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Abstract

Mini-Bucket Elimination(MBE) is a well-known approxima-
tion algorithm forgraphical models. It relies on a procedure
to partition a set of funtions, calledbucket, into smaller sub-
sets, calledmini-buckets. The impact of the partition process
on the quality of the bound computed has never been inves-
tigated before. We take first steps to address this issue by
presenting a framework within which partition strategies can
be described, analyzed and compared. We derive a new class
of partition heuristics from first-principles and demonstrate
its impact on a number of benchmarks for probabilistic rea-
soning.

1 Introduction
Mini-Bucket Elimination(MBE) (Dechter & Rish 2003) is
one of the most popular bounding techniques for reasoning
tasks defined overgraphical modelssuch asBayesian net-
works(Pearl 1988) orsoft Constraint Satisfaction Problems
(Bistarelli et al. 1999). The power of MBE has been exten-
sively demonstrated for optimization tasks such as finding
the most likely tuple of a probabilistic network, or finding
the optimal solution for a weighted csp (Dechter & Rish
2003; Kask & Dechter 2001; Marinescu & Dechter 2007).
In this paper we focus on the more challenging task of
weighted counting which captures the problem of counting
solutions of a constraint network, evaluating the probabil-
ity of evidence over Bayesian networks, and computing the
partition function over Markov networks. These tasks are
#P -complete and are central to both probabilistic and de-
terministic reasoning.

MBE provides an approximation by applying the exact
Bucket Elimination (BE) algorithm (Dechter 1999; Bertele
& Brioschi 1972) on a simplified version of the problem. In
BE all the functions in the so-calledbucketare processed
together, yielding a singlebucket’s function, which is de-
fined on the union of the variables of the individual func-
tions. Since this processing can be computationally expen-
sive, MBE partitions the bucket into smaller subsets called
mini-buckets, such that the number of variables in each mini-
bucket is bounded byz + 1, for a given value ofz. Then,
MBE processes each mini-bucket independently, yielding a
set of mini-bucket functions defined over smaller subsets of
variables which together bound the bucket’s function. The
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partitioning of a bucket into mini-buckets having a boundz
can be carried out in many ways, each resulting in a different
impact on the overall accuracy.

The MBE scheme was used extensively and very effec-
tively for approximating optimizations tasks, generatingup-
per and lower bounds, but mostly as a scheme for generating
heuristic evaluation function for branch-and-bound or best-
first search (Kask & Dechter 2001; Marinescu & Dechter
2007). Yet, in all these schemas little attention was paid
to improving the partition process itself. In most (if not
all) previous work, the partitioning heuristic used aims to
minimize the number of mini-buckets in the partitioning.
The heuristic relies solely on the scope of the functions and
is therefore calledscope-basedheuristic. Its effectiveness
compared against random partitioning heuristics was spo-
radically demonstrated, but no systematic study was ever
carried out.

In this paper we present a framework within which differ-
ent greedy heuristic schemes can be examined, analyzed and
compared, including the scope-based greedy heuristic. We
present a new class of greedy heuristics that look beyond the
function’s scope, focusing on the function’s content aiming
to minimize a distance measure between the target bucket
function and its mini-bucket bound. This yields a set of local
distance rules that can efficiently guide a greedy algorithm
within our framework. Roughly, a local rule associates a pair
of mini-buckets with theerror of keeping the two separated.
In this paper we evaluate our scheme for the task of upper
bounding the probability of evidence onnoisy-or bayesian
networks, coding networksandgenetic linkage analysis(Ott
1999). Earlier attempts to use the mini-bucket approxima-
tion for likelihood computation failed, often generating triv-
ial upper bounds of1 (Mateescu, Dechter, & Kask 2002).
The results demonstrate the heuristic scheme potential.

2 Preliminaries

Let X = (x1, . . . , xn) be an ordered set of variables and
D = (D1, . . . ,Dn) an ordered set of domains, whereDi is
the finite set of potential values forxi. The assignment of
variablexi with a ∈ Di is noted(xi = a). A tuple t is
an ordered set of assignments to different variables(xi1 =
ai1 , . . . , xik

= aik
). Thescopeof t, notedvar(t), is the set

of variables that it assigns.



2.1 Belief Networks
A Bayesian network(Pearl 1988) is a quadrupleBN =
(X ,D,G,P) whereG is a directed acyclic graph overX and
P = {p1, . . . , pn}, wherepi = P (xi|pai) denotes the con-
ditional probability tables (CPTs). The setpai is the set of
parents of the variablexi in G. A Bayesian network rep-
resents in a compact way a probability distribution over tu-
ple t, P (t) =

∏n

i=1 P (xi|pai). Given a Bayesian network
BN and evidence tuplee, theprobability of evidenceP (e)
is defined as:P (e) =

∑

X−var(e)

∏n

i=1 P (xi|pai)|e where
f(X)|e is a new functionh defined overX − var(e) such
thath(t) = f(t ·e), wheret ·e is a new tuple containing both
assignments.

