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Abstract. The paper present a formalization of the m-best task within
the unifying framework of semirings. As a consequence, known inference
algorithms are defined and their correctness and completeness for the
m-best task are immediately implied. We also describe and analyze a
Bucket Elimination algorithm for solving the m-best task, elim-m-opt,
presented in an earlier workshop1 and introduce an extension to the
mini-bucket framework, yielding a collection of bounds for each of the
m-best solutions. Some empirical demonstration of the algorithms and
their potential for approximations are provided.

1 Introduction

Given an optimization problem, the objective is typically to find an optimal
solution, i.e., a solution that provides the best value of the objective function.
However, in many applications it is desirable to obtain not just a single optimal
solution but a set (of a given size m) of the best possible solutions. Such a set
can be useful, for example, in assessing the sensitivity of the optimal solution to
variation of the parameters of the problem, or when a set of diverse assignments
with approximately the same cost is wanted.

Lawler [11] provided a general scheme for using any optimization algorithm
to solve the m-best task. Its main idea is to compute the m-best solutions by
successively computing the best solution, each time using a slightly different
reformulation of the original problem. This approach has been extended and im-
proved over the years and is still one of the primary strategies to date for finding
the m-best solutions. The approach used in this paper is to develop direct algo-
rithms that avoid the repeated computation inherent in Lawler’s scheme. The
main idea is to integrate the m-best task into existing optimization schemes. In
particular we focus on graphical models. This work is the continuation of our
previous efforts [7], [8], where we derived and analyzed algorithm elim-m-opt
that extends the widely-used Bucket Elimination (BE) to compute the m-best
solutions by a relatively simple modification of its underlying combination and
marginalization operators [4] and proposed extensions to Mini-Bucket Elimi-
nation to compute bounds on each of the m-best solutions, yielding algorithm
mbe-m-opt.

1 [7]



The main contribution of this paper is the formalization of the m-best task
within the framework of semirings [14, 1, 10, 2]. This unifying formulation ensures
the soundness and correctness of inference algorithms applied to any problem
that fits into the framework. In particular, we show that elim-m-opt solves the
m-best optimization task and we provide new empirical analysis for mbe-m-opt
demonstrating its effectiveness both as an exact and approximation scheme.

2 Background

We consider problems expressed as graphical models. Let X = (X1, . . . , Xn) be
an ordered set of variables and D = (D1, . . . ,Dn) an ordered set of domains.
Domain Di is a finite set of potential values for Xi. The assignment of variable
Xi with a ∈ Di is noted (Xi = a). A tuple is an ordered set of assignments to
different variables (Xi1 = ai1 , . . . , Xik = aik). A complete assignment to all the
variables in X is called a solution. Let t and s be two tuples having the same
instantiations to the common variables. Their join, noted t · s, is a new tuple
which contains the assignments of both t and s (this notation is also used for
multiplication, so we assume the meaning will be clear from the context). If t
is a tuple over a set T ⊆ X and S is a set of variables, then t[S] is a relational
projection of t on S.

We denote by DY the set of tuples over a subset of variables Y, also called
the domain of Y. Let f : DY → A be a function defined over Y. A is a set of
elements called valuations . Typical sets of valuations A are natural, real and
booleans. If f : DY → A is a function the scope of f , denoted var(f), is Y. In
the following, we will use Df as a shorthand for Dvar(f).

We assume two binary operations over valuations: ⊗ : A × A → A called
combination and ⊕ : A×A → A called addition. Both operators are associative
and commutative. Typical combination operators are sum and product over
numbers, and logical and (i.e., ∧) over booleans. Typical addition operators are
min, max and sum over numbers and logical or (i.e., ∨) over booleans. We extend
these operators to operate over functions.

Definition 1 (combination operator, marginalization operator). Let f :
Df → A and g : Dg → A be two functions. Their combination, noted f

⊗

g is
a new function with scope var(f)∪var(g), s.t. ∀t ∈ Dvar(f)∪var(g), (f

⊗

g)(t) =
f(t) ⊗ g(t). Let f : Df → A be a function and W ⊆ X be a set of variables.
The marginalization of f over W, noted ⇓W f , is a function whose scope is
var(f) −W, s.t. ∀t ∈ Dvar(f)−W, (⇓W f)(t) = ⊕t′∈DW

f(t · t′).

