Bucket and mini-bucket Schemes for M Best Solutions over Graphical Models

Natalia Flerova, Emma Rollon and Rina Dechter

Abstract

The paper focuses on finding the m best solutions of
a combinatorial optimization problem defined over
a graphical model (e.g., the m most probable expla-
nations for a Bayesian network). We describe elim-
m-opt, a new bucket elimination algorithm for solv-
ing the m-best task, provide efficient implementa-
tion of its defining combination and marginaliza-
tion operators, analyze its worst-case performance,
and compare it with that of recent related algo-
rithms. An extension to the mini-bucket frame-
work, yielding a collection of bounds for each of
the m-best solutions is discussed and empirically
evaluated. We also formulate the m-best task as a
regular reasoning task over general graphical mod-
els defined axiomatically, which makes all other in-
ference algorithms applicable.

1 Introduction

Given an optimization problem, the objective typically is to
find an optimal solution, i.e., a solution that provides the best
value of the objective function. However, in many applica-
tions it is desirable to obtain not just a single optimal solution
but a set (of a given size m) of the best possible solutions.
Such a set can be useful, for example, in assessing the sen-
sitivity of the optimal solution to variation of the parameters
of the problem, or when a set of diverse assignments with
approximately the same cost is wanted.

Lawler [Lawler, 1972] provided a general scheme for us-
ing any optimization algorithm to solve the m-best task. Its
main idea is to compute the m-best solutions by successively
computing the best solution, each time using a slightly dif-
ferent reformulation of the original problem. This approach
has been extended and improved over the years and is still
one of the primary strategies to date for finding the m-best
solutions. The approach used in this paper is to develop di-
rect algorithms that avoid the repeated computation inherent
in Lawler’s scheme. The main idea is to integrate the m-
best task into existing optimization schemes such as inference
or search. In the paper we focus on graphical models and
show how the well-known Bucket Elimination (BE) frame-
work can be extended to compute the m-best solutions by a
relatively simple modification of its underlying combination

and marginalization operators [Dechter, 1999] yielding algo-
rithm elim-m-opt.

We analyze the complexity of elim-m-opt, compare it to
previously developed schemes, and discuss extensions to
Mini-Bucket Elimination to compute bounds on each of the
m-best solutions, yielding algorithm mbe-m-opt. We then
show that the m-best task can be formalized more broadly as
areasoning task over a general graphical model as defined ax-
iomatically by [Shenoy and Shafer, 1990]. As a consequence,
any inference algorithm for solving a reasoning task over this
representation (including Bucket Elimination) is immediately
applicable as a sound and complete algorithm for the m-best
task. In particular, elim-m-opt is therefore applicable to a
wide range of graphical models.

We also provide empirical analysis for mbe-m-opt demon-
strating its effectiveness both as an exact scheme as well as
for approximation.

2 Background

We consider problems expressed as graphical models. The
graphical model framework provides a common formalism to
model a broad spectrum of problems, and a collection of gen-
eral algorithms to efficiently solve them. Examples of graphi-
cal models are Markov and Bayesian networks [Pearl, 1988],
constraint networks and influence diagrams. We next follow
definitions as in [Kask et al., 2005].

Let X = (Xy,...,X,) be an ordered set of variables and
D = (Dy4,...,D,) an ordered set of domains. Domain D;
is a finite set of potential values for X;. The assignment
of variable X; with a € D; is noted (X; = a). A tu-
ple is an ordered set of assignments to different variables
(Xiy, = aiyy..., X5, = a;,). A complete assignment to all
the variables in X is called a solution. Let t and s be two tu-
ples having the same instantiations to the common variables.
Their join, noted ¢ - s, is a new tuple which contains the as-
signments of both ¢ and s (this notation is also used for mul-
tiplication, so we assume the meaning will be clear from the
context). If ¢ is a tuple over a set 7' C X and S is a set of
variables, then ¢(g is a relational projection of ¢ on S.

A valuation set A admits two binary operations over valua-
tions: ® : AXA — A called combinationand @ : AXA — A
called addition. Both operators are associative and commuta-
tive. Typical combination operators are sum and product over
numbers, and logical AND (i.e., A) over booleans. Typical

addition operators are min, max and sum over numbers and
logical OR (i.e., V) over booleans.

We denote by Dy the set of tuples over a subset of vari-
ables Y, also called the domain of Y. Functions are defined on
subsets of variables of X, called scopes and their range is a
set A whose elements are called valuations. If f : Dy — A
is a function the scope of f, denoted var(f), is Y. In the
following, we will use Dy as a shorthand for Dy (7).