2.2 Bucket and Mini-Bucket Elimination
Bucket elimination(BE) (Dechter 1999; Bertele & Brioschi
1972) is an exact algorithm for answering a variety of
queries over graphical models. In particular, given a
Bayesian networkBN , BE computes the probability of evi-
dencee as shown in the following pseudo-code:
function BE((X ,D,G,P), e)
1. S := {f|e | f ∈ P};
2. X := X − var(e);
3. while X 6= ∅ do
4. xi := Select(X );
5. Bi := {f ∈ S| xi ∈ var(f)};
6. gi :=

P

xi
(
Q

f∈Bi
f);

7. S := S − Bi ∪ {gi};
8. X := X − {x};
9. endwhile
10. return (

Q

f∈S f());
endfunction

After incorporating the evidence in the network (line1), BE
processes the remaining variablesX − var(e), eliminating
them one at a time. The elimination of variablexi is as fol-
lows. First, the algorithm computes the so calledbucketof
variablexi, notedBi, which contains all the functions inS
havingxi in their scope (line5). Next, BE computes the
function of bucketBi, notedgi, by multiplying all its func-
tions and subsequently summing outxi from the result (line
6). Then,S is updated by removing the functions in bucket
Bi and addinggi (line 7). The newS does not containxi (all
functions mentioningxi have been removed) but preserves
the exact result. When all variables have been eliminated,
S contains a set of empty-scope functions (i.e., a set of con-
stants). The multiplication of those functions is the proba-
bility of evidenceP (e). The time and space complexity of
the algorithm is exponential in a structural parameter called
induced width, which is the largest scope of all the functions
computed.

Mini-bucket elimination(MBE) (Dechter & Rish 2003)
is an approximation of full bucket elimination that can be
used to bound the exact solution when the induced width
is too large. Given a control parameterz and a bucket
Bi = {f1 . . . , fm}, MBE generates a partitionQ =
{Q1, . . . , Qp} of Bi, where each subsetQj ∈ Q is called
mini-bucket. Abusing notation, the scope of a set of func-
tionsF , notedvar(F), is the union of scopes of the func-
tions it contains. Given an integer parameterz, MBE re-
stricts the size of the scopes of each mini-bucket byz + 1.

Then, each mini-bucket is processed independently. The
pseudo-code of MBE is obtained by replacing lines6 and
7 in algorithm BE by,
6. {Q1, . . . , Qp} := Partition(Bi, z);
6b. for each j = 1 . . . p do gij :=

P

xi
(
Q

f∈Qj
f);

7. S := (S ∪ {gi1 , . . . , gip}) − Bi;

Definition 1 (function of a partition) Given a partition
Q = {Q1, . . . , Qp} of a bucketBi, thefunction represented
by the partitionQ is g

Q
i =

∏p

j=1

∑

xi

∏

f∈Qj
f .

It can be proved (Dechter & Rish 1997) that given a
bucketBi and a partitionQ of Bi, ∀t, gi(t) ≤ g

Q
i (t). Conse-

quently, the upper bound computed in each bucket accumu-
lates yielding an upper bound ofP (e).

The time and space complexity of MBE isO(dz+1) and
O(dz), respectively, whered is the maximum domain size.
The parameterz allows trading time and space for accuracy:
greater values ofz allow larger mini-buckets yielding tighter
bounds.

3 Partitioning Framework
As we have seen, line6 of MBE algorithm computes a par-
tition of bucketBi. Different partitions will result in differ-
ent upper bounds. In the following, we formalize the task
of finding the optimal bucket partitioning and present a par-
titioning structure within which partition strategies canbe
described.

3.1 The Optimal Partitioning Task
We consider partitions that are parameterized by the maxi-
mum arity of each mini-bucket.

Definition 2 (z-partition) Given a bucketBi and a control
parameterz, a partition Q = {Q1, . . . , Qp} of Bi is a z-
partition if ∀Qj ∈ Q, |var(Qj)| ≤ z.

The goal of the partition process is to find az-partition
Q such thatgQ

i is theclosestto the bucket functiongi. The
closeness of two functions defined over the same scope can
be evaluated in terms of a distance measuredist. Formally,

Definition 3 (partition task) Given a bucketBi, a param-
eter z and a distance measuredist, the partition task is to
find az-partition Q∗ of Bi such that

Q∗ = arg min
Q

{dist(gQ
i , gi)}

whereQ is az-partition ofBi.

In the probabilistic context, there are several common dis-
tance measures between probability distributionsf and g
which are relevant:
• Relative error: RE(f, g) =

∑

t(log (f(t)) − log (g(t))).

• Maximum relative error: MRE(f, g) =
maxt{log (f(t)) − log (g(t))}.

• Kullback-Leibler (KL) divergence: KL(f, g) =
∑

t f(t) × log ( f(t)
g(t) ).

• Absolute error: AE =
∑

t |f(t) − g(t)|.
To gain insight into the partition task we propose aparti-

tioning framework.
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Figure 1: Hasse diagram of the partition lattice ofB6 =
{f1, f2, f3, f4}. We specify each function by its subindex.

3.2 Partitioning Lattice
We will organize the space of partitionings in a lattice using
therefinementrelation between partitions.

Definition 4 (refinement relation) Partition Q is a refine-
mentof partition Q′, notedQ ⊏ Q′, iff Q 6= Q′ and every
element ofQ is a subset of some element ofQ′. Formally,
Q ⊏ Q′ ⇐⇒ Q 6= Q′ ∧ ∀Qj ∈ Q, ∃Q′

k ∈ Q′, Qj ⊆ Q′
k

We say thatQ ⊑ Q′ iff Q ⊏ Q′ or Q = Q′. In that
case, we say thatQ is finer thanQ′ or, conversaly, thatQ′ is
coarserthanQ. It is easy to see that therefinementrelation
yields a partial order and, indeed, a complete lattice that can
be represented as a Hasse diagram.