Definition 2 (graphical model).
A graphical model is a tuple M = (X,D,A,F,

⊗

), where: X = {X1, . . . , Xn}
is a set of variables; D = {D1, . . . , Dn} is the set of their finite domains of val-
ues; A is a set of valuations; F = {f1, . . . , fr} is a set of discrete functions where
var(fj) ⊆ X and fj : Dfj → A; and

⊗

is a combination operator over func-
tions as defined in Definition 1. The graphical model M represents the function
F (X) =

⊗

f∈F f .



Definition 3 (reasoning task).
A reasoning task is a tuple P = (X,D,A,F,

⊗

,⇓) where (X,D,A,F,
⊗

) is a
graphical model and ⇓ is a marginalization operator over functions as defined in
Definition 1. The reasoning task is to compute F (X) ⇓X.

For a reasoning task P = (X,D,A,F,
⊗

,⇓) the choice of (A,⊗,⊕) deter-
mines the combination

⊗

and marginalization ⇓ operators over functions, and
thus the nature of the graphical model and its reasoning task. For example, if
A is the set of non-negative reals and

⊗

is product, the graphical model is a
Markov network or a Bayesian network. If ⇓ is max, the task is to compute the
Most Probable Explanation (MPE), while if ⇓ is sum, the task is to compute
the Probability of the Evidence.

The correctness of the algorithmic techniques for computing a given reason-
ing task relies on the properties of its set of valuations and operators. These
properties are axiomatically described by means of an algebraic structure over
(A,⊗,⊕). In this paper we consider reasoning tasks P = (X,D,A,F,

⊗

,⇓)
such that their valuation structure (A,⊗,⊕) is a semiring. Several works [14, 1,
10] showed that the correctness of inference algorithms over a reasoning task P

is ensured whenever P is defined over a semiring.

Definition 4 (semiring). A commutative semiring is a triplet (A,⊗,⊕) which
satisfies the following three axioms:

A1. The operation ⊕ is associative, commutative and idempotent, and there
is an additive identity element called 0 such that a⊕ 0 = a for all a ∈ A. In
other words, (A,⊕) is a commutative monoid.
A2. The operation ⊗ is also associative and commutative, and there is a
multiplicative identity element called 1 such that a⊗ 1 = a for all a ∈ A. In
other words, (A,⊗) is also a commutative monoid.
A3. ⊗ distributes over ⊕, i.e., (a⊗ b)⊕ (a⊗ c) = a⊗ (b⊕ c)

Example 1. MPE task is defined over semiring K = (R,×,max), a CSP is defined
over semiring K = ({0, 1},∧,∨), and a Weighted CSP is defined over semiring
K = (N ∪ {∞},+,min). The task of computing the Probability of the Evidence
is defined over semiring K = (R,×,+).

Bucket elimination (BE) [4] is a well-known inference algorithm that gener-
alizes dynamic programming for many reasoning tasks.

Definition 5 (bucket elimination). The input of BE is a reasoning task
P = (X,D,A,F,

⊗

,⇓) and an ordering o = (X1, X2, . . . , Xn), dictating an
elimination order for BE, from last to first. Each function from F is placed in
the bucket of its latest variable in o. The algorithm processes the buckets from
Xn to X1, computing for each BucketXi

, noted Bi, ⇓Xi

⊗n

j=1 λj, where λj are
the functions in the Bi, some of which are original f ′

is and some are earlier
computed messages. The result of the computation is a new function, also called
message, that is placed in the bucket of its latest variable in the ordering o.



The message passing between buckets follows a bucket-tree structure.

Definition 6 (bucket tree). Bucket elimination defines a bucket tree, where
the bucket of each Xi is linked to the destination bucket of its message (called
the parent bucket). A node of the bucket is associated with its bucket variable.

Theorem 1 [4] Given a reasoning task P = (X,D,A,F,
⊗

,⇓), BE is sound
and complete. The time and space complexity of BE(P) is exponential in a
structural parameter called induced width, which is the largest scope of all the
functions computed.

3 M-best Optimization Task

In this section we formally define the problem of finding a set of best solutions
over an optimization task. We consider optimization tasks defined over a set of
totally ordered valuations. In other words, we consider reasoning tasks where
the marginalization operator ⇓ is min or max. Without loss of generality, in the
following we assume minimization tasks (i.e., ⇓ is min).

