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Abstract

Mini-Bucket EliminationMBE) is a well-known approxima-
tion algorithm forgraphical models|t relies on a procedure

to partition a set of funtions, calldslickef into smaller sub-
sets, callednini-buckets The impact of the partition process
on the quality of the bound computed has never been inves-
tigated before. We take first steps to address this issue by
presenting a framework within which partition strategies can
be described, analyzed and compared. We derive a new class
of partition heuristics from first-principles and demonstrate
its impact on a number of benchmarks for probabilistic rea-
soning.

1 Introduction

Mini-Bucket Elimination(MBE) (Dechter & Rish 2003) is
one of the most popular bounding techniques for reasoning
tasks defined ovegraphical modelsuch asBayesian net-
works(Pearl 1988) osoft Constraint Satisfaction Problems
(Bistarelliet al. 1999). The power of MBE has been exten-
sively demonstrated for optimization tasks such as finding
the most likely tuple of a probabilistic network, or finding
the optimal solution for a weighted csp (Dechter & Rish
2003; Kask & Dechter 2001; Marinescu & Dechter 2007).
In this paper we focus on the more challenging task of
weighted counting which captures the problem of counting
solutions of a constraint network, evaluating the probabil
ity of evidence over Bayesian networks, and computing the
partition function over Markov networks. These tasks are
#P-complete and are central to both probabilistic and de-
terministic reasoning.

MBE provides an approximation by applying the exact
Bucket Elimination (BE) algorithm (Dechter 1999; Bertele
& Brioschi 1972) on a simplified version of the problem. In
BE all the functions in the so-callellucketare processed
together, yielding a singleucket’'s functionwhich is de-
fined on the union of the variables of the individual func-
tions. Since this processing can be computationally expen-
sive, MBE patrtitions the bucket into smaller subsets called
mini-bucketssuch that the number of variables in each mini-
bucket is bounded by + 1, for a given value ot. Then,
MBE processes each mini-bucket independently, yielding a
set of mini-bucket functions defined over smaller subsets of
variables which together bound the bucket’s function. The
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partitioning of a bucket into mini-buckets having a bound
can be carried out in many ways, each resulting in a different
impact on the overall accuracy.

The MBE scheme was used extensively and very effec-
tively for approximating optimizations tasks, generating
per and lower bounds, but mostly as a scheme for generating
heuristic evaluation function for branch-and-bound ortbes
first search (Kask & Dechter 2001; Marinescu & Dechter
2007). Yet, in all these schemas little attention was paid
to improving the partition process itself. In most (if not
all) previous work, the partitioning heuristic used aims to
minimize the number of mini-buckets in the partitioning.
The heuristic relies solely on the scope of the functions and
is therefore calledcope-basedheuristic. Its effectiveness
compared against random partitioning heuristics was spo-
radically demonstrated, but no systematic study was ever
carried out.

In this paper we present a framework within which differ-
ent greedy heuristic schemes can be examined, analyzed and
compared, including the scope-based greedy heuristic. We
present a new class of greedy heuristics that look beyond the
function’s scope, focusing on the function’s content agnin
to minimize a distance measure between the target bucket
function and its mini-bucket bound. This yields a set of loca
distance rules that can efficiently guide a greedy algorithm
within our framework. Roughly, a local rule associates & pai
of mini-buckets with thesrror of keeping the two separated.

In this paper we evaluate our scheme for the task of upper
bounding the probability of evidence awisy-or bayesian
networks coding networkandgenetic linkage analysi©tt
1999). Earlier attempts to use the mini-bucket approxima-
tion for likelihood computation failed, often generatimiy+

ial upper bounds of (Mateescu, Dechter, & Kask 2002).
The results demonstrate the heuristic scheme potential.

2 Preliminaries

Let X = (z1,...,2,) be an ordered set of variables and
D = (Dy,...,D,) an ordered set of domains, whelg is
the finite set of potential values far;. The assignment of
variablez; with a € D; is noted(x; = a). A tuplet is
an ordered set of assignments to different variablgs =

irs- -+ Li, = G, ). Thescopeof ¢, notedvar(t), is the set
of variables that it assigns.



2.1 Belief Networks

A Bayesian networKPearl 1988) is a quadruplBN =
(X, D, G, P)whereg is a directed acyclic graph ovaf and
P ={p1,...,pn}, Wherep; = P(z;|pa;) denotes the con-
ditional probability tables (CPTs). The g&t; is the set of
parents of the variable; in G. A Bayesian network rep-
resents in a compact way a probability distribution over tu-
plet, P(t) = []\—, P(xi|pa;). Given a Bayesian network
BN and evidence tuple, the probability of evidence’(e)

is defined asP(e) = 3- x4 () [ 121 P(ilpas),. where
f(X)c is a new functiom defined overt’ — var(e) such
thath(t) = f(t-e), wheret-e is a new tuple containing both
assignments.

