Search Algorithms for m Best Solutions for Graphical Models

Rina Dechter and Natalia Flerova
University of California Irvine
USA

Abstract

The paper focuses on finding the best solutions to com-
binatorial optimization problems using Best-First or Bran
and-Bound search. Specifically, we present m-A*, extend-
ing the well-known A* to them-best task, and prove that all
its desirable properties, including soundness, compdsten
and optimal efficiency, are maintained. Since Best-Figgb-al
rithms have memory problems, we also extend the memory-
efficient Depth-First Branch-and-Bound to the-best task.
We extend both algorithms to optimization tasks over graph-
ical models (e.g., Weighted CSP and MPE in Bayesian net-
works), provide complexity analysis and an empirical eval-
uation. Our experiments with 5 variants of Best-First and
Branch-and-Bound confirm that Best-First is largely superi
when memory is available, but Branch-and-Bound is more
robust, while both styles of search benefit greatly when the
heuristic evaluation function has increased accuracy.

1 Introduction
Depth-First Branch and Bound {8) and Best-First Search

(BFS) are the most widely used search schemes for find-

ing optimal solutions in combinatorial optimization tasks

In this paper, we explore the extension of such search algo-

rithms to finding then best solutions. We are interested in
applying such algorithms to optimization tasks over graph-

Radu Marinescu
IBM Research
Dublin, Ireland

A popular alternative to BFS is Depth-First Branch-and-
Bound, whose most attractive feature compared with BFS
is that it can be executed with linear memory. Yet, when
the search space is a graph, it can exploit memory to im-
prove its performance by flexibly trading space and time.
Highly efficient B&B and BFS algorithms were devel-
oped for graphical models exploring the model's AND/OR
search tree or the context-minimal AND/OR search graph
(Dechter and Mateescu 2007), while using heuristics gen-
erated either by the mini-bucket scheme or through soft arc-
consistency schemes (Marinescu and Dechter 2009a; 2009b;
Schiex 2000).

The contributions of our paper are in extending both A*
and Branch-and-Bound algorithms to thebest solutions,
analyzing their performance analytically and empirically
Specifically, 1) we show (in Section 3) that m-A*, our pro-
posed A* for them-best task, inherits all A* desirable prop-
erties, most significantly it has an optimal performance; 2)
we discuss am-best Branch-and-Bound extension (in Sec-
tion 4); 3) we discuss the extension of both algorithms to
graphical models by exploring the AND/OR search spaces
(in Section 5). 4) Empirical evaluations (in Section 7) con-
firm the superiority of m-A*, when memory is available,
and show that otherwise, Branch-and-Bound provides a ro-
bust alternative for solving more problem instances. The de

ical models, such as weighted CSPs and the most probablependency of the search efficiency on the heuristic strength

explanation (MPE) over probabilistic networks. These sask

is shown to be more pronounced as the number of solu-

arise in many applications, for example, procurement auc- tions sought increases. Finally, 5) we show that a hybrid of

tion problems, biological sequence alignment or finding
most likely haplotype configurations.

Most of the paper’s analysis focuses on Best-First Search,

whose behavior for the task of finding a single optimal solu-
tion is well understood. The algorithm is sound and com-
plete when guided by an admissible heuristic evaluation
function. Most significantly, it is efficiently optimal: any

bucket-elimination and search yields a scheme (called BE-
Greedy-m-BF) that is superior to all other competing graphi
cal models algorithms worst-case wise. This scheme suffers
severely from memory issues over dense graphs, far more
than A* schemes.

Two earlier works that are most relevant and provide the
highest challenge to our work are by (Nilsson 1998) and (Al-

node it expands, must be expanded by any other exact searchjazzar and Leue 2011) of which we learned only recently.

algorithm having the same heuristic function if both use the
same tie-breaking rule (Dechter and Pearl 1985). Best-Firs
Search and its most famous variant A* are also known to re-
quire significant memory and therefore substantial re$earc
went into trading memory and time, yielding schemes such
as iterative deepening A* (Pearl and Korf 1987).

Copyright(© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

e Nilsson proposed a junction-tree based message passing
scheme that iteratively finds the best solutions and
claimed that it has the best runtime complexity among
m-best schemes for graphical models. Our analysis (not
included here) can show that indeed Nilsson’s scheme is
very similar to our BE-Greedy-m-BF (Section 5.2). So,
while we were unable to run Nilsson’s code directly, we
compare and contrast with BE-Greedy-m-BF. In particu-

lar this scheme is not feasible for problems having a large ~“Algorithm 1: m-A*
induced width, also known as treewidth.

