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This thesis presents substantial enhancements to the state of the art in combinatorial opti-

mization over graphical models. Our contributions are relevant in the context of both exact

and approximate reasoning over Bayesian and Markov networks, weighted constraint satis-

faction problems, and other related queries. While the focus of this work is on probabilistic

and constraint inference, we also draw from the areas of distributed computing and statis-

tical learning. Relevant practical applications we consider include genetic linkage analysis,

protein side-chain prediction, medical diagnosis, resource scheduling, and signal processing.

We extend AND/OR Branch-and-Bound (AOBB), a leading algorithm for optimization

queries over graphical models. AOBB applies the principle of depth-first branch-and-bound

to AND/OR search spaces, which exploit conditional independencies via problem decom-

position and merge unifiable subproblems through caching of partial solutions. This thesis

presents fundamental extensions to AOBB in three regards.

First, we significantly improve the applicability of AOBB as an approximation scheme. We

analyze and demonstrate the inherent conflict between problem decomposition (through

AND/OR search spaces) and the anytime behavior of AOBB and depth-first search in

general. We introduce a new algorithm, Breadth-Rotating AND/OR Branch-and-Bound
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(BRAOBB), which drastically improves upon AOBB with respect to its anytime perfor-

mance while maintaining desirable depth-first complexity guarantees. Comprehensive anal-

ysis and experimental evaluation demonstrate the scheme’s effectiveness. Furthermore, our

entry based on BRAOBB placed first in all three optimization tracks of the PASCAL 2012

Probabilistic Inference Challenge.

Second, we investigate the instance-based run-time complexity of AOBB. The asymptotic

worst-case bounds are both time and space exponential in the problem’s induced width, but

often prove to be very loose due to the algorithm’s powerful pruning, as we show empirically.

We identify a range of (sub)problem features and develop learning schemes to estimate run-

time complexity based on statistical regression analysis. We conduct extensive experimental

evaluation within and across various problem classes and demonstrate convincing predictive

performance.

Third, we describe a parallel AND/OR Branch-and-Bound scheme that pushes the bound-

aries of feasibility for exact reasoning by orders of magnitude. We adapt the paradigm of

parallel tree search to AND/OR search spaces; our implementation distributes conditioned

subproblems on a grid of independent computers. In this context, we show how the pruning

power of AOBB can cause large variance in subproblem complexity, which makes load bal-

ancing extremely elusive and impairs parallel performance. We thus propose load balancing

based on the run-time estimation scheme presented earlier in the thesis, learning a complex-

ity model offline from previously solved subproblems. Through experimental results using

hundreds of computers on problem instances from a variety of classes we show convincing

parallel performance with several orders of magnitude speedup over sequential AOBB, but

we also highlight and analyze some inherent limitations.

Our implementations of AOBB, BRAOBB and parallel AOBB are available online under an

open-source license.
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Chapter 1

Introduction

Optimization problems over graphical models come in various forms with many applications

of practical significance, ranging from computational biology and genetics to scheduling tasks

and coding networks. Conceptually one can distinguish two principal classes of problems:

probabilistic inference, where optimization queries typically refer to maximizing a product

over conditional probabilities, and weighted constraint networks, where one wishes to mini-

mize a sum of local cost functions. Both of these tasks are known to be NP-hard. Central to

their solution process is the usage of the underlying graph structure to capture and exploit

the interactions between variables.

One established and efficient class of algorithms for solving these problems exactly is depth-

first Branch and Bound over AND/OR search spaces. Developed in the past decade within

both the probabilistic reasoning and constraint communities, these methods are effective (a)

because they use sophisticated lower bound schemes such as soft arc-consistency [75] or the

mini-bucket heuristic [28, 82], (b) because they avoid redundant computation using caching

schemes, and most significantly, (c) Because they take advantage of problem decomposition

by exploring an AND/OR search space [87] or an equivalent representation. The efficiency of
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these algorithms was established in several evaluations, including recent UAI competitions

[35], and their properties when used for exact computation are well documented [62, 82, 83].

1.1 Dissertation Outline and Contributions

This thesis extends the cited previous work to build upon and improve AND/OR Branch-

and-Bound in several dimensions. On the one hand, we substantially widen the applicability

of AOBB for approximate reasoning by improving and, in some cases, restoring its anytime

performance characteristics. On the other hand, we push the boundary of feasibility with

regards to exact inference by proposing a distributed implementation of AOBB that runs on

hundreds of computers. The following paragraphs elaborate.

1.1.1 Breadth-Rotating AND/OR Branch-And-Bound

Chapter 2 is concerned with AOBB in sequential execution, on a single processor, and its

anytime behavior [119]. As a depth-first branch-and-bound scheme, AOBB should be able

to generate solutions that get better and better over time, until it eventually discovers an

optimal solution and finally proves its optimality. This behavior is very useful in practice

since in many cases finding a feasible solution is easy but an optimal one is hard to attain. In

fact, this anytime property allows a branch-and-bound algorithm to function as an approxi-

mate reasoning scheme for otherwise infeasible problems or when time is limited. AOBB as

developed in the past [82], however, does generally not have this property, which serves as

the motivation for this chapter as follows:
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Contributions

• We demonstrate analytically and empirically how problem decomposition in AND/OR

search spaces can conflict with the anytime characteristics of AOBB. In particular,

when traversed in a depth-first manner, all but one decomposed subproblem will be

fully solved before a single overall solution can be returned.

• We introduce a simple modification that can mitigate this issue under certain con-

ditions. Namely, if only one of the decomposed subproblems is “hard,” processing

subproblems in a suitable order can restore the anytime performance to some extent,

which we also demonstrate empirically.

• The main contribution of this chapter, however, is a new branch-and-bound scheme

called Breadth-Rotating AND/OR Branch-and-Bound (BRAOBB) that tackles the is-

sue in a more principled way. The algorithm combines depth-first and breadth-first

exploration by periodically “rotating” over the different subproblems, each of which is

processed depth-first as before.

• Despite the breadth-first characteristics, we show that BRAOBB retains the favorable

complexity guarantees of ordinary depth-first search (in particular, the OPEN list of

nodes grows linearly).

• We conduct large-scale empirical evaluation of BRAOBB spanning tens of thousands

of hours of CPU time over multiple problem classes and various time limits. Results

demonstrate superior anytime performance of BRAOBB, especially for cases where

standard AOBB fails entirely.

• We also perform a comparison against a state-of-the-art stochastic local search solver

(SLS, [60]) and outline the varying strengths of the schemes. We then show how

BRAOBB can be joined with SLS to combine the benefits of both approaches.
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The strength of this approach was further demonstrated in the PASCAL 2011 Inference

Challenge, where an entry based on Breadth-Rotating AND/OR Branch-and-Bound placed

first in all three categories of the optimization track [36].

1.1.2 Complexity Prediction of AND/OR Branch-and-Bound

Chapter 3 investigates the runtime complexity of AOBB. It is well known that its asymptotic

complexity is exponential in the problem instance’s induced width, as a result of the bound

on the size of the context-minimal AND/OR search graph that the algorithm explores [82].

Together with other structural parameters (e.g., number of variables and maximum domain

size) this is often used to judge a problem’s hardness.

In the context of optimization problems, however, the aforementioned asymptotic bounds are

generally very loose, due to the pruning power of the AOBB algorithm. This discrepancy is

the starting point for the contributions in this chapter, where we propose a learning approach

to better predict the runtime of AOBB, as outlined in the following.

Contributions

• We develop a finer-grained upper bound on the size of the search space explored by

AOBB, based on a problem’s structural parameters. However, we show empirically

that it is still very loose in practice, which suggests that one needs to go beyond the

problem’s graph structure to get a better handle on problem complexity.

• We identify an extended set of 35 problem features and parameters to form the basis for

complexity estimation. These features capture structural properties of the problem or

subproblem at hand, but also aim to incorporate more dynamic information based on
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the problem’s cost function, such as upper and lower bounds and the pruning behavior

on a small search space probe.

• Based on these features, we then propose to employ a statistical learning approach

to more accurately predict the size of the AOBB search space size. In particular, we

propose an expression that is exponential in a linear combination of the 35 features

and apply a logarithmic transformation to obtain a linear regression model, for which

a variety of established learning algorithms exist [59].

• Extensive experimental evaluation of the quality of the learned complexity model is

conducted. Starting from thousands of sample subproblems from four different problem

classes, we investigate the estimation performance at different, increasingly more gen-

eral levels, starting from just subproblems within a given problem instance, to learning

per problem class and across classes, to learning from one problem class applied to

another other, a setup resembling transfer learning.

• The results show generally good predictive performance in all evaluated learning sce-

narios, except for some cases of transfer learning. Estimates and actual complexities

exhibit a relatively high degree of correlation.

• Closer analysis of the experimental results indicates that the most informative features

for complexity prediction are indeed dependent on the problem’s cost function tables,

reflecting the earlier observation that only structural parameters like the induced width

are not sufficiently informative in practice.

1.1.3 Parallelizing AND/OR Branch-and-Bound

In Chapter 4 we move to parallel execution of AND/OR Branch-and-Bound, with the aim of

pushing the boundaries of feasibility for exact inference. This shift is quite obvious given the
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pervasiveness of multi-core CPUs in commodity computers connected over local networks or

the Internet.

Within the general field of parallel and distributed computing there exists a whole range of

parallelization paradigms, which can be classified along several axes. Most crucial among

those is the question of how the parallel processes exchange information. Multi-core or multi-

CPU systems have shared, fast main memory that can be read and written by all processes

[51, 81]. On the other end of the spectrum are cluster and grid computing, with independent

hosts, each with their own, private main memory, that can exchange messages in different

ways and to a varying degree [43].

The contribution of this chapter lies in putting optimization over graphical models in the

parallelization context. Specifically we focus on a grid computing approach, operating on a

large set of autonomous, loosely connected systems. A more specific outline is given in the

following.

Contributions

• We adapt and extend the concept of parallel tree search [51, 53, 74] for the graphical

model context and apply it to AND/OR Branch-and-Bound, a highly advanced, state-

of-the-art sequential algorithm. The result is parallel AND/OR Branch-and-Bound,

in which search is performed centrally up to a certain point by a “master” host and

the remaining conditioned subproblems are processed separately and in parallel by

“workers.”

• We argue that, as a distributed algorithm, effective load balancing is the key to good

parallel performance. To that end we propose two variants of parallel AOBB:
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– A baseline version that generates parallel subproblems at a fixed depth. As a

consequence, these subproblems generally all have identical structure and the

same upper bound on their search space size (cf. analysis in Chapter 3).

– A more dynamic version that uses the runtime estimation model proposed in

Chapter 3 to generate parallel subproblems of varying structure at different depths,

in an attempt to account for the pruning power of AOBB, which can have vastly

divergent effects in different parts of the state space.

• We provide analysis of parallel AOBB from a distributed system standpoint, highlight-

ing the execution environment, its communication patterns and the resulting potential

for overhead.

• We furthermore analyze the parallel scheme from a graphical model reasoning perspec-

tive to demonstrate that our problem setting is far from embarrassingly parallel. We

work out the two sources of redundancy inherent to the parallelization process, both

of which have their cause in the communication limitations of the grid environment.

Specifically, (1) solutions cannot be propagated as bounds across subproblems; (2)

caching of unifiable subproblems, a core feature of AND/OR search spaces, is compro-

mised in the same way, the negative effect of which we bound analytically using the

graphical model structure.

• We conduct extensive empirical evaluation across instances from four problem classes,

running parallel experiments on 20, 100, and 500 CPUs. Performance is assessed

through a variety of metrics, from parallel runtime and speedup, to average resource

utilization, to parallel overhead and redundancy. Some of the central results include:

– Overall parallel performance is good, with substantial speedups in several cases.

With 20 and 100 CPUs in particular we find speedups fairly close to the optimum,

equal to the number of CPUs. We also see that variable-depth parallelization is

indeed often superior to the fixed-depth variant by virtue of its ability to detect
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and avoid potential bottlenecks. It falls behind, however, in some cases where the

underlying complexity predictions are sufficiently inaccurate and, for instance,

drastically underestimate one subproblem’s complexity.

– Our analysis shows the practical effect of the structural redundancies to be far less

pronounced than the earlier worst-case analysis suggested; instead of exponential

in the depth of the subproblem frontier, our results show a more linear behavior,

often with a small slope of less than 2. However, in some cases, from one problem

class in particular, we observe a faster increase of redundancies, which, while

still growing linearly, inhibits scalability of the scheme to large numbers of CPUs

(since that requires more subproblems and thus a deeper cutoff).

To the best of our knowledge our contribution is the first of its kind, i.e., it constitutes the

first general-purpose parallel implementation of an advanced algorithm for optimization over

graphical models, running on a computational grid. Its viability has been further confirmed

by its successful deployment for haplotype analysis within Superlink-Online SNP, an online

system for genetic analysis of linkage data used by researchers worldwide.

1.2 Preliminaries

The remainder of this chapter introduces the necessary concepts and notation that this work

builds upon. We start by formally defining the concept of a graphical model and a number

of relevant properties.
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1.2.1 Definition of Graphical Models

Graphical models present a powerful formalism for capturing problem structure in proba-

bilistic and constraint reasoning, which is applicable in many practical problem domains.

We first present the formal definition of a graphical model (over discrete variables) and then

show a number of more concrete instantiations.

Definition 1.1 (graphical model). A graphical model R is a 4-tuple (X,D, F,⊗), where:

• X = {X1, . . . , Xn} is a set of discrete variables,

• D = {D1, . . . , Dn} is the set of respective finite variable domains,

• F = {f1, . . . , fm} is a set of real-valued functions, each with scope(fi) ⊆ X,

• ⊗ is a combination operator, applied over the set of functions ⊗ifi.

We point out that graphical models can also be defined over continuous variables, but that

is outside of the scope of this thesis. Given a graphical model we can then define a an

optimization problem over it as follows.

Definition 1.2 (optimization problem). A graphical model optimization problem P is

a pair (R,⇓) of a graphical model R = (X,D, F,⊗) as defined in Definition 1.1 and a

marginalization operator ⇓∈ {min,max}, where the goal is to compute ⇓ ⊗ifi.

Finally, the set of function scopes of a graphical model lets us reason about its underlying

graph structure.

Definition 1.3 (primal graph). The primal graph of a graphical model R = (X,D, F,⊗)

is a graph (V,E) that has the variables as its nodes, V = X, and edges connecting any two

variables that appear in the scope of a function, i.e. (X, Y ) ∈ E ⇔ ∃f ∈ F : {X, Y } ⊆

scope(f).

9



1.2.2 Applications of Graphical Models

Some common incarnations of the graphical model formalism include:

• Weighted constraint networks, where the cost functions are real-valued constraints over

subset of variables and the combination operator is
∑

[28]. This is a generalization

of constraint satisfaction problems (CSPs), where assignments don’t have weights but

are either valid or invalid.

• Bayesian or belief networks, where the functions are conditional probability tables of a

variable distribution, P (Xi | par(Xi)) conditioned on the values of a variable’s parents,

and the combination operator is
∏

[96].

• Markov networks or general factor graphs, where the functions are called factors or

local potentials (not necessarily normalized) with a combination operator
∏

[96].

In particular, we can define the following two closely related general optimization problems

in the contexts of constraint reasoning and probabilistic inference, respectively.

Definition 1.4 (constraint optimization problem). A constraint optimization problem (also

called weighted or soft constraint problem) is a graphical model (X,D, F,
∑

) with the goal to

compute minX
∑

i fi. The set of cost functions F can be seen as penalty terms, and we try

to minimize the sum of all such penalties.

Definition 1.5 (most probable explanation). The problem of finding the most probable

explanation (MPE) over a Bayesian network (X,D, F,
∏
) entails computing maxX

∏
i fi =

maxX
∏

i P (Xi | par(Xi)) and the corresponding assignment argmaxX
∏

i fi that maximizes

the joint probability.

Definition 1.4 can actually also capture “traditional” constraint satisfaction problems (in a

non-optimization context) by expressing constraint relations as functions with costs 0 and
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(a) Radio towers, range indicated by dashed circles. (b) Underlying primal graph.

Figure 1.1: Example constraint problem.

“+∞” (or a very large constant), respectively. Definition 1.5 is often equally applied to

Markov networks, where the functions are not normalized probability tables but general

factors in a multiplicative setting. Finally, we point out that in the context of this thesis

these problems are actually interchangeable, through conversion to and from the logarithmic

domain or inversion of cost values.

Example 1.1. Figure 1.1a depicts an example problem with seven radio towers denoted

X1 through X7, for instance as part of a cellular phone network, whose geographical range

of transmission partially overlaps. We are asked to assign, from a set of possible choices,

a transmission frequency window to each tower with the objective to minimize interference

between towers whose ranges overlap.

It is straightforward to formalize this problem as a constraint optimization problem (cg. Def-

inition 1.4) with the seven towers as variables X = {X1, . . . , X7} and the set of possible

frequency assignments as their respective domains. Furthermore we can define local cost

functions for each pair of towers with overlapping ranges, where interference is penalized

according to a given practical metric. The resulting primal graph is shown in Figure 1.1b.

Example 1.2. (after [96]) Figure 1.2a shows an example Bayesian network with seven vari-

ables, capturing the causal relationships between the season of the year (Se), the configuration
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(a) Directed acyclic graph.

Se R P (R|Se)
Spring Yes 0.3
Spring No 0.7
Summer Yes 0.1
Summer No 0.9
Fall Yes 0.5
Fall No 0.5

Winter Yes 0.8
Winter No 0.2

(b) Example probability table. (c) Primal graph.

Figure 1.2: Example Bayesian network with seven variables.

of the sprinkler system (Sp), whether it is raining (R), if the ground is wet (We) and slippery

(Sl), and whether additional watering is necessary (Wa). According to the Bayesian network

the joint probability factors into P (Se) · P (Sp|Se) · P (R|Se) · P (We|Sp,R) · P (Sl|We) ·

P (Wa|Se, Sp). An example of the conditional probability table for P (R|SE) is given in Fig-

ure 1.2b, while Figure 1.2c shows the resulting primal graph (also known as moral graph in

the context of Bayesian networks).

1.2.3 Properties of Graphical Models

This section introduces a number of graph concepts that are central in the context of graph-

ical model inference.

Definition 1.6 (induced graph, induced width). Given a primal graph G = (V,E) of a

graphical model and an ordering d = X1, . . . , Xn of its nodes, the induced graph of G is

obtained as follows: from last to first in d, each node’s preceding neighbors are connected to

form a clique. The width of a node is the number of neighbors that precede it, the induced

width w is the maximum width over all nodes in the induced graph along ordering d.
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Finding an ordering of minimal induced width w∗ , over all possible variable orderings, is

known to be NP-complete [7, 12, 44], in practice ordering heuristics like min-degree ormin-fill

are used [69].

Definition 1.7 (tree decomposition, tree width). [100] A tree decomposition of a graphical

model (X,D, F,⊗) is tree T = (V,E) , where V is a set of nodes, also called “clusters,” and

E is a set of edges, together with a labeling function χ that labels each v ∈ V with a set

χ(v) ⊂ X such that:

1. For each fi ∈ F there exists v ∈ V such that scope(fi) ∈ χ(v) , i.e. each function’s

scope is contained in at least one cluster.

2. For each Xi ∈ X the set {v′ ∈ V | Xi ∈ χ(v)} forms a connected subtree of T ; this is

also called the “running intersection” or “connectedness” property.

The tree width of a tree decomposition is defined as w := maxv |χ(v)|−1 , i.e. the size of the

largest cluster minus 1. The tree width w∗ of a graphical model is the minimum tree width

over all its tree decompositions.

There is an obvious connection between the clusters of a tree decomposition and the cliques of

a induced graph, as defined above. In particular, one can easily arrange the induced graph’s

cliques into a tree structure, yielding a tree decomposition. It is therefore well known that

the induced width of a graphical model and its underlying graph structure is identical to its

tree width, capturing the same thing from two different, but similar perspectives [5, 11, 31].

Example 1.3. Figure 1.3a shows the primal graph of an example problem with six variables.

Figure 1.3b depicts the induced graph along ordering A,B,C,D,E, F with two additional

edges (B,C) and (B,E) and width w = 2 .

Two possible tree decompositions are provided in Figure 1.4. We note that the tree decompo-

sition in Figure 1.4a in particular corresponds directly to the induced graph in Figure 1.3b,
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(a) Primal graph (b) Induced graph

Figure 1.3: Example primal graph over six variables and induced graph along ordering
A,B,C,D,E, F with induced width w = 2 .

(a) Possible tree decomposition
with six clusters.

(b) Possible tree decomposition
with four clusters.

Figure 1.4: Two possible tree decompositions of the example problem from Figure 1.3,
both with tree width 2.

while Figure 1.4b merges the two clusters at the top into their neighbors – in that sense

these two clusters are redundant. While varying in their number of clusters (six and four,

respectively), the two tree decompositions in Figure 1.4 have the same tree width of w = 2 .

1.3 Solving Graphical Model Problems through Search

Search algorithms present a common approach to systematically enumerate all of the com-

binatorially many possible assignments of a given graphical model.
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Figure 1.5: Example OR search tree along ordering A,B,C,E, F,G (first to last) for the
example problem in Figure 1.3.

In its simplest incarnation, the algorithm instantiates one variable after the other, trying

different values in a depth-first manner. As a consequence the number of search nodes to be

explored is O(kn) , where n is the number of problem variables and k the maximum domain

size. This approach is often referred to as OR search. A solution is represented by a path

of length n from the root to a leaf, and each node on the path (except the leaf) has exactly

one of its children selected for the solution path (hence the “or” moniker).

Example 1.4. Figure 1.5 displays the full OR search tree for the six-variable example prob-

lem Figure 1.3 with variables instantiated in the order A,B,C,D,E, F (first to last). Every

node except the leaves has exactly two children, corresponding to a value assignment of 0 or 1

to the respective variable. Consequentially, the number of nodes grows by a factor of 2 from

one level to the next, implying overall size exponential in the number of problem variables.

A full assignment corresponds to a path of length 6 from the root to a leave.

Already at this point it is worth noting, however, that these search space sizes are typically

upper bounds, depending on the problem instance at hand. In particular, if a function’s

scope is fully instantiated by a partial assignment along a given search space path, its value

can be looked up. If it is inconsistent (e.g., a probability of 0 in a Bayesian network) we can

conclude that the partial assignment cannot possibly be extended to a solution – exploration

of the current branch is thus halted and the algorithm backtracks.
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The following sections introduce the enhanced concept of AND/OR search spaces, which can

yield exponential time savings by exploiting problem structure.

1.3.1 AND/OR Search Spaces

The concept of AND/OR search spaces has recently been introduced to graphical models to

better capture the structure of the underlying graph during search [29]. The search space is

defined using a pseudo tree of the graph, which captures problem decomposition as follows:

Definition 1.8 (pseudo tree). [44] Given the primal graph G = (V,E) of a graphical model,

a pseudo tree is a directed, rooted tree T = (V,E ′) such that every arc of G not included in

E ′ is a backarc in T , namely it connects a node in T to an ancestor in T . The arcs in E ′

may not all be included in E .

Example 1.5. A pseudo tree for the example in Figure 1.3a is shown in Figure 1.6a, cor-

responding to the induced graph in Figure 1.3b along ordering A,B,C,D,E, F – recall that

the induced graph is constructed last to first in the ordering, while the pseudo tree proceeds

last to first. We note that B has two children in the pseudo tree, capturing the fact that the

two subproblems over C,D and E, F , respectively, are independent once A and B have been

instantiated.

1.3.1.1 AND/OR Search Trees

Given a graphical model instance with variables X and functions F , its primal graph (V,E) ,

and a pseudo tree T , the associated AND/OR search tree consists of alternating levels of

OR and AND nodes [29]. Its structure is based on the underlying pseudo tree T : the

root of the AND/OR search tree is an OR node labeled with the root of T . The children

of an OR node 〈Xi〉 are AND nodes labeled with assignments 〈Xi, xj〉 that are consistent
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(a) Guiding pseudo
tree. (b) AND/OR search tree with 27 OR and 54 AND nodes.

Figure 1.6: Example pseudo tree and AND/OR search tree along ordering A,B,C,D,E, F
(first to last) for the problem in Figure 1.3.

with the assignments along the path from the root; the children of an AND node 〈Xi, xj〉

are OR nodes labeled with the children of Xi in T , representing conditionally independent

subproblems.

Example 1.6. Figure 1.6b shows the AND/OR search tree resulting from the primal graph

in Figure 1.3a when guided by the pseudo tree in Figure 1.6a. Note that the AND nodes for

B have two children each, representing independent subtrees rooted at C and E, respectively,

thereby capturing problem decomposition. Also note that the depth of the search tree is only

4 (as opposed to 6 for standard OR search in Figure 1.5).

Theorem 1.1. [29] Given a pseudo tree T of a graphical modal with height h , the size of

the AND/OR search tree based on T and the time complexity of an algorithm exploring it is

O(n ·kh) , where k bounds the domain size of variables. The space complexity of an algorithm

exploring the AND/OR search tree in a depth-first manner is O(h) .

1.3.1.2 AND/OR Search Graphs

AND/OR Search Trees can offer exponential savings in the number of explored nodes over the

standard OR search approach, thus dramatically reducing computation time [29]. Additional
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improvements in time complexity can be achieved by detecting and unifying redundant

subproblems based on their context :

Definition 1.9 (OR context). [29] Given the primal graph G = (V,E) of a graphical model

and a corresponding pseudo tree T , the OR context of a node Xi in T are the parents of Xi

in T that have connections in G to Xi or its descendants.

In other words, the context of a variable Xi is the partial instantiation that separates the

subproblem rooted at Xi from the rest of the network.

Example 1.7. Figure 1.7a shows the same pseudo tree as before (cf. Figure 1.6a) but with

added context information for each variable. We see that A, B, C, and E each have all

their respective ancestors as their context. Notably, however, neither D or F have A in their

context – this means the solution to any subproblem rooted at D or F will be independent

of the value assigned to A on the respective path. This independence relation should also

become intuitively clear when looking at the primal graph in Figure 1.3a, where D and F are

conditionally independent of A given B,C and B,E , respectively.

In the context of AND/OR search, identical subproblems identified by their context can

be merged, yielding an AND/OR search graph [29]. Merging all context-mergeable nodes

yields the context-minimal AND/OR search graph. This concept is often also referred to

as caching, based on its typical implementation: Once the depth-first exploration has fully

solved a subproblem, its optimal solution cost is stored into a cache table indexed by the

context assignment. When a subproblem with the same context assignment is encountered

later on, the solution is retrieved from the cache table and reused.

Example 1.8. Figure 1.7b shows the context-minimal AND/OR search graph for the exam-

ple problem from Figure 1.3a when using the pseudo tree from Figure 1.7a. In contrast to

the AND/OR tree in Figure 1.6b, the OR nodes for D (with context {B,C}) and F (con-
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(a) Guiding pseudo
tree with contexts. (b) AND/OR search graph with 19 OR and 38 AND nodes.

Figure 1.7: Example AND/OR search graph for problem in Figure 1.3.

text {B,E}) have two edges converging from the AND level above them, signifying caching

(namely, the assignment of A does not matter).

Theorem 1.2. [29] Given a pseudo tree T of a graphical model with induced width (or

tree width) w , the size of the context-minimal AND/OR search graph based on T and the

time complexity of an algorithm exploring it is O(n · kw) , where k bounds the domain size

of variables. The space complexity of a depth-first algorithm exploring the context-minimal

AND/OR graph is O(n · kw) .

The increased asymptotic space complexity is due to the additional memory required for

storing the cache tables. Caching can be therefore be seen as a way of trading shorter

computation time for increased space requirements.

Given an AND/OR search space ST , a solution subtree SolST
is a tree such that (1) it

contains the root of ST ; (2) if a nonterminal AND node n ∈ ST is in SolST
then all its

children are in SolST
; (3) if a nonterminal OR node n∈ST is in SolST

then exactly one of

its children is in SolST
.

19



1.3.1.3 Weighted AND/OR Search Spaces

Given an AND/OR search graph, each edge from an OR node Xi to an AND node xi can

be annotated by weights derived from the set of cost functions F in the graphical model:

the weight l(Xi, xi) is the combination of all cost functions whose scope includes Xi and is

fully assigned along the path from the root to xi , evaluated at the values along this path.

Furthermore, each node n in the AND/OR search graph can be associated with a value v(n),

capturing the optimal solution cost to the subproblem rooted at n , subject to the current

variable instantiation along the path from the root to n .

The value v(n) of a node n can be computed recursively using the values of n’s successors

[29]. In a max-product scenario like MPE over a Bayesian network, for instance, we have

the following:

• If n is an AND node, v(n) is the product of the values of n’s successors.

• If n is an OR node, v(n) is the maximum over all its childrens’ values.

1.3.2 AND/OR Branch-and-Bound

AND/OR Branch and Bound (AOBB) is a state-of-the-art algorithm for solving optimiza-

tion problems such as max-product over graphical models [82, 83]. Assuming a maximization

query, AOBB traverses the weighted context-minimal AND/OR graph in a depth-first man-

ner while keeping track of the current lower bound on the maximal solution cost. A node n

will be pruned if this lower bound exceeds a heuristic upper bound on the solution to the

subproblem below n (cf. Section 1.3.3). The algorithm interleaves forward node expansion

with a backward cost revision or propagation step that updates node values (capturing the

current best solution to the subproblem rooted at each node), until search terminates and

the optimal solution has been found [82].
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Algorithm 1.1 AND/OR Branch-and-Bound (AOBB)

Given: Graphical model optimization problem (X,D,F,⊗,⇓) and pseudo tree T with root Xo ,
heuristic evaluation function h .

Output: cost of optimal solution
1: OPEN ← {〈X0〉}
2: while OPEN 6= ∅ :
3: n← top(OPEN ) // top node from stack, depth-first
4: if checkpruning(n, h(n)) = true :
5: prune(n) // perform pruning
6: else if cachelookup(n) 6= NULL :
7: value(n) ← cachelookup(n) // retrieve cached value
8: else if n = 〈Xi〉 is OR node :
9: for xj ∈ Di :

10: create AND child 〈Xi, xj〉
11: add 〈Xi, xj〉 to top of OPEN

12: else if n = 〈Xi, xj〉 is AND node :
13: for Yr ∈ childrenT (Xi) :
14: generate OR node 〈Yr〉
15: add 〈Yr〉 to top of OPEN

16: if children(n)= ∅ : // n is leaf
17: propagate(n) // upwards in search space
18: return value(〈X0〉) // root node has optimal solution

Algorithm 1.1 shows pseudo code for AOBB: Starting with just the root node 〈X0〉 on

the stack, the algorithm iteratively takes the top node n from the stack (line 3), thereby

implementing depth-first exploration. Lines 4–7 try to prune the subproblem below n (by

comparing a heuristic estimate of n against the current lower bound) and check the cache

to see if the subproblem below n has previously been solved (full details were developed in

[82]). If neither of these is successful, the algorithm generates the children of n (if any) and

pushes them back onto the stack (8–15). If n is a terminal node in the search space (it was

pruned, its solution retrieved from cache, or the corresponding Xi is a leaf in T ) its value is

propagated upwards in the search space, towards the root node (16–17); cache entries and

memory cleanup of fully solved subproblems along the way are applied where appropriate

(see [82] for details). When the stack eventually becomes empty and the outer while loop

exits, the value of the root node 〈X0〉 is returned as the solution to the problem (18).
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Theorem 1.3. [82] The time and space complexity of AND/OR Branch-and-Bound on a

graphical model optimization problem with n variables, maximum domain size k, and using a

variable ordering yielding induced width w is O(n ·kw) , since it explores the context-minimal

AND/OR search graph.

Note that Corollary 1.3 captures only the asymptotic worst-case complexity. In practice

we note that these bounds are known to be very loose, due to determinism in the problem

specification and the powerful pruning of AOBB, both of which allow large portions of the

search space to be ignored. This discrepancy will be the premise for the work presented

in Chapter 3, where we aim to predict the actual amount of work (in number of node

expansions) needed by AOBB to solve a given problem instance.

1.3.3 Mini-bucket Heuristic

The heuristic h(n) that we deploy within our implementation of AOBB throughout this thesis

is the mini-bucket heuristic. It is based on mini-bucket elimination, which is an approximate

variant of variable elimination and computes approximations to reasoning problems over

graphical models [28, 32]. The mini-bucket heuristic has been shown to be admissible, i.e.,

it never underestimates the true cost of a subproblem in a maximization setting (or never

overestimates in a minimization context, respectively) [65, 87].

Algorithm 1.2 shows pseudo code for the mini bucket algorithm for application to a max-

product problem like MPE. It receives as input the optimization problem, a variable ordering,

as well as a control parameter i . It first partitions the functions into buckets according to the

highest-indexed (wrt. to the ordering) variable in their scope (line 1). Subsequently, buckets

are processed last to first by partitioning into mini-buckets that satisfy the specified i-bound,

i.e., the union of the contained functions’ scopes doesn’t have more than i variables (line 3).

Each mini-bucket is then processed separately by applying first the combination and then
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Algorithm 1.2 Mini-bucket elimination for max-product (adapted from [82])

Given: Graphical model optimization problem (X,D, F,
∏
,max) , variable ordering d =

X1, . . . , Xn , and parameter i (“i-bound”).
Output: Upper bound on optimal solution cost.
1: Distribute functions fj ∈ F into buckets B1, . . . , Bn , where each function fj goes into

the bucket Bk of its highest variable Xk (wrt. ordering d ), or bucket Bo for constant
functions.

2: for k ← n down to 1 :
3: Partition bucket Bk into mini-buckets B

(1)
k , . . . , B

(m)
k such that |vars(B(j)

k )| ≤ i ∀j .
4: for j ← 1 to m :
5: Let f

(j)
1 , . . . , f

(j)
l be the set of functions in mini-bucket B

(j)
k .

6: Generate function g
(j)
k

:= maxXk
(
∏ l

p=1 f
(j)
p ) .

7: Add g
(j)
k to the bucket of the highest variable in its scope (Bo if empty scope).

8: return
∏

fj∈Bo
fj , mini-bucket upper bound.

the elimination operator (product and maximum in the case of a max-product problem, line

6). The resulting function is again placed into the bucket of its highest-indexed variable,

where it will subsequently be processed with the other functions in that bucket (line 7).

After processing all buckets, the combination of all constant functions generated along the

way (collected in the “0-th” bucket) yields the overall bound on the solution cost (line 8).

The i-bound allows a trade-off between accuracy of the algorithm (and the resulting heuristic)

on the one hand, and its time and space requirements on the other hand, as follows:

Theorem 1.4. [32, 65] Given a graphical model with variable ordering having induced width

w and an i-bound parameter, the time and space complexity of the mini-bucket algorithm

MBE(i) is O(n · kmin(i,w)) , where n and k are the number of problem variables as well as the

maximum domains size, respectively.

Higher values of i take more computational resources but yield more accurate bounds. We

note that typically i < w is chosen, which is why we generalize to say that MBE(i) is

exponential in i . In the case where i > w we point out that MBE(i) in fact corresponds to

full variable/bucket elimination [27] and computes the exact solution.
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It has been shown that the intermediate functions generated by MBE(i) overestimate the

optimal solution cost to subproblems in the AND/OR search graph (assuming a maximiza-

tion query), just as the overall bound returned by MBE(i) overestimates the overall solution

[65]. These intermediate functions can therefore be used to derive a heuristic function that

is admissible, as defined above.

The application of the mini-bucket heuristic in AOBB is twofold. First, it is used to determine

the value ordering, i.e., it guides the order in which the children of an OR node (different

instantiations of a given variable) are considered. Second, it is at the core of the powerful

pruning in the branch-and-bound scheme, in which the current best solution is compared

against the heuristic estimate of the optimal solution below a given node. Because of the

heuristic’s admissibility, if the current best solution exceeds this estimate (again assuming

a maximization setting), the subproblem in question cannot possibly yield an improvement

and can hence be safely pruned.