Definition 7 (optimization task). Given a graphical model M, its optimiza-
tion task is P = (M,min). The goal is to find a complete assignment t such that
∀t′ ∈ DX, F (t) ≤ F (t′). F (t) is called the optimal solution.

Definition 8 (m-best optimization task). Given a graphical model M, its
m-best optimization task is to find m complete assignments T = {t1, . . . , tm}
such that F (t1) ≤, · · · ,≤ F (tm) and ∀t′ ∈ DX\T and ∀t ∈ T, F (t′) ≥ F (t). The
solution is the set of valuations {F (t1), . . . , F (tm)}, called m-best solutions.

The main goal of this paper is to phrase the m-best optimization task as a
reasoning task over a semiring, so that well known algorithms can be immediately
applied to solve this task. Namely, given an optimization task P over a graphical
model M, we need to define a reasoning task Pm that corresponds to the set of
m-best solutions of M.

We introduce the set of ordered m-best elements of a subset S ⊆ A.

Definition 9 (set of ordered m-best elements, m-space). Let S be a
subset of a set of valuation A. The set of ordered m-best elements of S is
Sortedm{S} = {s1, . . . , sj} such that s1 ≤ s2 ≤ . . . ≤ sj where j = m if |S| ≥ m

and j = |S| otherwise, and ∀s′ 6∈ Sortedm{S}, sj ≤ s′. The m-space of A,
denoted Am, is the set of subsets of ordered m-best elements of A. Formally,
Am = {S ⊆ A | Sortedm{S} = S}.

The combination and addition operators over the m-space Am, noted ⊗m

and sortm respectively, are defined as follows.

Definition 10 (combination and addition over the m-space). Let A be a
set of valuations, and ⊗ and min be its combination and marginalization oper-
ators, respectively. Let S, T ∈ Am. Their combination, noted S ⊗m T , is the set
Sortedm{a ⊗ b | a ∈ S, b ∈ T }, while their addition, noted sortm{S, T }, is the
set Sortedm{S ∪ T }.



Theorem 1. The valuation structure (Am,⊗m, sortm) is a semiring.

We will refer to functions over the m-space Am f : Df → Am as vector
functions. Abusing notation, we extend the ⊗m and sortm operators to operate
over vector functions similar to how operators ⊗ and ⊕ were extended to operate
over scalar functions in Definition 1.

Definition 11 (combination and marginalization over vector functions).
Let f : Df → Am and g : Dg → Am be two vector functions. Their com-

bination, noted f
⊗

g, is a new function with scope var(f) ∪ var(g), s.t. ∀t ∈

Dvar(f)∪var(g), (f
⊗

g)(t) = f(t)⊗m g(t).
Let W ⊆ X be a set of variables. The marginalization of f over W, noted

sort
W

m{f}, is a new function whose scope is var(f) −W, s.t. ∀t ∈ Dvar(f)−W,

sort
W

m{f}(t) = sortmt′∈DW
f(t · t′).

h1: X1 X2 h2: X2 h1 ⊗
m h2: X1 X2 sortmX2

{h1}: X1

a a {2,4} a {1,3} a a {3,5} a {1, 2}
a b {1,3} b {1} a b {2,4} b {3, 4}
b a {4} b a {5,7}
b b {3} b b {4}

Fig. 1: Combination and marginalization over vector functions. For each pair of values
of (X1, X2) the result of h1 ⊗

m h2 is an ordered set of size 2 obtained by pair-wise
summation of the corresponding elements of h1 and h2. The result of sortmX2

{h1} is an
ordered set containing the two lower values of function h1 for each value of X1.

Example 2. Figure 1 shows the combination and marginalization over two vector
functions h1 and h2 for m = 2.

The m-best extension of an optimization problem P is a new reasoning task
Pm that expresses the m-best task over P .

Definition 12 (m-best extension). Let P = (X,D,A,F,
⊗

,⇓) be an opti-
mization problem defined over a semiring (A,⊗,min). Its m-best extension is a
new reasoning task Pm = (X,D,Am,Fm,

⊗

, sortm) over semiring (Am,⊗m, sortm).
Each function f : Df → A in F is trivially transformed into a new vector func-
tion f ′ : Df → Am defined as f ′(t) = {f(t)}. In words, function outcomes of
f are transformed to singleton sets in f ′. Then, the set Fm contains the new f ′

vector functions.