Data: An implicit directed search grapfi = (IV, E), with a

e Inthe recentwork (Aljazzar and Leue 2011) proposed K*, start nodeno and a set of goal node&Soals. A
an A* search scheme for finding tieshortest paths that consistent heuristic evaluation functiéfn),
is interleaved with Breadth-First search. They use a spe- parametern, OPEN=) and a trel’r = ()
cialized data structure and it is unclear if it can be ex- ~ Result them best solutions

tended straightforwardly to graphical models, a pointwe * ¢= 1 (i counts the current solution being searched for);
OPEN<+ {no}; f(no) = h(no); makeno the root ofT'r;

wil leéve to future work. . If OPEN is empty then return the solutions found so far;
We will further elaborate and contrast our methods with Remove a node, denoteg in OPEN having a minimung

related work towards the end of the paper. For lack of space (break ties arbitrarily, but in favor of goal nodes and deepe

I

all proofs are omitted. nodes) and put it in CLOSED;
5 If nis a goal node, output the current solution obtained by
2 Background tracing back pointers from to no (pointers are assigned in

. - . . the following step). Denote this solution 8sl;. If i = m
Consider a search space defined implicitly by a set of states it alse; < 4 +1, and go to step 3;

(the_ nodes in the g_raph), ope_rators that_map states to states, gise expand, generating all its childred’s. Compute
having costs or weights (the directed weighted arcs), & star g(n) = g(n) + c(n,n'); f(n') = g(n') +h(n'),vn' € Ch
ing stateny and a set of goal states. The task is to find the ¢,/ already appears in OPEN or CLOSERtimes, discard

least cost solution path from, to a goal (Nillson 1980), noder’, else attach from eacli in C'k a pointer back ta in
where the cost of a solution path is the sum of the weights 7. Insertn’ into the right place in OPEN based gifin’);

or the product of the weights on its arcs. In this paper, we s Goto step 3;
explore extensions of Best-First Search (BFS) and Depth-
First Branch-and-Bound (BnB) search to finding thebest
solutions for general search spaces, and then apply those al
gorithms to search over graphical models.

BFS seems to be the most suitable algorithm to be ex-
tended to then-best task. It explores the search space using
a heuristic evaluation functiofi(n) that estimates the best
cost solution path that passes through each naodét is
known that whery (n) is a lower bound on the optimal cost
path the algorithm terminates with an optimal solution.

The most popular variant of BFS is A*, whose heuris-
tic evaluation function isf(n) = g(n) + h(n), whereg(n)
is minimal cost from the root to n along the current
path, andh(n) underestimates* (), the optimal cost from
n to a goal node. The implicit directed search graph is
G = (N, E). We denote by, (n) the cost from the root
to n along pathr and byc, (n1, n2) the cost fromn; to ngy
alongr. The heuristic functiot is consistent iff V n' suc-
cessor ofv in G, h(n) < ¢(n,n’) + h(n').

separate paths to each copy of a node in the explored search

tree, denoted by'r. As we will show, this redundancy is

not at all wasteful when the heuristic function is consikten
In the subsequent sections we establish the following prop-

erties of m-A*, corresponding to the known properties of A*

(Nillson 1980):

1. Soundness and completenesm-A* terminates with the
m best solutions generated in order of their costs.

2. Optimal efficiency: Any node that is surely expanded by
m-A* must be expanded by any other sound and complete
search algorithm.

3. Optimal efficiency for consistent heuristics When the
heuristic function is consistent m-A* expands each node
at mostm times.

4. Dominance Given two heuristic functiong; andhs, s.t.

Vn hi(n) < ha2(n), m-A} will expand every node surely
expanded by m-A where m-A is using heuristic.

3 Best-first Search For them Best Solutions 3.2 m-A*is Sound and Complete

As was already noted, (e.g., (Charniak and Shimony 1994)), We know that if provided with an admissible heuristic, A*
the extension of a BFS algorithm, including A*, to the task Will surely expand every node’, such thatn' € m,,.n

of finding them best solutions seems simple: rather thanter- and f(n’) < C*. We next show that this property can
minating with the first solution found, the algorithm contin ~ be extended straightforwardly to the-best case. We de-
ues searching until it generatessolutions. Inthe following ~ note by C; the i*" best solution cost and bysS; the set
section we prove that indeed these solutions arertheest of nodes expanded by m-A* just before a goal node of the
ones and that this simple scheme, that we call m-A*, is ac- it"-best solution was selected for expansion. By definition
tually the best one among all its competitors under certain 551 C SS2... C SS;... C S5, andCy < C3 ... < Cy,.

conditions. Because at any point before the algorithm generates the
i-best solution there is always a node in OPEN along each
3.1 Algorithm m-A* of the j-best solution path fof = 4, ..., m and because such

Algorithm 1 provides a high level description of a tree- & node must satisfy that(n) < C7, it follows that:

search variant which we call m-A*. The algiorithm expands Proposition 1 At any time before m-A* expands a goal node
npdeg In increasing value gfin t.he usual A* manner. For on thei'" best solution path, there is a nod¢ in OPEN
simplicity, we specify the algorithm under the assumption satisfyingf(n') < C

thath is consistent, but it can be extended to general admis- -

sible heuristics in the usual way. The algorithm maintains From this it follows that:

Theorem 1 (sound and completenesshlgorithm — m-A*
generates then best solutions in order, namely, th&
solution generated is ait” best solution.

3.3 m-A*is Optimally Efficient

Algorithm A* is known to be optimally efficient (Dechter
and Pearl 1985). Namely, any other algorithm that extends

search paths from the root and uses the same heuristic in-

formation will expand every node that is surely expanded by
A*, namely nodes satisfying that they end a path from the
rootw s.t. Vo' € m, f(n’) < C*. This property can be
extended to our m-A*, as follows:

Theorem 2 (m-optimal efficiency) Any search algorithm
which is guaranteed to find the best solutions, and which
explores the same search graph as m-A* will have to expand
every node that is surely expanded by m-A*, if it uses the
same heuristic function. Formally, it will have to expand ev
ery noden that lies on a pathr_,, that is dominated by, ,
namely such thaf(n’) < C*, Vn' € m..p.