1.3.4 Other Related Work

This section will briefly review two related algorithms, Limited Discrepancy Search and

Stochastic Local Search, which we will employ within our own work later in this thesis.

1.3.4.1 Limited Discrepancy Search

Limited Discrepancy Search (LDS) [58, 71, 99] is a systematic, but generally incomplete

heuristic search algorithm. It was originally formulated for Boolean satisfiability (SAT)

problems or more generally binary constraint satisfaction problem, i.e., not in an optimization

context. It explores an OR search tree that is assumed to be “heuristically ordered.” Namely,
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Algorithm 1.3 LDS(n, l, h)

Given: Search node n , discrepancy limit along current path l , heuristic function h
1: if n is a goal node :
2: return n
3: C ← children(n)
4: if C = ∅ :
5: return NULL
6: if l = 0 :
7: return LDS(firsth(C), 0, h) // No further discrepancy on current path
8: result← LDS(secondh(C), l − 1, h) // Commit a discrepancy
9: if result 6= NULL :
10: return result
11: else
12: return LDS(firsth(C), l, h)

LDS uses a heuristic function that imposes an order over each node’s children, from most to

least promising.

The intuition behind LDS is then that the guiding heuristic can be mostly relied upon, but

not entirely. To formalize this the notion of a discrepancy is introduced, which denotes a

pruning decision where the chosen path does not follow the most promising heuristic value.

The discrepancy of a path in the search tree is then simply the number of discrepancies on it.

Given a discrepancy limit l and a heuristic function h LDS explores all paths in the search

tree with discrepancy less than or equal to l , according to h .

Pseudo code for the case of a binary search space is given in Algorithm 1.3. Taking after [58],

it is presented as a simple recursive procedure LDS(n, l, h) , which is called with a search

node n (the root node in the initial call), the discrepancy limit l along the current path, and

the heuristic function h . After checking for a goal node (lines 1-2) or dead end (lines 3-5),

the actual discrepancy logic is applied:

1. If l = 0 , no more discrepancies can be inserted on the current path and LDS only

explores the (according to h) more promising child firsth(C) (line 7).
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2. Otherwise the less promising child secondh(C) is explored first, with the discrepancy

limit reduced by one in the recursive call (line 8).

3. If this doesn’t yield a solution, the more promising child is considered, with an un-

changed discrepancy limit (line 12).

It is straightforward to extend Algorithm 1.3 to non-binary variable domains, for instance

by discounting at each step the 2nd most promising child as discrepancy 1 (as before), the

3rd most promising as discrepancy 2, etc. Similarly, branch-and-bound-style pruning logic

can applied over the subtree implied by LDS with a given discrepancy limit, enabling the

application to optimization problems.

It should also be obvious the LDS can be turned into an complete algorithm by running it

iteratively with increasing discrepancy limits – eventually the limit will be high enough to

permit exploring the entire search space. This is also how the algorithm was presented in

[58], however it is not very efficient, since many nodes are re-expanded on every iteration.

In our context, we have thus used LDS only for preprocessing purposes, to find an initial

lower/upper cost bound (cf. Section 2.6.1).

1.3.4.2 Stochastic Local Search

All search algorithms described so far explore a search tree or search graph, where inner

nodes represent partial assignments and leaf nodes capture full assignments (and potential

solutions); the structure of the tree or graph allows for systematically enumerating the entire

solution space or, in the case of LDS (Section 1.3.4.1), a well-defined part of it.

In contrast, local search operates on the space of all complete assignment. The algorithm

moves from one assignment to the next by considering, at each step, a local neighborhood
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of assignments, often defined through one variable assignment at a time. Local search is

inherently incomplete and cannot prove optimality of a solution.

In its simplest form, local search starts out with an initial random full assignment and then

at each step greedily moves to the neighboring assignment that improves the global solution

cost the most. Clearly this simple greedy scheme, also called hill climbing, is prone to

“getting stuck” in local optima, leading to potentially bad performance.

To mitigate this, algorithms like Greedy+Stochastic Simulation (G+StS) [64] add a random

element, which probabilistically chooses between the greedy step and a stochastic step like

sampling. In addition a restart mechanism can be applied, which regularly resets the local

search procedure to a different random starting point while keeping track of the overall best

solution found.

Orthogonal to these enhancements, dynamic local search generalizes the evaluation function

that guides the local moves, making it independent of the actual problem cost function and

allowing it to to change over time. In Guided Local Search (GLS) [94] in particular, the

evaluation function consists of a sum of penalty terms over so-called “solution components,”

which are partial assignments for each cost function scope. Whenever a local maximum is

reached, the contribution of each cost function to the overall solution cost is evaluated and

those that contribute the least have the penalty for their respective assignment increased, to

steer subsequent exploration away from this particular solution component.

One of the current state-of-the-art local search algorithms in the context of MPE queries over

Bayesian networks is GLS+ [60], which combines and extends the schemes outlined above.

In particular, its core features are the following:
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• It extends the evaluation function that guides the local moves to include not only the

penalty values of GLS but also the logarithm of the actual global assignment cost,

thereby reintroducing a greedy component.

• It regularly smoothes the penalty terms by a constant factor ρ < 1 to keep them from

growing too large and effectively “blocking” certain parts of the search space.

• It frequently restarts the local search procedure, where initialization is not purely

random but based on a pass of mini-bucket elimination with a relatively low i-bound,

usually yielding a better starting from which the algorithm can improve rapidly.

• It has been subject to extensive parameter tuning and utilizes a highly efficient imple-

mentation of a caching mechanism for the local neighborhood evaluation at each step

to significantly speed up computation time.

GLS+ was entered into the approximate reasoning track of the UAI 2008 Probabilistic In-

ference Evaluation and proved competitive in a number of problem categories [23]. We will

also include it as part of our evaluation of anytime performance in Chapter 2.
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Chapter 2

Breadth-Rotating AND/OR

Branch-and-Bound

2.1 Introduction

As outlined in Chapter 1, depth-first Branch-and-Bound is an established and efficient class

of algorithms for exactly solving combinatorial optimization problems over problems. One

property that is particularly valuable in practice is its anytime behavior.

Namely, when finding a feasible solution is easy but finding an optimal one is hard, depth-

first Branch-and-Bound generates solutions that get better and better over time, until it

eventually discovers an optimal one. Thus, it can function also as an approximation scheme

for otherwise infeasible problems or when time is limited [56, 119].

Indeed, in the 2010 UAI Approximate Inference Challenge Branch-and-Bound solvers per-

formed competitively with respect to approximation (placing 1st and 3rd in some categories)

[35]. But we also observed an inability of AND/OR Branch-and-Bound (cf. Section 1.3.2) to
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produce even a single solution on some instances, especially when the time bound was small.

Thus motivated, this chapter will demonstrate that the issue is rooted in the underlying

AND/OR search space.

These search spaces were originally introduced to graphical models to facilitate problem

decomposition during search (e.g., [29]) and can be explored by any search strategy. When

traversed depth-first, however, all but one decomposed subproblem will be fully solved before

a single overall solution can be composed, voiding the algorithm’s anytime characteristics.

Mitigating and repairing this deficiency will be at the core of this chapter.

2.1.1 Contributions

The following outlines the central contributions of this chapter:

• We analyze and demonstrate empirically the conflict between the anytime behavior

of depth-first branch-and-bound and the problem decomposition of AND/OR search

spaces. In particular, in depth-first exploration all but one subproblem will be solved

to completion before any overall solution can be constructed.

• We observe that under certain conditions, namely if only one of the decomposed sub-

problems is “hard,” this adverse effect can be mitigated by processing subproblems in

a suitable order. Specifically, we might be able to quickly solve the “easy” subprob-

lems and combine their exact solutions with the gradually increasing solutions of the

remaining “hard” subproblem. We demonstrate the merit and the limitations of this

approach empirically.

• This chapter’s main contribution is then a new Branch-and-Bound scheme over AND/

OR search spaces, called Breadth-Rotating AND/OR Branch-and-Bound (BRAOBB)

that addresses the anytime issue in a principled way, while maintaining the favorable
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complexity guarantees of depth-first search. The algorithm performs breadth-first ex-

ploration of the different subproblems (by “rotating” through them), each of which is

processed depth-first.

• Experimental evaluation is conducted on a variety of benchmark classes, including hap-

lotype computation problems in genetic pedigrees, random grid networks, and protein

side-chain prediction instances. We compare BRAOBB against one of the best vari-

ants of (standard) AND/OR Branch-and-Bound search, AOBB [82], and against an

“ad hoc” fix that we suggest – the latter algorithm relies on a heuristic to quickly find

a solution to each subproblem before reverting to depth-first search. We furthermore

compare against a state-of-the-art stochastic local search (SLS) solver, which is specif-

ically targeted at anytime performance but cannot provide any proof of optimality

[60].

• Empirical results demonstrate superior anytime behavior of BRAOBB, meaning it gen-

erally finds better solutions sooner, especially over problematic cases where standard

AOBB and its ad hoc fix fail. This includes several very hard instances from the

2010 UAI Approximate Inference Challenge and three weighted constraint satisfaction

problem instances that are known to be very complex. We further observe many cases

where BRAOBB outperforms SLS, but also find some evidence of the strengths of the

latter – in particular where large domain sizes limit the accuracy of the mini-bucket

heuristic used within BRAOBB. Based on this we show how local search and exhaustive

AND/OR search can be combined to let us enjoy the benefits of both approaches.

Notably, a solver based on this concept recently won all three categories (20 seconds, 20

minutes, and 1 hour) in the MPE track of the PASCAL 2011 Inference Challenge [36], the

successor to the 2010 UAI Challenge.
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2.1.2 Chapter Outline

The remainder of this chapter is structured as follows: Section 2.2 surveys and contrasts

with related work. Section 2.3 identifies the central conflict between problem decomposition

and anytime performance and provides empirical results where the latter is compromised.

The new algorithm Breadth-Rotating AOBB is proposed in Section 2.4 and its theoretical

properties are analyzed.

Section 2.5 presents exhaustive experimental results and analysis using a wide range of

example problems as well as summary statistics across more than 500 instances. Section 2.6

concludes and briefly describes out winning entry into the PASCAL 2011 Inference Challenge.

2.2 Related Work

The work presented here is focused on optimization problems defined over graphical models.

As such our results are also relevant for a number of related algorithms that exploit the

conditional independence relations captured by the graphical model structure:

• Recursive Conditioning [22] is guided by a dtree structure, a full binary tree with the

problem’s cost functions at its leaves. It instantiates variables like a cycle cutset scheme

[26], but with the intention of breaking the problem into independent subproblems,

on which it is then applied recursively. Its execution was shown to correspond to a

particular AND/OR search space [29].

• Similarly, Value Elimination [6] is a scheme for probabilistic inference. It can accom-

modate dynamic variable orderings, but for fixed ones it was also shown to explore an

AND/OR search space guided by a particular pseudo tree [29]. The focus, however,
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is on marginalization problems like probability of evidence or finding the partition

function.

• Finally, the BTD algorithm (“Backtracking with Tree Decomposition” [62]) is a depth-

first search scheme for constraint optimization problems combined with tree decomposition-

based inference methods and soft-consistency heuristics. Again, it can be viewed as

AND/OR search along a specific pseudo tree that is compatible with the tree decom-

position used by BTD.

All three schemes cited above, as well as any other scheme that can be seen as exploring an

combinatorial AND/OR search space in a depth-first manner, are prone to degraded anytime

performance and can in principle benefit from the ideas presented in this work.

We further note Interleaved Depth-First Search (IDFS) [85], whose underlying concept shares

some similarities with our work. Namely, it performs interleaved processing of different

branches in an otherwise depth-first search space. In this case, however, the intention is to

mitigate branching mistakes made higher up in the search space with respect to successor

orderings. IDFS was also only presented in a standard OR search framework and solely for

general constraint satisfaction problems, i.e., not in an optimization context.

In the area of heuristic state-space search, with applications to path-finding problems such

as the Towers of Hanoi, sliding tile puzzles, or general planning problems, some effort has

gone into anytime search [10, 109]. Prominent algorithms in this field are based on the

classic A∗ best-first search algorithm [30, 57], more specifically its weighted A∗ approximate

variant, where the heuristic value in the node evaluation function is multiplied by a constant

[95]. Anytime Weighted A∗ [55] as well as the closely related Anytime Repairing A∗ (ARA∗)

[79] extend this by iteratively running weighted A∗ with different sequences of such weights,

eventually falling back to standard, exact A∗ search. The application of these concepts to
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combinatorial optimization over graphical models and AND/OR search spaces in particular

is the subject of ongoing work [42].

A slightly less obvious connection can also be made to recent contributions in the area

of distributed, multi-agent constraint optimization. Algorithms like NCBB [17] and BnB-

ADOPT [116] organize agents along a pseudo tree-like structure, thereby obtaining solutions

to independent subproblems in parallel. ADOPT [86] uses a similar approach for agent-

based best-first search. However, neither of these algorithms is concerned with anytime

performance – in fact, in the multi-agent setting entirely different metrics are typically

applied (such as number of messages exchanged between agents).

Finally, most directly related to the objective of this work is the well-known concept of local

search, which explores local “neighborhoods” of assignments, either at random or guided by a

heuristic, and which can be seen as specifically targeting anytime performance [84]. However,

it differs from AOBB and the proposed BRAOBB in that it cannot prove optimality of the

solutions it returns. Nevertheless we include the state-of-the-art stochastic local search solver

GLS+ [60] (cf. Section 1.3.4.2) in our empirical evaluation.

2.3 Anytime Behavior versus Problem Decomposition

in AND/OR Search

As a depth-first branch-and-bound scheme one would expect AOBB to quickly produce a

non-optimal solution and then gradually improve upon it, maintaining the current best one

throughout the search. However this ability is compromised in the context of AND/OR

search, as we will show in the following.
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Figure 2.1: Impact of subproblem ordering on AOBB. Specified for each network: number
of variables n , maximum domain size k , induced width w along the chosen ordering, height
of the corresponding pseudo tree h . The dashed gray line indicates the optimal solution
value.

Specifically, in AND/OR search spaces depth-first traversal of a set of independent subprob-

lems will solve to completion all but one subproblem before the last one is even considered.

As a consequence, the first generated overall non-optimal solution contains conditionally

optimal solutions to all subproblems but the last one. Furthermore, depending on the prob-

lem structure and the complexity of the independent subproblems, the time to return even

this first non-optimal overall solution can be significant, practically negating the anytime

behavior of depth-first search (DFS).

2.3.1 Subproblem Ordering

In certain cases, the above suggests a simple remedy: if decomposition yields only one large

subproblem and several smaller ones, the latter can be solved depth-first in relatively little

time, to be then combined with the incrementally improving solutions of the larger subprob-
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lem. Thus for anytime behavior an AOBB algorithm would need to process independent

subproblems from “easy” to “hard,”

To demonstrate the practical impact of subproblem orderings, we use a simple heuristic that

takes the induced width as a measure of subproblem hardness (motivated by its exponential

role in the asymptotic complexity), i.e. we modify AOBB such that subproblems with smaller

induced width will be processed first (in the general description of AOBB the subproblem

ordering is left unspecified).

Figure 2.1 contrasts the anytime behavior of AOBB using this “increasing” subproblem order

against the inverse one (“decreasing”) by plotting the solution cost generated as a function

of time on two example problems (the dashed horizontal line is the optimum cost); all other

aspects of the algorithm remain constant. In particular, pedigree30x1 features exactly one

single complex subproblem and a number of relatively simple ones. In this case processing

subproblems by increasing induced width right away produces a non-optimal solution that

improves rapidly. The inverse order yields the first solution only after about 90 minutes – the

one complex subproblem has been fully solved and the overall solution is already optimal.

Pedigree41x1 has a similarly advantageous structure and thus yields similar results – with

the distinction that the inverse subproblem order does not produce any solution at all within

24 hours.

In case of pedigree34x2 and pedigree44x2, however, decomposition yields two complex sub-

problems: the increasing subproblem order still outperforms its inverse, yet it returns the

initial solution only after about 1,000 and 17,000 seconds, respectively. In fact, no possi-

ble subproblem ordering can lead to acceptable anytime behavior in these cases due to the

structure of subproblems, clearly highlighting the limits of this approach.

Independent of anytime behavior, we point out that incorporating different subproblem

orderings impacts the algorithm’s overall efficiency (i.e., the time to find and prove an optimal
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solution): knowing the solution to one subproblem can aid the pruning of Branch-and-Bound

in the next one to varying degrees. However, this issue has not been treated systematically

in the literature for graphical models, with sporadic experiments also suggesting an easy-

to-hard order, using some heuristic to determine subproblem complexity [82]. This general

problem is outside the scope of this thesis, however.

Value Ordering

In this context it is worth point out the connection to the choice of value ordering in branch-

and-bound search. Both for traditional OR spaces as well as AND/OR ones, it is known

that the order in which different instantiations of a given variable (i.e., the children of an

OR node in AND/OR spaces) are considered can have an impact on the overall number of

node expansions [75, 82]. Specifically, discovering a better (or worse) optimal solution for

one value instantiation can lead to stronger (or weaker) pruning for subsequent ones – which

is quite similar to our observation regarding the order of subproblems. As noted in Chapter

1, in the context of AOBB the mini-bucket heuristic is used to determine the order in which

value instantiations are explored, from most to least promising [82].

2.3.2 Greedy Subproblem Dive

Another relatively straightforward remedy for the compromised anytime behavior of AOBB

is the following “ad hoc” fix: Every time that decomposition is encountered within the search

space, we will try to greedily find a single initial solution to each independent subproblem

before successively solving each of them to completion depth-first, through normal AOBB. To

obtain this initial solution the algorithm can perform a greedy “dive” into each subproblem

by only considering one value for each variable along the path (in case of the mini-bucket
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heuristic, it is easy to see that this is equivalent to a forward pass over the bucket structure

[65]).

Clearly, the choice of the dive path is crucial for the algorithm’s performance. Namely, if

the chosen path leads to a dead end (zero probability), the dive will be futile and not yield a

subproblem solution. This again negates the desired anytime behavior, since the subproblem

for which the dive failed will not be reconsidered until the normal depth-first AOBB phase.

And in fact experiments in Section 2.5 will demonstrate that the resulting performance

depends heavily on the quality of the heuristic, which often prevents satisfactory anytime

behavior. In the next section we will therefore propose a new search strategy that addresses

the anytime issue over AND/OR search spaces in a principled manner.

2.4 Breadth-Rotating AOBB

In the following we develop a new search scheme called Breadth-Rotating AND/OR Branch-

and-Bound (BRAOBB) that addresses the issue of anytime performance over AND/OR

search spaces. It combines depth-first exploration with the notion of “rotating” through

different subproblems in a breadth-first manner. Namely, node expansion still occurs depth-

first as in standard AOBB, but the algorithm takes turns in processing subproblems, each

up to a given number of operations at a time, round-robin style.

To motivate this approach, consider again that a solution is represented by a solution tree

over an AND/OR search space, guided by a pseudo tree. A pure DFS scheme will construct

the different branches of a solution tree one by one, ensuring optimality for each branch

before moving to the next. To restore anytime behavior, we instead aim to develop all

branches of the solution tree “simultaneously,” which we achieve by rotating through them.
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(a) Default depth-first subproblem pro-
cessing. (b) BRAOBB subproblem rotation.

Figure 2.2: Illustration of subproblem rotation in Breadth-Rotating AOBB.

Figure 2.2 illustrates this concept: In Figure 2.2a the two subproblems on the left have been

solved to completion before the third subproblem is considered at all. Using BRAOBB, on

the other hand, the three independent subproblems in Figure 2.2b contribute to the overall

solution simultaneously.

2.4.1 Subproblem Rotation

More systematically, the algorithm maintains a list of currently open subproblems and re-

peats the following high-level steps until completion:

1. Move to next open subproblem P in a breadth-first fashion.

2. Process P depth-first, until either:

(a) P is solved optimally,

(b) P decomposes into child subproblems, or

(c) a predefined threshold number of operations is reached.
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Algorithm 2.1 Breadth-Rotating AOBB

Given: Graphical model (X,F,D,max,
∏
) and pseudo tree T with root Xo, rotation threshold Z

Output: cost of optimal solution
1: ROOT ← {〈X0〉} // generate root subproblem
2: GLOBAL ← [ROOT ] // put it into queue
3: while GLOBAL6= ∅
4: LOCAL ← front(GLOBAL) // next subproblem
5: for z ← 1 to Z or until LOCAL = ∅

or until childSubprob(LOCAL) 6= ∅
6: n← top(LOCAL) // next node in subproblem
7: ... // caching and pruning as in AOBB
8: if n = 〈Xi〉 is OR node
9: for xj ∈ Di

10: create AND child 〈Xi, xj〉
11: add 〈Xi, xj〉 to top of LOCAL

12: else if n = 〈Xi, xj〉 is AND node
13: Y1, . . . , Ym ← childrenT (Xi)
14: generate OR children 〈Y1〉, . . . , 〈Ym〉
15: if m=1 // no decomposition
16: push 〈Y1〉 to top of LOCAL

17: else if m > 1 // problem decomposition
18: for r ← 1 to m

19: NEW ← {〈Yr〉} // new child subproblem
20: push NEW to back of GLOBAL

21: if children(n)= ∅ // n is leaf
22: propagate(n) // upwards in search space
23: if LOCAL 6= ∅ // subproblem not yet solved
24: push LOCAL to end of GLOBAL

25: return value(〈X0〉) // root node has optimal solution

The threshold in (c) is needed to ensure the algorithm does not get stuck in one large

subproblem where the other two conditions, (a) and (b), do not occur for a long time.

Furthermore, in order to focus on a single solution tree at a time, a subproblem is only

considered “open” if it does not currently have any child subproblems, as illustrated below.

2.4.2 Algorithm Pseudo Code

Algorithm 2.1 gives more detailed pseudo code for Breadth-Rotating AND/OR Branch-and-

Bound as an extension of AOBB, which was described in Section 1.3.2. As stated, the
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central element of BRAOBB lies in rotating over the different subproblems of the search

space. To that end subproblems are organized into a global queue (GLOBAL); its first-in-

first-out property ensures the desired breadth-first exploration across different branches of

the solution tree. Each subproblem is itself explored depth-first via a last-in-first-out stack

of nodes; the currently active one is referred to as LOCAL in Algorithm 2.1.

Execution begins with only one subproblem in the GLOBAL queue, which in turn only has

the root node 〈Xo〉 on it stack (lines 1-2). In line 4 the next subproblem is taken from the

GLOBAL queue and its stack loaded into the LOCAL stack. Lines 5 through 22 then process

the subproblem until either of three conditions listed in Section 2.4.1 is met:

1. The node expansion counter z reaches its limit (the rotation threshold Z given as input

to the algorithm);

2. The current subproblem is fully solved and the LOCAL stack becomes empty;

3. The current subproblem decomposes further, captured by the figurative call “childSub-

prob(LOCAL).”

Subproblem processing proceeds very similarly to standard AOBB; the top node n from the

LOCAL stack is removed (line 7) and caching or pruning is attempted (omitted here, cf.

Algorithm 1.1 and [82]). Should these both fail the node is expanded:

• If n = 〈Xi〉 is an OR node, its AND children are simply pushed onto the LOCAL stack,

just like in AOBB (lines 8-11);

• If it is an AND node, n = 〈Xi, xj〉 , the pseudo tree children of its corresponding

variable Xi are retrieved (line 13) and the OR children of n are generated accordingly

(line 14). If there is only a single child OR node, i.e., there is just single subproblem

and no decomposition, it is pushed onto the LOCAL stack as usual (lines 15-16). If
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(a) Pseudo tree. (b) AND/OR search graph.

Figure 2.3: Example AND/OR search graph for problem in Figure 1.3.

there are two or more subproblems, however, each of them is pushed to the back of the

GLOBAL queue for subsequent breadth-first processing (lines 17-20).

If no children were generated for n , propagation of cost values is conducted just as in AOBB

(lines 21-22).

If a subproblem has stopped processing and is not solved yet (i.e., the rotation threshold

was reached or further decomposition occurred) it will have a non-empty LOCAL stack that

needs to be pushed to the back of the GLOBAL queue again (lines 23-34). Finally, when

the GLOBAL queue is empty, the optimal solution as the value of the root node 〈X0〉 can

be returned (line 25).

2.4.3 Example Execution

To further illustrate the execution of BRAOBB we revisit the example AND/OR search space

from Figure 1.7, reproduced here in Figure 2.3. We demonstrate the application of BRAOBB

(with rotation threshold Z = 2 and assuming no pruning) in Figure 2.4. Specifically, Figure

2.4a shows the first 12 nodes expanded during the first seven iterations of the outer while

loop as follows:
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(a) Expansion of nodes 1–12

(b) Expansion of nodes 13–31

(c) Expansion of nodes 32–44

Figure 2.4: BRAOBB exploration (Z=2) at different stages. Nodes are numbered in order
of their expansion.
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1. Denoting the root subproblem by P0, expand 〈A〉 and 〈A, 0〉 within in before reaching

the threshold Z=2. Push P0 to the back of the GLOBAL queue.

2. With no decomposition so far rotation returns to P0 (i.e., it is the only subproblem in

the GLOBAL queue). Expand 〈B〉 and 〈B, 0〉, yielding subproblems P1 and P2 rooted

at 〈C〉 and 〈E〉, respectively. Since these represent decomposition they are separately

added to the back of GLOBAL queue (lines 17-20 in Algorithm 2.1) – which is also

where P0 is subsequently pushed to.

3. Subproblem P1 is fetched from the front of the GLOBAL queue and 〈C〉 and 〈C, 0〉 are

expanded within it before the threshold is reached. Since P1 is not solved it is pushed

to the GLOBAL queue’s back.

4. The next subproblem at the front of GLOBAL is P2. 〈E〉 and 〈E, 0〉 are expanded

within it before reaching the expansion threshold. P2 is pushed to the back of the

GLOBAL queue since it is not solved yet.

5. Rotate to subproblem P0 from the front of GLOBAL; however, it currently has two

child subproblems, P1 and P2, so no nodes are expanded within P0 and it is pushed

to the back of the GLOBAL queue right away.

6. Rotation moves to subproblem P1 from the front of GLOBAL. Upon expansion of 〈D〉

and 〈D, 0〉 within P1 a leaf is discovered, which is propagated before P1 gets pushed

to the GLOBAL queue’s back again.

7. Rotate to subproblem P2, expand 〈F 〉 and 〈F, 0〉 – which, as a leaf, is propagated. P2

is then pushed to the back of GLOBAL again.

Note that at this point a first complete, overall solution can be returned, even though

subproblem P1 is not fully solved yet. Contrast this with standard depth-first exploration,
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where P1 would have been solved to completion before P2 (and with it a potential overall

solution) gets considered at all.

Figures 2.4b and 2.4c illustrate how the search then proceeds to take turns solving subprob-

lems P1 and P2 to completion (nodes 13–22) before “reopening” subproblem P0. Expansion

23 yields two new independent subproblems P3 and P4; their solution is depicted by nodes

24–41. After that subproblem P0 gets reopened, where expanding nodes 42–44 again yields

two new subproblems P5 and P6, and so forth.

2.4.4 Analysis of Breadth-Rotating AOBB

In this section we analyze the Breadth-Rotating AOBB algorithm and its properties and

contrast it with standard AOBB.

2.4.4.1 Correctness, Completeness, and Complexity

Recall that a heuristic function is said to be admissible if it never underestimates (in a

maximization scenario) the cost of the optimal solution to a given subproblem. The mini-

bucket heuristic satisfies this requirement [65]. Further recall that n denotes the number of

problem variables, k the maximum domain size, h the height of the guiding pseudo tree T

with induced width and w∗.

Theorem 2.1. Breadth-Rotating AOBB is complete and correct assuming an admissible

heuristic. Furthermore, when searching an AND/OR search tree (i.e., without caching of

redundant subproblems), BRAOBB has time complexity O(n·kh) and space complexity O(n) .

When searching the context-minimal AND/OR search graph (with full caching), time and

space complexity are O(n · kw∗

) .
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Proof. Because of the heuristic’s admissibility, a subspace is pruned only if it provably cannot

yield a better solution than what is already known at this point. Just like standard AOBB

the search also remains systematic and all solution trees are considered; the algorithm is

guaranteed to eventually terminate and return the optimal solution to the problem.

BRAOBB explores the same underlying AND/OR search space as standard AOBB, hence its

asymptotic time complexity remains unchanged, i.e. exponential in h for tree and exponential

in w∗ for graph search. Space complexity for AND/OR graph search is dominated by the

caching and thus also remains unchanged exponential in w∗ .

In case of tree search, recall that subproblems with child subproblems are not processed

further. Therefore every variable will appear in at most one subproblem at any given time.

And since each subproblem is processed depth-first, i.e. in linear space, the space across all

subproblems is also linear in n.

It is worth pointing out that these worst-case bounds are often very loose, because the

branch-and-bound scheme is typically very efficient and prunes large parts of the search

space. In particular, we observe that in practice the pruning keeps the cache tables from

reaching their worst-case exponential size – in none of our experiments (with a 24 hour

timeout) did we run into memory issues due to caching. Detailed quantification and analysis

pose open questions and are subject to further research.

2.4.4.2 Significance of Z

The rotation threshold Z acts as a safeguard against overly large subproblems, that take a

long time to solve optimally (condition (a), Section 2.4.1) or where recursive decomposition

does not occur for a long time (condition (b)). Being “stuck” in this way could again impair

anytime performance, which is why we limit the number of node expansions before enforcing
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a rotation. As we see in Section 2.5, however, practical problems typically exhibit frequent

subproblem decomposition along any path in the search space, so a relatively large threshold

of Z = 1000 or similar is sufficient, if rarely reached.

2.4.4.3 Maximum Queue Size

It is easy to see that the maximum number of entries in the GLOBAL queue is dependent

on the number of branchings in the solution tree, corresponding to pseudo tree nodes with

more than one successor, since that is where the algorithm generates new child subproblems

(lines 17–20, Algorithm 2.1). In particular, decomposition does not occur along the chains

in the pseudo tree, i.e., paths where no node (besides the end points) has outdegree greater

than 1. The number of queue entries is thus bounded by the number of maximal chains in

the pseudo tree. The following is thus fairly straightforward to see:

Theorem 2.2. When exploring an AND/OR search space using a guiding pseudo tree P

with l leaves, the number of subproblems in the GLOBAL queue of BRAOBB is bounded by

2l − 1 .

Proof. Since T is a tree with l leaves, there can be at most l − 1 branchings (nodes with

outdegree greater than 1) in T to yield these leaves. Each such branching sits at the end

of one maximal chain. Together with the leaf chains, we obtain an upper bound of 2l − 1

maximal chains.

2.4.4.4 Comparison with Standard AOBB

We expect the anytime performance of BRAOBB to be robust with respect to different

subproblem orderings, since the algorithm is not forced to “commit” to a single subproblem
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– which we identified as the main reason for the poor anytime behavior of plain AOBB in

Section 2.3.1. We will confirm this experimentally in Section 2.5.

The actual number of nodes explored by BRAOBB might differ from plain AOBB (for both

graph and tree search), since the pruning behavior of the algorithm can be impacted by the

order in which nodes are explored and subproblem solutions produced: On the one hand,

solving a subproblem to completion before processing the next (in AOBB) might allow the

algorithm to calculate a tighter upper bound using this optimal solution, resulting in better

pruning. On the other hand, exploring subproblems concurrently in BRAOBB might lead

to a tighter overall lower bound through combining solutions across subproblems as they are

discovered (in an anytime fashion). We will revisit this issue in the following experimental

section.

2.5 Empirical Evaluation

To validate and compare the performance of the various schemes we recorded their anytime

behavior on a variety of problem instances using a common variable ordering and mini-bucket

heuristic for each instance (24 hour time limit); unless noted otherwise subproblems were

ordered by increasing width (cf. Section 2.3.1). We ran “plain” AOBB, AOBB with the

dive extension (cf. Section 2.3.2), and Breadth-Rotating AOBB as presented in Section 2.4;

we also included OR branch-and-bound (without problem decomposition) as a baseline. In

addition, we ran an advanced stochastic local search (SLS) algorithm [60, 64], both on its

own and as a initialization step for our own exhaustive search; in particular we consider the

GLS+ implementation from [60] (also cf. Section 1.3.4.2), for which source code is publicly

available. Note that as an incomplete search scheme, it does not provide a proof of optimality

and always runs for the full 24 hours in our experiments. All algorithms are implemented in

C++ and were run on 2.67 GHz Intel Xeon CPUs with 2GB of RAM per core.
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2.5.1 Benchmark Instances

Our initial test set (instance name suffix “x1”) is comprised of 19 genetic linkage pedigree

problems, 50 randomly generated grid networks, 8 mastermind game instances (all part of

the UAI 2008 evaluation1) as well as 66 protein side-chain prediction problems (taken from

[115]). However, several of these instances are relatively simple or have only one complex

subproblem, which renders them less interesting for the purpose of this work. Namely, plain

AOBB (with subproblems ordered by increasing width) already yields good anytime perfor-

mance and neither the dive extension nor BRAOBB can provide significant improvements.

Hence we also created additional versions of each network with two or three identical copies

connected at the root (thus ensuring the presence of more than one complex subproblem),

signified by the “x2” and “x3” suffix, respectively. This yields a total of 57 pedigree (each run

with three different heuristic strengths), 150 grid, 24 mastermind, and 198 protein prediction

instances and resulting in over 90,000 CPU hours worth of experiments.

We show detailed performance results for a representative subset of the problem instances

in Section 2.5.2 and in Section 2.5.3 present and discuss summary statistics across all 543

problem instances for OR branch-and-bound, plain AOBB, AOBB with dive extension, and

BRAOBB. We briefly touch on BRAOBB’s performance for proving optimality in comparison

to AOBB in Section 2.5.4. Section 2.5.5 contrasts against the performance of stochastic

local search and discusses how our exhaustive search scheme can benefit from it. Section

2.5.6 presents results on two additional very challenging problem classes, protein-protein

interaction from the UAI 2010 Challenge and radio link frequency assignments (by the French

CELAR agency [2]). Finally, Section 2.5.7 analyzes a number of algorithm parameters

empirically.

1http://graphmod.ics.uci.edu/uai08/
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2.5.2 Detailed Performance Analysis

We begin by showing detailed anytime profiles for a sizable, representative subset of problem

instances. Figures 2.5, Figure 2.6, and Figure 2.7 show the results for 10 pedigree linkage,

10 grid network, 10 and protein side-chain prediction instances, respectively, while Figure

2.8 has profiles for four mastermind problems. Each Figure contains results for both the

initial problem instances (“x1” suffix) as well as the more complex and thus more interesting

ones (“x2” and “x3” suffix). For every problem instance, the plot title specifies number

of variables n , maximum domain size k , induced width w along the chosen ordering, and

height of the corresponding pseudo tree h . If known, the optimal solution value is indicated

by a gray dashed horizontal line. The title of each plot also notes the mini-bucket i-bound;

this was typically chosen to fit a 1GB memory limit, except for pedigree instances, where

three different heuristic strengths (i = 7, 10, 15) were applied for each instance.

2.5.2.1 Linkage Analysis

Figure 2.5 contains results for ten pedigree linkage instances. We first note that OR branch-

and-bound does very poorly overall: it only finds an early lower bound in a few of the

cases and then provides little improvement over time and never gets close to the optimum.

However, since it doesn’t exploit subproblem independencies it can in some cases (e.g.,

pedigree31x2) produce a first solution, albeit a very bad one, earlier than plain AOBB.