DEFINITION 1 (combination operator). Let f : Dy — A and
g : Dy — A be two functions. Their combination, noted
f & g is a new function with scope var(f) Uvar(g), s.t.

vt € Dvar(f)Uvar(g)? (f®g)(t) = f(t) ® g(t)

DEFINITION 2 (marginalization operator). Let f : Dy — A
be a function and W C X be a set of variables. The marginal-
ization of f over W, noted \|w f, is a function whose scope is
var(f) — W, s.t.

vt e Dvar(f)7W7 (U’W f)(t) = BOvrebDw (t : tl)

DEFINITION 3 (graphical model). A graphical model is a
tuple M = (X,D,A,F,Q), where: X = {X1,..., X, }isa
set of variables; D = {Dx, ..., D,} is the set of their finite
domains of values; A is a set of valuations (A, ®,®); F =
{fi,..., fr} is a set of discrete functions, where var(f;) C
X and f; : Dy, — A; and) is the combination operator
over functions (see Definition 1). The graphical model M
represents the function C(X) = @ ;cp f-

DEFINITION 4 (reasoning task). A reasoning task is a tuple
P =(X,D,A,F,Q,|), where (X,D,A,F,Q) is a graphi-
cal model and |} is a marginalization operator (Definition 2).
The reasoning task is to compute ||x C(X).

For a reasoning task M = (X,D,A,F,), |}) the choice
of (A,®,®) determines the combination) and marginal-
ization J} operators over functions, and thus the nature of the
graphical model and its reasoning task. For example, if A is
the set of non-negative reals and) is product, the graphical
model is a Markov network or a Bayesian network. If |} is
max, the task is to compute the Most Probable Explanation
(MPE), while if |} is sum, the task is to compute the Probabil-
ity of the Evidence.

It was shown in several works (e.g. [Shenoy and Shafer,
1990]) that, when the operators of a graphical models satisfy
certain axioms, inference algorithms, such as variable elimi-
nation and join tree schemes, are sound and complete for the
reasoning task. In this paper we assume graphical models
obeying the Shenoy-Shafer axioms.

DEFINITION 5 (A proper reasoning task). Given a graphical
model M = (X,D,A,F,Q), a reasoning task P = (M, |})
is proper if its Q) and || operators satisfy the following 3
axioms:

Axiom Al. Order of marginalization does not matter.
Namely, Ixy f(z,y) =by.x f(z,y).
Axiom A2. Q) is associative and commutative.

Axiom A3. | distributes over Q. Namely, |xy
f@) @ fly) =Ix f(2) Q@ Iy f(y)

An important parameter of a graphical model, characteriz-
ing its complexity, is the induced width.

DEFINITION 6 (induced graph, induced width). The induced
graph of a graphical model relative to ordering o is an undi-
rected graph that has variables as its vertices. The edges of
the graph are added by: 1) connecting all variables that are
in the scope of the same function, 2) processing nodes from
last to first in o, recursively connecting preceding neighbours
of each node. The induced width w(o) relative to ordering
o0 is the maximum number of preceding neighbours across all
variables in the induced graph. The induced width of the
graphical model w* is the minimum induced width of all or-
derings.

DEFINITION 7 (bucket elimination). Bucket elimination
(BE) is an algorithmic framework that generalizes dynamic
programming for many reasoning tasks [Dechter, 1999]. The
input of BE (see Algorithm 1) is a reasoning task P =
(X,D,A,F,Q,) and an ordering o = (X1, Xo,...,Xp),
dictating an elimination order for BE, from last to first. Each
function from F is placed in the bucket of its latest variable in
o. The algorithm processes the buckets from X,, to X1, com-
puting for each Bucketx,, noted B;, | x, ®;L=1 Aj, wWhere
\j are the function in the B;, some of which are original f!s
and some are earlier computed messages. The result of the
computation is a new function, also called message, that is
placed in the bucket of its latest variable in the ordering o.

For example, algorithm elim-opt, which solves the opti-
mization task, is obtained by substitution of the operators
lx f=maxgs_x fand ®j = Hj.

The message passing between buckets follows a bucket-
tree structure.

DEFINITION 8 (bucket tree). Bucket elimination defines a
bucket tree, where the bucket of each X is linked to the des-
tination bucket of its message (called the parent bucket). A
node of the bucket is associated with its bucket variable.

Algorithm 1 Bucket elimination

Input: A reasoning task P = (X,D,A,F, &), |}); An ordering of
variables o = {X1,..., Xn};
Output: A zero-arity function A; :) — A containing the solution
of the reasoning task.
1: Initialize: Generate an ordered partition of functions in buckets
Bi,...,B,, where B; contains all the functions whose highest
variable in their scope is Xj;.
: Backward:
: for i < n downto 1 do
Generate i = (@ ;cp, f) Ix;
Place \; in the bucket B; where j is the largest-index variable
invar(A;)
: end for
: Return: \;

~N

Theorem 1. [Dechter, 1999] Given a graphical model and a
proper reasoning task P = (X,D,A,F,Q),!}) BE is sound
and complete. Given an ordering o, the time and space com-
plexity of BE(P) is exponential in the induced width of the
ordering.

The m-best task over a graphical model is defined formally
next.

DEFINITION 9 (m-best task). The m-best task over a graph-
ical model M is to find m complete assignments T =
{t1,.. . tm}, such that V' ¢ TVt € T,C(t') < C(t). The
solution is the set of valuations {C(t1),...,C(tm)}, called
m-best solutions.