Definition 5 (Hasse diagram) Given a bucketBi, and the
partial order⊑, the Hasse diagram of all the possible par-
titions of Bi is defined as follows. Each partitionQ is a
vertex in the diagram. There is an upward edge fromQ
to Q′ if Q ⊏ Q′ and there is no partitionQ′′ such that
Q ⊏ Q′′ ⊏ Q′. In this case we say thatQ′ is a parentof Q,
and we denote bypa(Q) the set of all its parents. Thebottom
partition, notedQ⊥, corresponds to having one mini-bucket
for each function inBi, and thetop partition, notedQ⊤, has
only one mini-bucket containing all functions, which is the

input bucket itself. Namely,gQ⊤

i = gi.

Example 1 Consider a bucketB6 = {f1, f2, f3, f4}. Its
Hasse diagram in depicted in Figure 1. As observed, the
finest partition isQ⊥ = {{f1}, {f2}, {f3}, {f4}} (depicted
in the bottom of the diagram). The coarsest partition is
Q⊤ = {{f1, f2, f3, f4}} (depicted in the top of the dia-
gram).

As shown in (Dechter & Rish 1997), functions of coarser
partitions always improve the upper bound:

Theorem 1 Given a bucketBi and two partitionsQ andQ′

of Bi, Q ⊏ Q′ ⇒ ∀t, gi(t) ≤ g
Q′

i (t) ≤ g
Q
i (t)

Therefore, for any two arbitrary nodesQ and Q′ con-
nected in the partition lattice by an upward path, the bound
g

Q′

i is tighter thangQ
i . However, in general, it is not possi-

ble to establish any tighter-than relation among functionsof
partitions that are not upward connected in the lattice. We
can clearly conclude that,

Corollary 1 Given a bucketBi and two partitionsQ andQ′

of Bi, Q ⊏ Q′ ⇒ dist(gQ′

i , gi) ≤ dist(gQ
i , gi), wheredist

is any of the distance funtions defined in Section 3.1.

Corollary 1 is central to our partitioning framework. It
states that the distancedist to the top partition is always
non-increasing along any upward path in the partitioning lat-
tice. As a consequence, it is easy to see that the optimalz-
partitionQ∗ is maximal, that is, all its parents in the lattice
arel-partitions wherez < l.

Theorem 2 Given a bucketBi, the time complexity of find-
ing the optimalz-partition ofBi as defined in Definition 3 is
O(T × D) whereT is the number of maximalz-partitions
of Bi, andD is the complexity of computingdist(gQ, gi).

The number of maximalz-partitions of a bucketBi is up-
per bounded by the size of the lattice, which isO(|Bi|

|Bi|).
However, a tigther bound is the maximum among the num-
ber of partitions in each level of the partitioning lattice given
by theStirling number of the second kind(Comtet 1974).

Proposition 1 Given a bucket Bi, its number of
maximal z-partitions T for any z is bounded by:
T ≤ max1≤k≤|Bi|{S2(|Bi|, k)} where S2(|Bi|, k) is
the Stirling number of the second kind,S2(|Bi|, k) =
∑k

j=1 (−1)k−j j|Bi|−1

(j−1)!(k−j)!

We can view any partition-seeking algorithm as a traver-
sal algorithm of the partition lattice. An optimal partition-
seeking algorithm would need to traverse the partition lattice
bottom-up along all paths leading to a maximalz-partition.
Since this is computationally hard, we approximate this task.

4 Heuristic Partitioning
Our focus is on depth-first greedy traversals of the partition-
ing lattice, going bottom-up to a maximalz-partition that are
guided by a heuristic evaluation function, callednext. The
following pseudo-code describes ourPartition scheme.
function Partition(Bi, z)
1. Q := ∅; for eachf ∈ Bi do Q := Q ∪ {f} ;
2. while ∃Q′ ∈ pa(Q) s.t.Q′ is a z-partitiondo Q := next(Q);
3. return Q;
endfunction

Starting with the bottom partition ofBi (line 1), the al-
gorithm traverses the path depth-first until a maximalz-
partition is found (line2). Different next functions will
likely lead to different final maximalz-partitions. Yet, each
iteration is guaranteed to tighten the resulting bound (see
Corollary 1).

In the following, we describe the scope-based heuris-
tic discussed earlier, and propose a new class of partition
heuristics, calledcontent-basedheuristics. It is important to
note that the space complexity of MBE using any of these
partition heuristics remains exponential inz.

4.1 Scope-based Heuristic
The partition heuristic proposed in (Dechter & Rish 1997)
and used throughout in subsequent work with MBE, tries
to minimize the number of mini-buckets in the partition, by
including in each mini-bucket as many functions as possible.
In our lattice, any bottom-up traversal of bucket partitioning
reduce the number of mini-buckets. The only other guidance
in selecting a parent partition is to favor unbalanced mini-
buckets (see the pseudo-code below). First, the mini-buckets



in the current partition are decreasingly ordered from leftto
right according to their arity. Then, we try to find the first
mini-bucket in the ordering that can be merged with one of
its next right-hand mini-buckets.
function nextSCP (Q)
1. sort by arity(Q);
2. j := 1;
3. while 6 ∃k, j < k < |Q|, |var(Qj ∪ Qk)| ≤ z do
4. j := j + 1;
5. endwhile
6. if j < |Q| then return Q − Qj − Qk ∪ {Qj ∪ Qk};
7. else returnQ;
endfunction

Proposition 2 Given a partitionQ of a bucketBi, the time
complexity ofnextSCP (Q) is O(|Q| log (|Q|) + |Q|2).

Proposition 3 Given a bucketBi, the time complexity
of Partition(Bi,z) using nextSCP as heuristic function is
O(|Bi| log (|Bi|) + |Bi|

2).