As expected, we find that plain AOBB has severely flawed anytime performance in the

presence of multiple complex subproblems; it produces a first solution very late or not at

all within the time limit (pedigree40x3 and pedigree51x3). The dive extension, largely

dependent on the heuristic guidance, is able to alleviate plain AOBB’s shortcoming in only

three cases (pedigree9x2, pedigree31x2, and pedigree41x3) – on the remaining instances its
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Figure 2.5: Anytime profiles of plain AOBB (“plain”), AOBB with subproblem dive
(“dive”), Breadth-Rotating AOBB (“rotate”), and OR branch-and-bound (“or”) on selected
pedigree linkage instances.
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Figure 2.6: Anytime profiles of plain AOBB (“plain”), AOBB with subproblem dive
(“dive”), Breadth-Rotating AOBB (“rotate”), and OR branch-and-bound (“or”) on selected
grid network instances.
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Figure 2.7: Anytime profiles of plain AOBB (“plain”), AOBB with subproblem dive
(“dive”), Breadth-Rotating AOBB (“rotate”), and OR branch-and-bound (“or”) on selected
pdb side-chain prediction instances.
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Figure 2.8: Anytime profiles of plain AOBB (“plain”), AOBB with subproblem dive
(“dive”), Breadth-Rotating AOBB (“rotate”), and OR branch-and-bound (“or”) on selected
mastermind instances.

performance is identical to plain AOBB (modulo some overhead), demonstrating that this

“ad hoc” solution falls short.

BRAOBB, on the other hand, exhibits impressive anytime performance on all instances in

Figure 2.5. It always returns a first solution very quickly and continues to improve upon that

throughout its execution, even on problems where some or all other schemes fail completely

(pedigree40x3 and pedigree51x3).

2.5.2.2 Grid Networks

Anytime profiles for ten grid network instances are plotted in Figure 2.6. Results are very

similar to what we found for linkage analysis. OR branch-and-bound fails completely on

seven of the instances, with bad performance on the remaining three. Plain actually works

well on the two “x1” instances shown (75-24-6x1 and 75-25-1x1) but struggles on the re-

maining eight “x2” and “x3” ones, due to their multiple complex subproblems. The dive
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extension only improves things on two of those cases (75-22-3x3 and 75-24-1x2) but is oth-

erwise equally deficient. Finally, we see again BRAOBB delivering significantly improved

anytime performance in all those cases. For instance, on 75-25-1x3 it finds (and proves) the

optimal solution in less than half an hour (around 103 seconds), while both plain and dive

AOBB require over 5000 seconds.

2.5.2.3 Protein Side-chain Prediction

Figure 2.7 shows anytime results on ten protein side-chain interaction instances. These

instances are a bit different from pedigree and grid problems in that they exhibit many very

small cost values (on the order of 10−6), but have very few actual zeroes in their conditional

probability tables. This reduces the likelihood of encountering dead ends in the search space

and in turn allows both OR branch-and-bound as well as AOBB with dive extension to

reliably return a first solution early, as evident in the plots of Figure 2.7 – note that the

solution quality of OR search is generally still lagging.

The performance of plain AOBB, however, is still compromised in the same way as before, by

virtue of the multiple complex subproblem, all but one of which will be solved to completion

before the first overall solution. Finally, also as before, BRAOBB dominates the anytime

performance, often by a large margin both in terms of quality and time of solutions returned.

2.5.2.4 Mastermind

Experimental results for mastermind game instances are shown in Figure 2.8. In contrast

to protein side-chain prediction problems, these problems are highly deterministic, with a

large number of strictly 0/1-valued conditional probability tables. The resulting anytime

profiles are therefore not quite as “interesting” since the first solution is already an optimal

one. The sole difference lies in when a given algorithm finds that first solution (and when
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optimality is subsequently proven). In all cases, we find that OR branch-and-bound fails

to find any solution at all within the time limit; plain AOBB and its dive extension again

perform almost identically; finally BRAOBB is always well ahead of the other schemes in

finding a solution.

2.5.3 Summary Statistics

Table 2.1 summarizes the entire set of experiments by showing, at different points of time,

the number of instances per algorithm for which any solution was found, for which the

optimal solution was found, and for which optimality was proven (i.e., when the algorithm

terminated). Within each problem class the best value is highlighted in bold for each time

stamp. For example, for pedigree networks at 5 seconds (2nd column), OR branch-and-

bound, plain AOBB, AOBB with dive, and BRAOBB found solutions for 78, 77, 95, and

161 instances, respectively (first value in each field). Out of those solutions 10, 45, 42, and

50 were optimal ones, respectively (middle value). Finally, optimality was actually proven

by the respective algorithm for 8, 41, 36, and 37 instances (last value). The table also

contains results for stochastic local search (SLS). At the time stamp of 5 seconds, SLS found

a solution for all 171 pedigree instances, but only 21 were actually optimal – and as a local

search algorithm, optimality was proven for none. Local search and possible combinations

with exact search will be discussed in more detail in Section 2.5.5.

The results in Table 2.1 confirm that BRAOBB yields superior anytime performance: for

example, within 1 second it already provides an initial solution on 502 instances overall (out

of 543, bottom group), compared to just 232 for plain AOBB, 339 for the dive extension,

and 424 for local search; performance remains superior to the other AOBB versions and very

competitive with local search for higher time bounds.
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Time bound

1 sec 5 sec 10 sec 1 min 5 min 1 hour 24 hours

Pedigree networks (171 total)

or 77/6/6 78/10/8 82/11/9 84/14/12 87/15/13 91/18/18 94/23/22

plain 65/31/24 77/45/41 85/55/45 99/72/64 105/80/75 113/94/87 136/125/119

dive 83/24/17 95/43/36 102/51/43 113/67/61 119/77/72 127/92/87 136/120/113

rotate 157/38/22 161/50/37 162/55/44 162/69/59 163/80/71 165/97/87 168/132/112

sls 144/9/0 171/21/0 171/24/0 171/39/0 171/66/0 171/78/0 171/78/0

plain+sls 146/9/0 171/13/0 171/30/12 171/74/62 171/84/74 171/100/88 171/129/118

rotate+sls 148/10/0 171/13/0 171/45/15 171/80/57 171/93/72 171/106/86 171/136/111

Grid networks (150 total)

or 45/1/0 47/1/0 51/2/0 55/3/2 62/7/4 67/15/10 78/25/24

plain 47/15/3 65/39/23 77/52/40 94/76/69 109/97/89 138/135/133 149/149/149

dive 52/11/1 65/32/13 72/44/27 94/70/64 106/91/84 134/129/123 149/149/149

rotate 129/24/1 133/44/9 136/59/23 140/82/65 143/107/90 147/139/132 149/149/149

sls 81/0/0 150/0/0 150/0/0 150/2/0 150/6/0 150/21/0 150/21/0

plain+sls 76/0/0 150/0/0 150/10/1 150/79/67 150/97/88 150/135/132 150/149/149

rotate+sls 83/0/0 150/0/0 150/14/0 150/83/64 150/106/90 150/139/131 150/149/149

Protein side-chain prediction networks (198 total)

or 198/78/49 198/79/52 198/80/53 198/82/57 198/89/61 198/90/70 198/99/82

plain 114/95/78 120/102/85 124/106/87 133/117/102 145/132/116 168/163/148 191/188/186

dive 198/102/76 198/108/84 198/110/86 198/122/100 198/133/112 198/161/141 198/185/181

rotate 198/128/79 198/133/85 198/136/86 198/151/104 198/165/120 198/180/157 198/190/190

sls 198/193/0 198/198/0 198/198/0 198/198/0 198/198/0 198/198/0 198/198/0

plain+sls 198/193/0 198/198/0 198/198/51 198/198/81 198/198/98 198/198/132 198/198/169

rotate+sls 198/191/0 198/198/0 198/198/47 198/198/83 198/198/104 198/198/140 198/198/172

Mastermind networks (24 total)

or 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0

plain 6/6/0 7/7/0 7/7/0 9/9/3 12/12/6 20/20/18 24/24/24

dive 6/6/0 7/7/0 8/8/1 10/10/3 12/12/6 23/23/22 24/24/24

rotate 18/16/0 18/16/0 18/16/0 19/19/3 24/24/10 24/24/21 24/24/24

sls 1/1/0 18/14/0 24/18/0 24/18/0 24/19/0 24/19/0 24/19/0

plain+sls 1/1/0 18/13/0 24/13/0 24/14/3 24/16/6 24/22/18 24/24/24

rotate+sls 2/2/0 18/13/0 24/13/0 24/17/3 24/24/9 24/24/21 24/24/24

Overall (543 total)

or 320/85/55 323/90/60 331/93/62 337/99/71 347/111/78 356/123/98 370/147/128

plain 232/147/105 269/193/149 293/220/172 335/274/238 371/321/286 439/412/386 500/486/478

dive 339/143/94 365/190/133 380/213/157 415/269/228 435/313/274 482/405/373 507/478/467

rotate 502/206/102 510/243/131 514/266/153 519/321/231 528/376/291 534/440/397 539/495/475

sls 424/203/0 537/233/0 543/240/0 543/257/0 543/289/0 543/316/0 543/316/0

plain+sls 421/203/0 537/224/0 543/251/64 543/365/213 543/395/266 543/455/370 543/500/460

rotate+sls 431/203/0 537/224/0 543/270/62 543/378/207 543/421/275 543/467/378 543/507/456

Table 2.1: Summary statistics over 543 instances for OR branch-and-bound, plain AOBB,
AOBB with dive extension, breadth-rotating AOBB, stochastic local search, as well as plain
and breadth-rotating AOBB with 10 seconds of initial local search. In each case we list the
number of cases for which, within the respective time bound, (1) any solution was found,
(2) the optimal solution was found, (3) optimality was proven.
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It is important to note that BRAOBB finds the optimal solution quicker than the other

schemes (with the exception of local search on side-chain prediction), for example for overall

266 instances after 10 seconds (versus 220 for plain). Similarly, in the full 24 hours, BRAOBB

found the optimal solution to 495 instances, versus 486 for plain and just 316 for local search.

We observe that SLS does very well on the side-chain prediction networks – these prob-

lems have only a few hundred variables but a large maximum domain size of 81. On the

other problem classes, however, with thousands of variables and smaller maximum domains,

BRAOBB shows better performance, in particular with respect to finding the optimal solu-

tion. The reason for this lies in the heuristic used by AOBB: mini-bucket space complexity

is O(nki) – large domain size bounds k thus necessitate a significantly lower i-bound (i = 3

in case of the side-chain prediction problems), which leads to far less accurate heuristics.

Recall that branch-and-bound uses the mini-bucket heuristic both for pruning as well as for

value ordering upon variable instantiation (cf. Section 1.3.3) – SLS, on the other hand, does

not depend on this kind of heuristic.

2.5.4 Proving Optimality

While not the focus of the present work, we consider for a moment the algorithm’s perfor-

mance in terms of proving optimality, in particular comparison to plain AOBB. Section 2.4.4

stated that different exploration strategies influence the level of pruning the algorithm can

apply, since it will impact the availability of subproblem solutions for bounding purposes.

With that in mind, Table 2.1 shows that plain AOBB seems to have a very slight edge in

terms of proving optimality. For instance, it proved optimality for 149 instances overall at

5 seconds versus 131 for BRAOBB or 172 versus 153 instances at 10 seconds. AOBB is still

a bit ahead after 1 minute, falls behind somewhat at 5 minutes and 1 hour, but ends up
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Figure 2.9: Comparison of number of node expansions needed by plain AOBB and
BRAOBB to prove optimality for a subset of problem instances from each class (i-bound
specified per class).

proving optimality for three more instances than BRAOBB at the 24 hour timeout mark.

We note again that, as an incomplete solver, local search proves no optimality at all.

To provide a more detailed perspective, Figure 2.9 compares the number of node expansions

that plain AOBB and BRAOBB require to prove optimality of a solution for a number of

problem instances (note the horizontal log scale). The results confirm our analysis of Table

2.1: AOBB has a very slight edge overall, but we see individual cases going in both AOBB

and BRAOBB’s favor. Notably, results are fairly close for pedigree, grid, and mastermind

instances, while side-chain prediction problems exhibit a difference of up to two orders of

magnitude in some cases. We suspect this might be related to the relatively weak heuristic in
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the case of side-chain prediction problems (i = 3 is maximum possible), but the full analysis

is subject to future research.

2.5.5 Combining Local and Exhaustive Search

Looking again at Table 2.1, we notice that SLS can sometimes find solutions more quickly

than any kind of exhaustive search – in particular it has found a solution for all 543 problems

after 10 seconds (versus 514 instances for BRAOBB and just 293 for plain AOBB). As

outlined above, however, SLS is often quickly outperformed by AOBB and BRAOBB in

terms of finding the optimal solution, let alone proving optimality (which is impossible with

local search). For instance, local search has found only 257 optimal solutions after 1 minute

(versus 321 for BRAOBB and 274 for plain AOBB) or 316 at the 24 hour timeout (compared

to 495 for BRAOBB, 486 for plain AOBB).

We have thus devised simple, combined schemes that run local search for 10 seconds as

a preprocessing step; the resulting solution is then used as an initial lower bound for the

exhaustive search. Results for plain AOBB and BRAOBB augmented in this way, denoted

“plain+sls” and “rotate+sls,” respectively, are included in Table 2.1. Figure 2.10 also shows

detailed anytime profiles on ten problem instances, comparing local and exhaustive search,

as well as their combinations.

Indeed we see “plain+sls” and “rotate+sls” match local search in terms of initial performance

and quickly returning a solution (deviations here are due to randomization). Just as for SLS,

however, initial solution quality can be inferior to BRAOBB (cf. instances pedigree41x3 and

75-25-1x3, for instance), but after 10 seconds the combined schemes quickly catch up to plain

AOBB and BRAOBB, respectively, as local search preprocessing finishes and exhaustive

search takes over. Here “rotate+sls” has the edge over “plain+sls” in terms of getting to
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Figure 2.10: Anytime profiles comparing exhaustive AOBB against SLS and combinations
of the two on select problem instances.
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Figure 2.11: Anytime profiles on seven very hard protein-protein interaction instances from
the UAI’10 and PASCAL’11 Inference Challenges.

and proving optimality. Overall we therefore believe that “rotate+sls” best combines the

benefits of the two search paradigms.
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Figure 2.12: Anytime profiles on three very hard WCSP instances of CELAR radio link
frequency assignment problems, encoded as MPE.

2.5.6 Additional Problem Classes

In addition to the benchmark set used in the previous sections, we consulted two additional,

very challenging classes of problems protein-protein interaction instances (seven problems

were made available from the UAI 2010 Challenge [35]) and three CELAR radio link fre-

quency assignment instances converted from weighted constraint satisfaction problems (e.g.,

[2]), for all of which optimal solutions are unavailable. OR branch-and-bound and plain

AOBB failed to produce a solution within the 24 hour time limit on any of these problems

and have thus been omitted here.

Figure 2.11 shows anytime profiles for all seven protein-protein interaction networks; in all

cases BRAOBB and even the initial subproblem dive restore the anytime performance that

plain AOBB is lacking. We note, however, that as before the solution quality of AOBB

with initial dive is decidedly inferior. BRAOBB and AOBB with dive also outperform

SLS (BRAOBB drastically so); it appears to struggle with the large number of over 14,000

problem variables and never improves upon its initial solution – it is unclear whether this
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an issue with the specific implementation we have available (GLS+ from [60]) or whether it

is an inherent issue with local search. “rotate+sls” suffers from this as well during its local

search preprocessing, but quickly catches up to BRAOBB, as seen in previous sections.

CELAR networks in Figure 2.12, on the other hand, have fewer variables and large domain

sizes (maximum k = 44). As it was the case for protein side-chain prediction problems,

this results in a weaker mini-bucket heuristic (with a low i-bound of 3) for AOBB. This

again gives an advantage to SLS, which does not rely on this kind of heuristic and is able

to outperform BRAOBB in two of the three cases, scen06-wcsp and scen07-wcsp. However,

in both of these two cases we see that SLS improves its solution only little with time. The

combined “rotate+sls,” which matches the initial performance of SLS but not these later

improvements, is thus still a good compromise, since it also yields leading performance on

the third instance scen08-wcsp.

2.5.7 BRAOBB Analysis

In the following we investigate several aspects of BRAOBB more closely and compare some

of its properties to plain AOBB empirically.

2.5.7.1 Heuristic Accuracy

We’ve argued above how the performance of BRAOBB can suffer if the heuristic is very

inaccurate, i.e., the i-bound of the mini-buckets is low. This became specifically evident

when comparing against local search on instances with large domain sizes (protein side-

chain prediction and CELAR radio link problems).

Here we compare the different AOBB schemes with respect to their sensitivity for the heuris-

tic’s accuracy. Figure 2.13 contrasts plain AOBB, dive, and BRAOBB each with two different
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Figure 2.13: Impact of heuristic accuracy on anytime performance: comparing i-bound 10
and 15 on two pedigree instances.

heuristics, parametrized by the mini-bucket i-bound. In all cases plain AOBB fails or does

poorly due to problem decomposition (with an advantage, however, for the stronger heuris-

tic). AOBB with dive depends very much on the heuristic and fails or does poorly with the

weaker one; on pedigree31x2, for instance, it is unable to produce a solution within 24 hours

using i = 10 , but exhibits acceptable anytime behavior with the stronger i = 15 .

In contrast, BRAOBB appears to be significantly more robust with regards to the heuristic

strength and exhibits acceptable anytime profiles even with i = 10 . Nevertheless, it still

profits from a stronger heuristic and further improves its performance with i = 15 , in most

cases significantly.
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Figure 2.14: Impact of subproblem ordering on anytime performance: subproblems ordered
by increasing (“-inc” suffix in plot) and decreasing (“dec”) induced width for both plain
AOBB and BRAOBB.

2.5.7.2 Subproblem Ordering

Going back to Section 2.3.1, Figure 2.14 compares the performance of BRAOBB with sub-

problems ordered by increasing and decreasing width. For reference, we also include plain

AOBB; as shown earlier, on most instances it fails to produce any solution within the given

time limit with subproblems ordered by decreasing width. Ordered by increasing width the

only favorable case for plain AOBB is when there is only one complex subproblem (exempli-

fied by pedigree19x1 in Figure 2.14). In contrast our new scheme BRAOBB is very robust

and delivers nearly the same performance regardless of subproblem ordering in all cases.

2.5.7.3 Rotation Threshold

Finally, we conducted experiments with different values for the rotation threshold Z in

Algorithm 2.1, ranging from 10 to 10,000,000 node expansions. Figure 2.15 shows ex-
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Figure 2.15: Impact of rotation threshold Z : anytime profiles of BRAOBB run with
Z ∈ {10, 1000, 100000, 10000000}.
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Figure 2.16: Histograms showing number of node expansions between stack rotations for
four different runs of BRAOBB (note the vertical log scale). The rotation threshold was set
to Z = 1000 in each case, but evidently never reached in practice.
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emplary results on four pedigree instances, plotting solution quality over time for Z ∈

{10, 1000, 100000, 10000000} . We see that performance is virtually identical in each case.

To explain this behavior, we conducted a number of runs of BRAOBB in which we recorded

the number of node expansions between stack rotations (i.e., the maximum values of the

z counter in Algorithm 2.1). Representative results are shown in Figure 2.16 in the form

of histograms: noting the vertical log scale, we observe that the majority of stack rotations

happens after only very few node expansions (on the order of at most a few hundred), further

confirming the analysis in Section 2.4.4. In particular, we note that in the cases shown in

Figure 2.16 the expansion threshold Z = 1000 , as one of three conditions for subproblem

rotation, is never actually met in practice.

2.6 Conclusion to Chapter 2

Exploiting problem decomposition in search methods has been proven to yield significantly

better overall complexity in many cases. Yet this chapter has demonstrated how it can be in

direct conflict with the depth-first nature of branch-and-bound, thus impairing the important

anytime properties of this class of algorithms. Specifically, to obtain an overall result, a

partial solution is required from every independent subproblem, which we have shown to be

in direct contradiction to the depth-first, consecutive processing of subproblems.

As an “ad hoc” fix, we argued how this effect can be avoided when only one of the decomposed

subproblems is relatively hard, in which case the simple ones should be processed first. Using

AND/OR Branch-and-Bound, the effectiveness of this approach was shown experimentally,

but we validated its obvious limitations as well. We devised a “quick fix” that employs an

initial greedy subproblem dive, but whose performance we found to be lacking due to heavy

dependence on the underlying heuristic.
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The main contribution of this work is the new scheme Breadth-Rotating AND/OR Branch-

and-Bound (BRAOBB), which periodically iterates over the different subproblems in a

“breadth-first” manner. Yet we have shown that it retains certain desirable properties of the

depth-first strategy. In particular, not accounting for caching the number of nodes BRAOBB

needs to keep in memory still only grows linearly in the number of variables or the depth of

the search space – in contrast to best-first search schemes that are inherently exponential.

We presented an exhaustive set of successful experiments on problems from several different

problem classes, including a number of instances that are too hard to solve exactly. The

results confirmed the vastly improved anytime performance of BRAOBB, especially in cases

where standard depth-first branch-and-bound and its “ad hoc” extensions fail. We also

showed BRAOBB to be very competitive with a state-of-the-art stochastic local search algo-

rithm, in many cases even surpassing it (unless the mini-bucket heuristic is very inaccurate).

In addition, we demonstrated how the two paradigms can be combined to get the best of

both worlds.

2.6.1 Winning the PASCAL 2011 Inference Challenge

The power of our enhanced algorithm was recently further demonstrated when competing in

the PASCAL 2011 Inference Challenge [36]. In particular, we submitted an entry based on

BRAOBB with initial stochastic local search, as described in Section 2.5.5, combined with

the following enhancements:

1. We re-parametrize the problem using a MPLP procedure, a message passing algorithm

that iteratively shifts costs between functions or cluster of functions by solving a linear

programming relaxation of the localized problem [61]. This is first applied on the

original problem graph and subsequently on a higher-order join graph. In each case an
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efficient implementation (courtesy of Alexander Ihler) typically allows us to perform

several thousand iterations.

2. When computing the mini-bucket heuristic, we apply a single pass of MPLP as de-

scribed in the previous point.

3. We use a highly efficient implementation (courtesy of Kalev Kask) of the greedy variable

ordering schemes min-fill and min-degree, with optimized data structures, randomiza-

tion through pooling, and early termination of unpromising iterations [67]. This allows

us to run tens of thousands of variable ordering computations in many cases, often

yielding orderings with lower induced width and better asymptotic complexity.

4. We perform an initial run of Limited Discrepancy Search with discrepancy limit 2,

a systematic but incomplete search scheme described in Section 1.3.4.1. For most

problems this step finishes in less than a second.

This combined solver placed first in all three categories (20 second, 20 minute, and 1 hour

time limit, respectively) of the MPE track of the PASCAL 2011 Inference Challenge [36]; it

was invited for presentation at the UAI conference in August 2012 on Catalina Island, CA.

2.6.2 Open Questions

Possible future research directions include more elaborate rotation schemes, for instance as-

signing the rotation threshold dynamically based on subproblem-specific heuristic estimates.

Given the observations in Section 2.5.7.3, however, it is unclear whether these would have a

noticeable impact in practice.

Secondly, while the focus in this work has been on anytime performance and using AND/

OR search for approximate inference, the ideas presented might be of value in improving
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exact reasoning as well. Specifically, Sections 2.4.4 and 2.5.4 touched upon how varying

the schedule of exploration, both in terms of value ordering and subproblem ordering, can

impact the pruning of the algorithm. Developing a better understanding of the factors that

determine this interdependence would enable us to use it in our favor, with the intention of

shortening the time it takes to prove an optimal solution.

In this context, it should also be worthwhile to investigate general complexity issues, such

as the dependence on the guiding pseudo tree and the underlying variable ordering. Two

key parameters here are the pseudo tree height and induced width, which play a large part

in bounding the asymptotic complexity of AND/OR tree and graph search, respectively.

The interplay between these two in determining the actual runtime complexity of AOBB in

general and its anytime performance in particular constitutes an open research question.
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Chapter 3

Complexity Prediction of AND/OR

Branch-and-Bound

3.1 Introduction

This chapter investigates the runtime complexity of AND/OR Branch-and-Bound. In par-

ticular, we aim to estimate the run time of the algorithm for a given problem instance and

set of parameters, most importantly the variable ordering and mini-bucket heuristic i-bound.

The hardness of a graphical model problem is commonly judged by its structural parameters,

based on the asymptotic complexity bound of the algorithm in question. In the case of

AOBB this is O(n · kw), i.e., exponential in the problem’s induced width w along a given

variable ordering (cf. Section 3.2). Due to the asymptotic nature of this bound, however, this

intuition does usually not allow us to get a very precise idea of a particular problem’s solution

time, be it to determine feasibility in light of limited resources, or to choose among a set

of variable orderings, possibly with the same induced width, or other algorithm parameters.

For this we need a better understanding of problem complexity and algorithm runtime, a
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notion sometimes also referred to as the “empirical hardness” of a problem instance (see for

instance [78, 103]).

A challenging and interesting problem in itself, estimating the algorithm’s performance on

a given problem is of particular importance in the context of parallelizing AOBB. Here

we aim to find a set of subproblems to be processed in parallel, with runtimes as close to

each other as possible; the underlying objective is to ensure load balancing and maximize

resource utilization, as will be discussed in-depth in Chapter 4. In this context the scope of

the estimation problem widens to arbitrary subproblems within an overall problem search

space.

Not limiting ourselves to a problem instance and corresponding search space in its entirety,

but instead considering conditioned subproblems and subspaces also gives a much larger set

of examples to work with and will therefore form the basis for the experimental evaluation

in this chapter.

3.1.1 Contributions

The contributions of this chapter can be summarized as follows:

• We revisit the asymptotic complexity bound of AOBB and derive a finer-grained ver-

sion, the so-called state space bound. However, we demonstrate that this bound is

commonly still very loose in practice, indicating that structural parameters alone are

not sufficient to determine problem hardness.

• In contrast to most existing work on estimation of search complexity based on sam-

pling, we propose to take a learning approach and derive a general class of models

for the complexity of AOBB. Motivated by the exponential nature of search spaces,

we formulate the number of expanded nodes as exponential in a linear combination of

73



a collection of subproblem features. Under a log transformation this approach corre-

sponds to the well-studied problem of linear regression.

• We lay out a set of 35 subproblem features as the basis for this regression model. No-

tably, besides structural properties like the induced width and domain size, these fea-

tures also include more dynamic attributes, e.g., subproblem upper and lower bounds

maintained by AOBB and pruning ratios extracted from a very small search sample.

All features are generic to AOBB and not specific to a particular problem class.

• We outline four levels of learning and analyze their applicability and relevance in

practice: in order of increasing generality, we consider learning complexity models

for subproblems of a single problem instance, across several instances from a single

class, and across instances from several known classes. In addition, we investigate the

possibility of estimating complexities of instances from an unseen problem class, which

can be seen as a form of transfer learning [93].

• Experimental evaluation is conducted on instances from four different problem classes,

according to the levels of generality defined previously, with overall positive results.

Namely, all but the most general level of transfer learning yield complexity model

instances that produce good to very good prediction performance.

• We analyze the informativeness of the different features via their contribution to the

learned model instances. In doing so we are able to demonstrate that indeed dynamic

features such as subproblem cost bounds are the most meaningful and crucial to as-

sessing the hardness of a subproblem instance.
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3.1.2 Chapter Outline

Section 3.2 provides some necessary background for the work presented in this chapter,

including the finer-grained asymptotic bound (Section 3.2.1) and an overview of related

work (Section 3.2.2).

In Section 3.3 we present our main contribution, a general approach to complexity estimation

that builds on statistical regression learning. In particular, Section 3.3.2 introduces the linear

regression model over 35 specific problem features identified in Section 3.3.3. We delineate

four different levels of learning for our evaluation and list the specific regression algorithms

we considered in Sections 3.3.4 and 3.3.5, respectively.

Section 3.4 describes how we learn our models in practice and presents in-depth empirical

evaluation. After describing the set of underlying problem instances and classes in Section

3.4.1 as well as the general experimental setup in Section 3.4.2, Sections 3.4.3 through 3.4.6

give an in-depth report of the experimental results. Sections 3.4.8 and 3.4.7 provide further

analysis of the experimental results. Section 3.5 concludes the chapter.

3.2 Background & Related Work

This section lays out the foundations for the contributions in this chapter. It revisits the

asymptotic upper bound and develops a more fine-grained version. Experimental results,

however, show that this bound is still very loose in practice. We then report on related work

and its limitations in our specific context.

To decouple the analysis of runtime complexity from the specific computing power of the

CPUs in our experimental environment, we instead measure performance in number of nodes

expanded by AOBB, i.e., we consider the size of the explored search space. For simplicity,

75



we will count the number of AND nodes in particular (it’s easy to see that this dominates

the number of OR nodes).

This metric scales linearly with the run time of the search process (i.e., not accounting for

preprocessing times like mini-bucket computation) and is independent of computing power.

3.2.1 A Finer-grained Asymptotic Bound

Recall from Section 1.2 and [29] the asymptotic upper bound on the size of the context-

minimal AND/OR search graph, O(n · kw+1) , where n is the number of problem variables,

k the maximum domain size across all variables, and w the induced width of the problem

along a given variable ordering.

Indeed n · kw+1 upper bounds the number of AND nodes, but because of its asymptotic

nature the bound is typically very loose. In particular, this is due to the following two

implicit simplifying assumptions:

1. Every variable has the same, maximum domain size k,

2. The context size of each variable is the same, maximum w.

A finer-grained upper bound on the size of the context-minimal AND/OR search graph can

be obtained by computing the maximum possible state space (similar to [69]). To derive this

measure, we partition the search space into “clusters,” one for each variable’s contribution.

In other words, we group together search nodes that correspond to the same variable in the

graphical model.

Figure 3.1 illustrates this on the example problem from Figure 1.3 by grouping nodes into

six clusters, one for each problem variable.
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(a) Pseudo tree. (b) AND/OR search graph with variable clusters.

Figure 3.1: Example AND/OR search graph from Figure 1.7, for problem in Figure 1.3,
with variable clusters marked.

To formalize, denote with C(Xi) the context of variable Xi in the given AND/OR search

space and recall that Di is the variable domain of Xi. The maximum state space size, SS,

can then be expressed as follows:

SS =

n∑

i=1

|Di| ·
∏

Xj∈C(Xi)

|Dj| (3.1)

Namely, compute for each problem variable Xi the product of its domain size and the domain

sizes of the variables Xj ∈ C(Xi) in its context. By construction, this bounds the number

of AND nodes that Xi can contribute to the context-minimal AND/OR search graph.

For AOBB, however, these state space bounds still tend to be very loose, since they don’t

account for two important algorithmic aspects:

• If AOBB encounters inconsistencies (such as zero probabilities in a Bayesian network),

it can discard the subspace below the current node and backtrack. In fact, this exploita-

tion of determinism in the problem specification is relevant not only in the context of

AOBB, but also for general search procedures in a non-optimization setting, such as

likelihood computation or solution counting.
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Figure 3.2: Number of actual AND node expansions performed by AOBB vs. state space
bound for five problem instances, each run with five different variable orderings (2 pedigree,
1 grid, 1 mastermind, 1 protein side-chain prediction).

• As a branch-and-bound scheme, AOBB can often prune large parts of the search space

by comparing previously found solutions against an admissible heuristic estimate of

the subproblem below the current search node, as it is provided by the mini-bucket

scheme, for instance.

Figure 3.2 illustrates this on five different problem instances from various domains, each run

with five different variable orderings. For each ordering we show the actual number of AND

node expansions by AOBB and the respective state space bound computed as in Equation

3.1. It is evident that the state space bound doesn’t really exhibit any correlation with the

actual number of node expansions and that it is typically several orders of magnitude too

large (note the vertical log scale).

In the following, we will therefore develop a method to bound or estimate problem complexity

ahead of time in a more accurate fashion. We begin by surveying survey some related work in

this area, which will serve to motivate our own approach using statistical regression learning.
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3.2.2 Related Work

Early efforts in search space estimation go back to Knuth in 1975 with work that is concerned

with general backtrack trees (i.e., a traditional OR search space) [70]. Knuth’s method

performs random probes without backtracking, each time selecting one child at each level i

and recording the sequence of observed branching factors bi . For a given probe of depth d

the estimate is simply
∑d

i=0

∏i

j=1 bj = 1+ b1+ b1b2+ . . . . The overall estimate is taken to be

the average over all probes. This method is asymptotically unbiased, namely the expected

value it computes is the correct size of the search tree. However, Knuth emphasized the

large variance of the estimator.

Knuth’s method was extended in 1992 by Chen, who adopted a stratified sampling approach

within each random probe [18]. Namely, search nodes are classified into types or strata, and

instead of one node per depth level as in Knuth’s method, one node per type is expanded.

Note that when the type is determined only by a node’s depth, stratified sampling is equiv-

alent to Knuth’s method, and when each node defines its own unique type, we explore the

full search space. Chen proposed a type system based on a node’s number of children and

proved that his scheme has reduced variance compared to Knuth’s original method.

However, as Knuth earlier pointed out, his method as well as Chen’s extension do not directly

apply to the explored search space of branch-and-bound algorithms [70]. In particular, the

bounds that are used by branch-and-bound for pruning decisions along a given search path

are not known ahead of time and depend on the prior search history. In other words, Knuth

and Chen’s methods assume that the entire explored search tree is (implicitly) known in

advance, namely for any partial path ending in a node n we can determine what its children

will be in the final explored tree. This does not generally hold for branch-and-bound, where

the shape of the explored tree depends on the order in which the search progresses – node

expansion and pruning differs depending on the best solution found so far. As a consequence
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the random probes of Knuth and Chen’s scheme cannot accurately capture the pruning

behavior of branch-and-bound we are interested for this thesis. (It is worth noting, however,

that they can still be applied to the limited problem of estimating the work required to prove

optimality of a cost bound if the optimal cost is provided as an input.)

Similar methods of runtime estimation have been proposed by Korf et al. for Iterative

Deepening A* [72], a linear-space version of the heuristic search algorithm A*. They employ

sampling to get an estimate of the asymptotic branching factor of the explored search space

and try to characterize the distribution over values of the heuristic function, which they

combine for an overall runtime estimation.

Lelis et al. combined this with Chen’s method, proposing a stratified sampling approach for

predicting the runtime of IDA* [76, 77], using the heuristic function as part of the stratifier.

However, since IDA* and A* are best-first search algorithms, neither of these estimation

approaches can easily be extended to depth-first branch-and-bound schemes like AOBB –

just like Knuth and Chen’s methods, they don’t account for the bounds that the algorithm

updates throughout its progress, which are used for heuristic pruning.

More recently, other authors have proposed online estimation methods that are more suited

for the specifics of branch-and-bound-type algorithms. Kilby et al. [68] introduced the

Weighted Backtrack Estimator (WBE), which can also be seen as an extension of Knuth’s

method. As an online procedure, it is run as part of branch-and-bound (or another chrono-

logical backtracking algorithm) where it keeps track of all “branch lengths” seen so far, i.e.,

the depth of terminal nodes in the explored search space. At any point, the overall estimate

is a weighted average of individual estimates resulting from each such branch, computed just

as in Knuth’s method. Each element’s weight is the probability of reaching the correspond-

ing leaf node through random probing (1 over the product of variable domain sizes along

the branch). For instance, if all variable domains are binary and D is the multiset of branch

lengths encountered so far, the estimate can be computed as
∑

d∈D 2−d(2d+1−1)∑
d∈D 2−d , where 2d+1−1
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is the size of a full binary tree of depth d and 2−d is the probability of reaching a particular

leaf at that depth.

Kilby et al. also propose a second method, called the recursive estimator [68]. Defined only

for binary search trees, it also keeps track of node counts for each solved subproblem. At

any point, estimates are computed by “guessing” that an (unexplored) subtree to the right

will have the same size as an (explored) subtree to the left, a logic that is applied recursively.

