%
20

%
30

%
40

%
50

%
60

%
70

%
80

%
90

%
10

0%
#

so
l

0
0

0
0

0
13

,5
33

2,
41

4,
72

4
19

0,
43

0,
00

0
21

,5
49

,6
50

,0
00

1,
09

9,
51

1,
62

7,
77

6

T
im

e
A

/O
F

C
i=

0
0.

00
0

0.
00

1
0.

00
2

0.
00

5
0.

01
1

0.
06

5
0.

28
9

1.
93

1
7.

97
9

30
.0

94
i=

3
0.

00
1

0.
00

2
0.

00
2

0.
00

3
0.

00
8

0.
06

0
0.

25
3

1.
52

5
6.

06
2

22
.3

40
i=

6
0.

00
1

0.
00

1
0.

00
4

0.
00

3
0.

00
9

0.
05

2
0.

18
2

0.
88

3
2.

87
3

8.
84

7
i=

10
0.

00
0

0.
00

1
0.

00
3

0.
00

4
0.

01
0

0.
03

8
0.

11
0

0.
34

3
0.

58
7

0.
98

5
N

um
be

r
of

no
de

s
A

/O
F

C
i=

0
11

17
32

55
16

6
30

78
22

27
3

20
45

62
98

81
36

41
45

93
4

i=
3

11
17

32
55

15
5

15
03

87
47

57
77

8
23

64
66

87
08

66
i=

6
11

17
32

55
14

8
97

5
42

92
24

54
2

95
39

4
29

82
36

i=
10

11
17

32
55

13
5

74
6

23
65

86
46

15
05

0
25

71
7

N
um

be
r

of
de

ad
-e

nd
s

A
/O

F
C

i=
0

13
19

34
57

16
2

19
78

10
29

8
57

67
8

13
43

24
0

i=
3

13
19

34
57

15
9

16
62

85
69

45
33

6
92

26
3

0
i=

6
13

19
34

56
14

9
97

4
37

21
13

65
5

19
25

7
0

i=
10

13
19

34
55

12
5

53
3

13
12

23
13

18
87

0

Mixed deterministic and probabilistic networks 47

8.1 Languages combining logic and probability

Combining probabilistic information and first-order logic has been a long-standing
goal in AI. This problem has been under intense investigation in recent years,
especially because of its relevance to statistical relational learning. Most of the
early approaches to combining first-order logic and Bayesian networks focused on
restricted subsets such as Horn clauses as the basic representation [32, 38, 46].
As a result, one of the main limitations was the combinatorial blowup of the
these models. A significant improvement was achieved in Koller and Pfeffer [24],
where frame-based representation systems are combined with Bayesian networks.
This approach allows frame knowledge bases to be annotated with probabilistic
information, making them more suitable to real-world applications.

Markov logic networks [42] is a recent approach that combines first-order logic
and probabilistic graphical models by attaching a weight to each formula of a
knowledge base. Another recently introduced formalism is Bayesian logic (BLOG)
[30]. BLOG is a first-order probabilistic modeling language that compactly and
intuitively defines probability distributions over configurations of varying sets of
objects. Its purpose is to provide a language for models that handle objects that are
not known a priori.

8.2 Computational aspects

When processing Bayesian networks that contain determinism (namely, CPTs with
zero probability tuples), an important aspect is the encoding of the determinism
in the function representation. As we described earlier in the paper, if a lot of
determinism is present, it may be beneficial to represent the functions in relational
form as lists of valid tuples [26]. Other structured function representations, such as
decision trees [7] or rule-based systems [39] are also possible, as we noted earlier.

Recursive conditioning (RC) [10] is an algorithm that exploits the problem struc-
ture and traverses an AND/OR search space. In Allen and Darwiche [1], RC was
extended with unit resolution (based on the zChaff SAT solver [31]) to effectively
deal with determinism in Bayesian networks, especially for the domain of genetic
linkage analysis. In certain cases, this results in significant reduction of the solving
time. As we have already mentioned, any SAT or constraint solver can be employed
to process the deterministic information.

Another algorithm similar to AND/OR and RC is Value Elimination [2]. The key
property of Value Elimination is the ability to handle dynamic variable orderings
and caching simultaneously, while maintaining in principle the same worst case
complexity (i.e., exponential in the treewidth). This is realized however through the
use of hash tables, and some constant access assumptions are necessary. The work of
Sang et al. [44] combines component caching (essentially formula caching in SAT)
with clause learning and shows that on many instances it improves over existing
algorithms for #SAT by orders of magnitude.