The following theorem shows that the optimum of Pm corresponds to the set
of m-best valuations of P .



Theorem 2 Consider an optimization problem P = (X,D,A,F,
⊗

,⇓) defined
over a semiring (A,⊗,min). Let {F (t1), . . . , F (tm)} be its m-best solutions. Let
Pm be the m-best extension of P . The optimization task Pm computes the set of
m-best solutions of P . Formally,

sortX
m{

⊗

f∈Fm
f} = {F (t1), . . . , F (tm)}

It is easy to see how the same extension applies to maximization tasks. The
only difference is the set of valuations selected by operator sortm.

4 Algorithm elim-m-opt

In this section we extend the bucket elimination algorithm to solving the m-best
reasoning task. We subsequently show the derivation of the algorithm through
an example.

4.1 The Algorithm Definition

Consider an optimization task P . The bucket-elimination algorithm elim-m-opt
solving Pm (i.e., the m-best extension of P ) is described in Algorithm 1. First, the
algorithm transforms scalar functions in F to their equivalent vector functions as
described in Definition 12. Then, the algorithm processes the buckets from last
to first as usual, using the two new combination and marginalization operators
⊗

and sortm, respectively. Roughly, the elimination of variable Xi from a vector
function will produce a new vector function λi such that λi(t) will contain the
m-best extensions of t to the eliminated variables Xi+1, . . . , Xn with respect to
the subproblem below the bucket variable in the bucket tree.

Since we are interested in recovering at least one complete assignment for each
m-best solution, the algorithm propagates the variable assignments along with
the vector messages when processing each bucket. These variable assignments
are generated using the argsortm operator defined as follows.

Definition 13. Operator argsortmXi
f returns a vector function xi(t) such that

∀t ∈ Dvar(f)\Xi
, where 〈f(t · xi

1), . . . , f(t · xi
m)〉, are the m-best valuations

extending t to Xi.

In words, xi(t) is the vector of assignments to Xi that yields the m-best exten-
sions to t.

The correctness of the algorithm follows from the formulation of the m-best
optimization task as a reasoning task over a semiring.

Theorem 3 Algorithm elim-m-opt is sound and complete for finding the m-best
solutions over a graphical model.

The details of how to efficiently compute combination and marginalization
are one of the main contributions of our previous work [7]. We recap the main
algorithmic issues and demonstrate the intuition behind the method in the fol-
lowing section by deriving elim-m-opt through an example. For clarity reasons,
we omit the generation of actual m-best solution assignments.



Algorithm 1 elim-m-opt algorithm

Input: An optimization task P = (X,D,A,F,
⊗

,min); An ordering of variables o =
{X1, . . . , Xn};

Output: A zero-arity function λ1 : ∅ → Am containing the solution of the m-best
optimization task.

1: Initialize: Transform each function f ∈ F into a singleton vector function h(t) =
{f(t)}; Generate an ordered partition of vector functions h in buckets B1, . . . ,Bn,
where Bi contains all the functions whose highest variable in their scope is Xi.

2: Backward:

3: for i← n down to 1 do

4: Generate λi = sortmXi
(
⊗

f∈Bi
f)

5: Generate assignment xi = argsortmXi
(
⊗

f∈Bi
), concatenate with relevant ele-

ments of the previously generated assignment messages.
6: Place λi and corresponding assignments in the bucket of the largest-index vari-

able in var(λi)
7: end for

8: Return: λ1

4.2 Deriving the Algorithm Using an Example

Consider a graphical model with three functions F = {f1(z, x), f2(z, y), f3(t, z)},
and its optimization task over semiring (N∪{∞},+,min) (i.e., the task is to find
the minimum cost assignment). Finding the m-best valuations of the function
F (t, z, x, y) = f3(t, z)+f1(z, x)+f2(z, y) can be expressed as finding Sol, defined

by Sol = sort
t,x,z,y

m

(

f3(t, z) + f1(z, x) + f2(z, y).