Cornuéjols et al. [21] proposed another estimation approach (which they left unnamed).

It is also an online procedure, targeted specifically at branch-and-bound schemes over OR

search trees. As the main search algorithm runs as usual, their method keeps track of the

shape of the search tree, in particular its maximum depth, the “waist” level (i.e., the depth

level with the largest number of explored nodes), and the last complete level. From these

parameters they construct a piecewise linear model of the overall branching factor and use

that to compute an estimate of the overall search tree size.

Both [21] (effective branching factor prediction) and [68] (WBE and recursive estimator) pro-

vide some limited experimental evaluation in the context of optimization problems. Cornuéjols

et al. report on a number of mixed integer programming instances (MIP), while Kilby et al.

only include summary statistics over a set of Traveling Salesman problem instances (TSP).

And while limited in scope, results are mixed in either case. Owing to their online nature, in

many cases significant headway into the search process is required to yield fair estimates. Fur-

thermore, neither of these methods is well-defined for search graphs like the context-minimal

AND/OR search graph and it is not obvious how AOBB’s caching of context-unifiable sub-

problems could be properly accounted for in the estimation.

A different approach for estimating the size of the explored search space, and thereby problem

runtime, was developed by Leyton-Brown, Xu and others in a series of papers that apply

machine learning methods, in particular regression techniques.
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In one line of work [78], they consider a set of problems from the domain of combinatorial

auctions, to be solved by the CPLEX solver. Given a set of previously solved instances and

their respective runtimes, their method extracts a number of domain-dependent as well as

domain-independent features from each instance. These are given as input to a regression

learning algorithm to find a suitable model for runtime prediction according to specific

criteria.

Similar concepts were applied to develop SATzilla, a portfolio solver for SAT problems that

competed very successfully in a number of SAT competitions [114]. As before, a number of

domain-dependent and domain-independent problem features are identified for a number of

sample instances. In an offline step, these sample instances are solved by the various SAT

solvers in the SATzilla portfolio and their respective solutions times recorded. Subsequently,

a separate runtime estimator is learned for each solver. Given a new instance, the different

estimators are applied and the SAT solver with the lowest runtime estimate is chosen to

process the problem.

In either case results were promising throughout, further evidenced by SATzilla’s competitive

success. One major advantage of these regression learning based approaches is that most of

the estimation complexity is shifted to an offline step, where a sample set is compiled and

estimators are trained. Computing estimates for a new instance is comparatively cheap.

This makes this kind of method particularly well-suited for our purposes of parallelizing

AOBB, where we often need to consider and estimate the complexity of hundreds, if not thou-

sands of subproblems (cf. Chapter 4). In Section 3.3 we will therefore develop a regression-

based estimation scheme for general AND/OR Branch-and-Bound search, which will later

form one key component of our parallel implementation.
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3.2.3 Earlier Work

For completeness we mention here prior work that we conducted with a focus on the com-

plexity of search for solution counting or likelihood computations [88, 89]. In this work we

aimed to exploit determinism in the function tables to obtain tighter upper bounds on the

number of expanded nodes. It was motivated by the recently introduced concept of hypertree

decompositions, which is tree decomposition of the problem’s hypergraph. A hypergraph of

a graphical model (X,D, F,⊗) is a graph (V,E) that still has the variables as its vertices,

V = X , but has hyperedges that are subsets of variables corresponding to the scopes of the

functions F . Alternatively, a hypertree decomposition can be defined as an extension of a

tree decomposition as follows:

Definition 3.1 (hypertree decomposition). [48, 49] A (generalized) hypertree decomposi-

tion of a graphical model (X,D, F,⊗) is a tree T = (V,E) with clusters V and edges E ,

together with labeling functions χ and ψ that associate with each vertex v ∈ V two sets

χ(v) ⊂ X and ψ(v) ⊂ F such that:

1. For each fi ∈ F there exists v ∈ V such that fi ∈ ψ(v) and scope(fi) ⊂ χ(v) , i.e.,

each function and its scope is contained in at least one cluster.

2. For each Xi ∈ X the set {v′ ∈ V | Xi ∈ χ(v)} forms a connected subtree of T ; this is

also called the “running intersection” or “connectedness” property.

3. For each v ∈ V , we have χ(v) ⊂ ⋃
f∈ψ(v) scope(f) , i.e., each cluster is fully “covered”

by its associated functions’ scopes.

The hypertree width of a hypertree decomposition is defined as hw := maxv |ψ(v)| . The

hypertree width hw∗ of a graphical model is the minimum hypertree width over all its hypertree

decompositions.
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We note that conditions 1. and 2. above are actually the same as for a tree decomposition (cf.

Definition 1.7), hence every hypertree decomposition is also a tree decomposition. However,

the third condition allows us to reason about problem complexity in terms of the problem’s

function table properties. To that end we introduce the notion of tightness of a function:

Definition 3.2 (tightness). The tightness tf of a function f is the number of relevant

tuples (e.g., nonzero entries in conditional probability tables, allowed tuples in constraints).

Intuitively, we can store and process function f in a “compressed” form, with only the tf rel-

evant tuples. Given a hypertree decomposition, one can then modify an inference algorithm

to make use of these compact representations. In [48] the complexity of processing a hyper-

tree decomposition for solving a constraint satisfaction problem is shown to be exponential

in hw, with a dominant factor of thw (where t bounds the tightness of the constraints). This

was extended in [66] to any graphical model that is absorbing relative to 0. (A graphical

model is absorbing relative to a 0 element if its combination operator has the property that

x⊗0 = 0 for all x ; for example, multiplication has this property while summation does not.)

In terms of search over AND/OR spaces, we note that the search algorithm backtracks – i.e.,

the current node doesn’t get expanded – if it encounters a dead end, caused by evaluating one

or more functions with an inconsistent value. In addition, we recall the close correspondence

between the guiding pseudo tree and the resulting context-minimal AND/OR search space

on the one hand, and a suitable tree decomposition on the other hand (cf. Section 1.2.3) –

this observation also formed the basis for the state space bound derived in Section 3.2.1.

Our work presented in [88, 89] ties these two concepts together by further tightening the

state space bound through exploiting function tightness information.

• As in the state space bound, each variable’s contribution is considered separately, with

the product of domain sizes of the variable and its context as the starting point.
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• For each such variable cluster, a greedy algorithm is applied, iteratively trying to cover

a subset of variables in the cluster with as tight a function as possible, provided the

function’s scope is fully instantiated along the path to the root. (Note that function

scopes often overlap significantly.)

• The result, per cluster, is an upper bound obtained by multiplying the tightness of the

functions in the computed covering with the domain sizes of the uncovered variables.

Summing over all clusters yields an overall upper bound.

We point out that function scopes typically overlap significantly and the greedy covering

only considers the tightness and in particular doesn’t perform any kind of resolution or

function combination operations – the result is thus an upper bound. We also note that the

above formulation resembles a weighted variant of the well-known, NP-complete set covering

problem.

Full details of the scheme as well as empirical evaluation are provided in [88, 89]. In the

presence of determinism in a problem instance, the resulting bounds are shown to often be

much tighter than the state space bound. In some cases they can reflect, with reasonable

accuracy, the number of node expansions performed by the search algorithm. Recall, how-

ever, that this work was conducted in the context of likelihood computations and solution

counting, i.e., not for combinatorial optimization problems. It therefore doesn’t account

for the powerful pruning of branch-and-bound-style algorithms such as AOBB and was not

immediately considered for the estimation work describe here. However, integrating these

two lines of work, for instance by using the upper bound described above as a feature in the

regression scheme developed subsequently, carries potential for future research.
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3.3 Complexity Prediction as Regression Learning

This section derives and describes in-depth our regression-based approach to runtime com-

plexity prediction of AOBB for a given problem instance or subproblem. Our work is similar

to, and partly inspired by, Leyton-Brown et al.’s work in estimating the runtime of the

CPLEX on combinatorial auction problems [78] as well as Xu et al.’s contributions to pre-

dicting the fastest solver from an algorithm portfolio in the SATzilla system [114].

In contrast to their methods, however, we don’t limit ourselves to a particular problem class

but instead devise a general scheme applicable to any set of graphical model optimization

problems. This has direct implications for the kinds of features we can consider within our

learning approach on, namely it rules out many domain-specific aspects that Leyton-Brown

et al. and Xu et al. made use of.

Before going into the specifics of our contribution, however, Section 3.3.1 provides a brief

summary of some of the central concepts of learning that we will employ.

3.3.1 Learning Background

In the following we survey some of the concepts and terminology of supervised learning that

form the basis of our work described subsequently. Our exposition is based on established

textbooks on machine learning and learning theory (e.g., [59, 112]). The basic theoretical

building blocks of a general learning problem can be defined as follows:

• The learning domain, an arbitrary set X from which samples x are drawn, according

to some unknown distribution D. Samples are typically represented by a number of

(numerical) features; we will denote the i-th feature by φi(x).

86



• The set of target values Y , which get assigned to each sample by an (unknown) function

f : X → Y .

• A set S of training data (xj, yj) ∈ X × Y , i.e. samples from X with known target

f(xj) = yj .

The learning task is then to use the training data to find a function f̂ : X → Y , called a model

or hypothesis, that can be used to predict for a new sample x′ ∈ X its target f̂(x′) , using

the sample features φi(x
′) . Typically we limit ourselves to a specific class of hypotheses F

from which f̂ can be chosen (e.g., the class of all linear combinations of sample features).

If Y is a finite set of discrete categories (“labels”), we speak of a classification task. If Y is

continuous or quantitative we have a regression learning problem. For our work on predicting

the runtime complexity of AOBB we will limit ourselves to the latter, in particular we set

Y = R.

3.3.1.1 Evaluating Learning

To assess the quality of a hypothesis f̂ we first define the error or loss function l : Y×Y → R
+

that allows us to determine, for each sample (x, y) ∈ X ×Y , the loss, or error, of a prediction

via l(f̂(x), y) = l(f̂(x), f(x)). The loss or, more commonly, risk of the estimator f̂ is then

defined as the expected error over the learning domain X with respect to the distribution

D :

LD(f̂) := Ex∼D[l(f̂(x), f(x))] (3.2)

LD(f̂) is also known as the generalization error. However, the full set X as well as the

distribution D is usually unknown, which makes LD(f̂) infeasible to compute and optimize

against. Instead, under the assumption that the training data S are drawn i.i.d. (indepen-
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dently and identically distributed) from D, we can define the empirical loss for given training

data S = {(x1, y1), . . . , (xm, ym)} as:

LS(f̂) :=
1

m

m∑

j=1

l(f̂(xj), yj) (3.3)

This quantity is also referred to as the training error or empirical risk. Hence, a learning

algorithm that aims to find f̂ that minimizes LS(f̂) as a proxy for optimizing LD(f̂) is said

to follow the principle of empirical risk minimization (ERM) [112]. Given a model f̂ that

minimizes LS(f̂) over a training set S, we can try to assess the model’s generalization by

evaluating it over a test set T of samples drawn i.i.d. from D (different from the training

set S). We compute the test error LT (f̂) as an indication of the generalization error.

A simple loss function that is often used is the squared error defined through l(f̂(x), y)) :=

(f̂(x)− y)2 , which results in the very common mean squared error (MSE) measure:

MSES(f̂) =
1

m

m∑

j=1

(f̂(xj)− yj)2 (3.4)

Clearly, lower values are better and a MSE of 0 would imply a perfect fit of the model f̂ to

the sample set S. Other loss functions are possible, but the MSE is widely used in practical

applications, well understood, and implemented in many mature software libraries, which is

why we will employ it as well.

3.3.1.2 Overfitting and Regularization

A potential danger of following the ERM principle lies in overfitting, where the learned

hypothesis f̂ performs very well on the training data S but behaves very poorly on new

samples from D, i.e., it achieves low training error but sees high prediction error. Intuitively,
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f̂ focuses too much on the specifics of the training set S and therefore generalizes poorly to

unseen samples from the learning domain X .

A common way to overcome this issue lies in regularization [9] (sometimes called shrinkage

[59]), which is closely related to the principle of structural risk minimization [112]. The

underlying concept is to penalize complex models that are likely to overfit the training

data just as described, i.e. to “force” the learning of simpler hypotheses. This is achieved

by adding a penalty p(f̂) , the regularization term, to the empirical loss function under

consideration:

LS(f̂) :=
1

m

m∑

j=1

l(f̂(xj), yj) + α p(f̂) (3.5)

Here α > 0 is the regularization parameter that controls the strength of regularization

(often determined experimentally in practice). The definition of the penalty function p

typically depends on the form of hypotheses considered through F . As Section 3.3.5 will

show, an added benefit of regularization is that it can yield sparser learned models, which

aid interpretability.

The following Sections will outline our choices for the class of models F we propose (Section

3.3.2), the set of sample features we define (Section 3.3.3), as well as the different learning

domains we investigate in the context of AOBB (Section 3.3.4). In addition, Section 3.3.5

describes the algorithms we used to learn particular model instances for a given training set.

3.3.2 Modeling AOBB Complexity

This section describes the class of hypotheses, or models, we consider for capturing the

complexity of subproblems in the explored search space of AND/OR Branch-and-Bound. To

begin, we identify each such subproblem with its root node n , in which we implicitly include
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the path from n to the overall root of the tree, which defines the subproblem context.

As noted above, we measure a subproblem’s search complexity via the number of node

expansions AOBB requires for its solution, denoted N(n). For simplicity, we let N(n) take

values in R , the target set of our learning setup.

To devise a concrete model class, we remind ourselves of the exponential nature of combina-

torial search spaces: general search spaces are often derived as exponential in the number of

variables (see for instance [87, Chapter 9]) and as Section 1.3.1 showed AND/OR search trees

(without caching) are exponential in the height of the guiding pseudo tree while context-

minimal AND/OR search graphs have size exponential in the induced width of the variable

ordering.

All of the above can be seen as numerical features of the problem or subproblem search

space rooted at n ; as indicated in Section 3.3.1 we will denote these features by φi(n) –

the full set of subproblem features we consider will described in Section 3.3.3. We then

aim to capture the aforementioned exponential relationship by characterizing N(n) as an

exponential function of those features as follows:

N(n) = exp
(∑

i

λiφi(n)
)

(3.6)

Here λi ∈ R is the weight of feature φi , and each full set of λi’s represents a single model or

hypothesis from the hypothesis space F as described in Section 3.3.1.

The choice of the exponent in Equation 3.6 as a weighted sum allows us to consider the log

complexity and obtain the following, convenient expression:

logN(n) =
∑

i

λiφi(n) (3.7)
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Given a sample set S = {n1, . . . , nm} of size m , representing a set of m AND/OR subprob-

lems, we employ the mean squared error as our loss function (cf. Section 3.3.1) and obtain

the following empirical loss, written as a function of λ , the set of λi :

L(λ) =
1

m

m∑

j=1

(∑

i

λiφi(nj)− logN(nj)
)2

(3.8)

In other words, finding parameter values λi that minimize this empirical loss can be inter-

preted as a well-known linear regression problem, which has received extensive treatment in

the literature (see for instance [9, 33, 59, 102]). A number of different algorithms for this

task, including regularization approaches, will be described in Section 3.3.5.

3.3.3 Subproblem Sample Features

This section describes the features we extract for each subproblem, represented by its root

node n , as mentioned previously. Having good features as the basis of the regression analysis

is clearly crucial – only with an expressive set of parameters will there be a chance of learning

an effective and robust model.

The overall process of assembling features for learning can be divided into two conceptu-

ally distinctive steps: In feature engineering we use our understanding, intuition, and prior

knowledge of the problem space to come up with a list of possible problem features. Feature

selection, on the other hand, involves analysis and experimental evaluation to select only a

subset of the available features, to reduce computational complexity of learning and improve

interpretability and generalizability of the learned models (e.g., [9, 59]).

Our focus here will be on feature engineering only – while we did experiment with dedicated

feature selection schemes like forward selection, backward selection, and combinations thereof
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Subproblem variable statistics (static):
1: Number of variables in subproblem.

2-6: Min, Max, mean, average, and std. dev. of variable domain sizes in subproblem.
Pseudo tree depth/leaf statistics (static):

7: Depth of subproblem root in overall search space.
8-12: Min, max, mean, average, and std. dev. of depth of subproblem pseudo tree leaf

nodes, counted from subproblem root.
13: Number of leaf nodes in subproblem pseudo tree.

Pseudo tree width statistics (static):
14-18: Min, max, mean, average, and std. dev. of induced width of variables within

subproblem.
19-23: Min, max, mean, average, and std. dev. of induced width of variables within

subproblem, conditioned on subproblem root context.
State space bound (static):

24: State space size upper bound on subproblem search space size (cf. Section 3.2.1).
Subproblem cost bounds (dynamic):

25: Lower bound L on subproblem solution cost, derived from current best overall
solution.

26: Upper bound U on subproblem solution cost, provided by mini bucket heuristics.
27: Difference U − L between upper and lower bound, expressing “constrainedness”

of the subproblem.
Pruning ratios (dynamic), based on running AOBB for 5n node expansions:

28: Ratio of nodes pruned using the heuristic.
29: Ratio of nodes pruned due of determinism (zero probabilities, e.g.)
30: Ratio of nodes corresponding to pseudo tree leaf.

AOBB sample (dynamic), based on running AOBB for 5n node expansions:
31: Average depth of terminal search nodes within probe.
32: Average node depth within probe (denoted d̄ ).

33: Average branching degree, defined as d̄
√
5n .

Various (static):
34: Mini bucket i-bound parameter.
35: Max. subproblem variable context size minus mini bucket i-bound.

Table 3.1: Summary of 35 features extracted from each subproblem, forming the basis for
regression learning.

92



[102], we eventually abandoned this in favor of regularized learning algorithms that provide

“built-in” feature selection, as will be detailed in Section 3.3.5.

Table 3.1 shows the full list of subproblem features φi that we consider. In determining this

set, we recall our earlier comments regarding the state space size bound. In particular, in

Section 3.2.1 we attributed its shortcomings to the fact that it does not capture the powerful

pruning of AOBB, which is based on the cost functions of the problem and highly dynamic.

Accordingly, we can divide our feature set into two conceptual classes as follows:

• Static, which can be precompiled from the problem graph and pseudo tree. These

include obvious parameters like the number of variables, domain size information, and

induced width (or more generally variable context size statistics) which make up the

asymptotic complexity bound of AOBB. We also add the state space size bound on

the subproblem search space as derived above. Moreover, we include properties such

as number of pseudo tree leaves and their depth (capturing decomposition) as well as

subproblem height. Finally, we add the mini-bucket i-bound and its difference to the

subproblem induced width, in an effort to capture how “far” the heuristic is from the

true solution cost.

• Dynamic, which are computed at runtime, as the individual subproblems are consid-

ered. One such group of features is based on cost bound information, i.e., it incorpo-

rates the problem’s cost functions. This includes the subproblem cost upper bound (as

returned by the mini-bucket heuristic), the current cost lower bound (as derived from

the current best solution known to AOBB), as well as the difference between the two

(to measure the “constrainedness” of the subproblem). Secondly, we run full AOBB

for a limited (small) number of node expansions and extract various statistics from

that sample, such as the ratio of pruned nodes or average depth of leaf nodes.
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An important practical consideration in our parallelization context is that none of the dy-

namic features should be costly to compute, since the scheme will potentially consider thou-

sands of subproblems. The cost bound information is readily available as part of AOBB and

does not incur any computational overhead. Running an AOBB sample for each subproblem,

however, can take considerable time depending on the sample size. We have experimented

with different node expansion limits and found a value of 5n to be a good compromise, where

n is again the number of problem variables. This number seemed large enough to yield stable

ratios (i.e., values don’t change significantly for larger expansion limits) while at the same

time remaining computationally feasible (our AOBB implementation typically expands some

hundred thousand nodes per second).

3.3.4 Subproblem Learning Domains

In order to evaluate the performance of the proposed estimation procedure from a statistical

learning perspective, namely to assess its training and prediction error, we need to specify the

learning domain X over which we aim to learn make predictions and from which subproblem

samples are assumed to be drawn.

In fact, in the following we consider four levels of learning domains, corresponding to four

different designs in the context of parallelizing AOBB. These levels are increasingly more

general, reflecting the fact that instances from one problem class often exhibit similar char-

acteristics (for instance, a certain range of variable domain sizes, or a high degree of deter-

minism).
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3.3.4.1 Learning per Problem Instance

In per-instance learning, the learning domain X consists of subproblems from a single prob-

lem instance. In the context of parallelizing AOBB, this corresponds to learning a separate

complexity model for every problem instance. This approach thus has limited relevance in

practice, since subproblem samples would have to be drawn and a new model would have to

be learned for every new problem instance the parallel scheme encounters. However, it can

function as a baseline for assessing predictive performance.

3.3.4.2 Learning per Problem Class

In per-class learning, we take the learning domain X to be subproblems of problems from

a specific class. In the parallelization context we learn a separate model for every problem

class we consider. Given a new problem instance from that class, however, we redeploy the

learned model. For example, we would learn a single model for all pedigree problems and

apply it for subsequent input instances from this class, but we’d require a different model

for other problem classes like protein side-chain prediction.

3.3.4.3 Learning across Problem Classes

In cross-class learning, we take the learning domain X to be subproblems of problems from

several classes and learn a single, unified model across all of them. Subsequent instances

from any of the covered problem classes are processed using the same model. In the context

of parallelization, this could translate to a parallel scheme that uses a single complexity

model for all problem classes under consideration.
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3.3.4.4 Learning for Unseen Problem Classes

For the previous three levels of learning, training and test samples in each case are drawn

from the same learning domain X under the same distribution D . Unseen-class learning,

the last and most general level of learning, deviates from this by taking the learning domain

X to be subproblems of problems from several classes, just as in the previous, third level. In

contrast to that, however, test samples will be drawn from a different domain X ′ , consisting

of subproblem instances from a so far unseen problem class. This level of learning thus

resembles a form of transfer learning, a relatively recent area of research within machine

learning [93].

We note that all training and test sample subproblems still originate within the context of

AND/OR Branch-and-Bound search spaces. An alternative formulation would thus be one

large unified domain X with two different, disjoint distributions Dtrain and Dtest from which

training and test samples are drawn, respectively.

Either way, this approach relaxes the assumption that training and test data are sampled

i.i.d. from the same learning domain X and distribution D . In parallelization terms this

is clearly the most general level, allowing a single parallel scheme, with a single estimation

model, to be applied to instances from any possible problem class, even those that were not

the basis for the learned model.

3.3.5 Regression Algorithms

This section describes a number of learning algorithms that we considered for learning the

complexity model developed in Section 3.3.1, i.e., given a training set of m sample sub-

problems S = {n1, . . . , nm} we aim to find a set of weights λi for the linear model given in
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Equation 3.7. In all cases we used the implementations available in the scikit-learn machine

learning Python library [97].

An established, simple baseline algorithm is ordinary least squares (OLS) [9, 59], which yields

parameter values for λi that directly minimize the MSE loss function from Equation 3.8. In

its geometric interpretation, OLS minimizes the Euclidean norm ||XΛ − Y ||2 , where X is

the design matrix of subproblem features (one subproblem per row), Λ the parameter vector

of λi’s to be learned, and Y the vector of log problem sizes logN(ni) . In practice, however,

OLS often turns out to have numerical issues (because of singular or near-singular matrix

inversion, for instance) and can be prone to overfitting.

To address these issues with OLS, ridge regression introduces a regularization term to the loss

function, as described in Section 3.3.1. In particular, it uses the L2 norm of the parameter

vector Λ . Ridge regression hence minimizes ||XΛ− Y ||22 + α||Λ||22 or equivalently,

Lridge(λ) =
1

m

m∑

j=1

(∑

i

λiφi(nj)− logN(nj)
)2

+ α
∑

i

λ2i (3.9)

We recall that α > 0 is a parameter that controls the amount of “shrinkage,” i.e., the strength

of regularization. The addition of the L2 regularization term encourages small parameter

values λi, thereby helping to combat overfitting. In addition, ridge regression alleviates

numerical issues of OLS [59].

A closely related learning method is lasso regression [59, 110]. Similar to ridge regression, it

introduces a regularization term to the loss function; however, in this case the L1 norm of

the parameter values λi is used. More formally, lasso regression minimizes the following loss

function:

Llasso(λ) =
1

m

m∑

j=1

(∑

i

λiφi(nj)− logN(nj)
)2

+ α
∑

i

|λi| (3.10)
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As before, α > 0 is the parameter that controls regularization strength. Due to the nature

of the L1 norm, larger values of α causes an increasing number of parameters λi to become

0 and “drop out” of the resulting model [110]. Lasso regression thus has the advantage of

“built-in” feature selection. At the same time, however, the L1 regularization also means

that only one out of several strong but correlated features tends to get selected by lasso

regression [59].

In our experiments we have found ridge regression and lasso regression to yield very similar

results in terms of prediction accuracy, with no notable, consistent advantage for either

method. In the following we will therefore employ lasso regression, since it has the advantage

of compact, interpretable models due to its built-in feature selection.

3.3.6 Non-linear Regression

In addition to the purely linear regression analysis proposed above, we also explored a higher-

order approach. In particular, we took inspiration from Leyton-Brown et al. [78], who report

improved prediction performance using quadratic feature expansion, albeit in the context of

combinatorial auctions.

Quadratic feature expansion, sometimes also referred to as “quadratic regression,” works by

adding new features in the form of pairwise products of the original features; namely, for

every pair of subproblem features φi, φj with i ≤ j, we create a new feature φi · φj. In our

case, 35 features are extended with
(
35
2

)
pairwise products, yielding a total of 665 features.

We then perform linear regression on the expanded feature set, thereby effectively fitting a

polynomial of 2nd degree.
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In practice, however, we didn’t find any meaningful improvement that would justify the

substantial increase in computational complexity of model training and the reduced inter-

pretability of the quadratic model.

3.4 Model Learning & Evaluation

This section describes how we learn the complexity model introduced in Section 3.3 in

practice and presents in-depth empirical evaluation and analysis of it; specifically, we will

be learning instances of the lasso regression model as defined in Equation 3.10. We begin

by describing in Section 3.4.1 the problem classes and instances whose subproblems make

up the learning domain X . Section 3.4.2 explains the general experimental setup, including

performance measures and the choice of regularization parameter.

Sections 3.4.3 through 3.4.6 report results on the four increasingly general levels of learn-

ing, following the exposition of Section 3.3.4 above; Section 3.4.7 provides summary and

interpretation of these results. In Section 3.4.8 we analyze the results with respect to the

informativeness of the different subproblem features defined in Section 3.3.3.

3.4.1 Benchmark Instances

We first describe the various problem classes and instances that we use to learn and evaluate

the complexity prediction model, given by Equation 3.10 in Section 3.3 above. As mentioned,

our evaluation will be based on subproblems drawn from a number of problem instances.

This approach makes it easier to compile a sizable sample set, but more importantly it will

also directly tie into the design and analysis of parallel AOBB in Chapter 4.
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After assembling a set of reasonably complex base problems from four different problem

classes, we run each problem instance with varying i-bounds for the mini-bucket heuristic;

for each problem an initial lower bound on the overall solution cost is generated through

5 seconds of local search. Subproblems are generated from different depths d in the search

space, taken from experimental results recorded during the development of parallel AOBB

– in short, a central search process applies conditioning up to the specified depth d , thereby

implying a parallelization frontier. Nodes in this frontier represent independent subproblem

with different context instantiations that can be solved separately and in parallel. Full details

and analysis of parallel AOBB will be provided in Chapter 4.

The four problem classes under consideration are as follows:

• Linkage analysis (“pedigree”): Each of these networks is an instance of a genetic

linkage analysis problem on a particular pedigree, i.e., a family ancestry chart over

several generations, annotated with phenotype information (observable physical traits,

inheritable diseases, etc.) [40, 41]. Originally aimed at P (e) sum-product likelihood

computation, these problems have gained popularity as MPE benchmarks due to their

complexity and real-world applicability and have been included in recent inference

competitions [23, 35].

• Haplotype inference (“largeFam”): These networks also encode genetic pedigree

instances into a Bayesian network. However, the encoded task is the haplotyping

problem, which differs from linkage analysis and necessitates different conversion and

data preprocessing steps to generate the graphical model input to our algorithms [1, 39].

• Protein side-chain prediction (“pdb”): These networks correspond to side-chain

conformation prediction tasks in the protein folding problem [115]. The resulting

instances have relatively few nodes, but very large variable domains, forcing a very low

mini-bucket i-bound of 3 and generally rendering most instances very complex.
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instance n m k w h i d p Tseq

pedigree7 1068 1068 4 32 90 7 9 1280 93380
pedigree7 1068 1068 4 32 90 8 8 640 30717
pedigree7 1068 1068 4 32 90 6 9 1280 118383
pedigree9 1118 1118 7 27 100 7 11 1024 58657
pedigree9 1118 1118 7 27 100 8 10 512 41061
pedigree9 1118 1118 7 27 100 6 11 1024 101172
pedigree13 1077 1077 3 32 102 9 10 1024 102385
pedigree13 1077 1077 3 32 102 10 9 512 23949
pedigree13 1077 1077 3 32 102 8 10 1024 252654
pedigree19 793 793 5 25 98 16 6 1440 375110
pedigree19 793 793 5 25 98 15 6 1440 NA
pedigree31 1183 1183 5 30 85 11 10 1024 433029
pedigree31 1183 1183 5 30 85 12 9 512 16238
pedigree31 1183 1183 5 30 85 10 10 1024 NA
pedigree33 798 798 4 28 98 4 8 96 6010
pedigree33 798 798 4 28 98 5 6 24 1482
pedigree34 1160 1160 5 31 102 12 11 948 96122
pedigree34 1160 1160 5 31 102 11 12 1912 350574
pedigree34 1160 1160 5 31 102 10 12 1896 NA
pedigree39 1272 1272 5 21 76 4 6 128 6632
pedigree39 1272 1272 5 21 76 5 5 64 2202
pedigree39 1272 1272 5 21 76 3 6 128 NA
pedigree41 1062 1062 5 33 100 10 10 1408 46819
pedigree41 1062 1062 5 33 100 11 9 704 27583
pedigree41 1062 1062 5 33 100 9 10 1408 25607
pedigree44 811 811 4 25 65 6 9 1120 95830
pedigree44 811 811 4 25 65 7 8 560 16443
pedigree44 811 811 4 25 65 5 9 1120 207136
pedigree51 1152 1152 5 39 98 21 10 1024 164817
pedigree51 1152 1152 5 39 98 20 10 1024 101788

Table 3.2: List of pedigree linkage problem instances and their parameters. n is the num-
ber of problem variables, m the number of cost functions, k the maximum variable domain
size, and w and h the induced width and height of the guiding pseudo tree, respectively.
i denotes the mini-bucket heuristic i-bound and d the depth at which subproblems were
generated, whose resulting number is given as p . Lastly, Tseq is the runtime of sequential
AOBB for comparison (1 week timeout denoted “NA”).

• Grid networks (“75-”): Randomly generated grid networks of size 25x25 and 26x26

with roughly 75% of the probability table entries set to 0. From the original set of

problems used in the UAI’08 Evaluation, only a handful proved difficult enough for

inclusion here [23].

The particular problem instances and parameter combinations are summarized in Tables 3.2,

3.3, 3.4, and 3.5, respectively. Each table lists a comprehensive set of parameters: the number
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instance n m k w h i d p Tseq

largeFam3-11-57 2670 2670 3 37 95 17 10 180 18312
largeFam3-11-57 2670 2670 3 37 95 16 10 180 35820
largeFam3-11-59 2711 2711 3 32 73 16 8 200 3023
largeFam3-11-59 2711 2711 3 32 73 15 8 200 35457
largeFam3-13-58 3352 3352 3 31 88 18 8 200 7647
largeFam3-13-58 3352 3352 3 31 88 17 8 200 7379
largeFam3-15-53 3384 3384 3 32 108 18 13 2496 98346
largeFam3-15-53 3384 3384 3 32 108 17 13 2831 345544
largeFam3-15-55 3588 3588 3 35 84 16 10 2688 292713
largeFam3-15-55 3588 3588 3 35 84 15 10 2688 NA
largeFam3-15-59 3730 3730 3 31 84 19 9 936 43307
largeFam3-15-59 3730 3730 3 31 84 18 9 942 28613
largeFam3-16-56 3930 3930 3 38 77 16 12 2629 489614
largeFam3-16-56 3930 3930 3 38 77 15 12 2707 NA
largeFam3-16-56 3930 3930 3 38 77 16 10 900 489614
largeFam4-12-50 2569 2569 4 28 80 14 6 864 33676
largeFam4-12-50 2569 2569 4 28 80 13 6 864 NA
largeFam4-12-55 2926 2926 4 28 78 14 9 768 25905
largeFam4-12-55 2926 2926 4 28 78 13 9 1024 104837
largeFam4-17-51 3837 3837 4 29 85 16 12 704 66103
largeFam4-17-51 3837 3837 4 29 85 16 11 352 66103

Table 3.3: List of largeFam haplotype problem instances and their parameters. See
Table 3.2 for column legend.

instance n m k w h i d p Tseq

pdb1a6m 124 521 81 15 34 3 3 511 198326
pdb1duw 241 743 81 9 32 3 3 784 627106
pdb1e5k 154 587 81 12 43 3 2 1046 112654
pdb1f9i 103 387 81 10 24 3 2 6534 68804
pdb1ft5 172 645 81 14 33 3 3 5281 81118
pdb1hd2 126 448 81 12 27 3 2 3777 101550
pdb1huw 152 587 81 15 43 3 5 1588 545249
pdb1kao 148 568 81 15 41 3 4 3241 716795
pdb1nfp 204 791 81 18 38 3 4 3812 354720
pdb1rss 115 448 81 12 35 3 4 1336 378579
pdb1vhh 133 556 81 14 35 3 2 1842 944633

Table 3.4: List of pdb side-chain prediction problem instances and their parameters.
See Table 3.2 for column legend.
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instance n m k w h i d p Tseq

75-25-1 624 626 2 38 111 14 10 96 15402
75-25-1 624 626 2 38 111 12 11 192 77941
75-25-1 624 626 2 38 111 12 8 128 77941
75-25-7 624 626 2 37 120 18 7 72 21694
75-25-7 624 626 2 37 120 16 8 144 297377
75-25-7 624 626 2 37 120 16 9 216 297377
75-26-2 675 677 2 39 120 20 8 144 8053
75-26-2 675 677 2 39 120 16 8 144 25274
75-26-2 675 677 2 39 120 16 9 288 25274
75-26-9 675 677 2 39 124 16 8 120 59609
75-26-9 675 677 2 39 124 16 9 240 59609
75-26-9 675 677 2 39 124 18 9 240 66533
75-26-10 675 677 2 39 124 20 11 416 28413
75-26-10 675 677 2 39 124 16 11 384 46985
75-26-10 675 677 2 39 124 16 10 192 46985

Table 3.5: List of grid problem instances and their parameters. See Table 3.2 for column
legend.

of problem variables n , the number of functions m , the maximum variable domain size k ,

as well as the induced w and pseudo tree height h along a given minfill variable ordering. We

also include the i-bound of the mini-bucket heuristic as well as the cut-off depth d at which

subproblems were generated, whose resulting number is given as p . Finally, for reference

Tseq denotes the runtime of sequential AOBB on the full problem.

The total number of subproblem samples across all 77 problem instances is over 68,000.

However, to account for the large variance in subproblem count per instance and balance

the problems’ contribution, we randomly select at most 250 subproblems from each instance,

leaving us with a final evaluation set of slightly over 17,000 subproblems across all instances

and classes. Note that we normalized each feature to have zero mean and unit standard

deviation before applying the learning algorithm.
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3.4.2 Outline of Experiments

In the following sections we learn and apply our regression model, as established in Section

3.3.2, using the benchmark instances described above. We divide the results along the four

conceptual levels of learning laid out in Section 3.3.4.