Most proofs are omitted for lack of space.

3 Algorithm elim-m-opt

This section provides the main contribution of our paper, pre-
senting BE algorithm for the m-best task. We derive the al-
gorithm through an example, having in mind the MPE (most
probable explanation) task in probabilistic networks.

3.1 Deriving the algorithm using an example

Consider a graphical model with four variables {X,Y, Z, T}
having the following functions (for simplicity we use un-
normalizes functions):

Tz | fl(Z) y _z | fa(z,9) z t | f3(t 2)
0 0 0 06 0 01
0o 1 2 0 1|7 0 12
1 0|5 102 1 0|4
O I 1|4 113
2 0|4 2 0|8
2 1|3 2 1|2
Finding the m best solutions to P(t,z,z,y) = f3(t,z) -
f1 (z,z) - fa(z,y) can be expressed as finding Sol, defined

by:

Sol = sortm<f3(t,2)~f1(27x)'fz(zay)) ey

t,x,z,y
where operator sort™ f(s) returns the first m elements of the
S

set {f($)seps} or the entire set, if its size is less than m.
When the argument of the operator is a subset of the func-
tion’s scope, like Y in sortm f(x,y), then sortm yields a set

of the m best values of f (x y) for every ﬁxed x (by default
keptordered) (f(z, 4 (x)), ..., f(z, ™ () where f(z,y)
is the j*" largest f value relative to Dy, for a fixed X = z.

Since the output of the sort operators are vectors or sets, we
will use vector function to denote a function whose range is
a set (ordered set in our exposition and implementation). The
dimension of a vector function is the size of its range vector.

Operator sort™ f(x) can be viewed as applying operator
max f(x) m times, while at each step generating and then
removing the best element from { f(s)sep, }, and it inherits,
therefore, its distributive properties over multiplication. Due
to this distributivity, we can apply symbolic manipulation and
migrate each of the functions to the left of the sort™ operator
over variables that are not in its scope. In our example we
rewrite as:

Sol = s%rtmsortm <f3 (t, z)(sort™ f1(z,x)) (sortmfz (2, y)))
z T y

2

However, since the output of sort™ is a set, to make equa-

tion 2 well defined, we need to extend the multiplication op-
eration to vector functions as a Cartesian product between all

pair-wise elements. This yields a new binary combination op-

erator denoted by X between vector functions (generalizing
combination with a scalar function in the obvious way), with
which we rewrite expression 2 as

Sol = SOT];thO’I"tm(fg (t, 2) @(soﬁ’”fl(z, x))

Q(sort™ fa(z,9)) (3

The right to left computation in the order dictated by ex-
pression 3 can be carried out by a BE algorithm (see Figure 1)
as follows. We assume that original input functions extends to

vector functions e.g., f; as f,;(t) = {fi(t)}. Then, the algo-
rithm processes bucket By generating vector function Ay (2)
and bucket Bx generating vector function Ax (z):

z H Ax (%) Ay (2)
0 {542} {120} {862} {201}
1| {321} | {201} | {742} | {0.1.2}
When processing Bz, we compute Mz(t) =

sort™[f5(t, 2)@Ax (2)@Ay (2)]. The result is a new
vector function that has m? elements for each tuple (, z) as
shown below.

|2 || fs(t, 2)R@Ax (2) @A (2)
140, 32, 30, 16, 24, 12, 10, 8, 4}
{84, 56, 48, 32,28, 24, 16, 16, 8}
{80, 64, 60, 48, 32, 24, 20, 16, 8}

{63, 42,36, 24,21, 18, 12, 12, 6}

t
0
0
1
1

— O = ON

Applying sort”" to the resulting combination we get vector
function A Z(t) along with its variable assignments:

t T,Y,Z
0 {845648} | <<{< y ,> {0,0,1), (2,1, 1)}
1| {80,64,63} | {(1,2,0),(2,2,0),(2,0,1)}

Finally, processing the last bucket yields the vector of m best
solution costs for the entire problem and the corresponding
assignments.

Az(t) | (£,77,7,)
184.80,647 | {(0,1,2,0),(1,0,1,2),(1,0,2,2)}

Since we are interested in recovering at least one complete
assignment for each m-best solution, the algorithm propa-
gates the variable assignments along with the vector messages
when processing each bucket. These variable assignments are
generated using the argsort operator defined as follows.

DEFINITION 10. Operator argsort'y [returns a vector
Sfunction T;(t) such that ¥t € Dvar(f)\X , where (f(t -
xY), ..., f(t-2;™)), are the m-best costs extending t to X;.

In words, Z;(t) is the vector of assignments to X; that
yields the m-best extensions to ¢.

3.2 The Algorithm definition

We next more formally define the generalized operators to
be used in the bucket-elimination algorithm elim-m-opt. Let
M = (X,D,A,F, Q) be a graphical model, over which we
want to solve the m-best task. Let 24 be the set of subsets of
A, and let us call a function with range in 24 a vector function.

