
Empirical Evaluation of AND/OR Multivalued
Decision Diagrams for Inference

Student: William Lam, Advisor: Rina Dechter

Donald Bren School of Information and Computer Sciences
University of California, Irvine, CA 92697, USA

{willmlam,dechter}@ics.uci.edu

Abstract. AND/OR Multi-valued Decision Diagrams (AOMDD) were
shown to provide a more compact representation of discrete-domain real-
valued functions compared to other decision diagram variants [1]. We
show the performance of AOMDDs on inference tasks in graphical mod-
els. We introduce the elimination operator to AOMDDs, which in con-
junction with the combination operator introduced in previous work,
yields a full bucket elimination (BE) scheme using AOMDDs as an al-
ternative function representation to tables. We show that we are able to
solve instances that do not fit in main memory when using tables.

1 Introduction

AND/OR Multi-valued Decision Diagrams (AOMDDs) combine the two frame-
works of AND/OR search spaces and multi-valued decision diagrams (MDDs)
to create a framework that compactly represents discrete-domain functions such
as those in discrete graphical models [1]. The AND/OR search space is a more
compact search space for search-based inference algorithms in graphical models
compared to OR search spaces. For problems with decomposition into subprob-
lems, the AND/OR search space captures this. Decision diagrams are generally
used to represent functions compactly [2].

The key algorithm for combining AOMDDs, apply, first introduced in [3]
was never implemented before. Our work also extends upon previous work by
introducing the elimination operator to AOMDDs. With these two algorithms
in place, this yields the full bucket elimination [4] scheme using AOMDDs as
an alternative function representation to tables. We provide the first empirical
results demonstrating the algorithm and contrasting its performance with the
BE algorithm using tables.

Similar work is presented in [5, 6], where an algebraic decision diagram (ADD)
structure is considered. In [6], ADDs are extended with affine transformations
to capture additive and multiplicative structures in graphical models. However,
AND structure is still not exploited in these alternative decision diagram variants
and they are restricted to variables with binary domains.

We start with presenting preliminaries by defining graphical models and
counting queries.



2

Definition 1 (graphical model/counting query) A graphical model is a tu-
ple R = 〈X,D,F,⊗〉, where X = {X1, ..., Xn} is a set of variables, D =
{D1, ..., Dn} is the set of the respective finite domains of the variables in X,
F = {f1, ..., fr} is a set of real-valued functions defined over a subset of vari-
ables Si ⊆ X, and ⊗ is a combination operator (i.e.

∏
,
∑

,on). The graphical
model represents a global function computed by ⊗r

i=1fi. For a CSP, the number
of solutions is the number of assignments which do not violate any constraints.
For a weighted CSP, the weighted solution count is the sum of the weights of all
solutions such that no constraint is violated (having a weight of 0). For graphical
models representing probability distributions, this is likelihood/ partition function
computation. Formally the task is to find

∑∏r
i=1 fi

We refer the reader to previous work for background on AND/OR search
spaces and decision diagrams [1, 2]. The basic idea of AOMDDs is augmenting
context-minimal AND/OR search graphs to remove redundant nodes (or equiva-
lently, augmenting weighted MDDs with AND nodes.) Overall, AOMDDs exploit
determinism and context-specific independence [7] to achieve compactness. More
details on AOMDDs are in [1].

2 Algorithms

In this work, we include the reduction rule by redundancy and use AOMDDs
as an alternative to a tabular representation of the functions and messages in
bucket elimination. To perform this, we require a method of applying the com-
bination operator to AOMDDs and the elimination operators. For AOMDDs, it
is presented here for the first time.

The main operation to perform the combination of two AOMDDs is the apply
operator. It is stated that the runtime of apply is quadratic in the size of the
input AOMDDs. We omit the full details of the algorithm for space issues and
refer the reader to previous work [1].

There are difference and restrictions of the operation when compared to de-
cision diagrams without AND decomposition. Since AOMDDs further compress
a function representation by taking advantage of decomposition in the pseudo
tree [1], operations on it are bound by the same rules as variable elimination.
Namely, once we consider a fixed variable ordering, eliminating a variable whose
children are not yet eliminated would induce edges in the induced graph between
all of its neighbors. Equivalently, this means we would be changing the order of
sum and product operators.

A basic description of the algorithm is as follows. From the embedded pseudo
tree of the AOMDD, we create a list of relevant variables by tracing a path from
the leaf node representing the elimination variable to the root of the tree. This
creates a direct path from the root of the AOMDD down to the elimination
variable without the need to explore other branches of the AOMDD. We then
create a reverse BFS ordering based on list of relevant variables. If the node is an
elimination variable, we eliminate the node by performing the necessary operator



3

and promote the weight to the parent. Otherwise, we normalize the node (making
its AND children weights sum to 1) and pass on the normalization constant to
the parent.