For each level of learning, we present results on select instances (four from each problem

class) through scatter plots, depicting the actual complexity of subproblems against their

estimated ones. In each case we also report the training error “TER” of the learned model

on the training data, the estimation error “MSE” on the test data, as well as the Pearson

Correlation Coefficient “PCC,” as defined in Equation 3.11. (A larger set of plots is given

in Appendix A, page 286.)

In addition, Tables 3.6 through 3.9, one per problem class, list MSE, PCC, and TER for all

of the 77 problem instances, as well as aggregated measures across experiments for each class

– where aggregate MSE and TER are weighted averages over the instances’ respective error

values (weighted by each instance’s number of subproblem samples), and aggregate PCC is

a simple average over the instance’s PCC values. Table 3.10 summarizes these aggregate

measures and also lists overall aggregates, across all problem classes.

3.4.2.1 Secondary Performance Measure

As derived in Section 3.3.1, our primary measure of learning performance is the mean squared

error, or MSE, which is what our approach of linear regression is aiming to minimize (cf.

Equation 3.8). It measures how close, on average, each predicted complexity is to the actual

subproblem complexity.

In the context of load balancing for parallelism, however, we can additionally consider a sec-

ondary metric, the Pearson correlation coefficient (PCC) [101]. Given a set of subproblems

104



nj , denote by N and N̂ the vector of actual and predicted subproblem complexities N(nj)

and N̂(nj) , respectively. The PCC of N and N̂ is then simply the covariance between the

two, normalized by the product of each vector’s standard deviation. More formally, writing

µN and µN̂ for the mean of N and N̂ , respectively, we have the following:

PCC(N, N̂) =
cov(N, N̂)

σNσN̂

=

∑
j

(
N(nj)− µN

)(
N̂(nj)− µN̂

)
√∑

j

(
N(nj)− µN

)2√∑
j

(
N̂(nk)− µN̂

)2 (3.11)

The PCC is bounded by [−1, 1] , where 1 implies perfect linear correlation and -1 anticor-

relation. In our parallelization context a value close to 1 is hence desirable, as it signifies a

model likely to correctly distinguish between hard and easy subproblems or, more generally,

provide a reliable ordering of subproblems in terms of their complexity. This will be impor-

tant for the parallel algorithm’s load balancing, where one objective is to identify and avoid

bottlenecks in the form of overly complex subproblems, achieved by iteratively breaking the

hardest subproblem into smaller pieces. Full details will be presented in Chapter 4.

3.4.2.2 Regularization Parameter α

Before conducting the main part of our evaluation in each of the following sections, we select

the regularization parameter α for the lasso regression of Equation 3.10. We choose to do

this separately for each of the four levels of learning outlined in Section 3.3.4 – we feel that

learning only one global value of α would have been too general since it doesn’t accurately

reflect the practical deployment within parallel AOBB, where only one of the four levels

would be selected.

Like for the final evaluation set mentioned above, we randomly select a subset of each

instance’s overall sample set (different from the final evaluation set). We then divide it
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into four fifths training data and one fifth test data. For a range of α values we apply

lasso regression as in Equation 3.10 on the training data, according to the particular level

of learning, and evaluate the error of the resulting model on the test data. The range

of values we consider is [100, 10−4] in intervals of −0.25 for the exponent, i.e., − log(α) ∈

{1, 0.75, 0.5, . . . ,−3.75,−4} . Here α = 100 implies the strongest regularization, while α =

10−4 is the weakest. We choose the value of α that minimizes the test error; results will be

reported in the respective subsequent sections.

3.4.3 Learning per Problem Instance

We begin by considering the “per-instance” level of learning, i.e., a separate complexity

model is learned for every problem instance. On this most limited level of learning, both

training and test samples are drawn from the subproblems of a given problem instance. We

employ 5-fold cross validation for performance evaluation, i.e., we partition each instance’s

sample set into 5 disjoint subsets, then predict the complexity of each subset by learning a

model from the remaining four.

As noted above, the practical relevance of this scenario in the parallelization context is

limited, since it would entail sampling a sizable set of subproblems and learning a complexity

model from these for each problem instance considered. However, it is useful to study the

performance of our regression model.

Regularization. To select the regularization parameter α for the lasso regression model

(Equation 3.10), Figure 3.3 plots the training and test error, averaged across instances, on a

separate validation set as a function of α as described in Section 3.4.2.2. We note that test

and training error are very close across the entire range, i.e., we see virtually no overfitting

across the range of α’s tested (which would manifest itself in increasing test error beyond
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Figure 3.3: Training and test error on separate validation set as a function of regularization
parameter α for per-instance learning.

a certain point). Based on the plot, we choose α = 10−3 = 0.001 , beyond which the error

curves appears to flatten out.

3.4.3.1 Select Per-Instance Learning Results

Using α = 0.001 we learn a lasso regression model (Equation 3.10) for each problem instance,

using 5-fold cross validation as described above. Estimation results for four select instances

per problem class are shown in the form of scatter plots in Figures 3.4 through 3.7 (with

more plots in Appendix A.1). Though of no significance for evaluating results, the different

colors in each plot mark the distinct cross validation folds. In all cases we observe very good

estimation results, as detailed in the following.

Pedigree instances. Scatter plots for four select pedigree linkage instances are given

in Figure 3.4 and demonstrate very good performance. For instance, for ped7 (top left)

we observe training and test error of just 0.076 and 0.078, respectively. The correlation

coefficient of 0.932 is also very good – we can confirm visually that the points of the scatter

plot are fairly close to a diagonal (which represents the “perfect” match of estimated and

actual complexities). Results for the other pedigree instances in Figure 3.4 are similar, with
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Figure 3.4: Select per-instance estimation results on pedigree linkage problem in-
stances. Plotted are actual subproblem complexities against predicted ones. Also specified
are training error TER, test error MSE, and correlation coefficient PCC.

6 7 8 9 10
Actual complexity [log10]

6

7

8

9

10

Es
tim

at
ed

 c
om

pl
ex

ity
 [l

og
10

]

lF3-11-57, i=16, p=180, fixed d=10
MSE: 0.019
PCC: 0.970

TER: 0.017
3 4 5 6 7 8 9 10

Actual complexity [log10]
3

4

5

6

7

8

9

10

Es
tim

at
ed

 c
om

pl
ex

ity
 [l

og
10

]

lF3-15-53, i=18, p=1914, fixed d=13
MSE: 0.050
PCC: 0.987

TER: 0.050

2 3 4 5 6 7 8 9 10 11
Actual complexity [log10]

2

3

4

5

6

7

8

9

10

11

Es
tim

at
ed
 c
om

pl
ex
ity
 [l
og
10

]

lF3-16-56, i=15, p=2612, fixed d=12
MSE: 0.018
PCC: 0.992

TER: 0.017
4 5 6 7 8 9

Actual complexity [log10]
4

5

6

7

8

9

Es
tim

at
ed
 c
om

pl
ex
ity
 [l
og
10

]

lF4-17-51, i=16, p=704, fixed d=12
MSE: 0.035
PCC: 0.992

TER: 0.034

Figure 3.5: Select per-instance estimation results on largeFam haplotyping problem
instances. Plotted are actual subproblem complexities against predicted ones. Also specified
are training error TER, test error MSE, and correlation coefficient PCC.
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Figure 3.6: Select per-instance estimation results on pdb side-chain prediction prob-
lem instances. Plotted are actual subproblem complexities against predicted ones. Also
specified are training error TER, test error MSE, and correlation coefficient PCC.
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Figure 3.7: Select per-instance estimation results on grid network problem instances.
Plotted are actual subproblem complexities against predicted ones. Also specified are train-
ing error TER, test error MSE, and correlation coefficient PCC.
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only ped34 (bottom left) seeing a slightly increased training/test error of 0.203 / 0.205 and

slightly worse (but still very good) PCC of 0.902.

LargeFam instances. Figure 3.5 has results of per-instance learning for four largeFam

haplotyping instances, with comparable training and test error values, all at 0.050 or below.

Correlation coefficients are even better than for the pedigree class and lie between 0.970 (lF3-

11-57) and 0.992 (lF3-16-56). We note that instance lF4-17-51 exhibits two distinct groups

of subproblems with vastly different complexities (around 105 and 108 node expansions,

respectively), which is very accurately reflected in the predictions as well.

Pdb instances. Pdb side-chain prediction instances, with per-instance estimation results

shown in Figure 3.6, are interesting in the sense that the actual complexities of subproblems,

even though all originating from the same search depth d , span a tremendous range (e.g.,

from approx. 102 to 1010 for pdb1nfp) – a reminder that subproblem structure alone is an

insufficient indication for hardness. Nevertheless, the plots in Figure 3.6 indicate that we

are able to learn models that capture the same wide range very accurately. In fact, we again

observe very good error values of 0.075 (test error of pdb1huw) or lower. PCC results are

exceptional as well, with value of 0.985 (pdb1huw) or higher, all the way to an impressive

0.997 for pdb1nfp.

Grid instances. Finally, Figure 3.7 plots exemplary results of per-instance estimation for

grid network instances. We observe performance similar to the pedigree instances in Figure

3.4. Training and test error is typically below 0.08, with the exception of instance 75-25-7

(top right plot) where the test error is 0.237. In this case, however, we also observe that our

learned model is very capable of picking out the “cluster” of complex subproblems in the

top right corner of the plot. This is crucial in the context of parallel AOBB, where these

complex subproblems can easily turn into bottlenecks with respect to parallel performance

(cf. Chapter 4).
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3.4.3.2 Overall Per-Instance Learning Results

We confirm that the above selected results are representative by consulting Tables 3.6 through

3.9 (pages 128–130), which show MSE, PCC, and TER for the complete set of 77 problem

instances, as well as aggregated measures per problem class (where aggregate MSE and TER

are averages weighted by the instances’ subproblem counts, while aggregate PCC is a simple

average). In particular, we note that the aggregate MSE for per-instance learning is below

0.1 for all four problem classes (0.081, 0.035, 0.056, and 0.095 for pedigree, largeFam, pdb,

and grids, respectively). Secondly, the aggregate correlation coefficients, with values of 0.800,

0.944, 0.989, and 0.824, respectively, represent good to very good results as well.

Overall, we can therefore attest very convincing predictive performance of our learning ap-

proach on the level of per-instance learning, with generally excellent, low error and strong

correlation coefficient values. Notable is also the apparent absence of overfitting, with vir-

tually identical training and test error values across all instances (cf. also Figure 3.3). As

mentioned initially, however, the obvious caveat of these positive results is the lack of direct

applicability of instance-specific learning in the context of parallel AOBB.

3.4.4 Learning per Problem Class

This section considers “per-class” learning, where we learn a joint model for a specific problem

class, which is more general than the per-instance approach discussed in the previous section.

In the parallelization context, this translates to learning a separate model for each problem

class we want to run parallel AOBB on, and reusing the learned model for new instances

from that class – which renders this approach immediately more applicable in practice than

per-instance learning in the previous section.
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Figure 3.8: Training and test error on separate validation set as a function of regularization
parameter α for per-class learning.

To evaluate the predictive performance of our regression scheme at this per-class level, we

learn and evaluate models as follows: For a given problem instance, we draw subproblem

samples from all other instances of the same problem class. We learn a model (Equation

3.10) using this training set and evaluate it on the original problem, whose subproblems

thus become the test set. For instance, to perform estimation on a set of subproblems of

pedigree13, we draw training samples from all other pedigree problem instances in our overall

set – this lets pedigree13 appear as a “new” problem in terms of prediction. As a reminder,

to compensate for the large variance in the number of subproblems samples available per

instance (column p in Tables 3.2 through 3.5), we choose no more than 250 subproblems

from each instance for our training set.

Intuitively, this approach should be more demanding than the previous per-instance level,

since we are aiming to learn a model that covers several problem instances instead of just

one. However, since we limit ourselves to a single problem class, it is natural to expect that

these instances have certain things in common (problem structure or distribution of cost

values, for instance), which impact AOBB’s performance in similar ways.

Regularization. Following the methodology given in Section 3.4.2.2, the regularization

parameter was set to α = 10−1.25 ≈ 0.06 , which minimizes the test error in Figure 3.8. In
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Figure 3.9: Select per-class estimation results on pedigree linkage problem instances.
Plotted are actual subproblem complexities against predicted ones. Also specified are train-
ing error TER, test error MSE, and correlation coefficient PCC.

contrast to Figure 3.3, we observe an increasing test error as regularization is decreased (i.e.,

as − log(α) grows beyond 1.5), while the training error decreases further – a clear sign of

overfitting of the learned model to the training set, as discussed in Section 3.3.1.2. We also

note the distinct gap between training and test error and the generally higher error compared

to Figure 3.3, indicating the increased hardness of the per-class learning task.

3.4.4.1 Select Per-Class Learning Results

Detailed results on a subset of problem instances are presented as scatter plots in Figures

3.9 through 3.12, with a more comprehensive set again available in Appendix A.2 (page

286). Results are still good, although somewhat deteriorated from per-instance learning in

the previous Section 3.4.3. We elaborate in the following paragraphs.
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Figure 3.10: Select per-class estimation results on largeFam haplotyping problem
instances. Plotted are actual subproblem complexities against predicted ones. Also specified
are training error TER, test error MSE, and correlation coefficient PCC.
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Figure 3.11: Select per-class estimation results on pdb side-chain prediction problem
instances. Plotted are actual subproblem complexities against predicted ones. Also specified
are training error TER, test error MSE, and correlation coefficient PCC.
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Figure 3.12: Select per-class estimation results on grid network problem instances. Plot-
ted are actual subproblem complexities against predicted ones. Also specified are training
error TER, test error MSE, and correlation coefficient PCC.

Pedigree instances. Prediction results on four pedigree linkage instances are presented in

Figure 3.9. Compared to per-instance learning the test error (“MSE”) shows a measurable

increase, for instance from 0.078 to 0.343 for instance ped7 or from 0.205 to 0.632 for ped34,

which is also the highest error out of the four instances shown. We also note that the

correlation coefficient decreases relative to per-class learning: ped7 and ped34 still exhibit

good PCC values of 0.895 and 0.862, respectively, but ped31 drops to 0.599.

LargeFam instances. Figure 3.10 has scatter plots for four largeFam haplotyping in-

stances. For lF3-11-57 and lF3-15-53 (top left and top right), performance is decent, with

test MSE values of 0.176 and 0.411, respectively. However, for lF3-16-56 and lF4-17-51, the

test error is quite a bit higher (1.364 and 1.635, respectively). Nevertheless, in all four cases

we observe very good correlation coefficients (PCC) of over 0.9.
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Pdb instances. Moving to pdb side-chain prediction instances in Figure 3.11, we similarly

see an increased test error from per-instance prediction. For instance, the MSE value on

pdb1huw increases to 0.242 (from 0.075, cf. Figure 3.6). pdb1e5k even sees an MSE of 1.295

(up from 0.052). In all cases, however, PCC values remain excellent, at 0.968 (pdb1huw) or

higher.

Grid instances. Lastly, Figure 3.12 shows per-class prediction results on four grid in-

stances. Again we find increased test error (MSE) compared to per-instance learning: 75-25-1

and 75-26-9, while increased, are still good with 0.272 and 0.239, respectively, while 75-25-7

and 75-26-2 both see their test MSE climb above 1. On the other hand, with the exception

of 75-26-2, PCC values remain very good at above 0.9.

3.4.4.2 Overall Per-Class Learning Results

As before, we confirm our findings by consulting the “per class” columns of Tables 3.6

through 3.9 (pages 128–130). Within each problem class we can identify a handful of outliers

with MSE values greater than 1 (though pdb1rss exhibits the only MSE greater than 2 with

2.879) but also numerous very good results with low test errors close to 0.1 or 0.2. Aggregate

MSE values are therefore quite satisfactory with 0.615, 0.886, 0.667, and 0.617 for pedigree,

largeFam, pdb, and grid instances, respectively. Similarly, aggregate correlation coefficients

decreased from per-instance learning, but still acceptable, with values of 0.630, 0.846, 0.977,

and 0.683, respectively.

3.4.5 Learning across Problem Classes

We now consider the level of “cross-class” learning, where we learn a single lasso regression

model following Equation 3.10 across all problem classes under consideration and reuse this
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model for subsequent new problem instances from either of these classes. In the context of

parallelization, this puts us in the appealing position of maintaining only a single parallel

solver (with a “universal” complexity model) that can be deployed across problem classes,

assuming we have knowledge of these problem classes to be considered and can acquire

sufficient sample subproblems from each of them.

In order to evaluate performance at this cross-class level, we conduct the following procedure:

Given a problem instance to be evaluated, we take the training set to be subproblems from

all other instances, regardless of problem class. For instance, to evaluate performance on

pedigree13, our training set will be made up of subproblems of all other pedigree instances,

as well as all largeFam, pdb, and grid instances. As for per-class learning (cf. Section 3.4.4),

proceeding in this way lets pedigree13 appear as a “new” instance to the learned model.

Compared to learning separate models per problem class in the previous section, this ap-

proach can be seen as a more demanding learning task since it encompasses a larger variety

of problems, with potentially more diverse structure and different runtime behavior. At the

same time, however, we may be able to extract characteristics that impact runtime complex-

ity but which were not evident within just a single problem class. In addition, considering

several problem classes increases the number of training samples available to learn our model

from, which is another potential advantage.

Regularization. We set the regularization parameter for cross-class learning at α =

10−2.25 ≈ 0.06, according to the minimum of the test error in Figure 3.13, obtained as

previously outlined in Section 3.4.2.2. Compared to Figure 3.8 (for per-class learning), we

note the generally larger training error, which can be taken to confirm a more varied learning

domain. However, it also seems that models learned across classes don’t overfit as quickly

as those learned per class.
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Figure 3.13: Training and test error on separate validation set as a function of regulariza-
tion parameter α for cross-class learning.
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Figure 3.14: Select cross-class estimation results on pedigree linkage problem instances.
Plotted are actual subproblem complexities against predicted ones. Also specified are train-
ing error TER, test error MSE, and correlation coefficient PCC.
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Figure 3.15: Select cross-class estimation results on largeFam haplotyping problem
instances. Plotted are actual subproblem complexities against predicted ones. Also specified
are training error TER, test error MSE, and correlation coefficient PCC.
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Figure 3.16: Select cross-class estimation results on pdb side-chain prediction problem
instances. Plotted are actual subproblem complexities against predicted ones. Also specified
are training error TER, test error MSE, and correlation coefficient PCC.
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Figure 3.17: Select cross-class estimation results on grid network problem instances.
Plotted are actual subproblem complexities against predicted ones. Also specified are train-
ing error TER, test error MSE, and correlation coefficient PCC.

3.4.5.1 Select Cross-Class Learning Results

As in the previous two sections, we plot detailed estimation results on a subset of problem

instances in Figures 3.14 through 3.17, with additional plots in Appendix A.3 (page 287).

Compared to per-class learning in the previous section, we observe similar and in some cases

even slightly improved results. The following paragraphs provide more detail.

Pedigree instances. Scatter plots of actual and estimated complexity on four pedigree

linkage instances are shown in Figure 3.14. On three out of the four instances we actually

find that the test error (MSE) improves – from 0.343, 0.218, and 0.632 (per-class learning) to

0.291, 0.206, and 0.475 (cross-class) on ped7, ped31, and ped34, respectively. Only on ped51

do we see an increase in error to 1.333. Similarly, we note better correlation coefficients

in the present set of results, although not quite at the level of per-instance learning – for
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instance, here we obtain a PCC of 0.911 for ped7, which was 0.932 with per-instance and

0.895 with per-class learning.

LargeFam instances. Select cross-class learning results on largeFam haplotyping in-

stances are plotted in Figure 3.15. Again we see the test MSE improve on three instances

relative to per-class learning. Notably, lF3-16-56 improves from 1.364 in Figure 3.10 to 0.780

here. The only decline in MSE is on lF3-11-57, which moves slightly from 0.176 to 0.246.

PCC values, on the other hand, go up on all four instances shown here, most notably on

lF3-15-53 from 0.901 (per-class learning) to 0.980 (cross-class learning).

Pdb instances. Figure 3.16 has detailed results on four pdb side-chain prediction in-

stances. For this problem class we see a slight increase in MSE, compared per-class learning,

on all four instances shown. Test error on pdb1kao moves only from 0.222 to 0.258 for

cross-class learning, with the largest increase in case of pdb1nfp (0.229 to 0.759). Corre-

lation coefficients remain largely very similar when moving to the more general cross-class

learning, with only minor changes.

Grid instances. Finally, we contrast actual and predicted subproblem complexities on four

grid network instances in Figure 3.17. Again we see improved performance relative to per-

class learning on three of the instances – for instance from 1.012 MSE per-class to 0.300 here

on 75-25-7. 75-26-2, however, takes a sizable hit in prediction performance and declines to a

test error of 2.511. The latter example, with a relatively small range of actual complexities,

also yields by far the worst PCC of 0.284 (down from 0.425 in per-class learning), while the

other three example in Figure 3.17 produce very good correlation coefficients above 0.9.

3.4.5.2 Overall Cross-Class Learning Results

The above observations can be confirmed via the complete set of results in Tables 3.6 through

3.9 (pages 128–130), specifically consulting the cross-class column. We see aggregate MSE
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values for the four problem classes of 0.568, 0.499, 0.758, and 0.749 (pedigree, largeFam,

pdb, and grids, respectively) – notably all well below 1. In particular, the aggregate test

error (MSE) for pedigree and largeFam problems is below the values observed for per-class

learning (0.615 and 0.886, respectively), while MSE increased slightly for pdb and grids (from

0.667 and 0.617, respectively). The average PCC follows the same pattern, improving for

pedigree and largeFam instances (to 0.651 and 0.894, respectively) and decreasing a bit for

pdb and grid problems (to 0.938 and 0.643, respectively). Overall, we can attest satisfactory

prediction performance, comparable to per-class learning, with the added benefit of only

requiring one complexity model across multiple problem classes.

3.4.6 Learning for Unseen Problem Classes

This section investigates the final, most general and most challenging level of learning defined

in Section 3.3.4. At this level we aim to predict complexities for problems from a previously

unseen problem class. In a parallelization context having this kind of complexity model would

obviously be very convenient, since it would allow us to apply parallel AOBB “blindly” to

problem instances from any class, known or unknown – without a doubt a very ambitious

goal.

In terms of the terminology introduced in Section 3.3.1, we consider that training and test

data are drawn from disjoint sample sets X and X ′ , which can be viewed as a form of

transfer learning (cf. Section 3.3.4 and [93]). In our practical evaluation we achieve this

by systematically withholding samples of a given problem class from the training set. For

instance, in order to assess the prediction performance on pedigree13 (the test set), we

compile a training set by drawing subproblems from largeFam, pdb, and grid instances.

Regularization. Picking a value for the regularization parameter α is not as straightfor-

ward as before, reflecting the ambitious nature of the learning task at hand. In particular, we

122



0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
−log(α)

0

10

20

30

40

50

60
Er

ro
r

Unseen-class learning

Test error
Train error

(a) All instances.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
−log(α)

0

50

100

150

200

250

300

Er
ro

r

Unseen-class learning (only pdb)

Test error
Train error

(b) Only pdb instances.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
−log(α)

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Er
ro

r

Unseen-class learning (excl. pdb)

Test error
Train error

(c) Excluding pdb instances.

Figure 3.18: Training and test error on separate validation set as a function of regulariza-
tion parameter α for cross-class learning.

observe a large intermediate peak in the test error of Figure 3.18a, which shows the average

error across all instances. Upon closer inspection, we note that this peak is entirely due

to the pdb side-chain prediction instances, for which the average error is shown in Figure

3.18b – the model learned from pedigree, largeFam, and grid instances does not generalize to

pdb problems well at all. On non-pdb instances (Figure 3.18c), on the other hand, we find

behavior in line with earlier per-class and cross-class learning results (Figures 3.8 and 3.13);

namely, both training and test error decrease initially with shrinking α , before overfitting

sets in at around − log(α) = −1.5 and the test error deteriorates again. We therefore choose

a regularization parameter of α = 10−1 = 0.1, fully expecting that results on pdb side-chain

prediction instances will be disappointing.

3.4.6.1 Select Unseen-Class Learning Results

Figures 3.19 through 3.22 show results for select problem instances, grouped by problem

class, with additional plots in Appendix A.4 (page 287). We elaborate on performance

details in the following paragraphs.

Pedigree instances. Results for four pedigree linkage problem instances are plotted in

Figure 3.19. In comparison with cross-class learning in Section 3.4.5, we actually observe

an improved MSE in three cases, most notably ped51 which goes from 1.333 (Fig. 3.14) to
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Figure 3.19: Select unseen-class estimation results on pedigree linkage problem in-
stances. Plotted are actual subproblem complexities against predicted ones. Also specified
are training error TER, test error MSE, and correlation coefficient PCC.
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Figure 3.20: Select unseen-class estimation results on largeFam haplotyping problem
instances. Plotted are actual subproblem complexities against predicted ones. Also specified
are training error TER, test error MSE, and correlation coefficient PCC.

124



−2 0 2 4 6 8 10
Actual complexity [log10]

−2

0

2

4

6

8

10

Pr
ed

ic
te

d 
co

m
pl

ex
ity

 [l
og

10
]

pdb1e5k, i=3, p=760, fixed d=2
MSE: 7.099
PCC: 0.857

TER: 0.542
−10 −5 0 5 10

Actual complexity [log10]

−10

−5

0

5

10

Pr
ed

ic
te

d 
co

m
pl

ex
ity

 [l
og

10
]

pdb1huw, i=3, p=1287, fixed d=5
MSE: 1.012
PCC: 0.815

TER: 0.542

−30 −25 −20 −15 −10 −5 0 5 10
Actual complexity [log10]

−30

−25

−20

−15

−10

−5

0

5

10

Pr
ed

ic
te

d 
co

m
pl

ex
ity

 [l
og

10
]

pdb1kao, i=3, p=2260, fixed d=4
MSE: 41.581
PCC: 0.643

TER: 0.542
2 3 4 5 6 7 8 9 10 11

Actual complexity [log10]
2

3

4

5

6

7

8

9

10

11

Pr
ed

ic
te

d 
co

m
pl

ex
ity

 [l
og

10
]

pdb1nfp, i=3, p=2165, fixed d=4
MSE: 1.465
PCC: 0.945

TER: 0.542

Figure 3.21: Select unseen-class estimation results on side-chain prediction problem
instances. Plotted are actual subproblem complexities against predicted ones. Also specified
are training error TER, test error MSE, and correlation coefficient PCC.
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Figure 3.22: Select unseen-class estimation results on grid network problem instances.
Plotted are actual subproblem complexities against predicted ones. Also specified are train-
ing error TER, test error MSE, and correlation coefficient PCC.

125



0.674; only on ped31 does the MSE increase to 0.482 (from 0.206). Correlation coefficients

do suffer slightly, with ped51 yielding the weakest results of 0.560, down from 0.722 in Figure

3.14. Ped7 and ped34 retain a relatively high PCC around of almost 0.9.

LargeFam instances.. Figure 3.20 has four scatter plots for largeFam haplotyping in-

stances. Here we find that MSE values deteriorate compared to cross-class learning on three

of the instances, most notably on lF3-15-53 and lF4-17-51 from 0.302 and 1.180 (cf. Fig. 3.16)

to 3.272 and 4.124, respectively. In both cases we find that the predictions systematically

overestimate the actual complexities, but are consistent (relative to each other) within each

problem instance. This is confirmed by the excellent PCC results well above 0.9, similar

to what we observed for cross-class learning, if not minimally improved (e.g., lF3-11-57 at

0.953, up from 0.947).

Pdb instances. A set of scatter plots for predictions on four pdb side-chain prediction

instances is shown in Figure 3.21. Recalling our observations from the regularization param-

eter selection above, we do indeed find some very negative results in terms of MSE test error.

pdb1kao stands out with an MSE of 41.581 (up from 0.258 in cross-class learning, Figure

3.16), but pdb1e5k is also quite bad with a test MSE of 7.099 (up from 1.483). Notably, in

both cases we see a number of negative predicted values for the simplest subproblems (in

terms of actual complexity), which is not very meaningful as a log complexity (i.e., 10−30

node expansions in case of pdb1kao) – we could lower bound predictions at 0, but that

would not address the inherent inaccuracy of the learned model. The measured correlation

coefficients also suffer in comparison to cross-class prediction, particularly because of severe

underestimates like in the case of ped1kao (PCC of 0.643, down from 0.971).

Grid instances. The last problem class we consider for this most general level of learning

are grid networks, with four scatter plots shown in Figure 3.22. After the disappointing pdb

results, here we obtain good results again. The MSE test error improves significantly for

75-26-2, from 2.511 (cf. Fig. 3.17) to 0.641. It increases slightly for the other three instances,

126



but stays below 0.5 in each case. Finally, correlation coefficients (PCC) are very good at

above 0.9 and very close to cross-class learning, with the exception of 75-26-2 (PCC 0.248,

from 0.284).

3.4.6.2 Overall Unseen-Class Learning Results

To put the described results into a wider context, we again consult Tables 3.6 through 3.9,

which contain MSE and PCC measures for all instances, as well as aggregates per problem

class. We find this most challenging level of transfer learning for unseen problem classes

crucially reflected in the pdb results (Table 3.8), with a number of very high individual MSE

test errors and an aggregate of 27.373. The PCC for pdb instance also drops to 0.804 (which

is, however, still very respectable).

On the remaining three problem classes, results are fairly good and in some cases quite close

to cross-class learning examined in Section 3.4.5. The aggregate MSE for pedigree instances,

for instances, increases only slightly, from 0.568 for cross-class learning to 0.703 here (PCC

remains similar with 0.643). For largeFam haplotyping instances in Table 3.7, the aggregate

MSE increases quite a bit compared to cross-class learning, from 0.499 to 1.246, but not at

the expense of average PCC (0.908, from 0.894). Finally, grid networks in Table 3.9 actually

see their aggregate MSE improve from cross-class learning with a value of 0.532 (from 0.749),

with again a similar PCC of 0.633.

3.4.7 Summary of Results

We have trained and evaluated our proposed regression model (Equation 3.10) on the four

levels of learning laid out in Section 3.3.4, trading off between the wider applicability of the

learned models and the challenges of capturing increasingly general sample sets. Results
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per instance per class across classes unseen class
instance i d MSE PCC TER MSE PCC TER MSE PCC TER MSE PCC TER

ped7 7 9 0.050 0.956 0.049 0.220 0.920 0.440 0.096 0.939 0.450 0.304 0.930 0.765
ped7 8 8 0.078 0.932 0.076 0.343 0.895 0.440 0.291 0.911 0.450 0.148 0.899 0.765
ped7 6 9 0.054 0.856 0.053 0.162 0.807 0.440 0.125 0.830 0.450 0.801 0.820 0.765
ped9 7 11 0.019 0.612 0.018 0.274 0.477 0.439 0.202 0.462 0.449 0.063 0.478 0.765
ped9 8 10 0.016 0.598 0.014 0.174 0.375 0.439 0.181 0.375 0.449 0.059 0.347 0.765
ped9 6 11 0.015 0.730 0.015 0.078 0.602 0.439 0.271 0.631 0.449 0.609 0.637 0.765
ped13 9 10 0.046 0.773 0.045 0.262 0.479 0.420 0.137 0.518 0.445 0.586 0.494 0.765
ped13 10 9 0.008 0.955 0.008 0.118 0.571 0.420 0.759 0.602 0.445 0.238 0.577 0.765
ped13 8 10 0.037 0.804 0.036 0.458 0.496 0.420 0.093 0.547 0.445 0.804 0.510 0.765
ped19 16 6 0.112 0.964 0.109 1.711 0.893 0.359 0.790 0.904 0.429 0.721 0.896 0.765
ped19 15 6 0.154 0.896 0.152 1.094 0.584 0.359 1.084 0.606 0.429 1.446 0.568 0.765
ped31 11 10 0.050 0.841 0.049 0.768 0.460 0.395 0.835 0.576 0.431 1.656 0.581 0.765
ped31 12 9 0.046 0.925 0.043 0.218 0.599 0.395 0.206 0.632 0.431 0.482 0.603 0.765
ped31 10 10 0.067 0.735 0.066 1.463 0.645 0.395 1.362 0.695 0.431 2.711 0.678 0.765
ped33 4 8 0.008 0.884 0.006 0.687 0.874 0.416 1.103 0.885 0.438 0.363 0.873 0.765
ped33 5 6 0.004 0.900 0.002 0.313 0.898 0.416 0.532 0.854 0.438 0.073 0.908 0.765
ped34 12 11 0.161 0.935 0.156 1.012 0.882 0.380 0.400 0.897 0.434 0.467 0.883 0.765
ped34 11 12 0.205 0.902 0.203 0.632 0.862 0.380 0.475 0.886 0.434 0.491 0.875 0.765
ped34 10 12 0.223 0.903 0.222 0.758 0.832 0.380 0.696 0.877 0.434 0.711 0.869 0.765
ped39 4 6 0.118 0.855 0.091 0.384 0.455 0.391 0.444 0.378 0.438 0.791 0.427 0.765
ped39 5 5 0.147 0.673 0.111 0.571 0.344 0.391 0.421 0.250 0.438 0.676 0.183 0.765
ped39 3 6 0.305 0.640 0.270 1.893 0.094 0.391 0.533 0.106 0.438 2.178 0.089 0.765
ped41 10 10 0.043 0.902 0.043 0.446 0.824 0.430 0.187 0.854 0.451 0.107 0.829 0.765
ped41 11 9 0.030 0.944 0.029 0.499 0.838 0.430 0.371 0.872 0.451 0.122 0.857 0.765
ped41 9 10 0.032 0.912 0.031 0.414 0.846 0.430 0.179 0.878 0.451 0.071 0.878 0.765
ped44 6 9 0.010 0.664 0.010 0.372 0.583 0.392 0.040 0.615 0.450 0.419 0.605 0.765
ped44 7 8 0.043 0.946 0.042 1.523 0.945 0.392 0.360 0.947 0.450 0.122 0.946 0.765
ped44 5 9 0.012 0.690 0.012 0.206 0.646 0.392 0.202 0.662 0.450 0.842 0.654 0.765
ped51 21 10 0.102 0.816 0.100 0.418 0.686 0.393 1.561 0.616 0.421 0.619 0.611 0.765
ped51 20 10 0.080 0.928 0.079 0.397 0.732 0.393 1.333 0.722 0.421 0.674 0.560 0.765
ped51 19 10 0.066 0.849 0.063 1.157 0.816 0.393 2.380 0.806 0.421 1.326 0.800 0.765

Aggregate 0.081 0.800 0.079 0.615 0.630 0.406 0.568 0.651 0.439 0.703 0.643 0.765