The main advantage of the scope-based heuristic is its
simplicity which amounts to small overhead. Its main dis-
advantage is that it does not consider the actual information
contained in each function.

4.2 Content-based Heuristics
We propose a new partition heuristic derived from the global
optimization task in Definition 3. Given the current partition
Q, we seek the parent partition ofQ in the lattice that mini-
mizes the distancedist to the top target partition. Formally,
given a bucketBi, theoptimal(opt)next is

next
opt
dist(Q) = arg min

Q′∈pa(Q)
{dist(gQ′

i , gi)} (1)

subject toQ′ being az-partition.
In general, computingdist(gQ′

i , gi) is exponential in the
arity of gi. The only exception is whenRE is used asdist.
In that case, we can derive a measure which is time expo-
nential inz only. Let the number of complete assignments
over a set of variablesY beW(Y). Then,

Proposition 4 The number of extensions of a tuplet′ such
that var(t′) ⊆ Y to the full scopeY is,W(Y − var(t′)) =

W(Y)
W(var(t′))

Theorem 3 Given a partitionQ of a bucketBi, next
opt
RE(Q)

equals

arg max
Qjk∈pa(Q)

{
1

W(var(Qj ∪ Qk))
× RE(g

{Qj ,Qk}
i , g

Qj∪Qk

i )}

(2)

whereQjk is the parentz-partition of Q that merges mini-
bucketsQj , Qk ∈ Q.

Proof. Let Q′ = {Q1, . . . , (Qj ∪ Qk), . . . , Qp} and
Q′′ = {Q1, . . . , (Ql ∪ Qm), . . . , Qp} be two parent par-
titions of Q = {Q1, . . . , Qp}. First, let us suposse that
(Qj ∪ Qk) ∩ (Ql ∪ Qm) = ∅ (i.e., Q′ and Q′′ merge
different mini-buckets). Q′ is closer toQ⊤ than Q′′ iff
RE(gQ′

i , gi) < RE(gQ′′

i , gi), namely,

∑

t

log
[

g
Q1

i (t) × . . . × g
Qj∪Qk

i (t) × . . . × g
Qp

i (t)
]

≤

∑

t

log
[

g
Q1

i (t) × . . . × g
Ql∪Qm

i (t) × . . . × g
Qp

i (t)
]

wherevar(t) = var(Bi). Using properties oflog function,
reordering and cancelling, the previous expression yields:

∑

t

(log
[

g
Ql

i (t) × g
Qm

i (t)
]

− log
[

g
Ql∪Qm

i (t)
]

) ≤

∑

t

(log
[

g
Qj

i (t) × g
Qk

i (t)
]

− log
[

g
Qj∪Qk

i (t)
]

)

Instead of summing over all tuples in the bucket’s scope, we
can sum over the tuples in the scopes of the mini-buckets
involved in each side of the inequality and weigh each side
by its number of extensions to the full scope. Then, the pre-
vious expression can be rewritten as,

1

W(var(t′))

RE(g
{Ql,Qm}

i ,g
Ql∪Qm
i )

︷ ︸︸ ︷
∑

t′

(log
[

g
Ql

i (t) × g
Qm

i (t)
]

− log
[

g
Ql∪Qm

i (t)
]

) ≤

1

W(var(t′′))

∑

t′′

(log
[

g
Qj

i (t) × g
Qk

i (t)
]

− log
[

g
Qj∪Qk

i (t)
]

)

︸ ︷︷ ︸

RE(g
{Qj,Qk}

i ,g
Qj∪Qk
i )

wherevar(t′) = var(Ql ∪ Qm) andvar(t′′) = var(Qj ∪
Qk). The heuristic will preferQ′ over Q′′ if the aver-

agedRE(g
{Qj ,Qk}
i , g

Qj∪Qk

i ) is greater than the averaged

RE(g
{Ql,Qm}
i , g

Ql∪Qm

i ). The derivation when the new
mini-bucket inQ′ andQ′′ have one mini-bucket in common
is very similar and leads to the same expression. Therefore,
we can conclude that the theorem holds.

�

We will denote Expression 2 in Theorem 3 asnextRE .
Note that the distance measureRE in nextRE only refers to
functions in the two candidate mini-buckets to be merged.
This pairwise internal distance can be interpreted as the
penalty or error due to keeping them separated. Namely,
it defines alocal heuristicwhich only has to consider the
mini-buckets to be merged.

The other distance measures do not yield a local rule like
nextRE , which is easy to compute. Therefore, we must re-
sort to approximation. The derivation from Expression (1) of
those local heuristics is similar to the one presented in Theo-
rem 3, the only difference being the use of some approxima-
tion to transform an expression exponential in the arity ofgi

to an expression exponential inz. Let f andg be two func-
tions, andt be a tuple such thatvar(t) = var(f) ∪ var(g).
Whendist in Expression (1) is KL or AE, an expression of
the form

∑

t(f(t) × g(t)) is approximated by
∑

t f(t) ×
maxt{g(t)}, while whendist is MRE, maxt{f(t) − g(t)}
is approximated bymaxt{f(t)} − maxt{g(t)}. Note that
in the KL and AE approximations, the role off andg can
be interchanged, leading to different local heuristics. For



lack of space we will only list and experiment over a sub-
set of the resulting derived heuristics. We refer to them as
nextMRE(Q), nextKL(Q), andnextAE(Q), defined, re-
spectively, as follows:

arg max
Qjk∈pa(Q)

{max
t

{log
[

g
{Qj ,Qk}
i

]

}−max
t

{log
[

g
Qj∪Qk

i

]

}}

arg max
Qjk∈pa(Q)

{MRE(g
Qj∪Qk

i , g
{Qj ,Qk}
i )}

arg max
Qjk∈pa(Q)

{W(var(Qj ∪ Qk))
maxt {g

{Qj ,Qk}
i }

∑

t g
Qj∪Qk

i

}

wherevar(t) = var(Qj ∪ Qk).
We also consider another type of content-based heuristics,

derived from Expression (2). Instead of ranking the parti-
tions according toRE, these heuristics callednextdist′(Q),
rank them according to the other distance measures pro-
posed in Section 3.1.