Since operator sortm is an extention of operator min, it inherits its distributive
properties over summation. Due to this distributivity, we can apply symbolic
manipulation and migrate each of the functions to the left of the sortm operator
over variables that are not in its scope. In our example we rewrite as:

Sol = sort
t

m
sort

z

m

(

f3(t, z) + (sort
x

m
f1(z, x)) +

(

sort
y

m
f2(z, y)

))

(1)

The output of sortm is a set, so in order to make equation 1 well defined, we
replace the summation operator by the combination over vector functions as in
Definition 11.

Sol = sortm
t

sortm
z

(f3(t, z)
⊗

(sortm
x

f1(z, x))
⊗

(sortm
y

f2(z, y))) (2)

BE computes expression 2 from right to left, corresponding to elimination
ordering o = {T, Z,X, Y }. Figure 2 shows the messages passed between buckets
and its bucket tree under o. Bucket BY containing function f2(z, y) is processed
first. The algorithm applies operator sortm

y
to f2(z, y), generating a vector func-

tion called amessage and denoted by λY (z) which is placed inBZ . Note that this



message associates each z with the vector ofm best valuations of f2(z, y).Namely,

sortm
y

f2(z, y) = (λ1
Y (z), . . . , λ

j
Y (z), . . . , λ

m
Y (z)) = λY (z) (3)

where for z each λ
j
Y (z) is the jth best value of f2(z, y). Similar computation is

carried in BX yielding λX(z) which is also placed in BZ .

When processing BZ , we need to compute, (see expression 2)

λZ(t) = sortm
z

f3(t, z)
⊗

λX(z)
⊗

λY (z)

The result of the combination of the scalar function f3(t, z) with the two mes-
sages λX(z) and λY (z) is a new vector function that has m2 elements for each
tuple (t, z). Applying sort

z

m to the resulting combination generates the m best

elements out of those m2 yielding message λZ(t). As we show in [7], it is possible
apply a more efficient procedure that would calculate at most 2m elements per
tuple (t, z) instead. Finally, processing the last bucket yields the vector of m best
solution costs for the entire problem: Sol = λT = sortm

t
λZ(t) (see Figure 2a).

Bucket Y :

Bucket X :

Bucket Z :

Bucket T :

f2(z, y)
︸ ︷︷ ︸

f1(z, x)
︸ ︷︷ ︸

λZ(t)

f3(t, z) λX(z) λY (z)
︸ ︷︷ ︸

(a) Bucket messages

T

Z

X Y

λX(z) λY (z)

λZ(t)

f3(t, z)

f1(z, x) f2(z, y)

(b) Bucket-tree

Fig. 2: Example of applying elim-m-opt

4.3 Complexity of elim-m-opt

Given n buckets, one for each variable Xi, Bi containing degi (i.e., the degree of
the respective node in the bucket-tree) functions and at most w∗ different vari-
ables with largest domain size k, it is possible to efficiently compute a messages
between two buckets in O(kw

∗

m · degi logm), yielding the total time complex-
ity of elim-m-opt of O(

∑n

i=1 k
w∗

m · degi logm) as we showed in [7]. Assuming
degi ≤ deg and since

∑n

i=1 degi ≤ 2n, we get the total time complexity of
O(nmkw

∗

logm). The space complexity is dominated by the size of the mes-
sages between buckets, each containing m costs-to-go for each of O(kw

∗

) tuples.
Having at most n such message yields the total space complexity of O(mnkw

∗

).



4.4 The Mini-Bucket for the m-best

Mini-bucket Elimination (MBE) [5] is an approximation designed to avoid the
space and time complexity of BE. Consider a bucket Bi and an integer bounding
parameter z. MBE creates a z-partition Q = {Q1, ..., Qp} of Bi, where each set
Qj ∈ Q, called mini-bucket, includes no more than z variables. Then, each mini-
bucket is processed separately, thus computing a set of messages {λij}

p
j=1, where

λij =⇓Xi
(
⊗

f∈Qj
f). In general, greater values of z increase the quality of the

bound.

Theorem 4 [5] Given a reasoning task P, MBE computes a bound on P. Given
an integer control parameter z, the time and space complexity of MBE is expo-
nential in z.

Recall that throughout this paper, we are assuming minimization tasks. In this
case, MBE computes a lower bound.

Algorithm mbe-m-opt (Algorithm 2) is a straightforward extension of MBE
to solve the m-best reasoning task, where the combination and marginalization
operators are the ones defined over vector functions. The input of the algorithm is
an optimization task P , and its output is a m-best bound on the m-best solutions
of P .