2.2 Bucket and Mini-Bucket Elimination

Bucket eliminatioBE) (Dechter 1999; Bertele & Brioschi
1972) is an exact algorithm for answering a variety of
queries over graphical models. In particular, given a
Bayesian networlB N, BE computes the probability of evi-
dencee as shown in the following pseudo-code:

function BE((X', D, G, P), e)

1 S:={fl.|feP}

2. X :=X —var(e);

3. while X # 0 do

4. z; := Select(X);

5. Bi:={fe€S8|zecvar(f)};
6. gi =2, (Il en, f)

7. S=8-B;U{g};

8. X=X —{z}

9. endwhile

10.return ([T,cs fO);

endfunction

After incorporating the evidence in the network (litg BE
processes the remaining variabl®s— var(e), eliminating
them one at a time. The elimination of variablgis as fol-
lows. First, the algorithm computes the so caltestketof
variablex;, notedf3;, which contains all the functions if
having z; in their scope (lines). Next, BE computes the
function of buckeB;, notedg;, by multiplying all its func-
tions and subsequently summing aytfrom the result (line
6). Then,S is updated by removing the functions in bucket
B, and addingy; (line 7). The newsS does not contain; (all
functions mentioninge; have been removed) but preserves
the exact result. When all variables have been eliminated,
S contains a set of empty-scope functions.(a set of con-
stants). The multiplication of those functions is the proba
bility of evidenceP(e). The time and space complexity of
the algorithm is exponential in a structural parameteiechll
induced widthwhich is the largest scope of all the functions
computed.

Mini-bucket elimination(MBE) (Dechter & Rish 2003)
is an approximation of full bucket elimination that can be
used to bound the exact solution when the induced width
is too large. Given a control parameterand a bucket
B; = {fi...,fm}, MBE generates a partitiod) =
{Q1,...,Qp} of B;, where each subs€}; € Q is called
mini-bucket Abusing notation, the scope of a set of func-
tions F, notedvar(F), is the union of scopes of the func-
tions it contains. Given an integer parameteiVBE re-
stricts the size of the scopes of each mini-bucket by 1.

Then, each mini-bucket is processed independently. The
pseudo-code of MBE is obtained by replacing lileand

7 in algorithm BE by,

6. {Q1,...,Qp} := Partitions;, z);

6b. foreachj=1...pdog;, := Zzi(HfEQj i3k

7. S:=(SU{gi,---,9i,}) — Bi;

Definition 1 (function of a partition) Given a partition
Q ={Q1,...,Q,} of abucket3;, thefunction represented
by the partitionQ is g° = DN [Iieq, /-

It can be proved (Dechter & Rish 1997) that given a
bucketB; and a partitiorQ of B;, Vt, g;(t) < g2(t). Conse-
quently, the upper bound computed in each bucket accumu-
lates yielding an upper bound &f(e).

The time and space complexity of MBE @(d**!) and
O(d?), respectively, wheré is the maximum domain size.
The parameter allows trading time and space for accuracy:
greater values of allow larger mini-buckets yielding tighter
bounds.

3 Partitioning Framework

As we have seen, lingé of MBE algorithm computes a par-
tition of bucketB;. Different partitions will result in differ-
ent upper bounds. In the following, we formalize the task
of finding the optimal bucket partitioning and present a par-
titioning structure within which partition strategies cha
described.

3.1 The Optimal Partitioning Task
We consider partitions that are parameterized by the maxi-
mum arity of each mini-bucket.

Definition 2 (z-partition) Given a buckes3; and a control
parameterz, a partition Q = {Q1,...,Q,} of B; is a z-
partitionif V@, € Q, |var(Q;)| < z.

The goal of the partition process is to findzgartition

Q such thatgf2 is theclosestto the bucket functio;. The
closeness of two functions defined over the same scope can
be evaluated in terms of a distance measlise. Formally,

Definition 3 (partition task) Given a buckef3;, a param-
eter z and a distance measurést, the partition task is to
find az-partition Q* of B; such that

Q" = arg Hgn{dist(g? ,91)}

where(Q is a z-partition of 53;.

In the probabilistic context, there are several common dis-
tance measures between probability distributighand g
which are relevant:

e Relative error RE(f,g) =Y _,(log (f(t)) —log (g(t))).

e Maximum relative error MRE(f,q)
max; {log (f(t)) —log (g(t))}

e Kullback-Leibler (KL) divergence KL(f,g)
>, £(t) x log (£,

e Absolute error AE =3, |f(t) — g(t)].

To gain insight into the partition task we propospaati-
tioning framework
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Figure 1. Hasse diagram of the partition lattice & =
{f1, f2, f3, fa}. We specify each function by its subindex.

3.2 Partitioning Lattice

We will organize the space of partitionings in a lattice gsin
therefinementelation between partitions.

Definition 4 (refinement relation) Partition @ is a refine-
mentof partition Q’, noted@ C @', iff Q # Q' and every
element ofp is a subset of some element@f. Formally,
QLR = Q#Q NVQ; €Q, I, €Q, Q; CQj

We say that) C Q' iff Q = Q" or @ = Q'. In that
case, we say tha&} is finerthan@Q’ or, conversaly, tha®’ is
coarserthan@. It is easy to see that threfinementelation
yields a partial order and, indeed, a complete lattice that ¢
be represented as a Hasse diagram.

Definition 5 (Hasse diagram) Given a buckefs;, and the
partial order C, the Hasse diagram of all the possible par-
titions of B; is defined as follows. Each partitiof is a
vertex in the diagram. There is an upward edge frgm
to Q' if @ C Q' and there is no partition)” such that

Q C Q" C @'. Inthis case we say th&' is a parentof Q,
and we denote bya(Q) the set of all its parents. THmttom
partition, noted@~, corresponds to having one mini-bucket
for each function in3;, and thetop partition noted@ ', has
only one mini-bucket containing all functions, which is the

input bucket itself. Namely® = g;.

Example 1 Consider a bucket3s = {fi, fo, f3, fa}. Its
Hasse diagram in depicted in Figure 1. As observed, the

finest partition isQ~ = {{/1}, {fa}. {fs}. {f1}} (depicted

in the bottom of the diagram). The coarsest partition is

QT = {{f1, fo, f3, f4}} (depicted in the top of the dia-
gram).