The presence of deterministic information hidden within a probabilistic model
also inspired the idea of finding triangulations (or variable orderings) that correspond
to minimal computation. Therefore, besides the structural information of the primal
graph, the determinism can reveal that the inconsistent assignments do not need to
be enumerated in order to process the probabilistic information. The work of Bartels

48 R. Mateescu, R. Dechter

and Bilmes [3] shows that large-clique triangulations can sometimes lead to smaller
computational effort when processing stochastic/deterministic graphical models. A
more recent investigation of the search space size in the presence of determinism
appears in Otten and Dechter [35].

The mixed network framework can facilitate compilation algorithms, that trans-
form a graphical model into a single data structure that can capture compactly
probabilistic and deterministic information. These include arithmetic circuits [8, 11],
probabilistic decision graphs [22] and AND/OR weighted decision diagrams [28].
The mixed network that we introduced in this paper can be viewed as a unifying
framework within which all the above mentioned approaches can be studied and
compared.

9 Discussion and conclusion

We presented the framework of mixed networks that combines belief and constraint
networks. One primary benefit of this framework is semantic clarity. This feature is
essential in modeling real life applications, an issue that we only touched upon in this
paper via the motivating examples. In particular we can view a belief network having
a set of variables instantiated (e.g., evidence) as a mixed network, by regarding the
evidence set as a set of constraints. The dm-separation which we presented extends
the d-separation of pure belief networks to the mixed network in a natural way, and
provides a criterion for characterizing the notion of minimal I-mapness. Proposition
2, which defines the equivalence of mixed networks, gives blessing for processing the
deterministic information separately by constraint propagation methods, rather than
incorporating it in probability tables.

The second principal benefit of mixed networks is computational. The mixed
networks invite the exploitation of probabilistic and deterministic information build-
ing upon their respective strengths. Indeed, our theoretical and empirical analysis
showed how computation can be improved both within variable elimination and
search and demonstrated the impact of constraint processing within each of these
reasoning schemes.

Lets discuss further the ability of variable elimination compared with search in
exploiting constraints alongside the probabilistic functions. It is often believed that
search schemes can be more effective in accommodating constraints than variable
elimination. Indeed, if the CPTs are expressed as full tables and if we have a problem
having a significant amount of determinism, inference-based schemes can be far less
effective. On the other hand if the problem has very little determinism (i.e., the CPTs
are nearly positive and the constraint portion is very loose) brute-force table-based
bucket elimination is likely to be far more efficient than search, assuming enough
memory is available. Both of these cases were demonstrated empirically when we
compared the brute-force BE algorithm with constraint-exploiting AND/OR search
(Section 7) on tight and loose problems. If however the CPTs are expressed in
a sparse manner, and accompanied with efficient processing algorithms, then in
the presence of determinism variable elimination (i.e., Elim-Sparse, or even Elim-
CPE(i)) may be more efficient than search in some of the cases. In general however
they are incomparable as explained earlier.

Mixed deterministic and probabilistic networks 49

One should note that while determinism in search is exploited by pruning the
search space, determinism in variable elimination can be exploited by computing
tight functions. In that case different choices of variable ordering can make one
approach better than the other. For an elaborate comparison of variable elimination
vs. AND/OR search see Mateescu and Dechter [27].

The relative advantages and the possible combination of the different algorithms
presented here is left for future work. A wide variety of hybrid search and infer-
ence algorithms can be designed and they can also be adapted for approximate
computation.

Acknowledgements This work was supported in part by the NSF grant IIS-0713118 and by the NIH
grant R01-HG004175-02.

References

1. Allen, D., Darwiche, A.: New advances in inference by recursive conditioning. In: Proceedings
of the Nineteenth Conference on Uncertainty in Artificial Intelligence (UAI’03), pp. 2–10 (2003)

2. Bacchus, F., Dalmao, S., Pitassi, T.: Value elimination: Bayesian inference via backtracking
search. In: Proceedings of the Nineteenth Conference on Uncertainty in Artificial Intelligence
(UAI’03), pp. 20–28 (2003)

3. Bartels, C., Bilmes, J.A.: Non-minimal triangulations for mixed stochastic/deterministic graphical
models. In: Proceedings of the Twenty Second Conference on Uncertainty in Artificial Intelli-
gence (UAI’06) (2006)

4. Bayardo, R., Miranker, D.: A complexity analysis of space-bound learning algorithms for the
constraint satisfaction problem. In: Proceedings of the Thirteenth National Conference on Arti-
ficial Intelligence, pp. 298–304 (1996)