One caveat to note is that the metanode for a variable we are eliminating
may not be present in the decision diagram due to the reduction rules. This
is an issue when the elimination operator is summation. We must compensate
for any missed metanodes, which we can identify if we see an ancestor of the
elimination variable connected to a terminal metanode. Since nodes would be
missing only if it were redundant, we can multiply the weight of that ancestor
metanode by the domain size of the elimination variable. However, in the process
after eliminating a node, the intermediate structure looks identical to that of
when the input diagram does not have the node due to redundancy reduction.
Therefore, we keep track of which nodes already received a weight from a child
node to distinguish between these two.

Fig. 1. Example of elimination on AOMDDs. The state of the AOMDD is shown
through the process.

We demonstrate the algorithm on a small example, shown in Figure 2. The
function tables above (a) the AOMDDs demonstrate the operation performed
in a standard representation. We are interested in summing out variable B. The
embedded pseudo tree (b) is used to determine the set of relevant variables,
which in this case is {A,B}.

We begin with the AOMDD shown at (1), which represents the same function
as the input table. Visiting the relevant nodes in a reverse BFS order, we visit
the metanode B first, eliminate it, and propagate its result up to the parent
AND node in metanode A, shown in (2). At (3), we are left with only metanode
A. Checking the 0 AND node, since it received a weight from something, we are



4

done with it. Checking the 1 AND node, since it has not received a weight, we
multiply it by the domain size of B, which is 2 in this case. The result is now
shown at (4). Finally, we normalize the AND node weights of metanode A and
propagate its normalization term up to the root, yielding the resulting AOMDD
in (5), which represents the same function as the output table.

In the cases of maximization and minimization, we do not encounter the same
problem since these operators choose one from the set of values, which has no
effect on functions where all the output values are identical. Conditioning can
also be considered a form of elimination and also does not suffer from the issues
that summation encounters for the same reasons.

With an elimination operator, this yields a full BE algorithm for inference
using AOMDDs as a function representation (AOMDD-BE). The complexity
remains the same as standard BE, as in the worst case, the AOMDD has as
many AND nodes as the number of entries in the table. However, for some
problem structures, the AOMDD size can be far smaller than the table size.

3 Experiments

For all tables in this section, for each problem instance, we report number of
variables (n), induced width (w), height of the pseudo tree (h), maximum domain
size (k), time, and memory usage. The algorithms were implemented in C++
(64-bit) and the experiments were run on 2.6 GHz machines with 24GB of RAM.

The following evaluates the AOMDD-BE algorithm, which is the same as
bucket elimination, but uses AOMDDs to represent all functions. We ran exper-
iments on the UAI 2006 evaluation problems and genetic linkage analysis net-
works, available at http://graphmod.ics.uci.edu. In each table, we compare
the time and memory usages of standard BE vs. AOMDD-BE. Times reported
as “OOM” indicate that the algorithm exceeded our memory bound. Results on
memory usage are based on the usage of the cache storing nodes of the AOMDDs.
For instances where BE runs out of memory, we simulated its execution by only
passing information about scope sizes to compute the memory usage.

UAI 2006 benchmarks. Results are presented in Table 1. In columns 5 and 6,
we see the runtimes for BE and AOMDD-BE, while the last two columns show
the the memory usages of BE and AOMDD-BE.

We see that our scheme is able to solve some problems which do not fit in
standard main memory. These problems have structures that AOMDDs exploit
well. Namely, the functions of these problems have many zero values that can be
represented easily by AOMDDs. In addition, AOMDDs are able to take advan-
tage of functions that have many values that are the same, but not necessarily
zero. Such functions are present in a number of the instances on which it outper-
forms BE based on memory usage. However, there must be a significant amount
of compression before we get any memory savings. Namely, as each node contains
information to capture the structure of the problem, it means that much more
memory is used when representing a function which has many different values.



5

time (s) time (s) Mem (MB) Mem (MB)
problem n w h k [BE] [AOMDD-BE] [BE] [AOMDD-BE]
BN 22 2425 5 575 91 1 13 26.93 581.27
BN 28 24 5 9 10 1 13 1.79 568.36
BN 30 1156 48 179 2 OOM 38 1.50E+10 245.93
BN 32 1444 56 219 2 OOM 4384 4.45E+12 3006.08
BN 34 1444 55 220 2 OOM 145 2.30E+12 515.45
BN 40 1444 55 235 2 OOM 91 1.82E+12 322.76
BN 42 880 23 54 2 21 2 314.04 21.62
BN 46 499 22 49 2 18 <1 248.97 1.99
BN 49 661 44 59 2 OOM 1188 7.83E+08 2991.78
BN 53 561 48 95 2 OOM 4063 8.43E+09 3303.48
BN 61 667 44 61 2 OOM 17 9.46E+08 235.72
BN 65 440 61 95 2 OOM 1062 Overflow* 2843.65
BN 84 360 20 24 2 4 22 24.76 546.21
BN 92 422 22 33 2 26 23 187.43 433.65