As shown in (Dechter & Rish 1997), functions of coarser
partitions always improve the upper bound:
Theorem 1 Given a buckelB; and two partitions and Q’
of B, Q = Q' =Vt, gi(t) < g (1) < g2(1)

Therefore, for any two arbitrary nodé€3 and Q' con-
nected in the partition lattice by an upward path, the bound

gf’?l is tighter thang?. However, in general, it is not possi-
ble to establish any tighter-than relation among functiois
partitions that are not upward connected in the lattice. We
can clearly conclude that,

Corollary 1 Given a buckeB; and two partitiong) and @’

of B, Q C Q = dist(giQ/,gi) < dist(g?,gi), wheredist
is any of the distance funtions defined in Section 3.1.

Corollary 1 is central to our partitioning framework. It
states that the distanc&st to the top partition is always
non-increasing along any upward path in the partitionimg la
tice. As a consequence, it is easy to see that the optimal
partition @* is maximal that is, all its parents in the lattice
arel-partitions where: < [.

Theorem 2 Given a buckes;, the time complexity of find-
ing the optimalk-partition of B; as defined in Definition 3 is
O(T x D) whereT is the number of maximal-partitions
of B;, and D is the complexity of computingjst(g<, g;).

The number of maximat-partitions of a buckeB; is up-
per bounded by the size of the lattice, whictOig|B;|/Z:!).
However, a tigther bound is the maximum among the num-
ber of partitions in each level of the partitioning lattideen
by theStirling number of the second kirf@omtet 1974).

Proposition 1 Given a bucket 5;, its number of
maximal z-partitions 7' for any z is bounded by:
T < maxlgkgmi‘{SQ(‘BiLk)} where Sg(‘BJ,k) is
the Stirling number of the second kindy(|5B;|,k) =

k o aBi—1
D Gl ¢ =l

We can view any partition-seeking algorithm as a traver-
sal algorithm of the partition lattice. An optimal partitio
seeking algorithm would need to traverse the partitioickatt
bottom-up along all paths leading to a maximgpartition.
Since this is computationally hard, we approximate thik.tas

4 Heuristic Partitioning
Our focus is on depth-first greedy traversals of the partitio
ing lattice, going bottom-up to a maximalpartition that are
guided by a heuristic evaluation function, calleelrt. The
following pseudo-code describes deartition scheme.

function Parti ti on(B;, z)

1. Q:=0;foreachf e B, doQ:=QU{f};

2. while 3Q’ € pa(Q) s.t. Q' is a z-partitiondo Q := next(Q);
3. return Q;

endfunction

Starting with the bottom partition of; (line 1), the al-
gorithm traverses the path depth-first until a maximal
partition is found (line2). Different neat functions will
likely lead to different final maximat-partitions. Yet, each
iteration is guaranteed to tighten the resulting bound (see
Corollary 1).

In the following, we describe the scope-based heuris-
tic discussed earlier, and propose a new class of partition
heuristics, calledontent-basetheuristics. It is important to
note that the space complexity of MBE using any of these
partition heuristics remains exponentialin

4.1 Scope-based Heuristic

The partition heuristic proposed in (Dechter & Rish 1997)
and used throughout in subsequent work with MBE, tries
to minimize the number of mini-buckets in the partition, by
including in each mini-bucket as many functions as possible
In our lattice, any bottom-up traversal of bucket partiti@n
reduce the number of mini-buckets. The only other guidance
in selecting a parent partition is to favor unbalanced mini-
buckets (see the pseudo-code below). First, the mini-liscke



in the current partition are decreasingly ordered fromtleft
right according to their arity. Then, we try to find the first
mini-bucket in the ordering that can be merged with one of
its next right-hand mini-buckets.

function next scp(Q)

1. sort,by,arity(Q);

7:=1;

while Ak, j < k < |Q|,|var(Q; U Q)| < zdo
Jj=J+1

endwhile

if 7 < |Q]thenreturn Q — Q;

else return Q;

ndfunction

3
4,
5.
g - QrU{Q; UQr};
e

Proposition 2 Given a partition@ of a buckets;, the time
complexity ofnextsc»(Q) is O(|Q|log (|Q]) + 1Q|*).

Proposition 3 Given a bucket3;, the time complexity
of PartitionB;,z) using nextscp as heuristic function is
O(|B;|log (IBi|) + |Bi]?).

The main advantage of the scope-based heuristic is its
simplicity which amounts to small overhead. Its main dis-
advantage is that it does not consider the actual informatio
contained in each function.

4.2 Content-based Heuristics

We propose a new partition heuristic derived from the global
optimization task in Definition 3. Given the current paditi

Q, we seek the parent partition §fin the lattice that mini-
mizes the distancéist to the top target partition. Formally,
given a buckess;, theoptimal (opt) next is

opt . . Q'
=arg min {dist(g9° ,g;
(@) gQ/Em(Q){ (9:° 9}

newxt

1)
subject toQ)’ being az-partition.

In general, computingist(g? ,g:) is exponential in the
arity of g;. The only exception is wheRE is used asglist.
In that case, we can derive a measure which is time expo-
nential inz only. Let the number of complete assignments
over a set of variable¥ beW(Y). Then,

Proposition 4 The number of extensions of a tuplesuch
thatvar(t’) C ) to the full scopey is, W(Y — var(t')) =

wQ)
W (var(t'))

Theorem 3 Given a partitionQ of a buckef;, next"p’ »(Q)
equals
1

W(var(Q; U Qg))

, givox

)

where@’* is the parent:-partition of ) that merges mini-
buckets));, Q1 € Q.