Similarly to (Dechter and Pearl 1985) we can show that
any algorithm that does not expand a nadging on a path
mo..n, Whose evaluation function is dominated 6Y;,, can
miss one of then best solutions when applied to a slightly
different problem, and therefore, contradicts completene

3.4 m-A*for Consistent Heuristics

If the heuristic function is consistent, whenever a nade
selected for expansion (for the first time) by A*, the algo-
rithm had already found the shortest path to that node. We
can extend this property as follows:

Theorem 3 Given a consisterit, when m-A* selects a node
n for expansion for thé'” time, theng(n) = g7 (n), namely
it has found the®" best solution frons to n.

We can conclude that whefn is consistent any node
will be expanded at most times.

Corollary 1 Givenm-A* with a consistent:

1. The maximum number of copies of the same node in
OPEN or CLOSED can be boundedty

2. The sef{n|f(n) < Cr,} will surely be expanded (no need
of dominance along the path).

3.5 The Impact of m on the Search Space

The sizes of search space explored by m-A* for different
levels ofm are obviously monotonically increasing with.

Proposition 2 Given a search graph:

1. Any node expanded A* is expanded by-A* if i < j,
if both use the same tie-breaking rule.

The setS(i, j) = {n|C; < f(n) < C;} will surely be
expanded by-A* and surely not be expanded bA*.

If C; = C7, the number of nodes expandedib4* and
j-A* is determined by the tie-breaking rule.

2.

3.

As a result, the larger the discrepancy between the respec-

tive costsC; — C; is, the larger would be the potential dif-
ference in the search spaces they explore.

3.6 The Case ofi = h* for m-A*

Like A*, m-A* improves its performance if it has access to
more accurate heuristics. In particular, whenis strictly
larger (and therefore more accurate) than every node
surely expanded by m-A* withh, before thej*" solution

is uncovered will also be expanded by m-A* with before
the j** solution is found. The case of the exact heuristic
deserves a special notice. It is easy to show that,

Theorem 4 If h = h* is the exact heuristic, then m-A* gen-
erates solutions only ofroptimal pathsl < j < m.

Whenh = h*, m-A* is clearly linear in the number of
nodes having™* < C7 value. However, when the cost func-
tion has only a small range of values, there may be an expo-
nential number of solution paths having c@st. To avoid
this exponential frontier we chose the tie-breaking rule of
expanding deeper nodes first, resulting in a number of nodes
expansions bounded by - n, whenn bounds the solution
length. We can express the number of expanded ngdés
as#N =). #N; nodes, whergtN; is the length of the
i-optimal solution path. We get therefore,

Theorem 5 When m-A* has access to= h*, then, using
a tie-breaking rule in favor of deeper nodes, it expands at
most#N < m - n, whenn is the maximum solution length.

4 Branch-and-Bound for m Best Solutions

Branch-and-Bound explores the search space in a Depth-
First manner. The algorithm maintains the best cost saiutio
encountered so fat/, which is anupper boundn the ex-
act minimum cost. Like A*, BzB uses a heuristic function
h(n) which underestimates the best cost solution below
yielding a lower bound evaluation functigiin). Therefore,
wheneverf(n) > U, search below: is pruned.

The main difference betweent for one solution and
its m-best extension m-BB is in the pruning condition. Let
U, < U; < ... < U, denote the costs of the best so-
lutions encountered thus far, which m-BB maintains in a
sorted list. Algorithm m-BB prunes a subproblem below
noden iff f(n) > U,,.

When m-BB terminates, it outputs the best solutions
to the problem. We can show that when the search space
explored is a graph and m-BB caches solutions, it has a run-
time overhead o (m -log m) for each cachable node in the
search space compared with both 1-BB that uses caching and
m-BB without caching, respectively. The main reason is that
we may have to maintain a sorted list of uprtosolutions
below each cachable node.

5 Application to Graphical Models

A graphical modelis a tuplemM = (X,D,F,}"), where

F is a set of real-valued local cost functions over subsets
of discrete variableX, called scopes, with finite domains
D. The common optimization task is to findinx >, f;
ormaxx [[, fi (aka MPE). The scopes &fimply a primal
graphG with certaininduced widthand a pseudo treg of

G that guides an AND/OR search space (Dechter and Ma-
teescu 2007). AWND/OR search treeS+ associated with

T respects its structure and consists of alternating leviels o

OR nodes corresponding to the variables and AND nodes ‘ BE-Greody-u-BF ‘

corresponding to the values of the OR parent’s variabldy wit OINK” bl

edges weighted according Eo A complete assignment to

the problem variableX is represented by solution treeS - o e
H H] anover and elss 4 m-.