Table 3.6: Full complexity estimation results for pedigree linkage instances at different
levels of learning. Listed are test error (MSE), correlation coefficient (PCC), and training
error (TER) per instance as well as aggregated across instances.
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per instance per class across classes unseen class
instance i d MSE PCC TER MSE PCC TER MSE PCC TER MSE PCC TER

lF3-11-57 17 10 0.023 0.961 0.021 0.062 0.922 0.351 0.087 0.952 0.441 0.539 0.949 0.610
lF3-11-57 16 10 0.019 0.970 0.017 0.176 0.913 0.351 0.246 0.947 0.441 0.643 0.953 0.610
lF3-11-59 16 8 0.010 0.980 0.009 0.368 0.952 0.358 0.492 0.957 0.434 0.568 0.961 0.610
lF3-11-59 15 8 0.009 0.990 0.008 0.218 0.978 0.358 0.078 0.969 0.434 0.165 0.974 0.610
lF3-13-58 18 8 0.033 0.969 0.029 0.344 0.883 0.356 0.373 0.927 0.432 0.243 0.941 0.610
lF3-13-58 17 8 0.043 0.961 0.039 0.233 0.894 0.356 0.300 0.932 0.432 0.279 0.943 0.610
lF3-15-53 18 13 0.050 0.987 0.050 0.411 0.901 0.311 0.302 0.980 0.439 3.272 0.980 0.610
lF3-15-53 17 13 0.051 0.988 0.051 0.682 0.862 0.311 0.415 0.957 0.439 3.234 0.959 0.610
lF3-15-55 16 10 0.017 0.920 0.017 1.823 0.258 0.289 0.362 0.540 0.443 0.073 0.704 0.610
lF3-15-55 15 10 0.013 0.846 0.013 0.438 0.307 0.289 0.112 0.702 0.443 0.022 0.806 0.610
lF3-15-59 19 9 0.069 0.970 0.067 0.214 0.961 0.353 0.321 0.967 0.447 0.731 0.968 0.610
lF3-15-59 18 9 0.045 0.977 0.044 0.136 0.969 0.353 0.295 0.971 0.447 0.647 0.974 0.610
lF3-16-56 16 12 0.030 0.990 0.030 0.739 0.964 0.300 0.310 0.977 0.442 0.541 0.978 0.610
lF3-16-56 15 12 0.018 0.992 0.017 1.364 0.971 0.300 0.780 0.974 0.442 0.752 0.972 0.610
lF3-16-56 16 10 0.014 0.994 0.013 0.460 0.959 0.300 0.217 0.980 0.442 0.391 0.981 0.610
lF4-12-50 14 6 0.063 0.854 0.056 1.716 0.833 0.303 0.482 0.843 0.445 0.126 0.837 0.610
lF4-12-50 13 6 0.061 0.804 0.060 1.958 0.728 0.303 0.352 0.740 0.445 0.114 0.746 0.610
lF4-12-55 14 9 0.095 0.683 0.093 0.121 0.664 0.334 0.191 0.670 0.416 0.588 0.672 0.610
lF4-12-55 13 9 0.037 0.994 0.037 0.667 0.987 0.334 2.668 0.926 0.416 3.906 0.907 0.610
lF4-17-51 16 12 0.035 0.992 0.034 1.635 0.905 0.278 1.180 0.936 0.422 4.124 0.939 0.610
lF4-17-51 16 11 0.033 0.994 0.030 1.892 0.950 0.278 1.412 0.933 0.422 3.978 0.934 0.610

Aggregate 0.035 0.944 0.035 0.886 0.846 0.322 0.499 0.894 0.436 1.246 0.908 0.610

Table 3.7: Full complexity estimation results for largeFam haplotyping instances at
different levels of learning. Listed are test error (MSE), correlation coefficient (PCC), and
training error (TER) per instance as well as aggregated across instances.

per instance per class across classes unseen class
instance i d MSE PCC TER MSE PCC TER MSE PCC TER MSE PCC TER

pdb1a6m 3 3 0.041 0.990 0.039 0.201 0.988 0.334 0.282 0.967 0.443 48.594 0.871 0.542
pdb1duw 3 3 0.015 0.997 0.015 0.200 0.991 0.329 0.414 0.974 0.441 2.307 0.843 0.542
pdb1e5k 3 2 0.052 0.990 0.050 1.295 0.980 0.306 1.483 0.984 0.424 7.099 0.857 0.542
pdb1f9i 3 2 0.070 0.978 0.069 1.598 0.964 0.296 1.295 0.903 0.434 24.906 0.651 0.542
pdb1ft5 3 3 0.017 0.995 0.016 0.173 0.985 0.331 0.670 0.976 0.442 8.409 0.950 0.542
pdb1hd2 3 2 0.018 0.996 0.018 0.067 0.989 0.326 0.421 0.939 0.443 127.322 0.871 0.542
pdb1huw 3 5 0.075 0.985 0.058 0.242 0.968 0.327 0.621 0.947 0.439 1.012 0.815 0.542
pdb1kao 3 4 0.053 0.991 0.053 0.222 0.983 0.327 0.258 0.971 0.437 41.581 0.643 0.542
pdb1nfp 3 4 0.017 0.997 0.016 0.229 0.995 0.343 0.759 0.982 0.440 1.465 0.945 0.542
pdb1rss 3 4 0.178 0.980 0.171 2.879 0.929 0.201 1.475 0.714 0.430 7.456 0.697 0.542
pdb1vhh 3 2 0.100 0.980 0.098 0.148 0.976 0.337 0.377 0.963 0.442 3.607 0.698 0.542

Aggregate 0.056 0.989 0.054 0.667 0.977 0.314 0.758 0.938 0.438 27.373 0.804 0.542

Table 3.8: Full complexity estimation results for pdb side-chain prediction instances at
different levels of learning. Listed are test error (MSE), correlation coefficient (PCC), and
training error (TER) per instance as well as aggregated across instances.
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per instance per class across classes unseen class
instance i d MSE PCC TER MSE PCC TER MSE PCC TER MSE PCC TER

75-25-1 14 10 0.066 0.963 0.058 0.215 0.915 0.190 0.248 0.862 0.436 0.261 0.866 0.760
75-25-1 12 11 0.078 0.971 0.075 0.272 0.969 0.190 0.213 0.968 0.436 0.221 0.966 0.760
75-25-1 12 8 0.086 0.653 0.072 1.039 0.475 0.190 0.895 0.454 0.436 1.692 0.446 0.760
75-25-7 18 7 0.016 0.995 0.015 1.681 0.959 0.180 0.457 0.971 0.433 0.136 0.967 0.760
75-25-7 16 8 0.253 0.921 0.228 1.111 0.926 0.180 0.305 0.909 0.433 0.572 0.907 0.760
75-25-7 16 9 0.237 0.926 0.228 1.012 0.927 0.180 0.300 0.916 0.433 0.476 0.913 0.760
75-26-2 20 8 0.041 0.753 0.017 0.671 0.212 0.243 1.678 0.143 0.404 0.227 0.095 0.760
75-26-2 16 8 0.041 0.751 0.038 0.746 0.655 0.243 2.318 0.545 0.404 0.331 0.517 0.760
75-26-2 16 9 0.047 0.753 0.045 1.114 0.425 0.243 2.511 0.284 0.404 0.641 0.248 0.760
75-26-9 16 8 0.033 0.967 0.029 0.580 0.877 0.245 0.624 0.800 0.441 1.201 0.814 0.760
75-26-9 16 9 0.052 0.949 0.047 0.350 0.904 0.245 0.501 0.816 0.441 0.825 0.824 0.760
75-26-9 18 9 0.033 0.974 0.031 0.239 0.968 0.245 0.179 0.945 0.441 0.355 0.940 0.760
75-26-10 20 11 0.094 0.584 0.087 0.564 0.308 0.203 0.204 0.262 0.446 0.184 0.254 0.760
75-26-10 16 11 0.130 0.677 0.125 0.380 0.294 0.203 0.481 0.320 0.446 0.505 0.312 0.760
75-26-10 16 10 0.131 0.521 0.126 0.162 0.439 0.203 0.605 0.451 0.446 0.841 0.424 0.760

Aggregate 0.095 0.824 0.088 0.617 0.683 0.211 0.749 0.643 0.432 0.532 0.633 0.760

Table 3.9: Full complexity estimation results for grid network instances at different levels
of learning. Listed are test error (MSE), correlation coefficient (PCC), and training error
(TER) per instance as well as aggregated across instances.

per instance per class across classes unseen class
class MSE PCC TER MSE PCC TER MSE PCC TER MSE PCC TER

Pedigree 0.081 0.800 0.079 0.615 0.630 0.406 0.568 0.651 0.439 0.703 0.643 0.765
LargeFam 0.035 0.944 0.035 0.886 0.846 0.322 0.499 0.894 0.436 1.246 0.908 0.610
Pdb 0.056 0.989 0.054 0.667 0.977 0.314 0.758 0.938 0.438 27.373 0.804 0.542
Grids 0.095 0.824 0.088 0.617 0.683 0.211 0.749 0.643 0.432 0.532 0.633 0.760

Overall 0.061 0.866 0.059 0.721 0.742 0.363 0.587 0.751 0.437 6.453 0.731 0.688

Table 3.10: Summary of complexity estimation results at different levels of learning. Listed
are test error (MSE), correlation coefficient (PCC), and training error (TER), aggregated
per problem class and across all classes.

have been evaluated both in terms of their prediction error (MSE), as well as through the

correlation coefficient PCC of actual and estimated complexities (a useful metric in the

context of parallel AOBB, to be developed in Chapter 4).

Learning per problem instance, examined in Section 3.4.3, provided a good baseline with

excellent results throughout, in the form of very low prediction errors (0.061 aggregated,

cf. Table 3.10) and generally excellent correlation coefficients (0.866 on average). However,

we noted that it has limited relevance in practice, since each new problem instance would

require extensive sampling of subproblems to train on.
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Learning per problem class in Section 3.4.4 is more meaningful from a practical point of view,

as the learned model can be reused for new problems within the given problem class. Our

experiments here showed good performance; predictions are somewhat less accurate than

for per-instance learning, but the prediction error still yields an acceptable 0.721 on average

(Table 3.10, “per class” column) – we also see the average PCC value decrease to 0.742.

Nevertheless the results suggest that runtime performance of AOBB behaves similarly for

instances within the same problem class, and that our prediction approach can capture this

behavior fairly well.

A more general approach is presented by learning across problem classes, which was the

subject of Section 3.4.4. Here the learning domain encompassed subproblems of instances

from four different problem classes. It is likely to be more diverse and thus potentially more

challenging to generalize for our learning scheme. On the other hand, certain dependencies

might become evident in this setting that are not visible within a given problem class. In our

experiments we observed performance very similar to, if not sometimes slightly better than,

per-class learning, with an aggregate MSE of 0.587 and overall average PCC 0.751 (Table

3.10). This suggests that our approach is suitable to capture sufficient runtime complexity

dependencies at this level as well.

The last learning approach we considered is learning for unseen problem classes, the most

general and, at the same time, most challenging level of learning. As before model learning is

performed on subproblems from several classes, yet testing happens on an entirely different,

new problem class. In our experiments we systematically leave out subproblems of that

problem class from the training set. For three of the four problem classes studied here this

approach works reasonably well and yields respectable error values on almost all instances,

similar to the values observed at lower learning levels.

Only for pdb side-chain prediction, using a model learned from pedigree, largeFam, and

grid instances, do the results deteriorate notably, in some cases dramatically, as evident by
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the aggregate MSE of 27.373 for pdb instances. Evidently, the pdb side-chain prediction

problem class is too different from the other classes considered here. In particular, its higher

maximum variable domain size (up to k = 81, cf. Table 3.4) and resulting inaccurate mini-

bucket heuristic with low i-bound are very much unlike the other three classes. Overall, while

expected to some degree, this result highlights the limitations of our learning approach.

However, we note that the correlation coefficient stayed fairly high throughout most of our

experiments – even in the aforementioned case of unseen-class learning for pdb instances.

This indicates that the learned models should have a marked ability to discriminate between

subproblems of different complexity relative to each other. This will be helpful in the context

of parallelizing AOBB in Chapter 4, where we aim to select the hardest subproblems for

further splitting.

3.4.8 Feature Informativeness

As mentioned in Section 3.3.5, linear regression has the advantage that the resulting models

can be straightforward to interpret. Namely, to assess the informativeness of feature φi

we simply consider the absolute value of its coefficient λi in the learned regression model.

Assuming normalized training data (i.e., each subproblem feature is transformed to have

zero mean and unit variance), features with larger absolute values |λi| contribute more to

the predictions and are thus intuitively more informative.

Furthermore, recall from Section 3.3.5 that the L1-regularization in lasso regression implicitly

performs feature selection by assigning λi = 0 for some of the φi. In our case, we learned

a model using the entire set of subproblems (over 17,000, cf. Section 3.4.1) and obtained a

model with non-zero λi for nine features. These features and the absolute values of their

coefficients are shown in Table 3.11. In addition, each feature’s cost of omission (“coo”)

as defined in [78] is given. The cost of omission is the normalized difference between the
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Feature φi |λi| coo
Average branching degree in probe 0.57 100
Average leaf node depth in probe 0.39 87
Subproblem upper bound minus lower bound 0.22 17
Ratio of nodes pruned by heuristic in probe 0.20 27
Max. context size minus mini bucket i-bound 0.19 16
Ratio of leaf nodes in probe 0.18 10
Subproblem upper bound 0.11 7
Std. dev. of subproblem pseudo tree leaf depth 0.06 2
Depth of subproblem root node in overall space 0.05 2

Table 3.11: Features φi present in the linear model trained by lasso regression (Eq. 3.10)
on instances from all problem classes, with their model coefficients λi and their normalized
cost of omission (“coo”).

test error of the model with all nine features and the test error of a model trained with the

respective feature omitted (using 5-fold cross-validation in all cases).

The particular set of features can be somewhat misleading, however, since lasso regression

tends to pick only one of several highly correlated features [110]. Yet it is useful to gain a

conceptual understanding of which kind of features are more informative than others. In

particular, we observe that the four highest-weight features are dynamic, extracted from a

limited AOBB probe or based on the initial subproblem bounds. Only the fifth feature,

maximum subproblem context size minus mini-bucket i-bound, is static, with a normalized

cost of omission of 16. This ties in to Section 3.2.1, where we observed that the asymptotic

complexity bound of AOBB as well as the state space bound, both based on static, structural

parameters, yield little information in this context.

3.5 Conclusion to Chapter 3

This chapter considered the problem of estimating the runtime complexity, in number of node

expansions, of AND/OR Branch-and-Bound (AOBB). Chapter 4 illustrates the significance
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of this task in the context of parallelizing AOBB, but it is interesting and challenging on its

own.

Asymptotic complexity analysis, exponential in the induced width, and even finer-grained

state-space upper bounds are generally very loose, since they don’t account for determin-

ism or, more significantly, the pruning power of AOBB and the accompanying mini-bucket

heuristic, which we demonstrated empirically.

Most related work is either (a) based on sampling portions of the search space to be estimated,

often relying on rather large samples that take a long time to compute, (b) not applicable to

branch-and-bound search techniques and their powerful pruning, or (c) tailored to a specific

class of problems, such as combinatorial auctions or proving/disproving Boolean satisfiability

problems (SAT, typically not actually optimization queries). In contrast, we proposed a

general scheme based on statistical regression analysis, where a complexity model is learned

from runtime results of earlier experiments in an offline step. This keeps the time needed

for complexity prediction of a new problem of subproblem to a minimum (which is crucial

in the context of parallel AOBB).

As the basis for regression learning, we define a set of 35 features that encompass static,

structural properties like the induced width as well as more dynamic attributes such as upper

and lower cost bounds, derived from the problem’s function tables. We then define a general

class of complexity models that formulate the size of the explored search space as exponential

in a linear combination of the defined features, motivated by the inherently exponential

nature of search spaces. Predicting the log number of nodes can thus be formulated as a

well-studied linear regression problem, to which we apply lasso regularization, which helps

avoid overfitting and functions as a feature selection method.

Based on this approach, we learn and evaluate complexity models on four different problem

classes and four different levels of learning, with varying practical applicability: in order
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of increasing generality, we learn complexity models for each problem instance separately,

across several instances from a single class, and across instances from several classes. Lastly,

we investigate the possibility of estimating complexities for problem from a previously unseen

problem class (a form of transfer learning).

Experimental performance is overall positive, with very good results for per-instance learning

and decreased, but still good performance metrics for per-class and cross-class learning. On

the most ambitious level of learning, predicting instances of an unseen problem class, our

approach performs reasonably well on three out of four classes. However, the scheme reaches

its limits and yields poor results on the fourth problem class, where instances have some

distinctly different characteristics. In this context in particular it would be worthwhile to

widen the evaluation to a more varied set of problem classes.

Finally, we note that, across all levels of learning, the majority of prediction results exhibited

a high degree of correlation between actual and estimated complexities. This suggests that

the learned models can reliably predict the order of subproblems in terms of their runtime.

We hope to exploit this property for the load balancing of parallel AND/OR Branch-and-

Bound, to be described in Chapter 4.

3.5.1 Open Questions & Future Work

We can identify a number of interesting directions for future work. First, we would want to

consider additional problem classes, with more varied characteristics. Besides the question

of predictive performance in general, this should be especially interesting in the context of

transfer learning – Section 3.4.6 has yielded somewhat sobering results in this regard, and

further investigation could be very illuminating. A central challenge in that regard is finding

a sizable set of suitable problem instances, i.e., instances that are not too complex to be

feasible, but also not too easy.
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Secondly, our work thus far has been limited to linear regression models (quadratic feature

expansion can be seen as a linear model with quadratic terms), which have yielded good

results in most experiments. However, one could also consider truly nonlinear regression

approaches, for instance employing gradient descent methods [9] with a loss function other

than the mean squared error.

Thirdly, we have focused on predicting the runtime of subproblems of a larger AND/OR

search space. This was done in the wider context of parallelizing AND/OR Branch-and-

Bound search, but also to facilitate assembly of sufficiently larger sets of subproblem samples

to apply learning on. Results should carry over to estimation of “full” search spaces (i.e.,

not subproblems), but meaningful empirical validation is made difficult by the challenge of

compiling large enough sets of suitable problem instance samples.
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Chapter 4

Parallelizing AND/OR

Branch-and-Bound

4.1 Introduction

Chapter 2 considered AND/OR Branch-and-Bound running in sequential execution on a

single CPU and proposed Breadth-Rotating AOBB for better anytime performance. This

improves the algorithm’s applicability as a scheme for approximate inference, but it does not

address the case where a proof of optimality is required. This chapter, in contrast, will then

focus on pushing the boundaries of AOBB for exact inference.

Solving MPE problems exactly is known to be NP-hard in general [104]. In practice, the

limiting factor tends to be the induced width or tree width of a given problem instance (cf.

Chapter 1), with many relevant problems rendered infeasible, and even harder ones intro-

duced continually. Given todays availability and pervasiveness of inexpensive, yet powerful

computers, connected through local networks or the Internet, it is only natural to “split”

these complex problems and exploit a multitude of computing resources in parallel, which is
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at the core of the field of distributed and parallel computing (see, for instance, the textbook

by Grama et al. [51]).

Here we put optimization problems over graphical models in this parallelization context, by

describing a parallelized version of AND/OR Branch-and-Bound. In particular, we adapt

and extend the established concept of parallel tree search [51, 53, 74], where the search tree

is explored centrally up to a certain depth, and the remaining subtrees are solved in parallel.

In the graphical model context we explore the search space of partial instantiations up to a

certain point and solve the resulting conditioned subproblems in parallel.

Our distributed framework is built with a general grid computing environment in mind,

i.e., a set of autonomous, loosely connected systems – notably, we don’t assume any kind

of shared memory or dynamic load balancing which many parallel or distributed search

implementations build upon (see Section 4.2.2).

The primary challenge in our work will therefore be to determine a priori a set of subproblems

with balanced complexity, so that the overall parallel runtime will not be dominated by just a

few of them. As shown in Chapter 3, however, in the context of optimization and AOBB, it is

very hard to reliably predict and balance subproblem complexity ahead of time because of the

algorithm’s pruning power. This is where we will apply the complexity models developed

in Chapter 3, in the hope that it will enable us to detect and circumvent bottlenecks in

subproblem runtime.

4.1.1 Contributions

We first give an overview of the landscape of parallel and distributed computing in Section 4.2

and put our approach in context. In Section 4.3 we describe our parallel setup in more detail

and present the parallel AND/OR Branch-and-Bound in two variants: one that bases its
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parallelization decision on a fixed cutoff depth, and one that uses the complexity prediction

proposed in Chapter 3 in an attempt to balance subproblem complexity. To our knowledge,

it is the first implementation of its kind, i.e. an exact optimization algorithm for graphical

models, running on a computational grid.

Section 4.4 provides in-depth algorithm analysis, including a number of examples. In partic-

ular, we illustrate different sources of overhead incurred as a consequence of the distributed

execution environment. We also discuss characteristics of the parallelization frontier and

investigate the question of optimality.

Related to that, in Section 4.5 we conduct a detailed investigation of redundancies in the

overall search space explored by the parallel search. We identify two sources for this, both of

which have their origin in the lack of communication across these parallel subproblem solution

processes: unavailability of subproblem solutions as bounding information for pruning, as

well as lack of caching for unifiable (sub-)subproblems across parallel CPUs.

This is followed by an extensive experimental evaluation in Section 4.6. We examine and

analyze overall performance (i.e. runtime) and corresponding relative parallel speedup on a

variety of instances from four different problem classes, using varying degrees of parallelism

and different numbers of parallel CPUs. Further consideration is given to parallel resource

utilization as well as the extent of the parallel redundancies in practice, which is shown to

be far less pronounced than the theory in Section 4.5 suggests.

Experimental results are mostly positive. For relatively low and medium number of CPUs

(20 and 100, respectively), we are able to show good parallel performance on many problem

instances – the variable-depth scheme is often superior, provided that the complexity esti-

mates don’t exhibit any significantly underestimated outliers. At the same time results with

500 CPUs hint at the limitations of the current implementation, at which point the parallel
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search space redundancies, while still far from their theoretical worst, become significant

enough to meaningfully hinder performance.

Section 4.7 summarizes our contributions and outlines how parallel AOBB has been inte-

grated into Superlink-Online SNP, a real-world inference platform used by geneticists and

medical researchers worldwide. Finally, we briefly suggest potential future research directions

to extend the algorithms and address some of the issues we identified.

4.1.2 Chapter Outline

Section 4.2 gives an overview of distributed computing in general and parallel search im-

plementations in particular. Section 4.3 then proposes our two specific implementations of

parallel AND/OR Branch-and-Bound search. In Section 4.4 we proceed to analyze some

of the algorithms’ properties, before Section 4.5 specifically investigates and illustrates the

issue of redundancies in the parallel search space. Section 4.6 begins by describing our exper-

imental setup and benchmark problem instances in Sections 4.6.1 and 4.6.2. Sections 4.6.3

through 4.6.7 then perform extensive empirical evaluation and analysis, which is summarized

in Section 4.6.8. Section 4.7 concludes.

4.2 Background & Related Work

In this section we summarize relevant concepts and terminologies from parallel and dis-

tributed computing and put our contribution in context. We will also survey related work

and delineate our approach against it.
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4.2.1 Parallel & Distributed Computing

The notions of parallel computing and distributed computing have considerable overlap and

there is no clear line to be drawn between them; sometimes the terms are even used inter-

changeably. One distinction that is commonly made, however, is to consider how tightly

coupled the concurrent processes are. In particular, distributed systems are typically more

loosely coupled than parallel ones, with each process having its own, private memory. The

latter is often also referred to as the distributed-memory model, in contrast to shared-memory

[47, 51, 81].

Historically, “distributed systems” were often just that, namely geographically distributed,

but this connotation has weakened over the years to include, for instance, locally networked

computers. Further distinctions can be made regarding cluster computing or grid computing,

where a computational grid is often regarded as a larger-scale, more heterogeneous incarna-

tion of a cluster of (more uniform) computers [43].

4.2.1.1 Data Parallelism

Well-known applications of large-scale grid computing are, for instance, SETI@home [4] and

Folding@home [8], which employ thousands of processors worldwide, often volunteered home

computers, for analysis of cosmic radio signals and protein folding simulation, respectively.

Both of these are based on the concept of data parallelism, where concurrency is achieved

by independently processing parts of a huge set of input data in parallel.

It is worth pointing out that this assumption of independence regarding the computation of

each data item renders these applications embarrassingly parallel – a common classification

in parallel computing given to problems for which a straightforward subproblem separation

takes little to no effort and yields very good results.
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A general framework in a similar context that has gained much popularity in recent years,

in particular for industrial applications on massive cluster systems, is MapReduce [25]. It is

designed to independently apply a “Map” operation and subsequent “Reduce” combinator

to each entry in terabytes of data in a distributed fashion, with a variety of implementations

available (e.g., the Hadoop library [113]).

4.2.1.2 Task Parallelism

Our contribution of parallelizing AND/OR Branch-and-Bound is similar in its use of the

cluster or grid computing paradigm, but its approach to parallelization is not inherently

data based – in fact, in terms of raw size our input problem specifications often measure

just a few hundred kilobytes. Rather, the primary objective is to distribute an exponential

amount of computations, a notion also referred to as task parallelism.

A fitting example of this challenge is the Superlink-Online system, which similarly uses

vast numbers of computers around the world to perform genetic linkage analysis on general

pedigrees [105, 106]. To be specific, it converts the pedigree data into a Bayesian network

and computes the likelihood of a number of specific sets of evidence using a sum-product

algorithm. This corresponds to computing the LOD scores that are used to signify genetic

linkage in the input [40].

In fact, from the outset one of the motivations for and goals of our research has been

to eventually adapt our parallel AOBB implementation for integration into the Superlink-

Online system, where the task of computing maximum likelihood haplotypes for a given

pedigree can be expressed as an MPE query.

This objective also determines the particular parallel environment we consider, which we

describe in more detail in Section 4.3.1.
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4.2.2 Parallel Tree Search

A general way of distributing the depth-first exploration of a search tree across multiple

processors is presented by the parallel tree search paradigm [51, 74].

At the core of this approach the search space is partitioned into disjoint parts, at least

as many as there are processors, which are then assigned to the different processors to

handle. Since depth-first algorithms are often implemented using a stack data structure,

this approach is also referred to as stack splitting in the literature [51]. Namely, the stack of

the sequential algorithm is split into distinct parts for the concurrent processes.

Over the years the parallel tree search concept has been developed and applied in a variety

of incarnations across many domains, from classic Vertex-Cover [80] and Traveling Sales-

man problems [111] to planning tasks in robotics [15]. Adaptations have been proposed for

parallelizing alpha-beta pruning and general game tree search [38], an area that has gained

renewed prominence through IBM’s massively parallel Deep Blue chess-playing system [13]

or more recent, very successful advances of parallel Monte-Carlo tree search in the game of

Go [14, 16].

In the 1990s research was also conducted on parallel search for specific parallel architec-

tures. In the context of SIMD systems (single instruction, multiple data – in contrast to

multiple instruction, multiple data common today) in particular there were efforts to par-

allelize heuristic search algorithms like IDA* (leading to SIMD-IDA* or SIDA* [98]) and

A* (resulting in PRA*, parallel retracting A* [37]). As in other shared memory search

implementations, load balancing was conducted dynamically at runtime (in intervals, to ac-

commodate the SIMD architecture), with a hashing function used to assign newly generated

nodes to processors. Another central challenge at the time was presented by the limited

system memory, which PRA* addressed by selectively “retracting” expanded nodes [37].
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Finally, we note that the SAT (Boolean satisfiability) community has shown great interest

in parallel search as well, since most state-of-the-art SAT solvers are based on the Davis-

Putnam-Logemann-Loveland procedure (DPLL [24]), a depth-first backtrack search algo-

rithm. Consequently, several SAT solvers based on parallel tree search have been proposed

(e.g., [20, 63]). However, the focus in recent years has shifted to parallelized portfolio solvers

[54].

4.2.2.1 Parallel Branch-and-Bound

Since branch-and-bound is inherently a depth-first search algorithm, many of the results

summarized above are directly applicable in its parallelization. In fact, alpha-beta pruning

for game trees can be seen as a form of branch-and-bound [38].

The most crucial addition of branch-and-bound over standard depth-first search lies in keep-

ing track of the current lower bound on the solution cost (assuming a maximization problem),

which the algorithm compares against heuristic estimates to prune subtrees. In a shared-

memory parallel setup, this global bound can be synchronized across processors, for which

various schemes have been proposed in the literature [46, 52, 53].

Faced with a lack of shared memory in grid and cluster systems as well as limited or no inter-

process communication, this exchanging and updating of bound information is no longer

possible – each processor is limited to its locally known bound, which can lead to additional

node expansions. We will explore this issue and possible (partial) remedies more closely in

the context of AOBB in Section 4.4.
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4.2.2.2 Load Balancing

One of the crucial issues in parallel tree search is clearly the choice of partitioning. In

particular, the goal is to make sure each processor gets an equal share of the overall workload,

to minimize the amount of idle time across CPUs and, equivalently, optimize the overall

runtime. This issue is commonly referred to as load balancing.

To illustrate, imagine a scenario where all but one processor completes their assigned task

almost immediately, while the remaining CPU continues to work for a long time, thus de-

laying the overall solution. Ideally, at the opposite end of the load balancing spectrum, all

processors would finish at the same time, so that no idle time occurs. Assuming a fixed

overall workload of T seconds and p parallel processors, the overall parallel runtime in the

latter, balanced case would be T/p. In the former, more extreme case, however, the overall

parallel runtime would still be close to T – clearly not an efficient use of parallel resources

(performance metrics will be discussed in more detail in Section 4.2.4).

In shared-memory approaches to parallel computing, this problem is often tackled through

dynamic load balancing [51, 73], where an initial partitioning of the search space is dynam-

ically adapted over time. Namely, if one processor runs out of work it can be assigned (or

request) part of some other processor’s partition of the search space to restore load balanc-

ing, where the question of when and how to perform these reassignments is one of the central

research issues. Dependent on the implementation, this approach is sometimes also referred

to as work stealing [19]. Using message passing schemes, dynamic load balancing can also

be implemented for distributed-memory architectures [47, 81].

In distributed systems where inter-process communication is prohibitively expensive, or even

altogether infeasible because of technical restrictions, dynamic load balancing is not an option

– this applies, for instance, to many grid approaches discussed earlier and the Superlink-

Online framework in particular. In this case, a suitable partitioning must be found ahead of
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(a) Parallelization frontier at fixed depth d = 3, yielding 8 subproblems.

(b) Variable-depth parallelization frontier, yielding 7 subproblems.

Figure 4.1: OR search parallelization applied to the OR tree from Figure 1.5. Conditioning
nodes are shaded gray, the respective conditioning set is given below each subproblem .

time to facilitate efficient static load balancing. Namely, since transfer of workload among

processors is no longer possible, the initial partitioning of the search space should be as

balanced as possible.

As Chapter 3 has demonstrated, however, the exact size of a search space is not always

easy to assess in advance. Static load balancing is therefore very challenging, in particular

for a branch-and-bound scheme like AOBB, and in fact its analysis and implementation for

AOBB constitutes one of the main contributions of our work.

4.2.3 Parallel OR Search Example

To illustrate the concept of parallel tree search, we give an example in the context of regular

OR tree search. Namely, independent subproblems are not decomposed and unifiable sub-
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problems are not cached. We build upon the example search space over six binary variables

from Figure 1.5.

The underlying principle consists of exploring a small part of the search space centrally,

at each step breaking the overall problem into smaller pieces through conditioning. Conse-

quentially, we refer to this part of the search space as the conditioning space. Its boundary

with the conditioned subproblems is called the parallelization frontier or parallel cutoff ; it

is made up of the root nodes of the resulting concurrent subproblems.

Example 4.1. A first example is given in Figure 4.1a. Here the parallelization frontier is

placed at constant depth d = 3 (note that we define the overall problem root node to have

depth 0). This yields eight subproblems, each conditioned on a different instantiation of

the variables A, B, and C. In other words, {A,B,C} is a conditioning set for the parallel

subproblems.

We note that a fixed-depth parallel cutoff as in Example 4.1 is fairly natural choice, as it

renders the eight subproblems in Figure 4.1a to be of equal size, with seven nodes each, i.e.,

they appear to be balanced perfectly. In practice, however, a branch-and-bound algorithm

might only explore a small part of each subproblem search space due to its pruning power

and determinism in the problem specification. This discrepancy, which was also at the

core of Chapter 3 (cf. Section 3.2.1, in particular), can lead to significant imbalance of

subproblem runtimes in practice, since the effects of pruning can play out very differently in

each subproblem.

It is therefore very convenient that we are not limited to a uniform conditioning set for

parallelization. Rather, the search framework gives us considerable flexibility with regards

to the parallelization frontier. In particular, we can vary the cutoff depth for different parts

of the conditioning space.
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Example 4.2. An example of variable-depth parallel cutoff is shown in Figure 4.1b. In this

case, we define one subproblem for the conditioning {A = 0, B = 1}, while the subspace for

{A = 0, B = 0} is broken up further by conditioning on C. The overall number of parallel

subproblems is seven.

Ideally, a variable-depth parallel cutoff will be able to compensate for the varying degree of

exploration by branch-and-bound in different subproblems. And in fact, this will be one of

the central issues we investigate in our empirical evaluation in Section 4.6.

4.2.4 Assessing Parallel Performance

Parallel and distributed algorithms in general, and parallel search implementations in par-

ticular, can be evaluated from a variety of standpoints, accounting for the many objectives

that are involved in their design [51]. Specifically, given a parallel search algorithm and its

base sequential version, we can collect and report the following metrics:

• Sequential runtime Tseq . The wall-clock runtime of the sequential algorithm.

• Sequential node expansions Nseq . The number of node expansions by sequential

AOBB.

• Parallel runtime Tpar . The elapsed wall-clock time from when the parallel scheme

is started to when all concurrent processes have finished and the overall solution has

been returned.

• Parallel node expansions Npar . The number of node expansions counted across all

parallel processes.

• Parallel speedup Spar := Tseq/Tpar . The relative speedup of the parallel scheme over

the sequential algorithm.
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• Parallel overhead Opar := Npar/Nseq . The relative amount of additional work (in

terms of node expansions) induced by parallelization.

• Parallel resource utilization Upar . If T ipar is the runtime of parallel processor i ,

1 ≤ i ≤ C , we denote Tmax := maxj T
j
par and define Upar :=

1
C

∑C

i=1 T
i
par/Tmax as the

average processor utilization, relative to the longest-running processor.

The definition and interpretation of Tseq and Tpar as well as Nseq and Npar is straightfor-

ward. Regarding the parallel speedup Spar we note that, in the ideal case, it will be close

to the number of concurrent processors. In practice, however, issues like communication

overhead, network delays, and inherent redundancies make this hard to achieve; specifics

will be discussed in Section 4.4.

The parallel overhead Opar is ideally 1, i.e., the number of nodes expanded overall by the

parallel scheme is the same as for sequential AOBB. As Section 4.4 will detail, however,

inherent search space redundancies in the parallel scheme again make this hard to achieve,

just as for the optimal speedup.

Lastly, the parallel resource utilization Upar with 0 < Upar ≤ 1 measures the efficiency

of load balancing. A value close to 1 indicates very balanced load distribution, with all

concurrent processes finishing at about the same time. Values closer to 0 signify substantial

load imbalance, with most processors finishing long before the last one.

4.2.5 Amdahl’s Law

In regard to parallel performance and parallel speedup in particular it is worth mentioning

Amdahl’s law, named after its author Gene Amdahl [3]. It comprises the simple observation

that the possible speedup of a parallel program is limited by its strictly sequential portion.

Namely, if only a fraction p of a given workload can be parallelized, even with unlimited
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parallel resources the speedup can never exceed 1/(1 − p). For instance, if p = 0.9, i.e.,

90% of a computation can be parallelized, the maximum achievable parallel speedup is

1/(1− 0.9) = 10. More generally:

Theorem 4.1 (Amdahl’s Law). [3] If a fraction p of a computation can sped up by a factor

of s through parallelization, the overall speedup cannot exceed 1/(1− p+ p/s) .

For instance, if p = 0.9 and s = 10, the overall speedup will be approx. 1/(1− 0.9 + 0.09) ≈

5.26. We will put our results in this context when analyzing our parallel scheme in Section

4.4 and when conducting experimental evaluation in Section 4.6.

4.2.6 Other Related Work

We point out the work of Allouche et al. [2], which is similar in that it proposes a method to

solved weighted CSPs in parallel (which could be generalized to general max-product prob-

lems like MPE). However, their approach is based on inference through variable elimination.

At its core, it exactly solves (in parallel) the clusters of a tree decomposition, conditioned

on the separator instantiations. They also describe a method to obtain suitable tree de-

compositions, bounding the space of separator instantiations through iteratively merging

decomposition clusters. According to the authors, load imbalance was not an issue with

their approach in their (limited) set of practical experiments.