Bucket Y : J2(%:9) .
Az(t)

Bucket X : J1(%:7) fa(t, 2)
Bucket Z : J3(t;2) Ax(2) Av(2) * i

® ©
Bucket T: X, (¢) fi(z, @) f2(z,9)
(a) Messages passed between (b) Bucket-tree
buckets

Figure 1: Example of applying elim-m-opt

DEFINITION 11 (combination and addition over sets). Let
S, T € 2A. Their combination, noted S ® T, is the set
{a®b|ae€S,beT}. Theiraddition, noted sort{S,T}, is
the set of the m-best elements in the set S UT.

DEFINITION 12 (combination and marginalization over vec-
tor functions). Let f : Dy — 2% and g : Dy — 2% be
two vector functions. Their combination, noted fQ)g, is a
new vector function defined on scope var(f) U var(g) s.t.

vVt € Dvar(f)Uvar(g)’ f@g(t) = f(t[var(f)]) ® g(t[var(g)])
The marginalization of f over X; € var(f), noted 50)7;15’” f

is a function over scope var(f) — {X;} such that Vi€
Doyar(f)—x;» (so;tmf) t) = Sortm{Uzeri ft-2)}

The bucket-elimination algorithm elim-m-opt is described
in Algorithm 2 using the two new combination and marginal-
ization operators of) and sort™. The algorithm processes
the buckets from last to first as usual. The bucket computa-
tion of a message-function (step 2) is detailed in the next sub-
section. The message-function associates each tuple in its do-
main with the m-best costs-to-go restricted to the subproblem
below the bucket variable in the bucket tree. For clarity we
omit the generation of actual m-best solution assignments.

While the correctness of the algorithm can be given di-
rectly, we defer to Section 4, where we show that the com-
bination and marginalization operators just defined are an in-
stance of a more general formulation of the m-best task as a
proper reasoning task over a proper graphical model [Shenoy
and Shafer, 1990].

3.3 The bucket processing algorithm

We will next show that the messages computed in a bucket
can be obtained more efficiently than through a brute-force
application of @ followed by sort™. Consider process-
ing Bz (see Figure la). A brute-force computation of
Az(t) = soztm(fg(z, H Ay (2)RAx (z)) for each ¢ com-

bines f3(z,t), Ay(z) and Ax(z) for Vz € Dy first. This
results in a vector function with scope {T’, Z} having m? ele-
ments that we call candidate elements and denote by E(t, z).
The second step is to apply sozt’"E (t, z) yielding the desired

m best elements Az ().
However, since Ay (z) and Ax(z) can be kept sorted, we
can generate only a small subset of these m? candidates as

Algorithm 2 elim-m-opt algorithm

Input: A set of functions F = {fi,---,f.} over scopes
{S1, -, Sn}; An ordering of variables 0 = {X1,--- , X},
Output: A zero-arity function A; : § — 2* containing the solution
of the m-best optimization task.
1: Initialize: Transform each function f € F into a singleton
vector function h(t) = {f(t)}; Generate an ordered partition
of vector functions h in buckets By, ..., B,, where B; contains
all the functions whose highest variable in their scope is Xj;.
: Backward:
: fori «— ndowntoldo
Generate A; = sortX, (Q ;e 5, f)

Generate assignment 7; = argsortX, (@ ;..). concate-

nate with relevant elements of the previously generated as-

signment messages.

6: Place \; and corresponding assignments in the bucket of the
largest-index variable in var(\;)

7: end for

8: Return: \;

Figure 2: The explored search space for T' = 0 and m = 3.
The resulting message is Az (1) = {80, 64, 63}.

follows. We denote by eg’j) (t) the candidate element ob-
tained by the product of the scalar function value f5(¢, z) with

the i*" element of Ay (z) and j*" element of Ax (z), having
cost et (t) = f5(t, 2)- Ay (2)- Ny (2). We would like to gen-

erate the candidates eiw ' in decreasing order of their costs
while taking their respective indices ¢ and j into account.

The child elements of {7 (t), children(e{"?’ (t)) are ob-
tained by replacing in the product either an element A} ()
with Ao (2), or X (2) with AT (2), but not both.

This leads to a forest-like search graph whose nodes are
the candidate elements, where each search subspace corre-
sponds to a different value of z denoted by Gz—, and rooted
in e<Zl’:12 (t). Clearly, the cost along any path from a node to its
descendants is non-increasing. It is easy to see that the m best
elements Az (t) can then be generated using a greedy best-
first search across the forest search space Gz—o UG z—1. Itis
easy to show that we do not need to keep more than m nodes
on the OPEN list (the fringe of the search) at the same time.
The general algorithm is described in Algorithm 3. The trace
of the search for the elements of cost message Az (¢t = 1) for
our running example is shown in Figure 2.