Proposition 5 Given a partitionQ of a bucketBi, and a
distance measuredist, the time complexity ofnextdist(Q)
is O(|Bi|

2dz), whered is the maximum domain size of the
variables andz is the control parameter.

Proposition 6 Given a bucketBi, the time complexity of
Partition(Bi,z) using nextdist(Q) as heuristic function is
O(|Bi|

3dz).

5 Empirical Evaluation
In this section we evaluate the performance of each of the
mini-bucket partition heuristics individually in order tode-
termine, first, whether there exist any that is either clearly
superior or inferior. We report results with the scope-based
heuristic, which was used in previous work, and with only a
subset of the content-based partition heuristics presented in
the previous section (due to space reasons). As we will see,
none of the partition strategy dominates. But, when com-
bined (by taking their minimum upper bound) they yield a
far superior bound to any single strategy. This combined
heuristic, while superior and more robust strategy for us-
ing the MBE scheme is also more time consuming; linear in
the number of participating partition heuristics. Note, how-
ever, that the MBE scheme is restricted by the space and
not by the time. Therefore, as the experiments show, having
a collection of combined heuristics can increase its power
without increasing the needed memory, at the cost of only
a constant factor (depending on the number of partitioning
schemes we use) to its time. In our experiments we consider
the combination of all the individual partition heuristicsre-
ported.

We compare the individual and combined MBE schemes
with two alternative approaches available in the litera-
ture: the any-time bounding scheme ATB (Bidyuk &
Dechter 2006) and Box-Propagation (Mooij & Kappen
2008). ATB is based on the cutset-conditioning schema
and applies exact computation over a subset of the cutset
search space, controlled by a parameterh, while applying
Bound-Propagation (Leisink & Kappen 2003) to the rest

of the space. Both Bound-Propagation (and as a conse-
quence ATB), and Box-Propagation were derived for bound-
ing posterior probabilities. The probability of evidence
can be obtained by applying the chain rule to individual
bounds on posteriors. We could not compare with Tree-
Reweighted (Wainwright, Jaakkola, & Willsky 2005), the
other alternative approach to compute upper bounds on P(e),
because all its implementations are only available for binary
graphical models.

We conduct our empirical evaluation on three bench-
marks: noisy-or bayesian networks, coding networksand
linkage analysis. All instances are included in the UAI08
evaluation 1. For comparison, we always report upper
bound on P(e) (UB) and cpu time in seconds. For MBE,
we report UB and cpu time as a function of the control
parameterz, while for ATB we report this information as a
function of h. In all the tables, we box and underline the
best and second best upper bound computed by any partition
heuristic as a function ofz, respectively. The highest value
of z reported is the highest feasible value given the available
memory. MBE uses the variable ordering established by the
min-fill heuristic (Dechter 2003) after instantiating evidence
variables. We run all experiments in a Pentium Core Duo
2.6 GHz and2GB ram.

Coding Networks. Table 1 reports the results. The exact
P(e) is not available. First, let us consider the impact of the
partition heuristic on the upper bound (columns ’SCP-Based
Heur.’ and ’CTNT-Based Heur.’). For z = 22, there is no
dominating partition heuristic. Each heuristic computes the
best UB on two instances. The only exception isnextRE ,
that computes the best UB on one instance. The improve-
ment of the best upper bound with respect to the second best
ranges from25% (e.g., seeBN 129) to orders of magnitude
(e.g., seeBN 126, BN 130, BN 132andBN 133).

Regarding cpu time, the content-based heuristics are2 to
3 times slower than the scope-based heuristic. The reason is
that during the traversal of the partition lattice content-based
partioning heristics have to compute intermediate functions.
It is important to note that it is the space and not the time
that bounds the maximum feasiblez. As a consequence, that
constant increase in time is not that significant as the space
complexity remains the same.

When z = 22 and each partition heuristic is consid-
ered independently, ATB(h = 150) outperforms at least
one of them on four instances (i.e.,BN 128, BN 129,
BN 131 and BN 133). However, ATB only outper-
forms MBECombined(z = 22) on instance BN 126.
MBECombined(z = 22) obtains UBs from 1 order (e.g.,
seeBN 131) to 5 orders (e.g., seeBN 130) of magnitude
better than ATB(h = 150) while 3 to 5 times faster.
Box-Propagation is the least accurate approach, comput-
ing upper bounds up to 27 orders of magnitude worse than
MBECombined (seeBN 131).