A fairly young field where parallel search is an active area of research is distributed constraint

reasoning [117], which is concerned with solving distributed constraint satisfaction problems

(DCSPs) and distributed constraint optimization problems (DCOPs). Over the last decade

or so, several search-based parallel algorithms have been proposed in distributed constraint

reasoning. Notable examples for solving DCSPs include ABT (Asynchronous Backtracking)

by Yokoo et al. [118] and extensions by Zivan and Meisels [120]. For DCOPs there are, for
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instance, ADOPT (Asynchronous Distributed Optimization) by Modi et al. [86], which is

based on parallel best-first search and BnB-ADOPT, an adaptation of ADOPT to depth-first

search principles by Yeoh et al. [116].

While there are some shared concepts with AOBB and parallel tree search as outlined above

(e.g., ADOPT and BnB-ADOPT exploit a pseudo tree structure), the underlying principles

of distributed constraint reasoning are very different. In particular, the term “distributed”

is used to indicate a multi-agent setting where each agent only has partial knowledge of the

problem, with its state represented by a subset of the problem variables. The key differences

between the various schemes cited above are how communication between agents is organized,

i.e., what kind of messages are sent and to which agent(s).

Agents are also typically assumed to be low-powered devices with limited computational

power, fairly expensive inter-agent communication (e.g., in terms of electrical power required

for radio transmission), and sometimes limitations on what kind of information may be

shared between agents. These assumptions then determine the performance metrics that are

typically applied to DCSP and DCOP algorithms. Namely, evaluation is performed with

regard to the number of messages sent between agents or the number of constraint checks

each agent performs to solve a problem – computation time or parallel speedup, on the other

hand, are only secondary and sometimes not considered at all. A direct comparison to our

contribution in this chapter is therefore not easily attainable.

4.3 Parallel AND/OR Branch-and-Bound

In the following we will introduce our implementation of parallel AND/OR Branch-and-

Bound, based on the parallel tree search concept outlined in Section 4.2.2. To begin, Section
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4.3.1 lays out the parallel environment we build upon, in line with the exposition of Section

4.2.1.

We then propose two variants of parallel AOBB that differ in how they determine the paral-

lelization frontier. The first, in Section 4.3.2, chooses the subproblem root nodes at a fixed

depth, in line with parallel tree search described in Section 4.2.2. In contrast, the second

approach introduced in Section 4.3.3 uses estimates of subproblem runtime to determine a

variable-depth frontier.

4.3.1 Parallel Setup

As indicated in Section 4.2.1, our approach to parallelizing AND/OR Branch-and-Bound is

built on a grid computing framework. Namely, we assume a set of independent computer

systems, each with its own processor and memory, that are connected over some network

(e.g., a local network or the Internet).

We will further assume a master-worker organization (also known as master-slave), where

one designated master host directs the remaining worker hosts. In particular, the master

determines the parallel subproblems and assigns them to the workers as jobs ; it collects

the results and compiles the overall solution. Communication among workers is assumed

infeasible – in fact, because of firewalls or other network restrictions, workers might not even

be aware of each other.

Clearly, this grid approach entails a crucial limitation in terms of algorithm design by explic-

itly forbidding synchronization between workers, thereby forcing subproblems to be processed

fully independently. On the other hand, it also brings with it a number of advantages, which

make it particularly suitable for large-scale parallelism. Subproblems that are currently ex-

ecuting can easily be preempted (or the executing system may fail) and restarted elsewhere,
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since no other running job depends on it. Parallel resources can readily be added to or

removed from the grid on the fly. In general, the lack of synchronization also inherently

facilitates scaling, with the only possible bottleneck located in the management of paral-

lel resources by the central master host. For these reasons, this kind of grid paradigm is

sometimes also referred to as opportunistic computing.

As mentioned earlier, this setup matches that of Superlink-Online [106], a high-performance

online system for genetic linkage analysis. It enables researchers and medical practitioners

to use tens of thousands of CPUs across multiple locations, including volunteered home

computers, for large-scale genetic studies, to great success [105].

Internally, Superlink-Online is built upon a specific grid software package, also called mid-

dleware, the Condor distributed workload management system [107, 108], which we will

also employ for our setup. Condor provides an abstraction layer on top of the bare parallel

resources which, among other things, transparently handles the following:

• Centralized tracking and managing of parallel resources.

• Assigning jobs to available worker hosts.

• Distributing the necessary input files to workers and transmitting their output back to

the master host.

• Gracefully handling resource failures (e.g., by automatically rescheduling jobs).

Condor also exposes a powerful mechanism for prioritizing jobs, but neither our system nor

Superlink-Online makes use of it; parallel jobs are simply assigned to available resources on

a first-come, first-served basis.

Finally, we point out that real-world grid systems are almost always shared-access resources,

with many users submitting jobs of varying complexity at different points of time. Together
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Algorithm 4.1 Master process for fixed-depth parallelization.

Given: Pseudo tree T with root X0 , cutoff depth dcut .
Output: Ordered list of subproblem root nodes for grid submission.
1: Stack ← ∅ // last-in-first-out stack data structure
2: Stack.push(〈X0〉) // root node at depth 0
3: while |Stack| > 0 :
4: n← Stack.pop()
5: if depth(n) == dcut :
6: grid submit(n)
7: else
8: for n′ in children(n) :
9: Stack.push(n′)

with the opportunistic nature discussed above (i.e., the set of available parallel resources

fluctuates over time), this can make controlled experiments, to measure overall parallel

runtime and resulting speedup, notoriously tricky in practice. And at the same time, results

of carefully executed experiments do not always carry over directly into real-world systems.

In our experiments (cf. Section 4.6) we will mostly rely on an “idealized” grid environment

(i.e., with a stable number of processors and little to no interference from other users), but

also some carefully designed simulations.

4.3.2 Fixed-depth Parallelization

This section introduces our “baseline” parallel AOBB with a fixed-depth parallelization

frontier. It explores the conditioning space centrally, on the master host, up to a certain

depth. It thereby applies the natural choice of parallel cutoff, leading to subproblems that

are structurally the same, just as it was done for OR search parallelization in Example 4.1

(cf. Section 4.2.3). For convenience, in the AND/OR context we consider a depth level to

consist of an OR node and its AND children – this implies that the roots of the parallel

subproblems will always be OR nodes.
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(a) Guiding pseudo
tree with contexts. (b) AND/OR search graph with 19 OR and 38 AND nodes.

Figure 4.2: Example AND/OR search graph for problem in Figure 1.3.

Pseudo code for this simple scheme is shown in Algorithm 4.1. It expands all nodes up to

a given depth dcut in a depth-first fashion. The subproblems represented by the nodes at

depth dcut are marked for submission to the grid, for parallel solving. We note that the call

to “children(n)” in line 8 of Algorithm 4.1 can be implemented to apply branch-and-bound-

style pruning, using a separately provided initial lower or upper bound on the problem’s

solution cost (obtained, for instance, through incomplete, local search).

Example 4.3. To illustrate, we apply Algorithm 4.1 to the problem from Example 1.8, for

which the AND/OR search graph is shown again in Figure 4.2. The result of setting the cutoff

depth at d = 1 is depicted in Figure 4.3a , the conditioning set {A} yields two subproblems.

Figure 4.3b, on the other hand, shows the outcome of setting d = 2 , i.e., a static conditioning

set of {A,B}, which gives eight subproblems – notably, subproblem decomposition below B

presents an additional source of parallelism, with independent subproblems processable in

parallel.

Already at this point, we note that the conditioning process can impact the caching of

unifiable subproblems in AND/OR Branch-and-Bound graph search (cf. Section 1.3.1). In

particular, the subproblems rooted at D and F are unified in Figure 4.2, yet in Figures

4.3a and 4.3b they are spread across different parallel subproblems rooted at C and E,
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(a) Parallelization frontier at fixed depth d = 1, yielding 2 subproblems.

(b) Parallelization frontier at fixed depth d = 2, yielding 8 subproblems.

Figure 4.3: AND/OR search parallelization at fixed depth, applied to the example problem
and search space from Figures 1.3 and 1.7, respectively. Conditioning nodes are shaded gray,
the respective conditioning set is specified below each subproblem.
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Figure 4.4: Subproblem statistics for two runs of fixed-depth parallel AOBB. Each dot
represents a single subproblem, plotted in the order in which they were generated. Dashed
horizontal lines mark the 0th, 20th, 80th, and 100th percentile, the solid horizontal line is the
overall parallel runtime using the number of CPUs specified in the plot title.

respectively, and unification is no longer possible (since we assume no sharing of information

between workers). We will analyze this issue in-depth in Section 4.4.

Finally, we point out that the cutoff depth dcut is assumed to be given as an input parameter.

It could, however, also be derived from other objectives, such as the minimum desired number

of subproblems p . In case of a problem instance with binary variables, for instance, we could

easily compute d = ⌈log2 p⌉ ; generalization for non-binary domains is straightforward.

4.3.2.1 Underlying vs. Explored Search Space

We note that Example 4.3 and Figures 4.2 and 4.3 can be somewhat misleading since they

depict the full, underlying context-minimal AND/OR search graph. As we indicated earlier,

however, in practice large parts of the underlying search space are ignored by AOBB, because

of determinism or pruning based on the mini-bucket heuristic. This leads to a much smaller

explored search space – a discrepancy that was also at the core of Chapter 3, which developed

a learning approach to better estimate the runtime complexity of a given subproblem ahead

of time.

To illustrate the practical impact in the context of parallel AOBB, Figure 4.4 gives some

runtime statistics for two different runs of the fixed-depth parallel scheme. Shown are, for two
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different problems from the domain of pedigree linkage analysis, the runtimes of subproblems

generated at a fixed depth d , as listed in the plot title. We also indicate, by a solid horizontal

line, the overall runtime of parallel AOBB using this particular parallelization frontier.

In the context of this section, we point out two things in particular. First, all subproblems

originated at the same depth, thus the size of their underlying search space is in fact the same.

As expected, however, we observe significant variance in the size of the explored search space.

This is captured by the subproblem runtimes plotted in Figure 4.4, which range over about

two and three orders of magnitude for ped41 and ped19, respectively. Second, the overall

runtime is heavily dominated by only a handful of subproblems, which is very detrimental

to parallel performance and thus a scenario we aim to avoid. In the following we therefore

propose a more flexible variant of parallel AOBB.

4.3.3 Variable-depth Parallelization

This section describes a second variant of parallel AND/OR Branch-and-Bound, which em-

ploys the flexibility provided by AND/OR search to place the parallelization frontier at a

variable cutoff depth. Namely, subproblems within one parallel run can be chosen at different

depths, in line with the example in Section 4.2.3.

The question of how to determine the actual cutoff, however, was left open in Section 4.2.3.

Recall that the central motivations for a variable-depth cutoff were to better balance sub-

problem runtimes and, related to that, avoid performance bottlenecks through long-running

subproblems. In the following, we thus propose an iterative, greedy scheme that employs

complexity estimates of subproblems to decide the parallelization frontier; notably, we can

apply the estimation models developed in Chapter 3.
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Algorithm 4.2 Master process for variable-depth parallelization.

Given: Pseudo tree T with root X0 , subproblem count p , complexity estimator N̂ .
Output: Ordered list of subproblem root nodes for grid submission.
1: Frontier ← {〈X0〉}
2: while |Frontier| < p :
3: n′ ← argmaxn∈Frontier N̂(n)
4: Frontier ← Frontier \ {n′}
5: F ← Frontier ∪ children(n′)
6: while |Frontier| > 0 :
7: n′ ← argmaxn∈Frontier N̂(n)
8: Frontier ← Frontier \ {n′}
9: grid submit(n′)

Algorithm 4.2 gives pseudo code for this approach. Starting with just the root node, the

algorithm gradually grows the conditioning space, at each point maintaining the frontier of

potential parallel subproblem root nodes. In each iteration, the node with the largest com-

plexity estimate is removed from the frontier (lines 3-4) and its children added instead (line

5). This is repeated until the frontier encompasses a desired number of parallel subproblems

p . At that point these subproblems are marked for grid submission, in descending order of

their complexity estimates – it makes sense to process the larger subproblems first so that, in

case the number of subproblems exceeds the number of parallel CPUs, smaller subproblems

towards the end can be assigned to workers that finish early.

We point out that this policy of assigning parallel jobs in a hard-to-easy fashion corre-

sponds to the LPT algorithm (“longest processing time”) for the multiprocessor scheduling

optimization problem [34], which in turn is a special case of the job-shop scheduling opti-

mization problem , which is known to be NP-complete for 3 or more parallel resources [45].

Introduced already in the 1960s, LPT is often used for its simplicity; it has been proven to

be optimal within a factor of 4
3
− 1

3c
from the best possible overall runtime, where c is the

number of parallel resources considered [50]. Note, however, that this bound assumes that

the exact job runtimes are fully known ahead of time, which is not the case in our setting.
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Figure 4.5: AND/OR search parallelization at variable depth, applied to the example
search space from Figure 4.2, respectively, yielding seven subproblems. Conditioning nodes
are shaded gray, the respective conditioning set is specified below each subproblem.

Example 4.4. Figure 4.5 shows an example of a variable-depth parallel cutoff applied to the

same problem as in Example 4.3. With seven parallel subproblems overall, the subproblem

with conditioning set {A = 0} is not broken up further, while {A = 1} is split (more than

once, in fact) into a total of six subproblems. As before we point out the impact of paralleliza-

tion on caching for nodes of variables D and F , which we will analyze in the next section.

Note also that Figure 4.5 again only depicts the underlying search space – the explored search

space for each subproblem might only comprise a small sub space when processed by AOBB.

Finally, we point out that instead of providing the desired number of subproblems p as input,

one could equally use other parameters. For instance, a straightforward alternative would be

to set an upper bound on subproblem complexity, where subproblems are broken into pieces

through conditioning while their estimated complexity exceeds the provided bound. However,

our focus here will be on targeting a specific number of subproblems, which facilitates a direct

comparison with the fixed-depth parallel cutoff.
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We perform in-depth analysis of the above algorithms in the following section.

4.4 Algorithm Analysis

In this section we provide analysis of the parallel algorithms’ properties, also taking into ac-

count the performance measures introduced in Section 4.2.4. Section 4.4.1 describes sources

of parallel overhead that are common to distributed computing, and how they manifest in

our context. Section 4.4.2 considers some of the challenges in choosing a parallel cutoff.

Description and analysis of redundancies in the parallel search space are provided in their

own Section 4.5.

4.4.1 Distributed System Overhead

When compared to standard, sequential AOBB, parallel AOBB as described above does

inevitably incur overhead in a variety of forms, by virtue of its distributed execution and op-

erating environment. The following paragraphs distinguish the different sources of overhead

and, if possible, quantify their practical effects based on our experiments.

4.4.1.1 Parallelization Decision

One of the first tasks of the parallel scheme lies in determining the parallel cutoff, algorithms

for which were described in Sections 4.3.2 and 4.3.3. Performed by a master host on the

grid, this computation involves a number of steps:
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• General preprocessing, like problem parsing and evidence elimination, variable order

computation, and mini-bucket heuristic compilation, needs to be performed as part of

the the initial master process.

Runtime for these steps can vary greatly depending on the problem instance and, most

centrally, the chosen i-bound of the mini-bucket heuristic, but can exceed one minute in

some cases. Note, however, that these steps and their respective runtimes are actually

the same as for sequential AOBB.

• The master process gradually expands the conditioning set, until either a fixed depth

has been reached (Algorithm 4.1) or a predetermined number of parallel subproblems

has been generated (Algorithm 4.2). We can show the following:

Theorem 4.2. Assuming a branching degree of at least 2, the number of node expan-

sions required in the conditioning space to obtain p parallel subproblems is O(p) , i.e.,

linear in p .

Proof. Consider a conditioning search space with p leaf nodes representing subprob-

lems. There can be at most p

2
parent internal nodes to the p leaves, since a branching

degree of at least 2 is assumed. These nodes in turn have at most p

22
parents, and so

on, all the way to the root node. Thus, p
2
+ p

22
+ p

23
+ . . .+1 = p(1

2
+ 1

22
+ . . .)+1 ≤ p+1

bounds the number of expanded, internal nodes.

Even in the case of several thousand subproblems, the number of such conditioning

operations is thus fairly small (relatively to the full search space). In practice, the

longest runtimes we observed for the conditioning step were up to 2 minutes for just

under 10000 subproblems on a 2.8 GHz Intel Xeon CPU. This includes application of

our complexity estimation scheme (cf. Chapter 3) each time a subproblem is split and

conditioned further.
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• Finally, the master process needs to write the parallel subproblem information, includ-

ing the variable ordering, upper and lower bounds, and the individual conditioning

sets, to a set of files, which will be passed as input to sequential AOBB on the worker

hosts. This process can usually be completed in a few seconds.

In the context of Amdahl’s Law (cf. Section 4.2.4), the above steps can be seen as the non-

parallelizable part of the computation. As a consequence, parallel AOBB will likely not work

that well, i.e., yield suboptimal parallel performance, if the problem instance at hand is too

easy (say, for instance, less than 20-30 minutes with sequential processing).

4.4.1.2 Communication and Scheduling Delays

Once the parallel cutoff is determined and the respective subproblem specification files have

been generated, the information is submitted to the worker hosts. This is achieved by

invoking the grid middleware’s job submission service, in our case provided by the Condor

software (cf. Section 4.3.1).

Parsing and processing the parallel job descriptions can take Condor some time in practice,

around 4-5 seconds for each 1000 subproblems on our system – for extreme cases, with tens

of thousands of subproblem submissions, we observed delays of several minutes.

Subsequently the grid management software will match jobs to available parallel resources,

i.e., worker hosts, transmit input files as necessary, and start remote execution of sequential

AOBB. After a job, corresponding to a single parallel subproblem, finishes, the grid software

retrieves its output, transfers it back to the master host, and makes the now idle CPU

available for the next job.

In our experience, this transfer of input/output and general job setup adds, on average,

about 2-3 seconds on top of the actual runtime of sequential AOBB on the worker host.
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These numbers are based on experiments using a grid spanning 324 CPUs on a relatively

fast local network with a powerful host in charge of the Condor scheduling; we expect this

overhead to increase for more (geographically) distributed grids or a less powerful scheduling

machine.

4.4.1.3 Repeated Preprocessing

As mentioned, once a job has been submitted to a worker host on the grid, sequential

AOBB is invoked on the conditioned subproblem. This relies on some of the same data

structures that have been compiled during preprocessing in the master conditioning process,

most crucially the pseudo tree to guide the search and the mini-bucket heuristic for AOBB’s

pruning decision.

Since the variable ordering is transmitted as part of the subproblem specification, recomput-

ing the pseudo tree (or the sub pseudo tree relevant to the subproblem) is an easy task and

usually takes a second or two.

The issue is less straightforward regarding the mini-bucket heuristic. Its compilation com-

plexity is exponential in the selected i-bound, which can translate to significant amounts

of time – up to several minutes on some instances. In principle, this computation has be

repeated on a worker host for each parallel subproblem – a potential source of overhead,

in particular for subproblems that turn out to require little actual search. On the other

hand, the subproblem’s context instantiation can be taken into account (i.e., plugged in)

when recomputing the mini-bucket heuristic. This has the potential to reduce the size of the

mini-bucket tables and yield a stronger heuristic, which can induce more pruning within the

subproblem.

An alternative would be to write the mini-bucket heuristic that has been computed in the

master process to a file, transmit that with the subproblem description, and load it into
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AOBB on the worker host. However, the tables of a mini-bucket heuristic can often occupy

several hundred megabytes, if not 1–2 gigabytes in memory. The cost of transmitting this

kind of information across the network, in particular in the context of hundreds of worker

hosts, is thus clearly prohibitive in practice. In our implementation, the mini-bucket heuristic

is therefore recomputed on the worker hosts for each parallel subproblem as described above.

4.4.2 Parallel Cutoff Characteristics

We now consider the question of optimality regarding the parallel cutoff found by our par-

allelization scheme. We focus on two particular aspects, namely the “balancedness” of the

parallel subproblems (which directly impacts parallel resource utilization) as well as the size

of the largest subproblem (which often determines the overall parallel runtime). Namely, we

ask whether there is another parallelization frontier of the same size that is more balanced

or has a smaller largest subproblem.

As mentioned before, the fixed-depth scheme yields subproblems that have the same struc-

ture, yet by design it is oblivious to the actual number of explored nodes (which can vary

vastly), even if that number was known. Thus no claim of optimality can be made regarding

either the balancedness of parallel subproblems nor the minimality of the largest one – in

fact, given the results from Sections 3.2.1 and 4.3.2.1 in particular, it is very likely that the

obtained parallel cutoff will be suboptimal in both regards. In the following we therefore

focus on the variable-depth parallelization frontier.
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4.4.2.1 Largest Subproblem

The size of the largest parallel subproblem is important since it will dominate the overall

parallel runtime in the case where the number of subproblems is equal or very close to the

number of parallel CPUs.

Theorem 4.3. If the subproblem complexity estimator N̂ is exact, i.e., N̂(n) = N(n) for all

nodes n , then Algorithm 4.2 will return the parallelization frontier of size p with the smallest

possible largest subproblem, i.e., no other parallelization frontier of size p can have a strictly

smaller largest subproblem.

Proof. Induction over p . Base case p = 1 → 2 : Trivial. Inductive step p = k → k + 1 :

Consider a parallelization frontier Fk of size k and denote by n∗ the node corresponding

to the largest subproblem, i.e., n∗ = argmaxn∈Fk
N(n) . Because N̂(n) = N(n) for all n ,

Algorithm 4.2 will expand n∗ and obtain parallelization frontier Fk+1 of size k+1 . Choosing

any other n ∈ Fk, n 6= n∗ would result in a parallelization frontier F ′
k+1 that still has n∗ in

it and thus the same maxn∈F ′
k+1
N(n) = N(n∗) , which cannot possibly be better than Fk+1 .

This property even holds if we don’t assume an exact estimator N̂ , as long as we can correctly

identify the current largest subproblem at each iteration. This is guaranteed, for instance,

if the correlation coefficient of estimated and actual complexities (denoted PCC in Chapter

3) is equal to 1, regardless of the estimator’s mean squared error (MSE).

4.4.2.2 Subproblem Balancedness

We furthermore aim to characterize the balancedness of the subproblems in the paralleliza-

tion frontier. To that end, the measure we consider is the variance over subproblem runtimes.
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(a) State with 2 subproblems. (b) Greedy split of {A = 0}. (c) Alternate split of {A = 1}.

Figure 4.6: Example of subproblem splitting decision by the greedy, variable-depth paral-
lelization scheme. Applying Algorithm 4.2 in state (a) will lead to (b), while (c) would be
more balanced (N denotes each subproblem’s complexity).

However, it turns out the we cannot make any claims regarding optimality of the parallel

cutoff, even if an exact estimator N̂ is available. The following counter example illustrates.

Example 4.5. Assume we run Algorithm 4.2, the greedy variable-depth parallelization scheme,

with a desired subproblem count of p = 3. Furthermore assume a conditioning space after

the first iteration (which splits the root note) as depicted in Figure 4.6a, with two parallel

subproblems of size 22 and 20, respectively.

The greedy scheme will pick the left node {A = 0} for splitting, with two resulting new

subproblems of size 20 and 2, respectively, as shown in Figure 4.6b. The average subproblem

size is then (20 + 2 + 20)/3 = 14 with variance (62 + 122 + 62)/3 = 72.

Instead splitting the subproblem {A = 1} on the right, however, would yield two new sub-

problems, both of size 10, as depicted in Figure 4.6c. The average subproblem size is still

(22 + 10 + 10)/3 = 14, but the variance is lower with (82 + 42 + 42)/3 = 32.

Example 4.5 demonstrates that even with an subproblem complexity estimator, optimality

cannot be guaranteed with respect to subproblem balancedness. It also outlines some of the

underlying intricacies of the problem we’re trying to solve. In particular, by the nature of

branch-and-bound search a given subproblem that is split further through conditioning can
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yield parts of vastly varying complexity (cf. Figure 4.6b), which is in direct contradiction to

our objective of balancing the parallel workload.

4.5 Parallel Redundancies

Section 4.4.1 illustrated the overhead introduced in the parallel AOBB implementation by

virtue of the grid paradigm; examples include additional processing time to determine the

parallel subproblems as well as delays inherent to the distributed system and grid approach

in general. In contrast, this section will investigate in-depth the overhead stemming from

redundancies in the actual search process, namely the expansion of search nodes that would

not have been explored in pure sequential execution. Consequentially, it is clear that the

problem of parallelizing AND/OR search is far from embarrassingly parallel (cf. Section

4.2.1).

We distinguish two principled sources of search space redundancies as follows:

• Impacted pruning due to unavailability of bounding information across workers.

• Impacted caching of unifiable subproblems across workers.

In the following we investigate these aspects in detail. In particular, we will explain how

both issues are caused by the lack of communication among worker nodes. Secondly, we will

analyze and bound the magnitude of redundancies from impacted caching using the problem

instance’s structure.
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4.5.1 Impacted Pruning through Limited Bounds Propagation

One of the strengths of AND/OR Branch-and-Bound in particular (and any branch-and-

bound scheme in general) lies in exploiting a heuristic for pruning of unpromising subprob-

lems. Namely, the heuristic overestimates the optimal solution cost below a given node,

i.e., it provides an upper bound (in a maximization setup). AOBB compares this estimate

against the best solution found so far, i.e., a lower bound. If this lower bound exceeds the

upper bound of a node n, the subproblem below n can be disregarded, or pruned, since it

can’t possibly yield an improved solution. Chapter 3 and in particular Section 3.2.1 have

demonstrated the significant effect that pruning can have on the size of the explored search

space.

One key realization is that the pruning mechanism of branch-and-bound relies inherently

on the algorithm’s depth-first exploration. Namely, subproblems are solved to completion

before the next sibling subproblem is considered, where the best solution found previously

is used as a point of reference for pruning. (This depth-first property is also at the core of

Chapter 2, where its impact is considered in the context of anytime performance.)

In the context of parallelizing AOBB on a computational grid, however, this property is com-

promised. Parallel subproblems, as determined by the parallel cutoff, are processed indepen-

dently and on different worker hosts. And because these hosts typically can’t communicate,

or aren’t even aware of each other, lower bounds (i.e., conditionally optimal subproblem

solutions) from an earlier subproblem are not available for pruning in later ones. Here “ear-

lier” and “later” refers to the order in which the subproblems would have been considered

by sequential AOBB. The following example illustrates:

Example 4.6. Figure 4.7 shows the top part of the search space from Figure 4.3a,. aug-

mented with some cost-related information (assuming a max-product setting): assigning vari-

able A to 0 and 1 incurs cost 0.9 and 0.7, respectively; the heuristic estimates for the two
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Figure 4.7: Example of impacted pruning across subproblems. Depending on the optimal
solution cost to subproblem {A = 0}, subproblem {A = 1} could be pruned. Max-product
setting.

subproblems below variable B are 0.85 and 0.8 , respectively. Assume that the optimal solution

to the subproblem below variable B for {A = 0} is 0.7 .

In fully sequential depth-first AOBB, the current best overall solution after exploring {A = 0}

is thus 0.9 · 0.7 = 0.63 . When AOBB next considers the right subproblem at node B with

{A = 1} , the pruning check compares that overall solution against the heuristic estimate for

the subproblem below B (including the parent edge labels). And since 0.63 > 0.7 · 0.8 = 0.56

the subproblem below node B for {A = 1} cannot possibly yield an improved overall solution

(recall that the heuristic overestimates) and is pruned at this point.

Now assume a parallel cutoff at fixed depth d = 1, yielding two parallel subproblems rooted

at nodes B with {A = 0} and {A = 1} respectively, as indicated in Figure 4.7. In this case

the optimal solution to the left subproblem {A = 0} would not be available to the worker host

processing the subproblem with {A = 1} on the right. That means that node B on the right

will be expanded and its children processed depth-first by AOBB in the worker host, resulting

in redundant computations.

The specific effect of the (un)availability of lower bounds and its impact on pruning is

hard to analyze. From a practical point of view, however, we aim to address this issue

in our implementation as follows: As part of preprocessing in the master host, before the

actual exploration of the conditioning space, we run a few seconds of incomplete search (e.g.,
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stochastic local search [60] or limited discrepancy search [58, 99]). This yields an overall

solution that is possibly not optimal, i.e., it is a lower bound. It is subsequently transmitted

with each parallel subproblem, to aid in the pruning decisions of sequential AOBB running

on the worker hosts.

4.5.2 Impacted Caching across Parallel Subproblems

A second aspect that is at least partially compromised by the grid implementation of parallel

AOBB lies in the caching of unifiable subproblems. Observed already in Examples 4.3 and

4.4, this section will provide in-depth analysis of this issue – in the context of the graphical

model paradigm, we also refer to it as structural redundancy.

Recall that in AND/OR graph search, certain subproblems can be unified based on their

context, i.e., the partial instantiation that separates a subproblem from the rest of the

network (cf. Section 1.3.1). The following example expands upon the problem instance from

Example 1.8 to reiterate and illustrate:

Example 4.7. Figure 4.8a shows an example primal graph with eight problem variables A

through H. A possible pseudo tree with induced width 2 is shown in Figure 4.8b, annotated

with each variable’s context. The corresponding context-minimal AND/OR search graph is

shown in Figure 4.8c, having a total of 50 AND nodes. We note the following:

• Like in Example 1.8, subproblem decomposition is exhibited below variable B, with two

children C and E in the pseudo tree.

• As before, the context of variables D and F is {B,C} and {B,E}, respectively. There

are thus only four possible context instantiations (variable A not being in either con-

text), which allows for caching of the subproblems rooted at D and F , with two incoming

edges each from the level above.
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(a) Primal graph with eight variables. (b) Pseudo tree, induced width 2.

(c) Context-minimal AND/OR search graph.

Figure 4.8: Example problem with eight binary variables, pseudo tree along ordering
A,B,C,D,E, F,G,H (induced width 2), and corresponding context-minimal AND/OR
search graph.
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• The context of variable G is {D}. Hence there are only two possible context instantia-

tions, leading to four incoming edges per subproblem rooted at G.

• The context of variable H is {E, F}. With four possible context instantiations, we

observe two incoming edges per subproblem rooted at H from the level above.

As we have noted, some of the caching is compromised by the conditioning process, since the

respective cache tables are not shared across worker hosts and parallel subproblems. The

following sections quantify this effect. We focus on the fixed-depth parallelization scheme,

but the application to a variable-depth parallel cutoff is straightforward. Similar to the

state space bound derived for sequential AOBB in Section 3.2.1, our analysis will provide an

upper bound on the overall parallel search space, i.e., the conditioning space and all parallel

subproblem search spaces.

4.5.2.1 Parallel Search Space Bound

We assume a pseudo tree T with n nodes for a graphical model (X,D, F,⊗) with variables

X = {X1, . . . , Xn} (cf. Definition 1.1). For simplicity, we assume |Di| = k for all i , i.e., a

fixed domain size k . Let Xi be an arbitrary variable in X , then h(Xi) is the depth of Xi

in T , where the root of T has depth 0 by definition; h := maxi h(Xi) is the height of T .

Lj := {Xi ∈ X | h(Xi) = j} is the set of variables at depth j in T , also called a level. For

every variable Xi ∈ X , we denote by Π(Xi) the set of ancestors of Xi along the path from

the root node to Xi in T , and for j < h(Xi) we define πj(Xi) as the ancestor of Xi at depth

j along the path from the root in T .

As before, by context(Xi) we denote the set of variables in the context of Xi with respect to

T (cf. Definition 1.8), and w(Xi) := | context(Xi)| is the width of Xi .
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Definition 4.1 (conditioned context, conditioned width). Given a node Xi ∈ X and j <

h(Xi), contextj(Xi) denotes the conditioned context of Xi when placing the parallelization

frontier at depth j , namely,

contextj(Xi) := {X ′ ∈ context(Xi) | h(X ′) ≥ j} = context(Xi) \ Π(πj(Xi)) . (4.1)

Correspondingly, the conditioned width of variableXi is defined as wj(Xi) := | contextj(Xi)| .

The following results extend the state space bound derived for sequential AOBB in Chapter

3. Section 3.2.1 in particular showed how, by virtue of context-based subproblem caching,

each variableXi cannot contribute more AND nodes to the context-minimal AND/OR search

space than the number of different assignments to its context (times its own domain size),

which in our present analysis amounts to kw(Xi)+1 . Summing over all variables gives the

overall state space bound SS , which we will refer to here as SSseq for clarity. We can

rewrite it as a summation over the levels of the search space using the notation introduced

above:

SSseq =

n∑

i=1

kw(Xi)+1 =

h∑

j=0

∑

X′∈Lj

kw(X
′)+1 . (4.2)

Starting from Equation 4.2, we now assume the introduction of a parallelization frontier at

fixed depth d . Up to and including level d , caching is not impacted and the contribution

to the state space remains the same. Below level d however, caching is no longer possible

across the parallel subproblems, while it is not impacted within.

Theorem 4.4 (Parallel search space). With the parallelization frontier at depth d , the

overall number of AND nodes across conditioning search space and all parallel subproblems
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is bounded by:

SSpar(d) =

d∑

j=0

∑

X′∈Lj

kw(X
′)+1 +

h∑

j=d+1

∑

X′∈Lj

kw(πd(X
′))+wd(X

′)+1 (4.3)

Proof. The first part of the sum, over levels L0 through Ld , remains unchanged from Equa-

tion 4.2, since the conditioning search space is still subject to full caching. We then note

that the variables in level Ld are those rooting the parallel subproblems that are solved

by the worker hosts. For a given subproblem root variable X̂ ∈ Ld we can compute the

number of possible context instantiations as kw(X̂) , expressing how many different parallel

subproblems rooted at X̂ may be generated. For a variable X ′ that is a descendant of X̂

in T (i.e., πd(X
′)= X̂ ), the contribution to the search space within a single subproblem is

kwd(X
′)+1 , based on its conditioned width wd(X

′) . The overall contribution of X ′, across all

parallel subproblems, is therefore kw(X̂) · kwd(X
′)+1 = kw(πd(X

′))+wd(X
′)+1 ; summing this over

all variables at depth greater than d yields the second half of the sum in Equation 4.3.

Observe that SSpar(0) = SSpar(h) = SSseq . For d = 0 the entire problem is a single

“parallel” subproblem, executed at one worker host. In the case d = h the conditioning

space ends up covering the entire search space, solved centrally by the master host.

4.5.2.2 Parallel Search Space Example

This section presents an example to better illustrate Theorem 4.4. Figures 4.9, 4.10, and

4.11 show examples of parallel search spaces resulting from introducing a fixed-depth paral-

lelization frontier to the context-minimal AND/OR search graph from Example 4.7 / Figure

4.8c, with a state space bound of SSseq = 50 AND nodes. We explain each figure in detail

in the following:

175



Figure 4.9: Illustration of parallelization impact on caching for AND/OR search graph
from Figure 4.8c (page 172), with parallel cutoff at fixed depth d = 1 . Guiding pseudo tree
from Figure 4.8b included for reference.

Example 4.8. Figure 4.9 is based on a parallel cutoff at depth d = 1 , i.e., the conditioning

set is only {A} . We note that A is in the context of B which roots the parallel subproblems.

It is not in the contexts of D, F , G, or H, though – therefore each of these variables’

contribution to the overall search space increases by a factor of two, the domain size of A.

Note also that not all caching is voided, as evident by the nodes for G and H , with four and

two edges incoming from the level above, respectively. The overall number of AND nodes in

the parallel search space of Figure 4.9 is SSpar(1) = 78 ; the conditioning space has 2 and

each parallel subproblem has 38 AND nodes.