5. Bertele, U., Brioschi, F.: Nonserial Dynamic Programming. Academic, London (1972)
6. Bodlaender, H.L., Gilbert, J.R.: Approximating treewidth, pathwidth and minimum elimination

tree-height. Tech. Rep., Utrecht University (1991)
7. Boutilier, C., Friedman, N., Goldszmidt, M., Koller, D.: Context-specific independence in

Bayesian networks. In: Proceedings of the Twelfth Conference on Uncertainty in Artificial
Intelligence (UAI’96), pp. 115–123. San Francisco, 1–4 August 1996

8. Chavira, M., Darwiche, A., Jaeger, M.: Compiling relational Bayesian networks for exact infer-
ence. Int. J. Approx. Reason. 42(1–2), 4–20 (2006)

9. Cooper, G.: The computational complexity of probabistic inferences. Artif. Intell. 42, 393–405
(1990)

10. Darwiche, A.: Recursive conditioning. Artif. Intell. 125(1–2), 5–41 (2001)
11. Darwiche, A.: A logical approach to factoring belief networks. In: Proceedings of the Eighth

International Conference on Principles of Knowledge Representation and Reasoning (KR’02),
pp. 409–420. Toulouse, 22–25 April 2002

12. Dechter, R.: Bucket elimination: a unifying framework for probabilistic inference algorithms.
In: Proceedings of the Twelfth Conference on Uncertainty in Artificial Intelligence (UAI’96),
pp. 211–219. San Francisco, 1–4 August 1996

13. Dechter, R.: Bucket elimination: a unifying framework for reasoning. Artif. Intell. 113, 41–85
(1999)

14. Dechter, R.: Constraint Processing. Morgan Kaufmann, San Mateo (2003)
15. Dechter, R., Larkin, D.: Hybrid processing of belief and constraints. In: Proceedings of the

Seventeenth Conference on Uncertainty in Artificial Intelligence (UAI’01), pp. 112–119. Seattle,
August 2001

16. Dechter, R., Mateescu, R.: Mixtures of deterministic-probabilistic networks and their AND/OR
search space. In: Proceedings of the Twentieth Conference on Uncertainty in Artificial Intelli-
gence (UAI’04), pp. 120–129. Banff, 7–11 July 2004

17. Dechter, R., Mateescu, R.: AND/OR search spaces for graphical models. Artif. Intell. 171(2–3),
73–106 (2007)

18. Dechter, R., Pearl, J.: Network-based heuristics for constraint satisfaction problems. Artif. Intell.
34(1), 1–38 (1987)

50 R. Mateescu, R. Dechter

19. Freuder, E.C., Quinn, M.J.: Taking advantage of stable sets of variables in constraint satisfaction
problems. In: Proceedings of the Ninth International Joint Conference on Artificial Intelligence
(IJCAI’85), pp. 1076–1078. Los Angeles, 18–23 August 1985

20. Gaschnig, J.: Performance measurement and analysis of search algorithms. Tech. Rep. CMU-CS-
79-124, Carnegie Mellon University (1979)

21. Heckerman, D.: A tractable inference algorithm for diagnosing multiple diseases. In: Proceedings
of the Fifth Conference on Uncertainty in Artificial Intelligence (UAI’89), pp. 163–172 (1989)

22. Jaeger, M.: Probabilistic decision graphs—combining verification and AI techniques for proba-
bilistic inference. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 12, 19–42 (2004)

23. Kask, K., Dechter, R., Larrosa, J., Dechter, A.: Unifying cluster-tree decompositions for reason-
ing in graphical models. Artif. Intell. 166(1–2), 165–193 (2005)

24. Koller, D., Pfeffer, A.: Probabilistic frame-based systems. In: Proceedings of the Fifteenth Na-
tional Conference of Artificial Intelligence (AAAI’98), pp. 580–587. Madison, July 1998

25. Korth, H., Silberschatz, A.: Database System Concepts. McGraw-Hill, New York (1991)
26. Larkin, D., Dechter, R.: Bayesian inference in the presence of determinism. In: The Ninth Inter-

national Workshop on Artificial Intelligence and Statistics (AISTATS’03). Key West, January
2003

27. Mateescu, R., Dechter, R.: The relationship between AND/OR search and variable elimina-
tion. In: Proceedings of the Twenty First Conference on Uncertainty in Artificial Intelligence
(UAI’05), pp. 380–387. Edinburgh, 26–29 July 2005

28. Mateescu, R., Dechter, R.: AND/OR multi-valued decision diagrams (AOMDDs) for weighted
graphical models. In: Proceedings of the Twenty Third Conference on Uncertainty in Artificial
Intelligence (UAI’07). Vancouver, July 2007

29. McEliece, R., MacKay, D., Cheng, J.F.: Turbo decoding as an instance of Pearl’s belief propaga-
tion algorithm. IEEE J. Sel. Areas Commun. 16(2), 140–152 (1998)