Definition 14 (m-best lower bound). Let S = {a1, . . . , aj} and T = {b1, . . . , bk}
be two sets of ordered m-best elements (i.e., S, T ∈ Am). S is a m-best lower
bound of T iff: (i) |S| ≥ |T |, (ii) b1, b2, . . . , bl−1 ∈ S and bl, bl+1, . . . , bk 6∈ S, and
(iii) aj < bl (where by definition bl = 0 if l − 1 = |T |).

The idea behind this definition is that S contains all elements in T from b1 up
to bl−1 plus some other elements, and the maximum element in S (i.e., aj) is
smaller than the first element in T not included in S (i.e., bl). For example,
S = {4, 6, 10} is not a 3-best lower bound of T = {4, 7, 10}, but it is a 3-best
lower bound of R = {4, 11}.

Theorem 5 (mbe-m-opt bound and complexity) Given a minimization task
P , mbe-m-opt computes an m-best lower bound on the m-best optimization task
Pm. Given an integer control parameter z, the time and space complexity of mbe-
m-opt is O(mnkz log(m)) and O(mnkz), respectively, where k is the maximum
domain size and n is the number of variables.

Sketch of proof. mbe-m-opt solves a relaxed version of the original problem. The
relaxation is based on adding duplicates of the variables eliminated in differ-
ent mini-buckets. In the limit (i.e., when m is infinity), the relaxed problem’s
solution set contains all solutions to the original problem (corresponding to as-
signments where duplicated variables take on the same domain value), plus a set
of other solutions (corresponding to assignments where duplicated variables take
on different domain values). When m is different to infinity, and depending on its
value, the output of mbe-m-opt will contain all solutions to the original problem,
some of them, or none. In all cases, the output satisfies the conditions to be an
m-best lower bound of the set of m-best solutions to the original problem.



Algorithm 2 mbe-m-opt algorithm

Input: An optimization task P = (X,D,A,F,
⊗

,min); An ordering of variables
o = {X1, . . . , Xn}; parameter z.

Output: bounds on each of the m-best solution costs and the corresponding assign-
ments for the expanded set of variables (i.e., node duplication).

1: Initialize: Generate an ordered partition of functions f(t) = {f(t)} into buckets
B1, . . . ,Bn, where Bi along o.

2: Backward:

3: for i← n down to 1 (Processing bucket Bi) do
4: Partition functions in bucket Bi into {Qi1 , ..., Qil}, where each Qij has no more

than z variables.
5: Generate cost messages λij = sortmXi

(
⊗

f∈Qij

f) and place each in the largest

index variable in var(Qij )
6: end for

7: Return: The set of all buckets, and the vector of m-best costs bounds in the first

bucket.

4.5 Using the m-best bound to tighten the first-best bound

Here is a simple, but quite fundamental observation. Recall that whenever upper
or lower bounds are generated by solving a relaxed version of a problem, the
relaxed problem’s solution set contains all the solutions to the original problem.
We next discuss the ramification of this observation.

Proposition 1. Given the m-best solutions generated by mbe-m-opt (for clarity
we consider minimization problem, the results can be extended for maximization)
C̃ = {p̃1 ≤ p̃2 ≤, ...,≤ p̃m}, let popt be the optimal value (the minimum cost)
and let j0 be the first index such that p̃j0 = popt, or else we assign j0 = m + 1.
Then, if j0 > m, p̃m is a lower bound on popt, which is as tight or tighter than
all other p̃1, ...p̃m−1. In particular p̃m is tighter than the bound p̃1.

Proof. Let C̃ = {p̃1 ≤ p̃2 ≤, ...,≤ p̃N1
be an ordered set of costs of all tuples over

the relaxed problem (with duplicate variables). By the nature of any relaxation,
C̃ must also contain all the cost values associated with solutions of the original
problem denoted by C = {p1 ≤ · · · ≤ pN2

}. Therefore, if j0 is the first index
such that p̃j0 coincides with popt, then clearly for all i < j0, p

opt ≥ p̃i with p̃j−1

being the tightest lower-bound. Also, when j0 > m we have p̃m ≤ copt

In other words if j ≤ m, we already have the optimal value, otherwise we can
use p̃m as our better lower bound. Such tighter bounds would be useful during
search algorithm such as A*. It is essential therefore to decide efficiently if a
bound coincides with the exact optimal cost. Luckily, the nature of the MBE
relaxation supplies us with an efficient decision scheme.