of Sy and the cumulative weight df’s edges corresponds O[Nmk] OlNmE*]

to the cost of the assignment. We are interested in finding
both them best solution costs and their assignments. . e%)ini-tm-m
The size of the AND/OR search tree based Pnis P
O(NEK"), whereN is the number of variables,bounds the
domain sizesh is the height of7. Identical subproblems
can be identified and merged to obtain tmntext mini- TR
mal AND/OR search graphwhich can be searched using O[Nm kv log (m - deg)]
additional memory and has siz§ Nk*), w* being the in- Y
duced width ofG along a depth first traversal Gf. State
of the art algorithms for solving optimization problems pve ¥
graphical models are AOBB (AND/OR Branch-and-Bound) %d‘;\lgr 1}37.?
and AOBF (AND/OR Best-First) (Marinescu and Dechter [VEmk]
2009a; 2009b), that use the mini-bucket heuristic known to

be admissible and consistent (Dechter and Rish 2003). Figure 1: Complexity comparison. A parent node in the
graph has a better complexity than its children.

¥
Nilsson 1998
O[Nk”" + mN(logmN + k)]

O[kw* Nmlogm] Aljazzar and Leue 2011
¥ O[NE" w* log Nk 4 m]

m-AOBB
O[k"" Ndeg - mlogm]

Seroussi and Golmard 1994
O[N m2 kv df(]}

5.1 m-BB and m-A*for Graphical Models It follows that the worst case complexity of the resulting hy
Algorithm m-BB exploring the AND/OR search space is brid scheme is superior to any other known m-best algorithm
called m-AOBB. At any AND node: the m best solutions for graphical models.

to the subproblems rooted at its children need to be com-

bined and the best out of the combined results should be 6 Related Work

chosen, introducing a time overhead@fdeg - mlogm) Itis possible to distinguish three main approaches employe
per AND node, wheréleg is the degree of. in the pseudo py earlierm-best exact algorithms. First one assumes find-
tree. Inthe absence of caching (i.e. exploring AND/OR tree) ing solutions iteratively, an idea made popular by (Lawler
only up tor partial solutions need to be stored in memory, 1972), who provided a general iterative scheme for extend-
enabling m-AOBB to operate in linear space. Caching intro- ing any given optimization algorithm to the-best task, and
duces both space and, as noted in Section 4, time overheadmore recently improved by (Yanover and Weiss 2004) and
of O(m-log m) per cachable (OR) node. For a problemwith (Njlsson 1998). Another approach lies in using dynamic
N variables: programming or variable elimination to directly obtain the
Theorem 6 The tree version of m-AOBB has time com- ™ best solutions (Seroussi and Golmard 1994, Elliott 2007,

plexity of O(Nk"deg - mlogm) and space complexity of ~ Flerova, Dechter, and Rollon 2011). Third idea is to use
O(nm), whereh is the height of the pseudo-tree. The Searchtosolve arelated task of findinghortest paths. The

graph version of m-AOBB has time and space complexity Majority of schemes in the latter category can not be applied
of O(Nkw*deg - mlogm), wherew* is the induced width to the m-best combinatorial optimization task, since they a

of the ordering that guides the search. sume the e_lvailability of an explicit search graph,_which for
. most practical problems is too large. However, this problem

For the m-AOBF the overhead comes from expanding and was overcome in the recently work by (Aljazzar and Leue

storing up tom copies of each node. Since a node is only 2011).

Copie_d when a new path toitis disc_overed, this oyerhead Figure 1 compares the worst-case time Comp|exity be-

pretains only to the graph-based version of the algorithm. tween our schemes and earlierbest work over graphical

Theorem 7 The time and space complexity of tree version Models. A parent node in the graph has a better complexity

of m-AOBF is bounded b@(Nk"). The graph version of than its children. In many cases the complexity analysis is

m-AOBF has time and space complexity$fVmk®*). ours. Note that worst-case analysis cannot capture the opti
mality of m-A* that we proved above.

5.2 Algorithm BE-Greedy-m-BF

Since an exact heuristic for graphical models can be gener-
ated by the Bucket Elimination (BE) algorithm (Kask and
Dechter 2001), we can use the idea suggested in Section
3.6, yielding BE-Greedy-m-BF. The algorithm first gener-

7 Experiments

We evaluate the performance of Best-First and Depth-First
search algorithms on finding the: best solutions to a
weighted CSP and on thex most probable explanations
ates the exact heuritics using BE and then applies m-A* or ¢, ocfis TR 30 2o e o C ke
m-AOBF) using these exact heuristics. age analysis networks, n-by-n grid networks used during the
Theorem 8 Let M = (X,D,F,>") be a graphical model. UAI 2008 competition and ISCAS’89 digital circuits, all on-
The complexity of BE-Greedy-m-BF G§ Nk“* + mN). line at http://graphmod.ics.uci.edu/The algorithms were