Proposition 1. Given a bucket of a variable X over scope
S having j functions {\1, ..., \;} of dimension m, where m
is the number of best-solutions sought and k bounds the do-
main size, the complexity of bucket processing is O(k‘s lom -
jlogm), where |S| is the scope size of S.

Complexity of elim-m-opt: Given n buckets, one for each

Algorithm 3 Bucket processing
Input: Bx of variable X containing a set of ordered m-vector func-
tions {\1(S1,X), -+, Xa(S4, X)}
Output: m-vector function Ax (S), where S = UL S; — X.
1: forallt € Dg do
forall x € Dx do

while j < m, by +1 do

2
3
4: end for
5
6 n «— first element eﬁ?zz 'a) (¢) in OPEN. Remove . from

OPEN;
7: N () < n; {the j" element is selgcted}
8: C' « children(n) = {egzlzx Artheiad (4 = 1..d)
9: Insert each ¢ € C into OPEN maintaining order based on

its computed value. Check for duplicates; Retain the m
best nodes in OPEN, discard the rest.

10: end while

11: end for

variable X;, B; containing deg; (i.e., the degree of the re-
spective node in the bucket-tree) functions and at most w*
different variables, the total time complexity of elim-m-opt
is >, O(k™ m - deg;logm). Assuming deg; < deg and
since) ., deg; < 2n, we get complexity expression:

O(k” m -logm - 2n) = O(nmk™ logm)

The space complexity is dominated by the size of the mes-
sages between buckets, each containing m costs-to-go for
each of O(k™") tuples. Having at most n such message yields
the total space complexity of O(mnk®"). In summary:
Theorem 2 (complexity of elim-m-opt). Given a graphi-
cal model (X,D,F, Q) having n variables, an ordering o,
induced-width of w*, a bucket-tree degree bounded by deg
and the domain size bounded by k, and an operator ||= maz,
the time complexity of elim-m-opt is O(k™ nm - logm) and
its space complexity is O(mnk®").

Note that elim-m-opt is superior to applying Lawler’s
scheme [Lawler, 1972] to BE, which would lead to complex-
ity of O(mn2k™").

4 The M-best reasoning task

The m-best task defined via an optimization reasoning task is
not itself in the form of a proper reasoning task over its graph-
ical model. However, by some formal manipulation we can
phrase it as a proper optimization reasoning task P(m) over
an associated graphical model M (m). This formal exercise
is worthwhile, because by doing so all inference algorithms,
and in particular BE, are immediately applicable. We use def-
inition of combination given in Definition 12.

DEFINITION 13 (m-best reasoning task). Let M =
(X,D,A,F,Q) be a graphical model and P = (M,}) be
an optimization reasoning task. The m-best graphical model
relative to M is M(m) = (X,D,A,,F,X), where each
function [: Dy — A in F is transformed into vector func-

tion: f(t) = {f(t)}. The m-best reasoning task over M(m)

is P(m) = (M(m), sort™), where @ and sort™ are as in
Definition 12.

We now can show that our original m-best task over a

graphical model M can be captured by P(m) over M (m).
Namely,

Theorem 3. Let M = (X,D,A,F, Q) be a graphical model
and let P = (M, max) be its proper optimization reasoning
task. Then, the reasoning task P(m) = (M(m), sort™) is
proper and it coincides with the m-best task over M.

We can now conclude that the m-best task can be solved
via traditional inference algorithms for reasoning tasks, and,
in particular, by Bucket Elimination.

Theorem 4. The m-best task over a graphical model M can

be solved by bucket-elimination as defined by BE(P(m))
and it coincides with elim-m-opt(M).

Proof. By Theorem 3, the m-best reasoning task P (m) com-

putes the m-best solutions of M and since P, is a proper
reasoning task, it can be solved exactly by BE. It is easy to

see that elim-m-opt(M)= BE(P). O

5 Mini-Bucket Elimination for m-best Task

We now demonstrate the power of elim-m-opt in yielding use-
ful bounds via mini-bucket-elimination.

5.1 The Mini-Bucket for the m-best

Mini-bucket Elimination (MBE) [Dechter and Rish, 2003] is
an approximation designed to avoid the space and time com-
plexity of BE. Consider a bucket B; and an integer bounding
parameter z. MBE creates a z-partition Q@ = {Q1,...,Qp} of
B;, where each set Q; € (@, called mini-bucket, includes no
more than z variables. Then, each mini-bucket is processed
separately, thus computing a set of messages {\;; }?21 , where
Xij =Ix, (® req, f)- In general, greater values of z in-
crease the quality of the bound.

Theorem 5. [Dechter and Rish, 2003] Given a reasoning
task P, MBE computes a bound on 'P. Given an integer con-
trol parameter z, the time and space complexity of MBE is
exponential in z.

Algorithm m-best MBE (mbe-m-opt) (given in Figure 4)
is a straightforward extension of MBE to m-best reasoning
task, where the combination and marginalization operators
are the ones defined over vector functions. Algorithm mbe-
m-opt solves m-best reasoning task P(m) and its output is a
m-best bound on the m-best solutions.