30. Milch, B., Marthi, B., Sontag, D., Russell, S., Ong, D.L., Kolobov, A.: Blog: probabilistic models
with unknown objects. In: Proceedings of the Nineteenth International Joint Conference on
Artificial Intelligence (IJCAI’05), pp. 1352–1359. Edinburgh, 30 July–5 August 2005

31. Moskewicz, M., Madigan, C., Zhao, Y., Zhang, L., Malik, S.: Chaff: engineering an efficient SAT
solver. In: Proceedings of the Design and Automation Conference (DAC’01), pp. 530–535. Las
Vegas, June 2001

32. Ngo, L., Haddawy, P.: Answering queries from context-sensitive probabilistic knowledge bases.
Theor. Comp. Sci. 171(1–2), 147–177 (1997)

33. Nilsson, N.J.: Principles of Artificial Intelligence. Tioga, Palo Alto (1980)
34. Ott, J.: Analysis of Human Genetic Linkage. The Johns Hopkins University Press, Baltimore

(1999)
35. Otten, L., Dechter, R.: Bounding search space size via (hyper)tree decompositions. In: Proceed-

ings of the Twenty Fourth Conference on Uncertainty in Artificial Intelligence (UAI’08), pp.
452–459. Helsinki, July 2008

36. Parker, R., Miller, R.: Using causal knowledge to create simulated patient cases: the CPCS
project as an extension of INTERNIST-1. In: Proceedings of the Eleventh Symposium on
Computer Applications in Medical Care, pp. 473–480. Washington, D.C., November 1987

37. Pearl, J.: Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann, San Francisco
(1988)

38. Poole, D.: Probabilistic Horn abduction and Bayesian networks. Artif. Intell. 64, 81–129 (1993)
39. Poole, D.: Probabilistic partial evaluation: exploiting structure in probabilistic inference. In:

IJCAI-97: Proceedings of the Fifteenth International Joint Conference on Artificial Intelligence
(IJCAI’97), pp. 1284–1291. Nagoya, 23–29 August 1997

40. Portinale, L., Bobbio, A.: Bayesian networks for dependency analysis: an application to digital
control. In: Proceedings of the Fifteenth Conference on Uncertainty in Artificial Intelligence
(UAI’99), pp. 551–558. Stockholm, 30 July–1 August 1999

41. Prosser, P.: Hybrid algorithms for constraint satisfaction problems. Comput. Intell. 9(3), 268–299
(1993)

42. Richardson, M., Domingos, P.: Markov logic networks. Mach. Learn. 62(1–2), 107–136 (2006)
43. Rish, I., Dechter, R.: Resolution vs. search; two strategies for SAT. J. Autom. Reason. 24(1/2),

225–275 (2000)
44. Sang, T., Bacchus, F., Beam, P., Kautz, H., Pitassi, T.: Combining component caching and clause

learning for effective model counting. In: Proceedings of the Seventh International Conference
on Theory and Applications of Satisfiability Testing (SAT’04), pp. 20–28. Vancouver, 10–13 May
2004

Mixed deterministic and probabilistic networks 51

45. Shenoy, P.: Valuation-based systems for Bayesian decision analysis. Oper. Res. 40, 463–484
(1992)

46. Wellman, M., Breese, J., Goldman, R.: From knowledge bases to decision models. Knowl. Eng.
Rev. 7, 35–53 (1992)

47. Zhang, N., Poole, D.: A simple approach to Bayesian network computations. In: Proceedings of
the Tenth Canadian Conference on Artificial Intelligence, pp. 171–178. Seattle, 31 July–4 August
1994

	Mixed deterministic and probabilistic networks
	Abstract
	Introduction
	Preliminaries and background
	Mixing probabilities with constraints
	Defining the mixed network
	Queries over mixed networks
	Examples of mixed networks
	Processing probabilistic networks with determinism by CPE queries
	Mixed graphs as I-maps

	Inference and search for graphical models
	Inference methods
	AND/OR search methods
	Weighted AND/OR graphs

	Inference algorithms for processing mixed networks
	Inference by bucket elimination
	Extensions of Elim-CPE
	Elim-CPE(i)
	Probability of relational constraints

	Complexity

	AND/OR search algorithms for mixed networks
	AND-OR-cpe algorithm
	Constraint propagation in AND-OR-cpe
	Backjumping
	Good and nogood learning

	Empirical evaluation
	Inference algorithms
	AND/OR search algorithms
	AND/OR solution counting

	Related work
	Languages combining logic and probability
	Computational aspects

	Discussion and conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