instance algorithm 1= 10 7= 16 1= 22

(n, k,w*, h) m =1 | m = 10 [m =100 m =1 [m = 10 [m = 100 m =1 | m = 10 [m =100
time noded time nodeg time nodeg genetic linkage networks (Bayesian networks) time nodes| time nodeg time nodes
m-AOBB - - - - - - - - -
pedigree7? m-AOBF out out out out out out out out out
(1069, 5) m-BB - - - - - - 25752 1.9B| 25567 1.9B| 25548 1.9B
(47, 204) m-BF out out out out out out out out out
m-AOBB | 938.42 4.9M[5133.8 11.2M - 13.75 50.3K| 87.35 139.1K[3196.81 327.9K 10.60 310] 11.74 3.1K] 7750 11.0K
pedigree23 m-AOBF out out out 27.66 328.8K| 27.73 329.7K out 7.23 719 7.37 1.4K| 8.88 8.0K
(403, 5) m-BB 492.13 65.5M| 497.04 66.6M| 549.36 73.6M| 7.52 832.7K| 8.88 953.1K| 19.80 1.6M 7.01 785 7.27 8.6K 9.29 110.1K
(21, 64) m-BF 120.63 7.5M| 120.55 7.5M[146.65 8.9M| 1.54 54.0K 1.61 558K 235 853K 7.08 630 7.17 2.3K 7.76 19.3K
BE+m-BF 7.11 630 7.24 2.5K 7.68 19.3M 7.11 630 7.24 2.5K 7.68 19.3K| 7.1 630| 7.24 2.3K| 7.68 19.3K
m-AOBB | 35.56 164.4K] 137.23 292.9K] 2519.8 607.7K 366.67 6.5K[371.563 13.7K] 513.47 29.0K out out out
pedigree37 m-AOBF out out out out out out out out out
(798, 5) m-BB 10.87 854.4K| 15.54 947.9K 87.89 2.4M| 38.08 14.7K| 38.23 40.4K|[66.24 607.5K out out out
(20,72) m-BF 556 202.2K| 5.93 2056K| 843 242.3K| 3712 56K| 3756 9.0K| 39.91 444K out out out
m-AOBB | 2060.2 15.5M|3916.8 17.8M| 23281 23.2M out out out out out out
pedigree38 m-AOBF out out out out out out out out out
(725, 5) m-BB - - - out out out out out out
(16, 52) m-BF out out out out out out out out out
m-AOBB | 2107.8 9.9M| 4148.0 11.9M[38089 14.7M| 27.16 117.2K| 80.69 184.4K] 977.78 253.5K 11.69 958 12.72 2.9K| 84.23 8.9K
pedigree39 m-AOBF out out out out out out 13.78 1.4K| 14.62 24K|[2191 124K
(1273,5) m-BB 6874.6 592.3M 6833.8 592.4M 6856.1 592.8M 17.58 1.5M| 18.93 1.5M| 76.59 2.6M| 13.12 2.4K| 13.17 5.4K| 15.86 56.8K
(20, 78) m-BF out out out 10.17 474.8K| 10.29 476.4K| 11.33 491.2K| 13.22 1.7K| 13.35 3.3K| 1451 18.0K

BE+m-BF| 1329 1.7K| 1346 3.3K| 1442 18.1K| 13.29 1.7K| 13.46 3.2K| 1442 18.0K| 13.29 1.7K| 13.46 3.3K| 1442 18.0K
grid networks (Bayesian networks)