% RE( {Q;,Qx}

ar max
& Qik€pa(Q) {

)}

Proof. Let @ = {Qi,...,(Q; U Qx),...,Qp} and
Q" ={Q1,...,(QUQmnm),...,Qp} be two parent par-
titions of @ = {Q1,...,Q,}. First, let us suposse that
(Qj UQK) N (QUQm) = 0 (e, Q andQ” merge

different mini-buckets). Q' is closer toQ " than Q" iff
RE(QZQ ,0i) < RE(giQ , g:), namely,

> tog g1 (1) x ox g (1) x L x g (1)) <
t
> log [g X gt x L g (1)
t

wherevar(t) = var(B;). Using properties ofog function,
reordering and cancelling, the previous expression yields

> (og |92 (1) x g2 ()] — 1og [g22 (1)])

t

> (og g (1) x g2+ ()] —10g 922 (1)])

Instead of summing over all tuples in the bucket’s scope, we
can sum over the tuples in the scopes of the mini-buckets
involved in each side of the inequality and weigh each side
by its number of extensions to the full scope. Then, the pre-
vious expression can be rewritten as,

<

s Qm UQm
RE(g{F09m} gQiv@m)

1
W(var(t')) Z(log [ )

t

ety oo [ () x 62 (0] —1og 4222 1))

¢

Qm

X g; <

()] ~10g [ (1)])

(Q;.QK} Q;uQy
RE(g; 770 g7k

wherevar(t') = var(Q; U Q.,) andvar(t”’) = var(Q; U
Q). The heuristic will preferQ’ over Q" if the aver-

agedRE(g; (Qs.Qn} QJUQ’“) is greater than the averaged

» 9;
RE(g Z{Q”Q"‘},g?luQm). The derivation when the new
mini-bucket inQ’ and@” have one mini-bucket in common
is very similar and leads to the same expression. Therefore,
we can conclude that the theorem holds.

U

We will denote Expression 2 in Theorem 3 asrtrg.
Note that the distance measw& in nextr g only refers to
functions in the two candidate mini-buckets to be merged.
This pairwise internal distance can be interpreted as the
penalty or error due to keeping them separated. Namely,
it defines alocal heuristicwhich only has to consider the
mini-buckets to be merged.

The other distance measures do not yield a local rule like
nextrg, Which is easy to compute. Therefore, we must re-
sort to approximation. The derivation from Expression 1) o
those local heuristics is similar to the one presented iroThe
rem 3, the only difference being the use of some approxima-
tion to transform an expression exponential in the arity;of
to an expression exponential in Let f andg be two func-
tions, andt be a tuple such thatar(t) = var(f) Uvar(g).
Whendist in Expression (1) is KL or AE, an expression of
the form >, (f(t) x g(t)) is approximated by ", f(t) x
max;{g(t)}, while whendist is MRE, max;{ f(t) — g(¢)}
is approximated bynax;{f(¢)} — max;{g(¢)}. Note that
in the KL and AE approximations, the role gfandg can
be interchanged, leading to different local heuristics.r Fo



lack of space we will only list and experiment over a sub-
set of the resulting derived heuristics. We refer to them as
nexty re(Q), nextkr(Q), andnext2g(Q), defined, re-
spectively, as follows:

{Q; . Qr}t |y Q;UQk
arg max@{m&x{log [gi }} m?x{log [91 }}}

Qikepa(

arg max

Q;UQr {Q;,Qr}
MRE(qg;*’ ;g7
ijepa(Q){ (gz g; )}

masx, {g{ "))

Q;UQ
+ 9 §

}

arg max
Qikepa(

Q){W(var(Qj UQk))

wherevar(t) = var(Q; U Q).

We also consider another type of content-based heuristics,
derived from Expression (2). Instead of ranking the parti-
tions according tdR E, these heuristics calletext 451 (Q),
rank them according to the other distance measures pro-
posed in Section 3.1.

Proposition 5 Given a partition@ of a bucket;, and a
distance measurdist, the time complexity afextq;s:(Q)

is O(|B;|*d?), whered is the maximum domain size of the
variables and: is the control parameter.

Proposition 6 Given a bucket3;, the time complexity of
Partition(;,z) using nextq;s:(Q) as heuristic function is
O(|B;[*d?).

5 Empirical Evaluation

In this section we evaluate the performance of each of the
mini-bucket partition heuristics individually in order tte-
termine, first, whether there exist any that is either clearl
superior or inferior. We report results with the scope-base
heuristic, which was used in previous work, and with only a
subset of the content-based partition heuristics predente
the previous section (due to space reasons). As we will see,
none of the partition strategy dominates. But, when com-
bined (by taking their minimum upper bound) they yield a
far superior bound to any single strategy. This combined
heuristic, while superior and more robust strategy for us-
ing the MBE scheme is also more time consuming; linear in
the number of participating partition heuristics. Notewho
ever, that the MBE scheme is restricted by the space and
not by the time. Therefore, as the experiments show, having
a collection of combined heuristics can increase its power
without increasing the needed memory, at the cost of only
a constant factor (depending on the number of partitioning
schemes we use) to its time. In our experiments we consider
the combination of all the individual partition heuristies
ported.