time (s) time (s) Mem (MB) Mem (MB)
name n w h k [BE] [AOMDD-BE] [BE] [AOMDD-BE]
pedigree1 334 15 61 4 2 14 23.61 210.09
pedigree9 1118 25 137 7 550 5301 7499.77 4030.34
pedigree18 1184 19 102 5 7 200 136.13 959.28
pedigree20 437 21 58 5 131 291 1393.90 1030.66
pedigree23 402 20 58 5 19 52 241.57 532.46
pedigree25 1289 23 86 5 146 1284 2037.69 2999.84
pedigree30 1289 20 102 5 13 307 220.63 1044.76
pedigree33 798 24 116 4 347 883 4277.26 1368.42
pedigree37 1032 20 62 5 OOM 3535 251109.68 7992.43
pedigree38 724 16 67 5 OOM 2201 172249.65 6253.16
pedigree39 1272 20 83 5 46 400 772.20 1555.68
pedigree44 811 24 79 4 516 3795 6153.63 4782.29

Table 1. UAI 2006 benchmarks and pedigree networks. For pedigree networks, in-
stances not shown here (7,13,19,31,34,40,41,42,50,51) run out of memory with both
algorithms. (* The size in MB could not be stored within a double precision number
representation.)

We generally see that for lower treewidth networks, standard BE is sufficient and
has better runtime, however, it is unable to solve problems with higher treewidth
due to lack of memory.

Pedigree networks. We also ran experiments on genetic linkage analysis net-
works (known as pedigree), for which the partition function value of many of
them were not known before the work in [8], which makes use of hard disk to
push the memory restrictions of solving a problem.

The results are shown in Table 1. As with the previous set or problem in-
stances, timing results are shown in columns 5 and 6 while memory usage is
shown in columns 7 and 8.

Our results are less promising on these networks. There are only two instances
which AOMDD-BE manages to perform very well on, which standard BE would
require about 30 times the amount of memory. For the rest that AOMDD-BE
managed to solve, a large number of problems were solvable by standard BE with
a shorter amount of time and less memory. Even with those where AOMDD-BE
uses less memory, the runtime is often much worse, due to overhead in maintain-
ing the properties of a canonical AOMDD. We can attribute these results this
set of problems having overall less determinism and context-specific indepen-



6

dence. However, these results also demonstrate the use of decision diagrams on
non-binary networks for inference, when compared to related work using ADDs
[5, 9].

4 Conclusion

For many hard problems (such as the pedigree networks), the overhead of using
the minimal AOMDD structure for function representation actually results in
worse performance in terms of both time and space. On other problems, such
as the ISCAS networks in the UAI 2006 evaluation set, our scheme shows good
performance despite having high treewidth. We demonstrated results reinforcing
the potential of using AOMDDs for the classic BE algorithm. Future work would
include comparing with related techniques exploiting determinism and context-
specific independence such as ACE [10].

References

1. Mateescu, R., Dechter, R., Marinescu, R.: AND/OR multi-valued decision dia-
grams (AOMDDs) for graphical models. Journal of Artificial Intelligence Research
33(1) (2008) 465–519

2. Bryant, R.: Graph-based algorithms for boolean function manipulation. IEEE
Trans. Computers 35(8) (1986)

3. Mateescu, R., Dechter, R.: Compiling constraint networks into AND/OR multi-
valued decision diagrams (AOMDDs). In: Principles and Practice of Constraint
Programming (CP 2006). (2006) 10.1007/11889205 25.

4. Dechter, R.: Bucket elimination: A unifying framework for reasoning. Artificial
Intelligence 113(1) (1999) 41–85

5. Chavira, M., Darwiche, A.: Compiling bayesian networks using variable elimina-
tion. In: Proceedings of the Twentieth International Joint Conference on Artificial
Intelligence (IJCAI-07). (2007) 2443–2449

6. Sanner, S., McAllester, D.: Affine algebraic decision diagrams (AADDs) and their
application to structured probabilistic inference. In: Proceedings of the Nineteenth
International Joint Conference on Artificial Intelligence (IJCAI-05). Volume 19.
(2005) 1384

7. Boutilier, C., Friedman, N., Goldszmidt, M., Koller, D.: Context-specific inde-
pendence in bayesian networks. In: Proc. of the 12th International Conference on
Uncertainty in Artificial Intelligence (UAI-96). (1996) 115–123

8. Kask, K., Dechter, R., Gelfand, A.: BEEM: Bucket elimination with external
memory. In: Proc. of the 26th Annual Conference on Uncertainty in Artificial
Intelligence (UAI-10). (2010) 268–276

9. Gogate, V., Domingos, P.: Approximation by quantization. In: Proc. of the 27th
Annual Conference on Uncertainty in Artificial Intelligence (UAI-11). (2011) 247–
255

10. Chavira, M., Darwiche, A.: Compiling bayesian networks with local structure. In:
Proceedings of the Nineteenth International Joint Conference on Artificial Intelli-
gence (IJCAI-05). Volume 19. (2005) 1306