m-AOBB - - - 1181.8 5.2M| 2157.8 6.9M - 19.63 789| 21.50 3.3K[111.61 19.6K
g-50-18-5 m-AOBF out out out out out out 13.65 5.8K| 13.97 8.8K[1575 246K
(324,2) m-BB - - - 11357 171M| 1316.9 199M| 1840.1 277M| 13.52 16.5K| 13.56 27.2K| 14.71 114.7K
(24, 84) m-BF out out out out out out 13.65 8.2K| 13.68 11K| 14.01 26.3K
BE+m-BF | 37.98 324| 38.00 1.7K| 38.46 12.1K| 37.98 324| 38.00 1.7K| 38.00 12.1K| 37.98 324| 38.00 1.7K| 38.46 12.1K
m-AOBB - - - - - - 226.38 770.9K[654.08 1.5M| 5126.0 3.5M
g-50-20-5 m-AOBF out out out out out out out out out
(400, 2) m-BB - - - - - - 42457 64.1M| 512.80 78M| 723.66 109.6M
(27, 93) m-BF out out out out out out 5539 29M| 63.69 35M| 82.62 4.9M
m-AOBB | 1076.5 4.8M[3070.7 8.9M - 7.63 33K|[59.64 135.4K] 510.92 353.7K 22.02 722 24.98 5.8K| 89.85 28.4K
g-75-18-5 m-AOBF out out out 26.29 368.8K| out out 13.33 1.3K| 13.92 7.1K| 17.26 33.2K
(324, 2) m-BB - - - 7.86 1.3M| 15.62 25M| 32.67 49M| 13.13 15K | 13.35 21K| 15.95 196.3K
(24, 85) m-BF out out out 3.57 280.4K| 798 639K| 17.95 1.4M| 13.27 465 13.28 2.9K| 13.87 22.2K
BE+m-BF | 38.05 324| 38.05 25K| 38.69 21.4K| 38.05 324| 38.05 25K| 3869 21.4K| 38.05 324| 38.05 25K| 38.69 21.4K
m-AOBB - - - 1635.1 6.2M - - 30.94 17.5K| 52.70 50K]| 347.02 132.6K
g-75-19-5 m-AOBF out out out out out out out out out
(361, 2) m-BB - - - - - - 14.44 36.7K| 15.31 90.5K| 20.81 467.8K
(25, 85) m-BF out out out out out out 1451 11.7K| 1456 16.6K| 15.09 38.7K
BE+m-BF | 143.11 361| 143.11 2.3K|144.11 16.9K| 143.11 361|143.11 2.3K| 14411 16.9K| 143.11 361| 143.11 2.3K| 144.11 169K
m-AOBB - - - 214.21 1M| 345.74 1.2M| 1514.7 1.5M| 47.19 33K| 59.96 51.1K| 246.82 88K
g-90-20-5 m-AOBF out out out out out out 19.97 17.8K| 21.66 32.1K| 29.65 96.5K
(400, 2) m-BB - - - 52.96 6.4M| 67.87 8.2M| 108.22 12.9M[18.44 955K| 19.34 158.4K| 24.80 498.2K
(27,99) m-BF out out out 1709 1.1IM| 25.00 16M| 4546 29M| 18.17 3.9K| 18.19 7K | 1856 21.3K
ISCAS networks (Weighted CSPs)
| | i =6 | 7= 12 | 1= 18
m-AOBB | 898.83 4.1M[4354.9 7.9M - 0.49 2.4K 2.48 4.9K 90.57 13.5K| 0.52 433 1.52 2.7K| 40.17 8.6K
c432 m-AOBF 1.72 189K 2.05 19.9K| 30.46 290.1K 0.07 288| 0.25 1K 1.86 7.5K 0.69 287 0.85 1K 2.54 7.4K
(432,2) m-BB - - - 3.08 153.5K| 6.31 304K 41.52 2.1M 1.09 229K| 2.85 107.6K| 35.35 1.7M
(28, 46) m-BF 279.60 12.2M| 281.03 12.2M| out 0.03 507| 0.14 37K 122 342K| 064 432| 077 36K| 1.84 339K
m-AOBB - - - 44959 1.1K]| 2900.2 2.4M - 2891 747K[60.57 107.4K| 1853.4 347.6K
s953 m-AOBF | 11.91 106K| 11.91 106K| 23.35 211.4K| 0.29 24K[029 2,477 0.46 4K 2.92 600[293 648 3.06 1.3K
(441, 2) m-BB - - - 2013.5 147.2M 1976.1 147.5 20104 151.7 7.00 315.7K| 7.05 317.5K| 9.91 487.5K
(72, 99) m-BF out out out 009 15K| 010 16K 047 166K| 291 656| 2.87 732| 297 44K
m-AOBB - - - 289.72 835.5K 625.10 1.2M| 6652.2 2.8M| 26.53 66.6K| 48.10 88K]| 681.16 216.8K
s1196 m-AOBF out out out 562 819K| 13.66 155K out 3.70 22K| 7.01 215K out
(562, 2) m-BB - - - 107.80 7.3M| 110.24 7.4M| 237.73 157M| 8.02 338.4K|[878 364.7K| 20.16 877.4K
(54, 110) m-BF out out out 0.82 34.2K| 14.84 539K| 49.03 19M| 343 39K| 3.74 176K| 4.65 46.1K
m-AOBB - - - - - - 409.05 984K[10941 1.5M -
51238 m-AOBF out out out out out out 3.67 3.1K| 5.16 9.2K| 25.60 96.9K
(541, 2) m-BB - - - - - - 103.53 7.9M| 106.62 8M| 165.55 10.9M
(58, 100) m-BF out out out 7661 28M| 7568 2.8M| 351.05 129M| 360 7.1K| 362 98K| 492 514K
m-AOBB | 5095.3 14.7M| - - 0.81 2.8K[49.44 56.3K| 4118.8 394.2K 3.82 1.4K| 2514 23.9K[1956.7 175.9K
s1488 m-AOBF | 12.38 428K out out 0.38 15K[219 9.7K| 1791 70.8K| 5.02 4.2K| 8.09 20K out
(667, 2) m-BB - - - 6.00 231.8K| 130.39 42M| 504.33 19.1M| 6.82 86.1K|173.27 5M| 702.75 21.4M
(46, 69) m-BF out out out 0.14 939| 3.87 84.6K| 33.62 692.7K 4.37 783 481 11.6K| 9.02 110.9K

Table 1: CPU time (in seconds) and number of nodes expand#ufgenetic linkage, grid and ISCAS networks. An’-’ stands
for exceeding the time limit (12h - pedigrees, 2h - grids &@@AS networks). 'out’ indicates out of 4GB memory. Algorith
BE+m-BF is shown in the corresponding table row only whewlted that problem instance, and is omitted otherwise.

implemented in C++ (32-bit) and the experiments were run search tree, namely m-AOBF and m-AOBB. So far we im-
on a 2.6GHz quad-core processor with 12GB of RAM. plemented algorithms that explore a search tree and not a
graph. In the case of Best-First Search this is justified by
theory. Caching for Depth-First Branch-and-Bound allows
to expand less nodes, but could bring significant space over-
"head, and this will be studied in future work. We also ran the

We can distinguish 4 algorithms based on the particular
order of node expansions and the structure of the underlying
search space: two that explore a regular OR search tree, de
noted by m-BF and m-BB, and two that explore an AND/OR