1http://graphmod.ics.uci.edu/uai08/Software



SCP-Based Heur. CTNT-Based Heur. MBECombined ATB BoxProp

Inst. w* z nextSCP nextRE nextKL′ nextAE nextMRE′

UB Time UB Time UB Time UB Time UB Time UB Time h UB Time UB Time

20 5.49E-43 7.94 8.64E-44 17.72 5.61E-44 22.00 2.24E-45 16.47 1.50E-45 18.91 1.50E-45 83.05 4 1.52E-41 50.14

BN 126 55 21 1.85E-43 14.43 4.31E-46 40.22 1.22E-42 40.92 1.88E-42 41.89 6.31E-45 43.60 4.31E-46 181.06 50 2.54E-42 631.52 3.74E-30 62.47

22 1.57E-44 32.45 2.33E-43 88.25 1.67E-45 84.70 1.55E-44 82.84 3.13E-44 86.39 1.67E-45 374.63 150 1.25E-42 1441.75

20 9.10E-46 9.55 1.29E-45 24.04 2.49E-47 26.40 1.24E-47 25.33 6.63E-45 22.92 1.24E-47 108.25 4 2.27E-43 54.85

BN 127 54 21 1.94E-44 19.83 2.41E-47 46.66 1.58E-45 46.92 4.91E-45 39.09 6.30E-45 49.31 2.41E-47 201.82 50 2.25E-44 426.26 3.86E-31 63.61

22 2.42E-47 37.49 1.35E-47 74.72 2.01E-47 81.32 1.98E-48 86.72 1.00E-48 85.83 1.00E-48 366.09 150 1.90E-44 946.33

20 3.76E-42 9.45 1.07E-41 25.02 6.98E-42 26.88 4.14E-41 23.79 9.01E-43 28.13 9.01E-43 113.28 4 1.63E-42 85.71

BN 128 49 21 1.91E-41 18.02 4.49E-44 45.37 2.57E-42 52.26 7.88E-42 45.76 4.49E-43 51.31 4.49E-44 212.72 50 7.19E-43 637.23 1.98E-31 63.02

22 5.14E-43 32.90 3.00E-41 81.56 8.47E-45 88.21 2.03E-43 90.65 5.64E-45 81.65 5.64E-45 374.97 150 1.44E-43 1225.00

20 2.34E-44 8.95 1.44E-44 20.37 9.22E-44 24.27 4.04E-46 20.84 3.12E-47 25.02 3.12E-47 99.46 4 8.15E-45 50.48

BN 129 53 21 2.46E-46 16.63 1.22E-44 41.68 1.36E-45 47.13 1.17E-44 40.62 1.23E-46 43.87 1.23E-46 189.94 50 2.11E-45 585.19 1.78E-29 62.4

22 1.39E-44 36.78 1.43E-44 80.84 3.91E-45 87.34 1.26E-45 90.01 1.55E-45 102.23 1.26E-45 397.21 150 5.43E-46 1400.44

20 3.42E-45 8.53 2.87E-46 20.02 4.22E-45 20.06 7.06E-48 16.15 2.95E-46 18.38 7.06E-48 83.13 4 2.87E-44 47.22

BN 130 53 21 5.52E-50 17.61 3.08E-48 35.80 7.95E-48 44.38 1.61E-48 34.60 3.44E-47 36.66 5.52E-50 169.06 50 2.96E-45 619.17 5.99E-29 63.29

22 2.35E-50 30.83 1.58E-47 60.98 5.65E-47 76.75 3.49E-48 64.35 3.20E-47 68.50 2.35E-50 301.41 150 2.28E-45 1299.18

20 1.34E-42 8.99 3.90E-46 21.40 3.73E-44 22.66 2.25E-45 21.45 7.88E-45 20.34 3.90E-46 94.85 4 1.25E-44 52.81

BN 131 53 21 1.27E-47 16.27 6.77E-45 35.02 1.76E-44 43.01 6.96E-45 38.47 1.96E-46 41.59 1.27E-47 174.36 50 3.68E-45 484.84 1.06E-30 63.16

22 9.22E-45 30.81 2.44E-45 65.36 8.91E-45 83.95 3.09E-46 60.65 4.70E-46 61.78 3.09E-46 302.56 150 1.00E-45 1276.21

20 3.32E-49 9.69 1.47E-46 20.44 2.42E-48 25.62 7.18E-49 22.34 9.19E-50 20.94 9.19E-50 99.03 4 6.32E-44 50.84

BN 132 51 21 6.94E-47 15.96 2.38E-46 39.89 8.13E-50 43.59 1.93E-48 39.77 1.04E-51 42.98 1.04E-51 182.19 50 1.03E-44 689.28 3.28E-32 63.32

22 1.97E-50 29.23 3.12E-48 73.44 3.56E-48 78.00 2.17E-49 69.00 1.78E-46 67.99 1.97E-50 317.67 150 8.09E-45 1627.15

20 1.80E-43 8.18 7.42E-46 22.34 2.04E-44 24.52 5.35E-43 19.47 3.43E-47 23.67 3.43E-47 98.18 4 2.74E-42 53.20

BN 133 55 21 6.00E-44 17.24 4.73E-45 37.89 1.92E-45 46.85 1.99E-44 39.84 4.68E-45 41.80 1.92E-45 183.63 50 2.37E-43 671.80 2.89E-29 62.26

22 1.47E-44 35.26 3.81E-44 62.31 1.80E-45 85.02 2.68E-43 70.68 2.92E-43 77.00 1.80E-45 330.27 150 9.50E-44 1846.83

20 4.87E-44 9.53 2.12E-44 20.62 2.18E-44 22.54 4.57E-45 20.47 2.13E-44 22.98 4.57E-45 96.14 4 1.80E-43 47.69

BN 134 55 21 1.45E-43 17.07 2.68E-45 42.40 1.22E-43 43.15 4.13E-44 35.22 3.37E-46 45.29 3.37E-46 183.13 50 8.62E-45 606.47 1.59E-30 63.81

22 3.80E-47 39.00 1.66E-47 74.36 9.56E-46 105.81 3.96E-47 95.75 4.99E-47 82.74 1.66E-47 397.67 150 4.82E-45 1412.53

Table 1: Results on coding networks. The best and the second best upper bound computed by any partition heuristic as a function of z is boxed and underlined,
respectively.