We compare the individual and combined MBE schemes
with two alternative approaches available in the litera-
ture: the any-time bounding scheme ATB (Bidyuk &
Dechter 2006) and Box-Propagation (Mooij & Kappen
2008). ATB is based on the cutset-conditioning schema

and applies exact computation over a subset of the cutset

search space, controlled by a parameétewhile applying
Bound-Propagation (Leisink & Kappen 2003) to the rest

of the space. Both Bound-Propagation (and as a conse-
quence ATB), and Box-Propagation were derived for bound-
ing posterior probabilities. The probability of evidence
can be obtained by applying the chain rule to individual
bounds on posteriors. We could not compare with Tree-
Reweighted (Wainwright, Jaakkola, & Willsky 2005), the
other alternative approach to compute upper bounds on P(e),
because all its implementations are only available fordyina
graphical models.

We conduct our empirical evaluation on three bench-
marks: noisy-or bayesian networkgoding networksand
linkage analysis All instances are included in the UAIO8
evaluation. For comparison, we always report upper
bound on P(e) (UB) and cpu time in seconds. For MBE,
we report UB and cpu time as a function of the control
parameter, while for ATB we report this information as a
function of h. In all the tables, we box and underline the
best and second best upper bound computed by any partition
heuristic as a function of, respectively. The highest value
of z reported is the highest feasible value given the available
memory. MBE uses the variable ordering established by the
min-fill heuristic (Dechter 2003) after instantiating evidence
variables. We run all experiments in a Pentium Core Duo
2.6 GHz and2GB ram.

Coding Networks. Table 1 reports the results. The exact
P(e) is not available. First, let us consider the impact ef th
partition heuristic on the upper bound (colum8€P-Based
Heur! and 'CTNT-Based Heu}. For z = 22, there is no
dominating partition heuristic. Each heuristic computes t
best UB on two instances. The only exceptioméstr g,

that computes the best UB on one instance. The improve-
ment of the best upper bound with respect to the second best
ranges from25% (e.g., seBN_129) to orders of magnitude
(e.g., seBN_126 BN_130, BN_132andBN_133).

Regarding cpu time, the content-based heuristic® &oe
3 times slower than the scope-based heuristic. The reason is
that during the traversal of the partition lattice contbased
partioning heristics have to compute intermediate fumstio
It is important to note that it is the space and not the time
that bounds the maximum feasikieAs a consequence, that
constant increase in time is not that significant as the space
complexity remains the same.

When z 22 and each partition heuristic is consid-
ered independently, ATB( = 150) outperforms at least
one of them on four instances (i.eBN.128 BN.129,
BN_131 and BN.133. However, ATB only outper-
forms MBEcompinea(z 22) on instance BN.126
MBEcompinea(z = 22) obtains UBs from 1 order (e.g.,
seeBN_131) to 5 orders (e.g., seBN_130 of magnitude
better than ATBf = 150) while 3 to 5 times faster.
Box-Propagation is the least accurate approach, comput-
ing upper bounds up to 27 orders of magnitude worse than
MBE combpined (seeBl\L131).