DEFINITION 14 (m-best bound). Let S = {a1,...,a;} and
T = {by,...,by} be two sets (i.e., S,T € 24). S is a m-best
bound of T iffV1 < i < |T|, b; < a;.

Theorem 6 (mbe-m-opt bound and complexity). Given an
m-best reasoning task 75(m) mbe-m-opt computes an m-best
bound on 75(m) Given an integer control parameter z, the
time and space complexity of mbe-m-opt is O(mnk?* log(m))
and O(mnk?), respectively, where k is the maximum domain
size and n is the number of variables.

Algorithm 4 MBE-m-opt algorithm

P(m) =

ordering of variables

Input: An m-best reasoning task
(X,D,A,F,®, sort™); An
o={Xi,...,Xn}; parameter z.

Output: bounds on each of the m-best solution costs and the cor-
responding assignments for the expanded set of variables (i.e.,
node duplication).

1: Initialize: Generate an ordered partition of functions f(t) =
{f(t)} into buckets B1, . .., B, where B; along o.

: Backward:

: for ¢ < n down to 1 (Processing bucket B;) do

Partition functions in bucket B; into {Q;,, ..., Q;, }, where

each Q; y has no more than z variables.

W

5: Generate cost messages \;; = sort’y, (®f€Q f) and place
ij

each in the largest index variable in var(Q;;)
: end for
: Return: The set of all buckets, and the vector of m-best costs
bounds in the first bucket.

e

5.2 Using the m-best bound to tighten the
first-best bound

Here is a simple, but quite fundamental observation: when-
ever upper or lower bounds are generated by solving a relaxed
version of a problem, the relaxed problem’s solution set con-
tains all the solutions to the original problem. We next discuss
the ramification of this observation.

Proposition 2. Given the m-best solutions costs generated by
mbe-m-opt (for clarity we consider MPE problem, the results
can be extended for other reasoning tasks) C = {p; > ps >
sy > P} let pOPt be the optimal value (the probability of
the most probable explanation) and let jo be the first index
such that p; = p°P', or else we assign jo = m + 1. Then, if
jo > m, P is an upper bound on p°Pt, which is as tight or
tighter than all other p1, ...pm—1. In particular p,, is tighter
than the bound p-.

Proof. Let C = {p1 > P2 >,...,> Pn, be an ordered set
of probabilities of all tuples over the relaxed problem (with
duplicate variables). By the nature of any relaxation, C' must
also contain all the probability values associated with solu-
tions of the original problem denoted by C = {p; > --- >
PN, }- Therefore, if jo is the first index such that p;, coin-
cides with p°Pt, then clearly for all i < jg, p°P* < p; with
D;—1 being the tightest upper-bound. Also, when jo > m we
have p,, > c°Pt O

In other words if j < m, we already have optimal value,
otherwise we can use p,, as our better upper bound. Such
tighter bounds would be useful during search algorithm such
as A*. It is essential therefore to decide efficiently if a bound
coincides with the exact optimal cost. Luckily the nature
of the MBE relaxation supplies us with an efficient decision
scheme.

Proposition 3. Given a set of bounds produced by mbe-m-
opt p1 > P2 >, ... > P, deciding if p; = p°P* can be done
efficiently.

Nilsson
Onk™" + mn(logmn + k|
[)
BMMF
O[nmk™*)

elim-m-opt
O[k™" nmlogm]

Elliot
O [nm k¥ log (m - deg))
v
Seroussi and
Golmard
O [n, m2 k" deg}

Lawler
O [nz m k“’»}

Figure 3: Complexity comparison. A parent node in the graph
has a better complexity than its children.

Proof. mbe-m-opt provides both the bounds on the m-best
costs and for each bound a corresponding tuple, where as-
signments to duplicated variables is maintained. The first as-
signment from these m-best bounds (going from largest to
smallest) that corresponds to a tuple whose duplicate vari-
ables are assigned identical value, is optimal. And, if no
such tuple is observed the optimal value is smaller than p,,.
Since the above tests require just O(nm) steps applied to m-
best assignments already obtained in polytime, the claim fol-
lows. O

6 Related work

Comparing with exact schemes. Lawler’s approach, whose
complexity is O(nmT'(n)), where T'(n) is the complexity
of finding a single best solution, was applied by [Nilsson,
1998] to a join-tree. Instead of solving reformulated problems
from scratch in each iteration, as Lawler does, Nilsson utilizes
the results from previous computations, achieving worst case
complexity of O(mT'(n)). If applied to a bucket-tree Nils-
son’s algorithm is superior to all other schemes mentioned
here, with run time of O (nk™* +mn log(mn)+mnk). More
recently Yanover and Weiss [Yanover and Weiss, 2004] de-
veloped a belief propagation approximation scheme for loopy
graphs, called BMMF which also finds solutions iteratively.
At each iteration BMMF uses loopy Belief Propagation to
solve two new problems obtained by restricting the values of
certain variables. When applied to junction tree it can func-
tion as an exact algorithm with complexity O (mnk™*).