SCP-Based Heur. CTNT-Based Heur. MBECombined ATB BoxProp

Inst. P(e) z nextSCP nextRE nextKL′ nextAE nextMRE′

UB Time UB Time UB Time UB Time UB Time UB Time h UB Time UB Time

bn2o-30-15-150, nb. vars. = 45, evidence =15, w∗ = 23

1a 5.85E-05 16 3.29E-03 0.14 1.38E-03 0.453 3.46E-04 0.36 5.96E-04 0.31 3.81E-04 0.48 3.46E-04 1.75 4 5.32E-01 1.98 9.93E-01 352.08

18 1.88E-03 0.53 1.84E-03 1.279 2.26E-04 1.39 1.39E-04 1.01 3.13E-04 1.19 1.39E-04 5.40 200 5.70E-02 103.39

1b 0.565652 16 7.59 0.14 7.51E-01 0.406 8.46E-01 0.39 7.35E-01 0.37 7.55E-01 0.50 7.35E-01 1.81 4 9.26E-01 2.01 9.92E-01 351.81

18 1.44 0.53 7.32E-01 1.42 8.19E-01 1.50 7.74E-01 1.37 6.67E-01 1.05 6.67E-01 5.87 200 8.26E-01 101.75

2a 4.02E-07 16 2.11E-05 0.16 7.53E-06 0.422 5.46E-06 0.45 3.33E-06 0.33 2.28E-06 0.36 2.28E-06 1.72 4 1.25E-01 2.01 9.68E-01 352.02

18 1.79E-06 0.47 3.39E-06 1.279 5.62E-06 1.62 2.50E-06 1.58 4.29E-06 1.19 1.79E-06 6.13 200 4.04E-03 88.81

2b 0.541111 16 4.75 0.14 7.03E-01 0.515 7.12E-01 0.44 7.17E-01 0.47 7.92E-01 0.45 7.03E-01 2.01 4 7.99E-01 2.01 9.68E-01 352.2

18 9.96 0.56 7.28E-01 1.372 7.16E-01 1.79 7.58E-01 1.06 6.67E-01 0.94 6.67E-01 5.72 200 7.51E-01 89.93

3a 1.18E-04 16 1.00E-02 0.14 8.73E-04 0.484 1.50E-03 0.41 8.14E-04 0.39 1.19E-03 0.41 8.14E-04 1.83 4 1.68E-01 1.98 9.85E-01 351.84

18 9.63E-04 0.61 4.68E-04 1.357 1.16E-03 1.58 2.81E-03 1.36 7.62E-03 1.26 4.68E-04 6.16 200 2.67E-02 73.77

3b 0.188686 16 8.82E-01 0.14 4.53E-01 0.375 5.29E-01 0.53 3.61E-01 0.38 3.80E-01 0.39 3.61E-01 1.81 4 7.70E-01 1.99 9.68E-01 351.98

18 7.35E-01 0.50 4.89E-01 1.279 4.00E-01 1.54 3.30E-01 1.67 3.27E-01 1.20 3.27E-01 6.19 200 5.36E-01 69.35

bn2o-30-25-250, nb. vars. = 55, evidence =25, w∗ = 25

1a 2.96E-09 16 7.06E-05 0.30 6.31E-06 1.138 4.32E-06 1.25 1.41E-05 1.28 4.31E-06 1.50 4.31E-06 5.46 4 6.60E-02 5.78 9.82E-01 584.54

18 1.98E-05 0.83 4.75E-06 5.054 3.63E-07 4.46 1.86E-06 4.21 9.07E-08 4.79 9.07E-08 19.34 200 1.10E-03 395.51

1b 0.151829 16 18.42 0.28 5.99E-01 1.076 5.28E-01 1.36 4.99E-01 1.09 6.05E-01 1.31 4.99E-01 5.12 4 8.11E-01 5.83 9.81E-01 585.01

18 2.75 1.01 3.69E-01 4.742 3.94E-01 3.64 4.09E-01 5.30 5.72E-01 4.38 3.69E-01 19.08 200 6.48E-01 380.79

2a 2.44E-07 16 6.21E-04 0.30 3.67E-04 1.217 1.21E-05 0.97 1.64E-04 1.30 4.44E-04 1.28 1.21E-05 5.06 4 1.98E-01 5.80 9.90E-01 584.52

18 2.80E-05 0.94 5.86E-05 5.18 5.89E-06 5.41 5.02E-05 3.82 1.90E-05 5.15 5.89E-06 20.50 200 2.17E-02 401.59

2b 0.308949 16 4.58 0.30 7.92E-01 1.014 6.39E-01 1.05 6.67E-01 1.11 6.92E-01 1.50 6.39E-01 4.96 4 7.63E-01 5.78 9.85E-01 584.39

18 2.51 0.91 6.53E-01 5.054 6.36E-01 3.85 6.85E-01 4.38 5.89E-01 4.56 5.89E-01 18.75 200 7.07E-01 367.17

3a 2.76E-10 16 1.26E-06 0.30 6.46E-07 1.544 2.45E-07 1.15 2.19E-07 1.45 2.55E-08 1.23 2.55E-08 5.68 4 1.14E-01 5.81 9.94E-01 585.01

18 8.88E-08 1.01 7.33E-08 5.975 3.74E-08 4.60 4.30E-08 4.23 4.96E-08 4.87 3.74E-08 20.69 200 7.10E-03 409.05

3b 0.468007 16 4.23 0.30 8.42E-01 1.154 7.88E-01 1.33 7.98E-01 1.20 8.22E-01 1.25 7.88E-01 5.23 4 7.96E-01 5.85 9.90E-01 584.79

18 1.52 0.89 7.83E-01 5.148 7.27E-01 4.65 7.26E-01 4.60 6.84E-01 4.28 6.84E-01 19.57 200 7.47E-01 336.55

Table 2: Results on bn2o networks. The best and the second best upper bound computed by any partition heuristic as a function of z is boxed and underlined,
respectively.