http://graphmod.ics.uci.edu/uai08/Software



SCP-Based Heur. CTNT-Based Heur. MBEcombined ATB BoxProp
Inst. w* z nextscp nextrg next g/ nertag nexty; pp/
uB Time uB Time uB Time uB Time uB Time uB Time h uB Time UB Time
20 5.49E-43 7.94 8.64E-44 | 17.72 5.61E-44 22.00 2.24E-45 | 16.47 1.50E-45 18.91 | 1.50E-45 83.05 4 | 1.52E-41 50.14
BN_126 55| 21 1.85E-43 | 14.43 40.22 1.22E-42 40.92 1.88E-42 | 41.89 6.31E-45 43.60 | 4.31E-46 | 181.06 50 | 2.54E-42 631.52 | 3.74E-30 | 62.47
22 1.57E-44 | 32.45 2.33E-43 | 88.25 1.67E-45 84.70 1.55E-44 | 82.84 3.13E-44 86.39 | 1.67E-45| 374.63 | 150 | 1.25E-42 | 1441.75
20 9.10E-46 9.55 1.29E-45 | 24.04 2.49E-47 26.40 1.24E-47 25.33 6.63E-45 22.92 | 1.24E-47 | 108.25 4 | 2.27E-43 54.85
BN_127 54 | 21 1.94E-44 | 19.83 46.66 1.58E-45 46.92 4.91E-45 | 39.09 6.30E-45 49.31 | 2.41E-47 | 201.82 50 | 2.25E-44 426.26 | 3.86E-31 | 63.61
22 2.42E-47 | 37.49 1.35E-47 | 74.72 2.01E-47 | 81.32 1.98E-48 | 86.72 1.00E-48 85.83 | 1.00E-48 | 366.09 | 150 | 1.90E-44 | 946.33
20 3.76E-42 9.45 1.07E-41 | 25.02 6.98E-42 26.88 4.14E-41 | 23.79 9.01E-43 28.13 | 9.01E-43 | 113.28 4 | 1.63E-42 85.71
BN_128 | 49 | 21 1.91E-41 | 18.02 45.37 257E-42 | 52.26 7.88E-42 | 45.76 4.49E-43 | 51.31 | 4.49E-44| 21272 | 50 | 7.19E-43| 637.23 | 1.98E-31| 63.02
22 5.14E-43 | 32.90 3.00E-41 | 81.56 8.47E-45 88.21 2.03E-43 | 90.65 5.64E-45 81.65 | 5.64E-45| 374.97 | 150 | 1.44E-43 | 1225.00
20 2.34E-44 | 8.95 1.44E-44 | 20.37 9.22E-44 | 24.27 4.04E-46 | 20.84 | | 3.12E-47 25.02 | 3.12E-47 | 99.46 4 | 8.15E-45 50.48
BN_129 53 | 21 2.46E-46 | 16.63 1.22E-44 | 41.68 1.36E-45 47.13 1.17E-44 | 40.62 1.23E-46 43.87 | 1.23E-46 | 189.94 50 | 2.11E-45 585.19 | 1.78E-29 62.4
22 1.39E-44 | 36.78 1.43E-44 | 80.84 3.91E-45 87.34 1.26E-45 90.01 1.55E-45 | 102.23 | 1.26E-45| 397.21 | 150 | 5.43E-46 | 1400.44
20 3.42E-45 8.53 2.87E-46 | 20.02 4.22E-45 20.06 7.06E-48 16.15 2.95E-46 18.38 | 7.06E-48 83.13 4 | 2.87E-44 47.22
BN_130 | 53 | 21 5.52E-50| | 17.61 3.08E-48 | 35.80 7.95E-48 | 44.38 1.61E-48 | 34.60 3.44E-47 | 36.66 | 5.52E-50 | 169.06 | 50 | 2.96E-45| 619.17 | 5.99E-29 | 63.29
22 2.35E-50 30.83 1.58E-47 | 60.98 5.65E-47 76.75 3.49E-48 | 64.35 3.20E-47 68.50 | 2.35E-50 | 301.41 | 150 | 2.28E-45 | 1299.18
20 1.34E-42 | 8.99 3.90E-46| | 21.40 3.73E-44 | 22.66 2.25E-45 | 21.45 7.88E-45 | 20.34 | 3.90E-46 | 94.85 4 | 1.25E-44 52.81
BN_131 53| 21 16.27 6.77E-45 | 35.02 1.76E-44 43.01 6.96E-45 | 38.47 1.96E-46 41.59 | 1.27E-47 | 174.36 50 | 3.68E-45 484.84 | 1.06E-30 | 63.16
22 9.22E-45 | 30.81 2.44E-45 | 65.36 8.91E-45 83.95 3.09E-46 60.65 4.70E-46 61.78 | 3.09E-46 | 302.56 | 150 | 1.00E-45 | 1276.21
20 3.32E-49 9.69 1.47E-46 | 20.44 2.42E-48 25.62 7.18E-49 | 22.34 9.19E-50 20.94 | 9.19E-50 99.03 4 | 6.32E-44 50.84
BN_132 51| 21 6.94E-47 | 15.96 2.38E-46 | 39.89 8.13E-50 43.59 1.93E-48 | 39.77 1.04E-51 4298 | 1.04E-51 | 182.19 50 | 1.03E-44 689.28 | 3.28E-32 | 63.32
22 1.97E-50| | 29.23 3.12E-48 | 73.44 3.56E-48 | 78.00 2.17E-49 | 69.00 1.78E-46 | 67.99 | 1.97E-50 | 317.67 | 150 | 8.09E-45 | 1627.15
20 1.80E-43 8.18 7.42E-46 | 22.34 2.04E-44 24.52 5.35E-43 | 19.47 3.43E-47 23.67 | 3.43E-47 98.18 4 | 2.74E-42 53.20
BN_133 55 | 21 6.00E-44 | 17.24 4. 73E-45 | 37.89 1.92E-45 46.85 1.99E-44 | 39.84 4.68E-45 41.80 | 1.92E-45| 183.63 50 | 2.37E-43 671.80 | 2.89E-29 | 62.26
22 1.47E-44 | 35.26 3.81E-44 | 62.31 1.80E-45 85.02 2.68E-43 | 70.68 2.92E-43 77.00 | 1.80E-45| 330.27 | 150 | 9.50E-44 | 1846.83
20 4.87E-44 9.53 2.12E-44 | 20.62 2.18E-44 22.54 4.57E-45 20.47 2.13E-44 22.98 | 4.57E-45 96.14 4 | 1.80E-43 47.69
BN_134 55 | 21 1.45E-43 | 17.07 2.68E-45 | 42.40 1.22E-43 43.15 4.13E-44 | 35.22 45.29 | 3.37E-46 | 183.13 50 | 8.62E-45 606.47 | 1.59E-30 | 63.81
22 3.80E-47 | 39.00 1.66E-47 74.36 9.56E-46 | 105.81 3.96E-47 | 95.75 4.99E-47 82.74 | 1.66E-47 | 397.67 | 150 | 4.82E-45| 1412.53

Table 1: Results on coding networks. The best and the seaestdupper bound computed by any partition heuristic as difimof z is boxed and underlined,

respectively.