Two algorithms based on dynamic programming, similar
to elim-m-opt, are [Seroussi and Golmard, 1994] and [El-
liott, 2007]. Seroussi and Golmard extract the m solutions
directly, by propagating the m best partial solutions along
a junction tree. Given a junction tree with p cliques and
branching degree deg, the complexity of the algorithm is
O(m?p-k™" deg). Elliot [Elliott, 2007] propagates the m best
partial solutions along a representation called Valued And-
Or Acyclic Graph, i.e., smooth deterministic decomposable
negation normal form (sd-DNNF) [Darwiche, 2001]. The

Grids: run-time as a function of m

0 L
1 5 10 20 50 100 200
Number of solutions
—+-90-22-5 ~*-90-24-5 =¢90-25-5 =¢90-26-5 -8-90-30-5
~90-34-5 90-38-58 90-42-5 90-46-5 -#-90-50-5

Figure 4: Run time as a function of number of solutions on
grid instances

complexity of Elliot’s algorithm is O(nk™ m log (mdeg).
Figure 3 depicts the dominance relationships between the
time complexities of the exact algorithms discussed, when
specialized to a bucket tree. Clearly our elim-m-opt algorithm
does not boast the best complexity, being dominated by the
algorithms [Nilsson, 1998; Yanover and Weiss, 2004]. How-
ever, it demonstrates the direct applicability of established in-
ference schemes to the generalized formulation of the m best
solution problem as the m-best reasoning problem. Moreover,
the main significance elim-m-opt is in the natural extension
to an approximation scheme with guarantees on the solution
quality that provides flexible trade off between accuracy and
complexity.
Comparing with approximation schemes. In addition to
BMMEF, another extension of Nilsson’s and Lawler’s idea
that yields an approximation scheme is an algorithm called
STRIPES by [Fromer and Globerson, 2009]. They focus on
m-MAP problem over binary Markov networks, solving each
new subproblem by an LP relaxation. The algorithm solves
the task exactly if the solutions to all LP relaxations are in-
tegral, and provides an upper bound of each m MAP assign-
ments otherwise. In contrast, our algorithm mbe-m-opt can
compute bounds over any graphical model (not only binary)
and over a variety of m-best optimization tasks.

7 Empirical demonstrations

All experiments assume solving m-best MPE task. We
evaluated empirically algorithm mbe-m-opt with m =
{1, 5,10, 20, 50,100, 200} and with z-bound 10 on two sets
of instances. The first set contained grid instances with a hun-
dred to 2.5 thousand variables and tree-width from 12 to 50,
the second - pedigree instances with several hundred vari-
ables and tree width from 15 to 30. Those instances were
taken from the UAI 2008 evaluation. For clarity and space
reasons we present only a subset of instances illustrating typ-
ical behaviour.

Figures 4 and 6 present the dependence of the run-time on

The difference between the exact solution and
the bound

N

abs(log(P)-log(UB))
5

1 21 41 61 81 101 121 141 161 181
Number of solutions

—50-12-5 —50-14-5

Figure 5: Accuracy of upper bound for different solutions on
grid instances

Pedigrees: run-time as a function of m

time, sec
w I v
(=3 o o
o o o

N
=]
=]

i
o
S

S}

1 5 10 20 50 100 200
number of solutions
—+—pedigreel3 -#-pedigree19 =pedigree20 ~*-pedigree23

pedigree37 —*—pedigree38 -#-pedigree39 —*pedigree41

Figure 6: Run-time performance of mbe-m-opt on pedigrees

m, for a few selected instances. Figure 5 shows the change
in accuracy as a function of m. Accuracy is measured by the
absolute values of the difference between the optimal solution
and the bounds on the j** solution up to m = 200 solutions.
For these grid instances as j increases, the bound on the cost
of the j*" solution slowly approaches the exact best solution.
This demonstrates that there is a potential of improving the
bound on the optimal assignment using the m-best bounds as
discussed in Section 5.2.

We carried some comparison with BMMF by [Yanover and
Weiss, 2004] on randomly generated 10 by 10 grids. The
run times of the algorithms are not comparable since our al-
gorithm is implemented in C and BMMF in Matlab, which
is inherently slower. For most instances that mbe-m-opt can
solve exactly in under a second, BMMF takes more than 5
minutes. The algorithms also differ in the nature of the out-
puts: BMMF provides approximate solutions with no guar-
antees while mbe-m-opt generates bounds on all the m-best
solutions. Still some information can be learned from view-
ing the two algorithms side by side as is demonstrated by a
typical result in Figure 7. We know that in this case the so-
lutions obtained with z-bound equal to 1000 are exact, while

&89 BMMF vs mbe-m-opt

144
142
140
E138 b

2

5136] /
134 4
132 4

130 A

128

1 2 13 4 5 6 7 8 9 10
Solution number

—-10x10_10-mbe-m-opt-z10 ~8-10x10_10-bmmf 10x10_7-mbe-m-opt-210

~10x10_7-bmmf —-10x10_10-mbe-m-opt-21000~0~10x10_7-mbe-m-opt-21000

Figure 7: Comparison of mbe-m-opt with z-bounds 10 and
1000 vs. BMMF on random 10 by 10 grids

z-bound equal to 10 yields an upper bound. BMMF outputs
significantly less accurate results than mbe-m-opt with even
a low z-bound. Admittedly, these experiments are quite pre-
liminary and not conclusive.