432 [n=432, k=2, w'=28, h=46] - (i-bound=8) 5953 [n=441, k=2, w'=72, h=99] - (i-bound=12) 51488 [n=667, k=2, w'=46, h=69] - (i-bound=14)

- i P ———]
—— 100
100 o] 100 4

CPU time (sec)
Q
CPU time (sec)

—=— m-AOBB
-0~ m-AOBF
—e— m-BB
—o- m-BF

e = m-AOBB] O —= m-AOBB
A -0~ m-AOBF 100 o ~O~ m-AOBF
100 o o —o— m-BB i —e— m-BB
- —o- m-BF 4 —o- m-BF

sa b

T T T T T T T T T T T T T T T
50 100 500 1,000 5000 10,000 1 10 50 100 500 1,000 5000 10,000 1 10 50 100 500 1,000 5000 10,000
m

m m
€432 [n=432, k=2, w'=28, h=46] - (i-bound=8) 51488 [n=667, k=2, w'=46, h=69] - (i-bound=14)

5953 [n=441, k=2, w'=72, h=99] - (i-bound=12)

"
o -0

—= m-AOBB

~o m-AOBF

PR— o s 100] o j -0~ m-AOBF
| p i et —o mBB

10° 4 7 m — —o- m-BF

-=- m-AOBB
-0~ m-AOBF
—- m-BB
-0~ m-BF

T T T T T T T T T T T T T T T
1 10 50 100 500 1,000 5000 10,000 1 10 50 100 500 1,000 5000 10,000 1 10 50 100 500 1,000 5000 10,000
m m m

Figure 2: CPU time and nodes expanded as a function fifr the ISCAS networks c432, s953 and s1488, respectively.

. solved instances, m=100 time limit. Figure 3 shows that overall m-BB solves more

instances for various i-bounds.
,, 2 Impact of the AND/OR search spactite AND/OR search
3 ./._/"_/' algorithm m-AOBB is inferior to m-BB time-wise on most
D/D\D/Dg/ﬂ instances even though it expands significantly less nodes (e
E o e c432). Its powerful decomposition strategy does not trans-

LI L B |

late into time savings, apparently due to overhead of com-
bining m partial solutions from different child nodes. Fig-

. _) ure 4 shows the time spent per node, averaged over the pedi-
Figure 3: Number of solved instances as a function of the gree problems. Still, for some instances m-AOBB is more
mini-bucket i-bound;n = 100. efficient than m-BB, for example, pedigree38. As for Best-

hybrid BE-Greedy-m-BF described in Section 5.2 (denoted First search, m-AOBF is competitive and sometimes signif-
here as BE+m-BF). All algorithms were guided by pre- icantly faster than m-BF when enough memory is available

compiled mini-bucket heuristics (Kask and Dechter 2001; (€9, 6432, s953), but it runs out of memory quicker than m-
Marinescu and Dechter 2009a) and were restricted to a BF because of addltlonal data structures needed to maintain
static variable ordering which was computed using a min-fill the AND/OR tree and its OPEN list.
heuristic iteratively and stochastically (Kask etal. 2011 3 Impact of the heuristic informationthe B&B algorithms
We report the CPU time (in seconds) and the number of typically outperform the BFS algorithms for less accurate
nodes expanded during search and all the relevant parame-heuristics (smaller i-bounds), where the latter run out of
ters(n, k, w*, h). The best runtime performance points are memory relatively quickly (eg, pedigree38, pedigree3%. A
highlighted. the heuristic accuracy increases (larger i-bounds), BES ou
Table 1 shows the results obtained for 5 hard linkage net- performs dramatically BB search (eg, s953, s1196). How-
works, 5 grid networks and 5 ISCAS circuits. The columns ever, for the most accurate heuristics (largest i-bourills),
are indexed by the mini-buckets i-bound, the number of so- difference between 8B and BFS is often smaller, perhaps,
lutions considered and for each we report the time and the because BB finds almost optimal solutions fast and there-
number of nodes expanded. The best time for each i-bound fore, like Best-First search, will not explore solutionsosk
is shown in bold and underlined. We observed that: evaluation function is above the optimal one.

Best First vs. Branch and Boundlgorithm m-BF offersthe 4 Impact of the number of solutionalgorithms m-BF and m-
overall best performance when sufficient memory is avail- BB are able to scale to much largervalues than 100 due
able, winning on 12 out of the 15 test instances shown. For to their bounded computational overhead compared with m-
example, on the s1196 circuit, m-BF with= 12 found 100 AOBB/m-AOBF. Figure 2 displays the CPU time and num-
solutions in 49 seconds, about 5 and 133 times faster than ber of nodes expanded as a functiomaffor three ISCAS
m-BB and m-AOBB, respectively. Algorithm m-BB is oth- circuits. Algorithm m-BF is the fastest algorithm acrods al
erwise more robust and, therefore, is able to find all 100 so- reportedn values, outperforming m-BB by up to four orders
lutions to the hardest instance in the dataset (eg, pedigree of magnitude while exploring a significantly smaller search
in about 7 hours, while others aborted due to memory or space. Algorithm m-AOBF is competitive with m-BF but

14
i-bound

Average time cost (in sec) per node for pedigrees vs number of solutions m

m-AOBB
m-AOBF
m-BB
m-BF

—-—
-0
——
—o—

LI B B E B B B I B B B B

(((((
number of solutions m

Figure 4: Average time (in sec) per node as a functiomof

only for relatively smalln values, because of computational
overhead issues. Algorithm m-AOBB scaled upiio= 10

on c432 and s953, and up ta = 100 on s1488, while
exceeding the time limit for largen. values, even though

References

Aljazzar, H., and Leue, S. 2011. K : A heuristic search algo-
rithm for finding the k shortest pathértificial Intelligence
175(18):2129-2154.