SCP-Based Heur. CTNT-Based Heur. MBEcombined ATB BoxProp
Inst. P(e) z nextscp nextrE nexty nextAgp next  ; pp!
uB Time uB Time uB [ Time uB Time uB Time uB Time h uB Time uB Time
bn20-30-15-150, nb. vars. = 45, evidenceés w™* = 23
la 5.85E-05 | 16 3.29E-03 | 0.14 1.38E-03 | 0.453 3.46E-04 0.36 5.96E-04 | 0.31 3.81E-04 | 0.48 | 3.46E-04| 1.75 4 | 5.32E-01 1.98 | 9.93E-01 | 352.08
18 1.88E-03 | 0.53 1.84E-03 | 1.279 2.26E-04 1.39 1.39E-04 1.01 3.13E-04 1.19 | 1.39E-04 540 | 200 | 5.70E-02 | 103.39
1b 0.565652 | 16 7.59 0.14 7.51E-01 | 0.406 8.46E-01 | 0.39 7.35E-01 0.37 7.55E-01 | 0.50 | 7.35E-01 1.81 4 | 9.26E-01 2.01 | 9.92E-01 | 351.81
18 1.44 0.53 7.32E-01 1.42 8.19E-01 1.50 7.74E-01 1.37 6.67E-01 1.05 | 6.67E-01 5.87 | 200 | 8.26E-01 | 101.75
2a 4.02E-07 | 16 2.11E-05| 0.16 7.53E-06 | 0.422 5.46E-06 | 0.45 3.33E-06 0.33 2.28E-06 0.36 | 2.28E-06 1.72 4 | 1.25E-01 2.01 | 9.68E-01 | 352.02
18 1.79E-06 0.47 3.39E-06 | 1.279 5.62E-06 1.62 2.50E-06 1.58 4.29E-06 1.19 | 1.79E-06 6.13 | 200 | 4.04E-03 88.81
2b 0.541111 | 16 4.75 0.14 7.03E-01 0.515 7.12E-01 | 0.44 7.17E-01 0.47 7.92E-01 | 0.45 | 7.03E-01 2.01 4 | 7.99E-01 2.01 | 9.68E-01 352.2
18 9.96 0.56 7.28E-01 | 1.372 7.16E-01 1.79 7.58E-01 1.06 6.67E-01 0.94 | 6.67E-01 5.72 | 200 | 7.51E-01 89.93
3a 1.18E-04 | 16 1.00E-02 | 0.14 8.73E-04 | 0.484 1.50E-03 | 0.41 8.14E-04 0.39 1.19E-03 | 0.41 | 8.14E-04 1.83 4 | 1.68E-01 1.98 | 9.85E-01 | 351.84
18 9.63E-04 | 0.61 4.68E-04| | 1.357 1.16E-03 | 1.58 2.81E-03 | 1.36 7.62E-03 | 1.26 | 4.68E-04 | 6.16 | 200 | 2.67E-02 | 73.77
3b 0.188686 | 16 8.82E-01 | 0.14 4.53E-01 | 0.375 5.29E-01 | 0.53 3.61E-01 0.38 3.80E-01 | 0.39 | 3.61E-01 1.81 4 | 7.70E-01 1.99 | 9.68E-01 | 351.98
18 7.35E-01 | 0.50 4.89E-01 | 1.279 4.00E-01 | 1.54 3.30E-01 | 1.67 3.27E-01 1.20 | 3.27E-01| 6.19 | 200 | 5.36E-01 | 69.35
bn20-30-25-250, nb. vars. = 55, evidences w™ = 25
la 2.96E-09 | 16 7.06E-05 | 0.30 6.31E-06 | 1.138 4.32E-06 1.25 1.41E-05 1.28 4.31E-06 1.50 | 4.31E-06 5.46 4 | 6.60E-02 5.78 | 9.82E-01 | 584.54
18 1.98E-05| 0.83 4.75E-06 | 5.054 3.63E-07 | 4.46 1.86E-06 | 4.21 9.07E-08 4.79 | 9.07E-08 | 19.34 | 200 | 1.10E-03 | 395.51
1b 0.151829 | 16 18.42 | 0.28 5.99E-01 | 1.076 5.28E-01 | 1.36 4.99E-01 1.09 6.05E-01 | 1.31 | 4.99E-01| 5.12 4 | 8.11E-01 5.83 | 9.81E-01 | 585.01
18 275 | 101 3.69E-01| | 4.742 3.94E-01 | 3.64 4.09E-01 | 5.30 5.72E-01 | 4.38 | 3.69E-01 | 19.08 | 200 | 6.48E-01 | 380.79
2a 2.44E-07 | 16 6.21E-04 | 0.30 3.67E-04 | 1.217 1.21E-05 0.97 1.64E-04 1.30 4.44E-04 1.28 | 1.21E-05 5.06 4 | 1.98E-01 5.80 | 9.90E-01 | 584.52
18 2.80E-05 | 0.94 5.86E-05 | 5.18 5.89E-06 5.41 5.02E-05 | 3.82 1.90E-05| 5.15 | 5.89E-06 | 20.50 | 200 | 2.17E-02 | 401.59
2b 0.308949 | 16 458 | 0.30 7.92E-01 | 1.014 | | 6.39E-01 1.05 6.67E-01 | 1.11 6.92E-01 | 1.50 | 6.39E-01 | 4.96 4 | 7.63E-01 5.78 | 9.85E-01 | 584.39
18 251 | 091 6.53E-01 | 5.054 6.36E-01 | 3.85 6.85E-01 | 4.38 5.89E-01 456 | 5.89E-01 | 18.75 | 200 | 7.07E-01 | 367.17
3a 2.76E-10 | 16 1.26E-06 | 0.30 6.46E-07 | 1.544 2.45E-07 1.15 2.19E-07 1.45 2.55E-08 1.23 | 2.55E-08 5.68 4 | 1.14E-01 5.81 | 9.94E-01 | 585.01
18 8.88E-08 | 1.01 7.33E-08 | 5.975 3.74E-08 4.60 4.30E-08 | 4.23 4.96E-08 | 4.87 | 3.74E-08 | 20.69 | 200 | 7.10E-03 | 409.05
3b 0.468007 | 16 423 | 0.30 8.42E-01 | 1.154 | | 7.88E-01 1.33 7.98E-01 | 1.20 8.22E-01| 1.25 | 7.88E-01| 5.23 4 | 7.96E-01 5.85 | 9.90E-01 | 584.79
18 1.52 0.89 7.83E-01 | 5.148 7.27E-01 | 4.65 7.26E-01 | 4.60 6.84E-01 4.28 | 6.84E-01 | 19.57 | 200 | 7.47E-01 | 336.55

Table 2: Results on bn2o networks.

respectively.