8 Conclusions

We presented a new bucket-elimination algorithm for solving
the m-best task over a graphical model, analyzed its perfor-
mance and related it to other approaches in the literature. We
proved the algorithm’s correctness by formally showing that
the m-best task can be formulated as a reasoning task satis-
fying the Shenoy-Shafer axioms and, therefore, all inference
algorithms and in particular our algorithm, elim-m-opt, are
immediately applicable, sound and complete.

The significance of the proposed algorithm is primarily in
providing an inference framework for the m-best task that can
both suggest approximation schemes and yield heuristic ad-
vice. Indeed, optimization tasks that seek a single optimal so-
lution are solved far more effectively by search (e.g., branch
and bound and best-first search), than by variable elimina-
tion, because they can benefit from the bounding power of the
guiding cost function. It is also likely that search will be more
effective for m-best task. The promise of the elim-m-opt in-
ference algorithm is in its potential to yield viable lower- and
upper-bounds for the m-best solutions via the mini-bucket al-
gorithm, as we discussed.

Furthermore, it could also lead to loopy propagation
message-passing schemes that are now the most common way
for approximations in graphical models, since those schemes
are relaxation of exact message-passing schemes such as
bucket-elimination. In particular, our algorithm can be ex-
tended into a loopy max-prod for the m-best task. This ap-
proach will yield a direct loopy-propagation for the m-best
reasoning problem, while the approach by Yanover and Weiss
uses loopy max-prod for solving a sequence of optimization
problems in the style of Lawler’s approach. Moreover, all
such approximation extensions would be applicable to the
broad range of graphical models captured by the unifying
framework of Shenoy and Shafer. Future work will focus on
such extensions and on empirical evaluations of the emerging

schemes.

The empirical analysis we provided is only preliminary.
Yet it shows that mbe-m-opt scales even better than worst-
case predict as a function of m. Comparison with other exact
and approximation algorithms is left for future work.

Acknowledgments

This work was partially supported by NSF grants IIS-
0713118 and IIS-1065618 and NIH grant SROIHG004175-
03. Thanks to the reviewers for their helpful feedback.

References

[Darwiche, 2001] A. Darwiche. Decomposable negation
normal form. Journal of the ACM (JACM), 48(4):608—-647,
2001.

[Dechter and Rish, 2003] R. Dechter and I. Rish. Mini-
buckets: A general scheme for bounded inference. Journal
of the ACM (JACM), 50(2):107-153, 2003.

[Dechter, 1999] R. Dechter. Bucket elimination: A uni-
fying framework for reasoning. Artificial Intelligence,
113(1):41-85, 1999.

[Elliott, 2007] P.H. Elliott. Extracting the K Best Solutions
from a Valued And-Or Acyclic Graph. Master’s thesis,
Massachusetts Institute of Technology, 2007.

[Fromer and Globerson, 2009] M. Fromer and A. Glober-
son. An LP View of the M-best MAP problem. Advances
in Neural Information Processing Systems, 22:567-575,
2009.

[Kask et al., 2005] Kalev Kask, Rina Dechter, Javier Lar-
rosa, and Avi Dechter. Unifying cluster-tree decomposi-
tions for automated reasoning. Artificial Intelligence Jour-
nal, 2005.

[Lawler, 1972] E.L. Lawler. A procedure for computing the
k best solutions to discrete optimization problems and its
application to the shortest path problem. Management Sci-
ence, 18(7):401-405, 1972.

[Nilsson, 1998] D. Nilsson. An efficient algorithm for find-
ing the M most probable configurations in probabilistic
expert systems. Statistics and Computing, 8(2):159-173,
1998.

[Pearl, 1988] J. Pearl. Probabilistic reasoning in intelligent
systems: networks of plausible inference. Morgan Kauf-
mann, 1988.

[Seroussi and Golmard, 1994] B. Seroussi and JL Golmard.
An algorithm directly finding the K most probable config-
urations in Bayesian networks. [International Journal of
Approximate Reasoning, 11(3):205-233, 1994.

[Shenoy and Shafer, 1990] P. Shenoy and G. Shafer. Axioms

for probability and belief-function propagation. Uncer-
tainty in Artificial Intelligence, 4:169-198, 1990.

[Yanover and Weiss, 2004] C. Yanover and Y. Weiss. Find-
ing the M Most Probable Configurations Using Loopy Be-
lief Propagation. In Advances in Neural Information Pro-
cessing Systems 16. The MIT Press, 2004.