Charniak, E., and Shimony, S. 1994. Cost-based abduction
and map explanatiorrtificial Intelligence66(2):345-374.
Dechter, R., and Mateescu, R. 2007. AND/OR search spaces

for graphical models. Artificial Intelligence171(2-3):73—
106.

Dechter, R., and Pearl, J. 1985. Generalized best-firstisear
strategies and the optimality of A*Journal of the ACM
32:506-536.

Dechter, R., and Rish, I. 2003. Mini-buckets: A gen-

the search space explored was far smaller than that of m-BB €ral scheme for bounded inferencdournal of the ACM

again, due to node overhead.

50(2):107-153.

Algorithm BE+m-BF solved only 5 test instances and failed ~ Elliott, P. 2007. Extracting the K Best Solutions from a Val-
on the rest due to the memory |mp||ed by the very |arge ued And-Or AcyC“C Graph. Master’s thesis, Massachusetts

induced widths. We expect a similar performance from Institute of Technology.

the variable elimination based approaches (e.g., (Nilsson Flerova, N.; Dechter, R.; and Rollon, E. 2011. Bucket
1998)), because they all require memory exponential in the and mini-bucket schemes for m best solutions over graphical

induced widthw* and lack an efficient pruning mechanism.

8 Conclusion

Most of the work on findingn best solutions over graphi-

models. InGraph structures for knowledge representation
and reasoning workshop

Kask, K., and Dechter, R. 2001. A general scheme for
automatic search heuristics from specification dependsnci
Artificial Intelligencel29(1-2):91-131.

cal models was focused on either iterative schemes based onKask, K.; Gefland, A.; Otten, L.; and Dechter, R. 2011.

Lawler’s idea, or on dynamic programming (e.g., variable-
elimination or tree-clustering). In this paper we showed
for the first time that for combinatorial optimization de-
fined over graphical models the traditional heuristic Searc
paradigms are superior. In particular, we extended Best-Fi
and Branch-and-Bound search algorithms to solvingithe
best optimization tasks, presenting m-A* and m-BB, and
proved analytically that m-A* is superior to any other séarc
scheme. We also introduced BE-Greedy-m-BF, a hybrid of
variable elimination and Best-First scheme and showed that
it has the best worst-case time complexity amongstall
best algorithms over graphical models known to us. How-
ever, we empirically demonstrated the superiority of m-A*
over the BE-Greedy-m-BF scheme in practice, and thus can
infer general superiority over many of the other algorithms

Finally, we also demonstrated empirically that since both
Best-First Search and the elimination-based schemes (e.g.
BE-Greedy-m-BF andelim-m-opt reported in (Flerova,
Dechter, and Rollon 2011)) require too much memory when
the graph is dense (e.g., the induced width is high),

a Branch-and-Bound scheme like m-BB, which can trade
space for time, is a better option. Note, that our implementa
tions of the search algorithms here were restricted to kearc

spaces that are trees. One of our main future tasks is to ex-

plore extensions to search spaces that are graphs.

Acknowledgement
This work was supported by NSF grant [1S-1065618.

Pushing the power of stochastic greedy ordering schemes
for inference in graphical models. Rbth Conference on
Artificial Intelligence (AAAI)54-60.

Lawler, E. 1972. A procedure for computing the k best solu-
tions to discrete optimization problems and its applicat®m
the shortest path problernvianagement Sciende(7):401—
405.

Marinescu, R., and Dechter, R. 2009a. AND/OR Branch-
and-Bound search for combinatorial optimization in graphi
cal modelsArtificial Intelligencel73(16-17):1457-1491.

Marinescu, R., and Dechter, R. 2009b. Memory intensive
AND/OR search for combinatorial optimization in graphical
models.Artificial Intelligencel73(16-17):1492-1524.

Nillson, N. J. 1980. Principles of Artificial Intelligence
Tioga, Palo Alto, CA.

Nilsson, D. 1998. An efficient algorithm for finding the
M most probable configurations in probabilistic expert sys-
tems. Statistics and Computing(2):159-173.

Pearl, J., and Korf, R. 1987. Search techniquasnual
Reviews of Computer Scien2@51-467.

Schiex, T. 2000. Arc consistency for soft constrainiis-
ternational Conference on Principles and Practice of Con-
straint Programming (CP311-424.

Seroussi, B., and Golmard, J. 1994. An algorithm directly
finding the K most probable configurations in Bayesian net-
works. International Journal of Approximate Reasoning
11(3):205-233.

Yanover, C., and Weiss, Y. 2004. Finding the M Most Prob-
able Configurations Using Loopy Belief PropagationAlh

vances in Neural Information Processing Systems Tbe
MIT Press.