Proposition 2. Given a m-best lower bound produced by mbe-m-opt p̃1 ≤ p̃2 ≤
, ... ≤ p̃m, deciding if p̃j = popt can be done efficiently.



Proof. mbe-m-opt provides both the bounds on the m-best costs and for each
bound a corresponding tuple, where assignments to duplicated variables is main-
tained. The first assignment from these m-best bounds (going from largest to
smallest), that corresponds to a tuple whose duplicate variables are assigned
identical value, is optimal. And, if no such tuple is observed, the optimal value
is smaller than p̃m. Since the above tests require just O(nm) steps applied to
m-best assignments already obtained in polytime, the claim follows.

5 Related work

Comparing with exact schemes. Lawler’s approach, whose complexity is
O(nmT (n)), where T (n) is the complexity of finding a single best solution, was
applied by Nilsson [12] to a join-tree. Nilsson utilizes the results from previous
computations, achieving worst case complexity of O(mT (n)). If applied to a
bucket-tree his algorithm dominates schemes mentioned here, with run time of
O(nkw∗+mn log(mn)+mnk). Yanover and Weiss [15] developed a belief propa-
gation approximation scheme for loopy graphs, called BMMF. When applied to
juction tree it can function as an exact algorithm with complexity O(mnkw∗).

Two algorithms that are similar to elim-m-opt, both based on dynamic pro-
gramming, are [13] and [6]. Seroussi and Golmard algorithm extracts the m

solutions directly, by propagating the m best partial solutions along a junction
tree that is pre-compiled. Given a junction tree with p cliques, each having at
most deg children, the complexity of the algorithm is O(m2p ·kw

∗

deg). Elliot [6],
explores the representation of Valued And-Or Acyclic Graph, i.e., smooth deter-
ministic decomposable negation normal form (sd-DNNF) [3]. He propagates the
m best solutions partial assignments to the problem variables along the DNNF
structure which is pre-compiled as well. The complexity of Elliot’s algorithm
is O(nkw

∗

m logm · deg). Clearly our elim-m-opt algorithm does not boast the
best complexity compared to the related methods. However, it demonstrates the
direct applicability of established inference schemes to the generalized formula-
tion of the m best solution problem as the m-best reasoning problem. Moreover,
the main significance elim-m-opt is in the natural extension to an approximation
scheme with guarantees on the solution quality that provides flexible trade off
between accuracy and complexity.

Comparing with approximation schemes. In addition to BMMF, another
extension of Nilsson’s and Lawler’s idea that yields an approximation scheme
is an algorithm called STRIPES by [9]. They focus on m-MAP problem over
binary Markov networks, solving each new subproblem by an LP relaxation.
The algorithm solves the task exactly if the solutions to all LP relaxations are
integral, and provides an upper bound of each m MAP assignments otherwise.
In contrast, our algorithm mbe-m-opt can compute bounds over any graphical
model (not only binary) and over a variety of m-best optimization tasks.
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Fig. 3: mbe-m-opt run time (sec) as a function of number of solutions m for the grid in-
stances. The z-bound=10, m = [1, 5, 10, 20, 50, 100, 200], n ∈ [500, 2500], w∗ ∈ [30, 74],
k = 2.
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Fig. 4: mbe-m-opt run time (sec) as a function of number of solutions m for the pedigree
instances. The z-bound=10, m =∈ [1, 5, 10, 20, 50, 100, 200], n ∈ [400, 1272], w∗ ∈
[20, 30], k = 4.
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Fig. 5: The change in the cost of the jth solution as j increases from 1 to 200 for two
binary grid instances. Instance 50-12-5 has n = 144 and w∗ = 15, 50-14-5 has n=196
and w∗ = 18. The upper bounds outputted by mbe-m-opt with z-bound=10, the exact
best solutions found by a search algorithm.
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Fig. 6: The change in the cost of the jth solution as j increases for chosen WCSP
instances, n ∈ [25, 475], w∗ ∈ [18, 293], k ∈ [2, 4]. Results obtained by mbe-m-opt with
z-bound=10.