Noisy-or Bayesian Networks. Table 2 reports the results.
For z = 18, nextMRE′ outperforms the other partition
heuristics on six instances. The improvement of the best
upper bound with respect to the second best ranges from5%
to 1 order of magnitude (e.g.,bn2o-30-25-250-1a). It is im-
portant to note thatnextSCP is not able to compute a better
upper bound than the trivial bound of1 on five instances,
while all content-based heuristics do.

If we disregard upper bounds greater than the trivial
one and each partition heuristic is considered indepen-
dently settingz = 18, ATB(h = 200) is superior to at
least one of them in three instances (i.e.,bn2o-30-15-150-
2b, bn2o-30-15-150-3bandbn2o-30-25-250-3b). However,
MBECombined(z = 18) outperforms ATB in all instances.
MBECombined is able to compute upper bounds up to 5 or-
ders of magnitude smaller than ATB requiring 1 order of
magnitude less computation time (e.g., seebn2o-30-25-250-
1a andbn2o-30-25-250-3a). As in the previous benchmark,
Box-Propagation is the least accurate approach.
Linkage Analysis. Table 3 shows the results. Comparison
with ATB and Box-Propagation was not possible. Both algo-
rithms require a Bayesian network and an independent set of
evidence. However, the pedigree instances we have already
incorporate the evidence into the definition of the network.
Since we do not compare with alternative approaches, we
omit thecombinedMBE.

Regarding accuracy on the upper bound, there is no clear
dominating partition heuristic. However,nextMRE′ seems
to be inferior in this benchmark. The improvement of the
best upper bound with respect to the second best ranges from
6% (e.g., seepedigree13) up to 2 orders of magnitude (e.g.,
seepedigree37andpedigree41).

Regarding cpu time, the content-base heuristics are typ-
ically 2 to 3 times slower than the scope-based heuristic.
However, there exist exceptions where the content-based
heuristics are 1 to 2 orders of magnitude slower (e.g., see
pedigree23andpedigree37).

6 Conclusions
The paper investigates a new heuristic scheme for mini-
bucket partitioning and applies it to the probability of evi-
dence in Bayesian networks. We derive the new heuristic
from first-principles and demonstrate its impact on a series
of benchmarks. Our experimental results suggest that, in
general, none of the partitions heuristics dominate all the
others. Interestingly, the combination of all heuristics to
compute the final bound as the best among them results in a
very effective method both in terms of accuracy and time.
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Inst. SCP-Based Heur. CTNT-Based Heur.

nb. P(e) w∗ z nextSCP nextRE nextKL′ nextAE nextMRE′

UB Time UB Time UB Time UB Time UB Time

7 - 35 20 2.27E-35 65.85 4.57E-35 151.01 9.16E-34 98.05 8.64E-34 98.08 5.27E-35 104.80

9 - 28 20 1.49E-67 20.72 1.55E-68 30.05 2.57E-69 30.72 2.57E-69 30.36 1.91E-68 30.50

13 - 40 20 3.96E-16 21.36 3.97E-16 34.88 1.52E-14 35.51 9.23E-17 34.27 1.85E-15 36.47

19 E-59.79 27 18 1.13E-43 60.34 1.06E-43 92.57 4.85E-43 112.92 5.51E-43 90.21 3.63E-43 327.91

23 E-39.69 31 18 3.02E-28 6.54 9.29E-27 797.08 5.58E-28 524.81 2.21E-27 489.70 6.15E-28 509.92

30 - 23 20 8.68E-81 15.05 1.71E-80 16.26 1.71E-80 15.99 3.18E-80 15.91 1.71E-80 16.01

33 E-54.27 33 20 1.55E-43 44.60 8.11E-46 87.27 9.24E-47 62.71 1.19E-46 61.79 1.03E-47 67.30

34 - 38 18 2.74E-37 56.96 4.26E-34 79.08 5.99E-35 100.23 2.01E-37 77.06 6.01E-36 77.84

37 E-116.57 22 18 5.60E-103 43.27 9.68E-105 637.54 4.67E-103 560.73 3.76E-103 524.25 3.91E-103 530.56

40 - 34 18 8.81E-67 6.80 3.50E-68 27.57 2.82E-65 23.14 1.38E-66 22.09 5.31E-68 31.39

41 - 39 18 6.25E-45 106.66 2.19E-43 184.47 5.01E-48 198.59 5.01E-48 156.41 1.21E-46 148.82

44 - 31 20 2.52E-56 35.69 5.02E-56 69.09 4.53E-57 54.01 1.02E-56 54.40 1.02E-56 54.66

51 - 49 18 9.10E-44 12.76 1.77E-43 15.74 1.49E-44 17.66 1.17E-43 17.96 1.15E-43 17.94

Table 3: Results on pedigree networks. The best and the second best upper bound computed by any partition heuristic as a
function ofz is boxed and underlined, respectively. A ‘-’ means unknownP (e).