The best and the secondifiy@sr bound computed by any partition heuristic as a fonabf z is boxed and underlined,




Noisy-or Bayesian Networks Table 2 reports the results.
For z = 18, nextyre outperforms the other partition
heuristics on six instances. The improvement of the best
upper bound with respect to the second best rangesifom

to 1 order of magnitude (e.gon20-30-25-250-1g It is im-
portant to note thatextgcp is not able to compute a better
upper bound than the trivial bound ofon five instances,
while all content-based heuristics do.

If we disregard upper bounds greater than the trivial
one and each partition heuristic is considered indepen-
dently settingz = 18, ATB(h = 200) is superior to at
least one of them in three instances (ilm20-30-15-150-
2b, bn20-30-15-150-3landbn20-30-25-250-3b However,
MBE combinea(z = 18) outperforms ATB in all instances.
MBE combineq 1S able to compute upper bounds up to 5 or-
ders of magnitude smaller than ATB requiring 1 order of
magnitude less computation time (e.g., ba20-30-25-250-
laandbn20-30-25-250-3ga As in the previous benchmark,
Box-Propagation is the least accurate approach.

Linkage Analysis. Table 3 shows the results. Comparison
with ATB and Box-Propagation was not possible. Both algo-
rithms require a Bayesian network and an independent set of

evidence. However, the pedigree instances we have already

incorporate the evidence into the definition of the network.
Since we do not compare with alternative approaches, we
omit thecombinedVBE.

Regarding accuracy on the upper bound, there is no clear
dominating partition heuristic. Howevetexzt) grg Seems
to be inferior in this benchmark. The improvement of the

best upper bound with respect to the second best ranges from

6% (e.g., seqedigreelPup to 2 orders of magnitude (e.g.,
seepedigree37andpedigreed ).

Regarding cpu time, the content-base heuristics are typ-
ically 2 to 3 times slower than the scope-based heuristic.
However, there exist exceptions where the content-based
heuristics are 1 to 2 orders of magnitude slower (e.g., see
pedigree23ndpedigree37.

6 Conclusions

The paper investigates a new heuristic scheme for mini-
bucket partitioning and applies it to the probability of evi

dence in Bayesian networks. We derive the new heuristic
from first-principles and demonstrate its impact on a series
of benchmarks. Our experimental results suggest that, in
general, none of the partitions heuristics dominate all the
others. Interestingly, the combination of all heuristios t

compute the final bound as the best among them results in a

very effective method both in terms of accuracy and time.
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Inst. SCP-Based Heur. CTNT-Based Heur.
nb. P(e) w* z nexrtscp nertrg nextyers nexrtap next y;pps
uB Time uB Time uB Time uB Time uB Time
- 35 | 20 2.27E-35 65.85 4.57E-35 | 151.01 9.16E-34 98.05 8.64E-34 98.08 5.27E-35 | 104.80
-| 28] 20| 149e-67| 2072 1.55E-68 | 30.05 3072 | [2.57E-69| | 3036 | 1.91E-68| 3050
13 - 40 | 20 3.96E-16 21.36 3.97E-16 34.88 1.52E-14 35.51 9.23E-17 34.27 1.85E-15 36.47
19 E-59.79 27 | 18 1.13E-43 60.34 92.57 4.85E-43 | 112.92 5.51E-43 90.21 3.63E-43 | 327.91
23 E-39.69 31 18 3.02E-28 6.54 9.29E-27 | 797.08 5.58E-28 | 524.81 2.21E-27 | 489.70 6.15E-28 | 509.92
30 - 23| 20 8.68E-81 15.05 1.71E-80 16.26 1.71E-80 15.99 3.18E-80 15.91 1.71E-80 16.01
33 E-54.27 33 | 20 1.55E-43 44.60 8.11E-46 87.27 9.24E-47 62.71 1.19E-46 61.79 67.30
34 - 38 | 18 2.74E-37 56.96 4.26E-34 79.08 5.99E-35 | 100.23 77.06 6.01E-36 77.84
37 E-116.57 | 22 | 18 5.60E-103 43.27 9.68E-105| 637.54 4.67E-103 | 560.73 3.76E-103 | 524.25 3.91E-103 | 530.56
40 - 34 | 18 8.81E-67 6.80 3.50E-68 27.57 2.82E-65 23.14 1.38E-66 22.09 5.31E-68 31.39
41 - 39 18 6.25E-45 | 106.66 2.19E-43 | 184.47 5.01E-48 198.59 156.41 1.21E-46 | 148.82
44 - 31 | 20 2.52E-56 35.69 5.02E-56 69.09 4.53E-57 54.01 1.02E-56 54.40 1.02E-56 54.66
51 - 49 18 9.10E-44 12.76 1.77E-43 15.74 1.49E-44 17.66 1.17E-43 17.96 1.15E-43 17.94

Table 3: Results on pedigree networks. The best and the ddwst upper bound computed by any partition heuristic as a
function of z is boxed and underlined, respectively. A ‘- means unknda).