6 Empirical demonstrations

The first part of our experiments assumes solving m-best MPE task. We eval-
uated empirically algorithm mbe-m-opt with m = {1, 5, 10, 20, 50, 100, 200} and
with z-bound 10 on two sets of instances. The first set contained grid instances
with a hundred to 2.5 thousand variables and tree-width from 12 to 50, the
second - pedigree instances with several hundred variables and tree width from
15 to 30. Those instances were taken from the UAI 2008 evaluation. For clarity
and space reasons we present only a subset of instances illustrating typical be-
haviour. Figures 3 and 4 present the dependence of the run-time on m, for a few
selected instances.

Figure 5 shows the change in the upper bound as a function of index of the
solution j. For these grid instances as j increases, the bound on the cost of the
jth solution approaches the exact best solution, but extremely slowly. However,
as can be seen in Figure 6, it is not the case for all type of instances. This figure
depicts some of the results of the experiments on the set of weighted CSPs from
UAI 2008 competition. The instances in question have from 25 to 450 variables,
domain size 2-4 and induced width 18-293. We can see considerable differences
between the costs of the 1st and 10th for some instances. This demonstrates that
there is a potential of improving the bound on the optimal assignment using the
m-best bounds as discussed in Section 4.5.

We carried some comparison with BMMF by [15] on randomly generated 10
by 10 grids for MPE task. The run times of the algorithms are not compara-
ble since our algorithm is implemented in C and BMMF in Matlab, which is
inherently slower. For most instances that mbe-m-opt can solve exactly in under
a second, BMMF takes more than 5 minutes. The algorithms also differ in the
nature of the outputs: BMMF provides approximate solutions with no guaran-
tees while mbe-m-opt generates bounds on all the m-best solutions. Still some
information can be learned from viewing the two algorithms side by side as is
demonstrated by a typical result in Figure 7. We know that in this case the



solutions obtained with z-bound equal to 1000 are exact, while z-bound equal
to 10 yields an upper bound. BMMF outputs significantly less accurate results
than mbe-m-opt with even a low z-bound. Admittedly, these experiments are
quite preliminary and not conclusive.
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Fig. 7: Comparison of mbe-m-opt with z-bounds 10 and BMMF on random 10 by 10
grids. The exact solutions were obtained by mbe-m-opt with z-bound> w∗. While mbe-
m-opt provides upper bounds on the solutions, BMMF gives no guarantees whether it
outputs an upper or a lower bound. Also, its accuracy on these instances are clearly
worse.

7 Conclusions

We presented a formulation of the m-best reasoning task within a framework of c-
semiring. Such problem definition make existing inference and search algorithms
immediately applicable for the task, as we demonstrated on the example of a new
bucket-elimination algorithm for solving the m-best task over a graphical model,
analyzed its performance and related it to other approaches in the literature.

The significance of the proposed algorithm is primarily in providing an infer-
ence framework for the m-best task that can both suggest approximation schemes
and yield heuristic advice. Indeed, optimization tasks that seek a single optimal
solution are solved far more effectively by search (e.g., branch and bound and
best-first search), than by variable elimination, because they can benefit from
the bounding power of the guiding cost function. It is also likely that search will
be more effective for m-best task. The promise of the elim-m-opt inference algo-
rithm is in its potential to yield viable lower- and upper-bounds for the m-best
solutions via the mini-bucket algorithm, as we discussed.

Furthermore, it could also lead to loopy propagation message-passing schemes
that are now the most common way for approximations in graphical models, since
those schemes are relaxation of exact message-passing schemes such as bucket-
elimination. In particular, our algorithm can be extended into a loopy max-prod
for the m-best task. This approach will yield a direct loopy-propagation for the
m-best reasoning problem, while the approach by Yanover and Weiss uses loopy



max-prod for solving a sequence of optimization problems in the style of Lawler’s
approach. Moreover, all such approximation extensions would be applicable to
the broad range of graphical models captured by the unifying framework of c-
semiring. Future work will focus on such extensions and on empirical evaluations
of the emerging schemes.

The empirical analysis we provided is only preliminary. Yet it shows thatmbe-
m-opt scales even better than worst-case predict as a function of m. Comparison
with other exact and approximation algorithms is left for future work.
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