Example 4.9. In Figure 4.10 we demonstrate the effect of placing the parallel cutoff at depth

d = 2 , implying a conditioning set of {A,B} . The root nodes of the parallel subproblems

are thus C and E , both of which have context {A,B} . Compared to a cutoff with d = 1 , no

additional redundancy is introduced with respect to nodes for D and F , since those variables
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Figure 4.10: Illustration of parallelization impact on caching for AND/OR search graph
from Figure 4.8c (page 172), with parallel cutoff at fixed depth d = 2 . Guiding pseudo tree
from Figure 4.8b included for reference.

have B in their context. Variables G and H, however, don’t have B in their context, which

is why some of caching is lost relative to d = 1 and the number of nodes corresponding to

G and H increases twofold across all parallel subproblems. Again, note that some caching

is preserved for G , with two incoming edges each. The overall number of AND nodes in the

parallel search space of Figure 4.10 is SSpar(2) = 102 ; the conditioning space has 6, and the

parallel subproblems have 10 (root C) or 14 (root E) AND nodes, respectively.

Example 4.10. The parallel search space in Figure 4.11 is based on a parallel cutoff at

depth d = 3 , with a conditioning set {A,B,C,E} . That makes D and F the root nodes of

the parallel subproblems, which have context {B,C} and {B,E} , respectively. In particular,

the parallel subproblems don’t depend on A and can hence be cached at the leaves of the

conditioning space in the master host, as indicated by two incoming edges each in Figure

4.11. In contrast to Figure 4.10 with cutoff d = 2 , however, caching for nodes G and H is
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Figure 4.11: Illustration of parallelization impact on caching for AND/OR search graph
from Figure 4.8c (page 172), with parallel cutoff at fixed depth d = 3 . Guiding pseudo tree
from Figure 4.8b included for reference.

no longer applicable, since the respective unifiable subproblems are now spread across different

parallel jobs. Overall, the number of AND nodes in the parallel search space of Figure 4.11

is SSpar(3) = 70 ; the conditioning space and each parallel subproblem have 22 and 6 AND

nodes, respectively.

4.5.2.3 Analysis of Structural Redundancy

Table 4.1 summarizes the properties of the parallel search space of the example problem and

pseudo tree given in Figure 4.8 for the full range of parallel cutoff depths 0 ≤ d ≤ 5 . We

list the overall parallel state space size SSpar(d) as well as the size of the conditioning space,

the number of parallel subproblems, and the size of the largest one.
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d
0 1 2 3 4 5

parallel space SSpar(d) 50 78 102 70 50 50
conditioning space 0 2 6 22 38 50
no. of subproblems 1 2 8 8 6 0

max. parallel subproblem 50 38 14 6 2 –
cond. space + max. subprob 50 40 20 28 40 50

Table 4.1: Parallel search space statistics for example problem from Figure 4.8 with varying
parallel cutoff depth d .

As expected, we note that SSpar(0) and SSpar(5) match the sequential state space bound

SSseq = 50 . In the case of d = 0 we have no conditioning and one large parallel subproblem,

for d = 5 the entire problem space is covered by the conditioning space in the master host.

We also see that SSpar(d) increases monotonically until it peaks at d = 2, from which point on

it decreases monotonically. This convexity, however, is owed to the simplicity of the example

problem – in general there could be several local maxima, depending on the structure of the

problem and the chosen pseudo tree. However, it’s easy to see that SSpar(d) ≥ SSseq for

0 ≤ d ≤ h , i.e., conditioning can only increase the size of the parallel search space.

Clearly, the parallel search space measure SSpar(d) does not account for parallelism – in

other words, while the overall parallel search space bound might go up with increased cutoff

depth d , we hope that the additional parallelism will compensate for it, yielding a net gain

in terms of parallel run time.

We can therefore instead consider a metric based on the assumption that the parallel sub-

problems are solved in parallel. In particular, if the number of CPUs exceeds the number of

subproblems, we only need to consider the size of the largest subproblem an add it to the

size of the conditioning space. The resulting measure can be seen as indication of parallel

performance, it is given in the last row of Table 4.1.

We observe that the minimum is actually achieved at d = 2 , where SSpar(d) takes its

maximum. This observation is a manifestation of Amdahl’s Law as discussed in Section
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4.2.4. Recall its statement that parallel performance and speedup is limited by the non-

parallelizable portion of a computation. In our context, a deeper cutoff depth d increases the

size of the conditioning space, which is limited to sequential, non-parallelizable exploration

in the master host.

We conclude by pointing out that the above discussion is helpful in understanding some of

the trade-offs regarding the choice of parallelization frontier in parallel AOBB. The practical

implications, however, are limited. Like the sequential state space bound, denoted SSseq

above, the parallel search space metrics considered above are upper bounds on the number

of nodes expanded by parallel AOBB. Sections 3.2.1 and 4.3.2.1 demonstrated that these

bounds are typically very loose in practice since they don’t account for determinism in the

problem specification and the algorithm’s pruning power. The following section will provide

additional evidence of this, with a more comprehensive empirical confirmation and analysis

to follow in Section 4.6.

4.5.2.4 More Practical Examples

The above example problem helped in visualizing the issue of structural redundancies, but

it was also quite simple. To provide a better understanding of the practical implications on

real-world problems, here we anticipate the more substantial evaluation in Section 4.6 and

present empirical results for two example instances, pedigree51, a linkage analysis instance,

and largeFam3-13-59, a haplotyping problem. Both problems are very hard to solve, with

1152 and 2711 variables, maximum domain size of 5 and 3, and induced width of 39 and 31,

respectively, taking 28 and 5 1/2 hours with sequential AOBB.

For each of these two problems Figure 4.12 displays the following as a function of the cutoff

depth d :

180



0 1 2 3 4 5 6 7 8 9 10 11 12 13
Cutoff depth d

107
108
109

1010
1011
1012
1013
1014
1015
1016
1017
1018

Se
ar

ch
 s

pa
ce

 s
iz

e

pedigree51, i=20

explored overall
max. subprob
underlying

0 1 2 3 4 5 6 7 8 9 10 11 12
Cutoff depth d

107
108
109

1010
1011
1012
1013
1014
1015
1016
1017

Se
ar

ch
 s

pa
ce

 s
iz
e

largeFam3-13-58, i=16

explored overall
max. subprob
underlying

Figure 4.12: Comparison of underlying parallel search space size vs. size of explored search
space (summed across subproblems) and largest subproblem, as a function of the cutoff depth
d .

• “underlying”: the size of underlying parallel search space SSpar(d) (Equation 4.3).

• “explored overall”: the overall explored search space, i.e., the number of nodes ex-

panded across the master conditioning space and all subproblems at the given level,

• “max. subprob”: the explored size of the largest subproblem at level d .

We can make the following observations:

• The underlying parallel search space, plotted with a dashed line, indeed grows expo-

nentially with d (note the vertical log scale) as a consequence of structural redundancies

introduced by parallelization.

• However, the overall explored search space grows very little, if at all, as d is increased –

far from the rapidly growing underlying search space bound. Closer analysis in Section

4.6.6 will show, in fact, that the overall explored search space grows linearly in with

increasing d , in many cases with a small slope.

• In line with previous results, the upper bound presented by the size of the underlying

parallel search space is very loose (by orders of magnitude), even for low cutoff depths

d .
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• Finally, we see that subproblem complexity, expressed in Figure 4.12 via the explored

size of the largest one, does indeed decrease as the cutoff depth d is deepened.

Overall these results tentatively confirm that the redundancies derived above, while sub-

stantial in theory, are far less pronounced in practice. We will revisit this issue in-depth in

Section 4.6.6.

4.6 Empirical Evaluation

In this section we will evaluate and analyze the performance of parallel AOBB, as proposed

in the previous Section 4.3. We first outline the experimental setup and grid environment

in Section 4.6.1. Section 4.6.2 describes the problem instances on which we evaluate perfor-

mance. In Section 4.6.3 we outline our evaluation methodology and illustrate a number of

central performance characteristics through three in-depth case studies. Building on that,

detailed evaluation is then performed for the different performance measures defined in Sec-

tion 4.2.4:

• Section 4.6.4 surveys the overall parallel performance results in terms of parallel run-

time Tpar and corresponding speedup Spar .

• In Section 4.6.5 we discuss the results in the context of parallel resource utilization

Upar , a secondary performance metric introduced earlier.

• Similarly, the subject of parallel redundancies (detailed in Section 4.5) and the resulting

overhead Opar is investigated in Section 4.6.6.

• Related to the issue of speedup, Section 4.6.7 will specifically focus on the question of

scaling of the parallel performance with increasing number of CPUs.
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Finally, Section 4.6.8 will summarize the empirical results as well as our analysis of them.

The experiments that form the basis of our evaluation encompass over 1400 parallel runs

across 75 benchmark cases (i.e., combinations of problem instance and mini-bucket i-bound),

amounting to the equivalent of approx. 91 thousand CPU hours, i.e., over 10 years of com-

putation time. A comprehensive subset of results is presented and discussed in this section,

with complete tables included in Appendix B for reference.

4.6.1 Experimental Setup

Experimental evaluation was conducted on an in-house cluster of 27 computer systems, each

with dual 2.67 GHz Intel Xeon 6-core CPUs and 24 GB of RAM, running a recent 64-bit

Linux operating system. This makes for a total of 324 CPU cores with 2GB of available RAM

per core. Note that each core is treated separately by the Condor grid management system.

In the following we will hence use the terms “CPU,” “core,” and “processor” interchangeably,

always referring to a single worker in the Condor grid system.

The master host of our parallel scheme as well as the Condor grid scheduler was a separate,

dedicated 2.8 GHZ Intel Xeon quad-core system with 16 GB of RAM. This system was

chosen because of its additional redundancy through RAID hard drive mirroring – in principle

any of the other, “regular” machines could have been designated the master host without

significantly altering the results. All systems are connected over a local gigabit network.

The parallel schemes described above were implemented in C++. The full source code is

available under an open-source GPL license at http://github.com/lotten/daoopt.
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Algorithm 4.3 Pseudo code for simulation of parallel run with p CPUs.

Given: Master host preprocessing time Tpre, list of subproblem runtimes T 1
par, . . . , T

C
par ,

target number of CPUs p .
Output: Overall parallel runtime, i.e., termination of last worker.
1: workers← array(p, 0) // Array of size p with all entries set to 0 .
2: for i← 1 to p :
3: workers [i]← Tpre // Initialize each worker time to Tpre
4: for j ← 1 to C : // over subproblems
5: i∗ ← argmini workers [i]
6: workers [i∗]← workers [i∗] + T jpar // Assignment of subproblem j to worker i∗

7: return maxi workers [i]

4.6.1.1 Mapping Subproblems to CPUs

We point out that the number of subproblems does not have to match the number of CPUs.

Clearly, if the CPU count exceeds the number of subproblems, some CPUs will sit idle. In

the case where the number of subproblems is greater than the available number of CPUs,

however, the Condor system holds submitted parallel jobs in a first-in-first-out (FIFO) queue;

each time a processor completes a subproblem and reports its solution, it is immediately

assigned the next subproblem in the queue.

4.6.1.2 Simulating Large Number of CPUs

With 324 CPUs at our disposal, as noted above, we are able to directly run any parallel

experiment targeting that number of CPUs (or fewer) and simply observe and record its

performance at runtime. To consider experiments with a more than 324 CPUs, we can exploit

the independent nature of the parallel subproblems to efficiently simulate the respective

results.

In particular, we can simply run the parallel scheme with fewer CPUs, as available, and

record each parallel subproblem’s runtime, including network transmission, job setup time,

and other distributed overhead (see Section 4.4.1). Afterwards, simulating execution with p
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CPUs is straightforward, with pseudo code shown in Algorithm 4.3. Given are the master

host preprocessing time Tpre and an ordered list of recorded subproblem runtimes T ipar .

We maintain an array of worker runtimes, with all p entries initially set to the master

preprocessing time Tpre , since the worker hosts are just idle during that period (lines 1–3).

We then iterate over the parallel subproblems in order, at each point adding the runtime of

subproblem j to the worker node with the lowest current runtime (lines 4–6). Finally, the

longest worker runtime is returned as the overall parallel runtime in line 7.

Instead of returning only the overall parallel runtime, Algorithm 4.3 can easily be extended

to return more diverse metrics, as outlined in Section 4.2.4.

We confirmed the relative accuracy of this simulation by comparing its output on runs with

fewer than 324 CPUs against the actual results. For very large number of CPUs (tens of

thousands) there are likely scaling effects like network saturation that are not captured by

the simulation, but for CPU counts on the same order of magnitude as our experimental

setup we are confident that the simulated results have high accuracy.

4.6.2 Benchmark Problem Instances

This section will introduce and describe the set of benchmarks that form the basis of our

experimental evaluation. We consider instances from the same four problem classes as in

Chapter 3. The description of each problem class from Section 3.4.1 in particular is repeated

below:

• Linkage analysis (“pedigree”): Each of these networks is an instance of a genetic

linkage analysis problem on a particular pedigree, i.e., a family ancestry chart over

several generations, annotated with phenotype information (observable physical traits,

inheritable diseases, etc.) [40, 41]. Originally aimed at P (e) sum-product likelihood
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computation, these problems have gained popularity as MPE benchmarks due to their

complexity and real-world applicability and have been included in recent inference

competitions [23, 35].

• Haplotype inference (“largeFam”): These networks also encode genetic pedigree

instances into a Bayesian network. However, the encoded task is the haplotyping

problem, which differs from linkage analysis and necessitates different conversion and

data preprocessing steps to generate the graphical model input to our algorithms [1, 39].

• Protein side-chain prediction (“pdb”): These networks correspond to side-chain

conformation prediction tasks in the protein folding problem [115]. The resulting

instances have relatively few nodes, but very large variable domains, forcing a very low

mini-bucket i-bound of 3 and generally rendering most instances very complex.

• Grid networks (“75-”): Randomly generated grid networks of size 25x25 and 26x26

with roughly 75% of the probability table entries set to 0. From the original set of

problems used in the UAI’08 Evaluation, only a handful proved difficult enough for

inclusion here [23].

Statistics for the pedigree instances are shown in Table 4.2, largeFam problems are covered in

Table 4.3, pdb instances are listed in Table 4.4, while Table 4.5 contains details for the grid

benchmarks. For each problem we list the number of problem variables n , the number of cost

functionsm , the maximum domain size k , and the induced width w and pseudo tree height h

along a given minfill variable ordering. We also include the runtime, in seconds, of sequential

AOBB for one or more i-bounds as listed (which determines the heuristic accuracy).
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Subproblems for fixed depth d

instance n m k w h i Tseq 1 2 3 4 5 6 7 8 9 10 11 12 13

ped13 1077 1077 3 32 102
8 252654 2 4 8 16 32 64 128 256 512 1024 2048 4096 6144
9 102385 2 4 8 16 32 64 128 256 512 1024 2048 4096 6144

ped19 793 793 5 25 98 16 375110 4 12 48 144 288 1440 2880 5752 7672 11254 14968

ped20 437 437 5 22 60
3 5136 2 6 12 32 96 160 480 800 3200 6400
4 2185 2 6 12 32 96 160 480 800 3200 6400

ped31 1183 1183 5 30 85
10 1258519 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192
11 433029 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192
12 16238 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192

ped33 798 798 4 28 98 4 6010 2 3 6 6 12 24 48 96 192 384 768 1536 1536

ped34 1160 1160 5 31 102
10 962006 3 5 10 20 30 60 90 180 360 716 952 1896 3752
11 350574 3 5 10 20 30 60 90 180 360 720 956 1912 3808
12 96122 3 5 10 20 30 60 90 180 360 716 948 1896 3728

ped39 1272 1272 5 21 76
4 6632 2 4 8 16 64 128 384 768 1152 2304 4608
5 2202 2 4 8 16 64 128 384 768 1152 2304 4608

ped41 1062 1062 5 33 100
9 25607 3 8 16 32 64 128 176 352 704 1408 2176 4352 8556
10 46819 3 8 16 32 64 128 176 352 704 1408 2176 4352 8576
11 27583 3 8 16 32 64 128 176 352 704 1408 2176 4352 8460

ped44 811 811 4 25 65
5 207136 2 4 8 16 64 112 336 560 1120 2240 4480 8960 17920
6 95830 2 4 8 16 64 112 336 560 1120 2240 4480 8960 17920

ped50 514 514 6 17 47
3 4135 2 4 24 144 720 2160 5760 14401
4 1780 2 4 24 144 720 2160 5760 14400

ped51 1152 1152 5 39 98
20 101788 2 4 8 16 32 64 128 256 512 1024 2048 4064 7968
21 164817 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192

ped7 1068 1068 4 32 90
6 118383 2 4 12 32 96 160 480 640 1280 1280 2560 3840 7680
7 93380 2 4 12 32 96 160 480 640 1280 1280 2560 3840 7680
8 30717 2 4 12 32 96 160 480 640 1276 1276 2552 3816 7588

ped9 1118 1118 7 27 100
6 101172 2 4 8 16 32 32 64 128 256 512 1024 2048 4096
7 58657 2 4 8 16 32 32 64 128 256 512 1024 2048 4096
8 41061 2 4 8 16 32 32 64 128 256 512 1024 2048 4096

Table 4.2: Statistics for pedigree linkage instances with number of subproblems generated
by fixed-depth parallel AOBB at various depths d .

4.6.2.1 Cutoff Depth and Subproblem Count

The remaining columns of Tables 4.2 through 4.5 list the number of parallel subproblems

generated when running parallel AOBB with a parallelization frontier at various fixed depths

d as indicated; i.e., in some cases several subproblems might have been pruned by the master

process (recall that the conditioning space is also processed by AOBB). These subproblem

counts will serve as a reference for subsequent variable-depth experiments in the empirical

evaluation of Sections 4.6.3 through 4.6.6.
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Subproblems for fixed depth d

instance n m k w h i Tseq 1 2 3 4 5 6 7 8 9 10 11 12 13

lF3-11-57 2670 2670 3 37 95
15 121311 2 4 6 18 30 30 60 60 120 180 360 1080 1440
16 35820 2 4 6 18 30 30 60 60 120 180 360 1080 1440
17 18312 2 4 6 18 30 30 60 60 120 180 360 1080 1440

lF3-11-59 2711 2711 3 32 73
14 35457 3 5 10 10 30 50 150 200 600 1000 2000 2000 4000
15 8523 3 5 10 10 30 50 150 200 596 992 1962 1962 3886
16 3023 3 5 10 10 30 50 150 200 600 1000 1999 1999 3992

lF3-13-58 3352 3352 3 31 88
14 46464 2 4 12 20 60 100 200 200 600 1200 2000 4000 6400
16 20270 2 4 12 20 60 100 200 200 600 1200 1998 3990 6390
18 7647 2 4 12 20 60 100 200 200 591 1181 1958 3858

lF3-15-53 3384 3384 3 32 108
17 345544 2 4 12 16 34 46 78 201 358 632 1093 1927 2831
18 98346 2 4 12 16 32 44 68 165 284 526 912 1572 2496

lF3-15-59 3730 3730 3 31 84
18 28613 2 4 8 20 40 80 240 476 942 1855 3633 7098 13781
19 43307 2 4 8 20 40 80 240 476 936 1830 3571 6964 13482

lF3-16-56 3930 3930 3 38 77
15 1891710 3 9 15 43 71 205 470 934 934 1827 2707 7582
16 489614 2 3 9 15 42 70 201 455 900 900 1766 2629 7122

lF4-12-50 2569 2569 4 28 80
13 57842 3 12 24 72 288 864 3456 5760
14 33676 3 12 24 72 288 864 3456 5760

lF4-12-55 2926 2926 4 28 78
13 104837 2 4 8 16 64 128 256 512 1024 1024 1792 1792 3072
14 25905 2 4 8 16 48 96 192 384 768 768 1536 1536 3072

lF4-17-51 3837 3837 4 29 85
15 10607 2 4 4 8 16 32 40 56 128 152 176 352 400
16 66103 2 4 8 16 32 64 80 112 256 304 352 704 800

Table 4.3: Statistics for largeFam haplotyping instances with number of subproblems
generated by fixed-depth parallel AOBB at various depths d .

Subproblems for fixed depth d

instance n m k w h i Tseq 1 2 3 4 5 6

pdb1a6m 124 521 81 15 34 3 198326 9 81 511 15318
pdb1duw 241 743 81 9 32 3 627106 9 54 784 15081
pdb1e5k 154 587 81 12 43 3 112654 66 1046 11321
pdb1f9i 103 387 81 10 24 3 68804 81 6534
pdb1ft5 172 645 81 14 33 3 81118 27 118 5281
pdb1hd2 126 448 81 12 27 3 101550 79 3777
pdb1huw 152 587 81 15 43 3 545249 9 42 293 654 1588 2597
pdb1kao 148 568 81 15 41 3 716795 27 215 752 3241
pdb1nfp 204 791 81 18 38 3 354720 6 48 336 3812
pdb1rss 115 448 81 12 35 3 378579 8 109 908 1336
pdb1vhh 133 556 81 14 35 3 944633 27 1842 67760

Table 4.4: Statistics for pdb side-chain prediction instances with number of subproblems
generated by fixed-depth parallel AOBB at various depths d .
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Subproblems for fixed depth d

instance n m k w h i Tseq 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

75-25-1 624 626 2 38 111
12 77941 2 4 8 16 16 32 64 128 192 192 192 384 768 1152 2112
14 15402 2 4 8 8 8 16 32 64 96 96 192 288 576 864 1584

75-25-3 624 626 2 37 115
12 104037 2 4 4 6 6 12 24 48 48 72 144 288 576 960 1536
15 33656 2 4 4 6 6 12 24 48 48 72 144 288 576 960 1536

75-25-7 624 626 2 37 120
16 297377 2 3 6 12 24 36 72 144 216 288 504 1008 2016 2688 3360
18 21694 2 3 6 12 24 36 72 144 216 288 504 1008 2014 2661 3325

75-26-10 675 677 2 39 124
16 46985 2 4 8 8 16 16 32 64 128 192 384 384 768 1280 1280
18 26855 2 4 8 8 16 24 48 80 160 240 480 480 960 1216 1216

75-26-2 675 677 2 39 120
16 25274 2 4 8 12 24 48 96 144 288 384 640 1280 1280 2560 3840
20 8053 2 4 8 12 24 48 96 144 288 384 640 1280 1280 2560 3840

75-26-6 675 677 2 39 133
10 199460 2 4 8 16 32 64 128 128 128 256 384 576 1152 2304 4608
12 64758 2 4 8 16 32 64 128 128 128 256 384 576 1152 2304 4608

75-26-9 675 677 2 39 124
16 59609 2 4 8 16 24 48 96 120 240 480 960 1920 3840 3840 7680
18 66533 2 4 8 16 24 48 96 120 240 480 960 1920 3840 3840 7680
20 5708 2 4 8 16 24 48 96 120 240 320 640 1280 2560 2560 5120

Table 4.5: Statistics for grid network instances with number of subproblems generated
by fixed-depth parallel AOBB at various depths d .

Note that not all cutoff depths were run for every problem instance. In particular, a relatively

deep parallel cutoff makes little sense for easy problems (with low Tseq ) for a number of

reasons:

• Conceptually, we quickly approach the limits of Amdahl’s Law, as described in Section

4.2.5. Namely, the preprocessing and central conditioning step make up an exceedingly

large proportion of the computation, quickly limiting the attainable speedup.

• A deep cutoff on an easy problem instance will predominantly yield near-trivial sub-

problems. This leads to “thrashing,” where the distributed overhead from communi-

cation and job setup time far exceeds the actual computation time.

• Finally, our current implementation hits the limitations of the operating system (in

particular, the underlying file system) when working with tens of thousands of sub-

problems, due to its reliance on temporary files for subproblem solutions and statistics.

In practice, this causes a variety of error messages and generally unpredictable behavior

and is extremely challenging to troubleshoot. Bypassing these limits is not impossi-
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ble, but would require re-engineering and re-implementing major parts of the parallel

system.

Looking at the progression of subproblem counts for each problem instance, we notice that

in most cases this number increases by an integer factor – the domain size of the variable

that was added to the conditioning set. For instance, for ped13 (Table 4.2) the subproblem

count increases by a constant factor of 2 with each depth level. In other cases this factor

varies between different integer values from level to level – for for lF4-12-50 in Table 4.3, for

example, this sequence of factors is 3, 2, 2, 3, 4, 3, 4 from d = 1 through d = 7 .

Secondly, we observe instances where the relative subproblem count increase is not always

integer, or in fact doesn’t increase at all from one depth level to the next. Examples include

ped9 (Table 4.2), where the subproblem count remains the same going from d = 5 to d = 6 ,

or lF3-16-56 (Table 4.3), when going from d = 9 to d = 10. Also in case of lF3-16-56,

the move from d = 4 to d = 5 or d = 10 to d = 11, for instance, sees the number of

subproblems grow from by a factor of slightly less than 3 and 2, respectively. These can be

attributed to either determinism, where the conditioning instantiates a cost function with

value 0 (assuming a max-product setting), or to pruning based on the mini-bucket heuristic,

where AOBB can discard some of the parallel subproblems based on the heuristic estimate

of their solution cost.

4.6.2.2 Choice of Mini-bucket i-bound

The i-bound values shown in Tables 4.2 through 4.5 were chosen according to two criteria:

• Feasibility: Larger i-bounds imply a larger mini-bucket structure (size exponential in

i), so the limit of 2 GB memory per core implies a natural boundary. For instance,
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the large domain sizes of up to k = 81 render i = 3 the highest possible value for pdb

instances (Table 4.4).

• Complexity: In several cases we lowered the i-bound from its theoretical maximum

(given the 2 GB memory limit) to make the problem instance harder to solve and

more interesting for applying parallelism. Ped7 and ped9, for example, can be solved

sequentially in minutes with higher i-bounds.

In many cases we choose to examine a problem instance in combination with more than one

i-bound. This will also allow us to investigate how the heuristic strength impacts the parallel

performance.

4.6.2.3 A Note on Problem Instance Selection

We point out that finding suitable problem instances is a significant, time-consuming chal-

lenge in itself, specifically when targeting parallelism on the scale of hundreds of CPUs. In

particular, many problem instances that are solved by AOBB in seconds or minutes are of

little interest in the context of parallelization – Amdahl’s Law and the inherent distributed

overhead severely limit the potential gain in these cases. For instance, if parallel AOBB

spends 1 minute of non-parallelizable preprocessing in the master process on a problem that

only takes sequential AOBB 20 minutes to solve, the best theoretically attainable speedup

is 20. And in practice this is only exacerbated by the overhead from communication and

job setup, which increasingly dominates the solution time for very small subproblems. On

the other hand there are several hard problems that remain infeasible within realistic time

frames even for parallel AOBB on several hundred CPUs – detecting this infeasibility is a

costly endeavor, often simply achieved through trial and error.
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4.6.3 Methodology and Three In-depth Case Studies

This section provides an introduction to the methodology of our experiments. We put some

earlier remarks into context and then provide hands-on illustration by studying in detail the

parallel performance of three example instances. The results presented in this section set

the stage for the more comprehensive evaluation in subsequent sections.

Given a specific problem instance, we proceed as follows: we first run parallel AOBB with

fixed-depth cutoff (Algorithm 4.1) on all benchmark instances for varying cutoff depths d , as

stated previously. Besides monitoring the actual parallel performance through the runtime

Tpar , we also record the number of parallel subproblems generated as a function of the

cutoff depth d , as indicated Tables 4.2 through 4.5 in Section 4.6.2. We then run parallel

AOBB with variable-depth cutoff using these recorded subproblem counts as input (called p

in Algorithm 4.2) and record the parallel performance. This allows us to directly compare

the two schemes.

Somewhat orthogonal to the number of subproblems is the number of worker hosts (parallel

processors) that participate in the parallel computation – as mentioned previously, if the

number of subproblems exceeds the number of CPUs, subproblems get assigned in a first-

come, first-served manner. Of particular interest in this context is the issue of scaling, where

one considers how the parallel speedup Spar = Tseq
Tpar

changes with the number of parallel

resources. Ideally, speedup scales linearly with the number of processors. However, since

parallelizing AND/OR Branch-and-Bound is far from embarrassingly parallel, as detailed in

Section 4.5, this is unrealistic in our case.

With this in mind we choose to conduct all experiments with 20, 100, and 500 CPUs, to

capture and assess small-, medium-, and relatively large-scale parallelism. Note that results

on 500 CPUs are simulated based on runs with just over 300 cores, as described in Section
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Cutoff depth d
instance i Tseq #cpu 2 4 6 8 10 12

fix var fix var fix var fix var fix var fix var

lF3-15-59
n=3730
k=3
w=31
h=84

19 43307

(p=4) (p=20) (p=80) (p=476) (p=1830) (p=6964)

20 15858 15694 5909 5470 3649 2845 2744 2501 3482 3505 7222 7238
100 15858 15694 5909 5470 3434 2247 1494 723 928 741 1540 1536
500 15858 15694 5909 5470 3434 2247 1414 573 692 260 415 399

ped44
n=811
k=4
w=25
h=65

6 95830

(p=4) (p=16) (p=112) (p=560) (p=2240) (p=8960)

20 26776 26836 9716 9481 6741 6811 7959 7947 10103 9763 12418 12472
100 26776 26836 9716 9481 2344 3586 1799 1700 2126 2276 2545 2543
500 26776 26836 9716 9481 1659 3586 583 886 536 905 569 824

ped7
n=1068
k=4
w=32
h=90

6 118383

(p=4) (p=32) (p=160) (p=640) (p=1280) (p=3840)

20 35387 58872 12338 58121 9031 8515 9654 7319 8705 7582 8236 7693
100 35387 58872 11956 58121 5122 7690 4860 2306 3929 1814 2644 1649
500 35387 58872 11956 58121 4984 7690 4359 2086 3294 1301 1764 943

(a) Results for parallel runtime, in seconds.

Cutoff depth d
instance i Tseq #cpu 2 4 6 8 10 12

fix var fix var fix var fix var fix var fix var

lF3-15-59
n=3730
k=3
w=31
h=84

19 43307

(p=4) (p=20) (p=80) (p=476) (p=1830) (p=6964)

20 2.73 2.76 7.33 7.92 11.87 15.22 15.78 17.32 12.44 12.36 6.00 5.98
100 2.73 2.76 7.33 7.92 12.61 19.27 28.99 59.90 46.67 58.44 28.12 28.19
500 2.73 2.76 7.33 7.92 12.61 19.27 30.63 75.58 62.58 166.57 104.35 108.54

ped44
n=811
k=4
w=25
h=65

6 95830

(p=4) (p=16) (p=112) (p=560) (p=2240) (p=8960)

20 3.58 3.57 9.86 10.11 14.22 14.07 12.04 12.06 9.49 9.82 7.72 7.68
100 3.58 3.57 9.86 10.11 40.88 26.72 53.27 56.37 45.08 42.10 37.65 37.68
500 3.58 3.57 9.86 10.11 57.76 26.72 164.37 108.16 178.79 105.89 168.42 116.30

ped7
n=1068
k=4
w=32
h=90

6 118383

(p=4) (p=32) (p=160) (p=640) (p=1280) (p=3840)

20 3.35 2.01 9.59 2.04 13.11 13.90 12.26 16.17 13.60 15.61 14.37 15.39
100 3.35 2.01 9.90 2.04 23.11 15.39 24.36 51.34 30.13 65.26 44.77 71.79
500 3.35 2.01 9.90 2.04 23.75 15.39 27.16 56.75 35.94 90.99 67.11 125.54

(b) Corresponding parallel speedup results, relative to Tseq.

Table 4.6: Subset of parallel results on select problem instances. Each entry lists the
number of parallel subproblems p as well as, from top to bottom, the performance with 20,
100, and (simulated) 500 parallel cores, with fixed-depth parallel cutoff on the left (“fix”)
and variable-depth on the right (“var”). Each row’s best value is highlighted in gray.

4.6.1; the 500 CPU count is close enough to our actual parallel setup that we feel very

confident in the accuracy of the simulated runtimes.

Two different parallel schemes as well as varying number of subproblems and parallel pro-

cessors lead to a staggering amount of experimental data, not all of which can be presented

here. We thus only present a limited yet comprehensive subset, with full result tables given

in Appendix B.
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4.6.3.1 Overview of Three Case Studies

We begin by going over detailed results for a number of problem instances, to better explain

the experimental methodology and highlight relevant performance characteristics. Table 4.6

shows a subset of parallel results on three particular problem instances, largeFam3-15-59 with

i-bound 19, pedigree44 with i = 6, as well as pedigree7 with i = 6. Sequential runtimes using

AOBB are 12 hours, over 26 hours, and almost 33 hours, respectively. Section 4.6.2 gave the

instances’ induced width as 31, 25, and 32, respectively; for the full set of instance properties

refer to Tables 4.2 and 4.3. As discussed above, we use the subproblem count yielded by

fixed-depth parallelization (Algorithm 4.1) as input to the variable-depth scheme (Algorithm

4.2), so that we obtain a corresponding parallelization frontier for each fixed-depth cutoff.

Table 4.6 presents overall parallel results for a subset of cutoff depths d ∈ {2, 4, 6, 8, 10, 12} .

In particular, Table 4.6a shows the overall parallel runtimes (denoted Tpar earlier), i.e., the

time from the start of preprocessing in the master host to the termination of the last worker.

The corresponding parallel speedup values, i.e., the ratio of sequential over parallel runtime,

are given in Table 4.6b.

Each field in the two tables contains several values: at the top, the subproblem count p is

specified as obtained at the given cutoff depth d for this particular instance; then on the left,

with column title “fix,” the result (runtime or speedup) of the fixed-depth parallel scheme

with, from top to bottom, 20, 100, and 500 CPUs is listed; similarly, on the right (column

“var”), we show the result of variable-depth parallel AOBB with 20, 100, and 500 CPUs,

run with the same number of subproblems as the fixed-depth scheme. For each CPU count

(i.e., each row), the best runtime/speedup is highlighted in gray.

As a general observation, we note that low values of d produce 20 or fewer subproblems,

such that parallel performance is identical for 20, 100, or 500 CPUs – there are simply not

enough subproblems to make use of the additional parallel resources. For instance, in case
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(a) Left: parallel runtimes using 20, 100, and 500 CPUs for varying number of subproblems,
with sequential AOBB runtime indicated by horizontal dashed line. Right: corresponding parallel
speedups, with “optimal” values of 20, 100, and 500 marked by dashed horizontal lines.
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(b) Left: runtime statistics of individual subproblems for fixed-depth run with cutoff d = 8 using
100 CPUs. Right: corresponding variable-depth run with subproblem count p = 476 .

Figure 4.13: Parallel performance details of parallel AOBB with fixed-depth and variable-
depth cutoff on haplotyping instance largeFam3-15-59, i = 19 .

of largeFam3-15-59 and pedigree44, all cutoffs below d = 4 entail at most 20 subproblems

and identical performance across all CPU counts. For largeFam3-15-59 setting d = 6 creates

80 subproblems, so 20 CPUs are indeed a bit slower overall, while 100 and 500 CPUs still

give the same performance. For the two pedigree instances, however, the subproblem count

for d = 6 is already greater than 100, giving an advantage to 500 available CPUs over just

100.
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4.6.3.2 Case Study 1: largeFam3-15-59

To investigate parallel performance in more detail, consider first the largeFam haplotyping

problem largeFam3-15-59 with 3730 variables and induced width 31 (cf. Table 4.3), run

with i-bound i = 19 . In parallel execution we obtain a maximum of 6964 subproblems at

depth d = 12 . For better illustration, the parallel results listed in Table 4.6 are plotted in

Figure 4.13a, contrasting performance with 20, 100, and 500 CPUs. The left plot captures

parallel runtimes for the fixed-depth (solid lines) and variable-depth (dashed lines) scheme as

a function of the number of subproblems; the right plot does the same for the corresponding

speedup values.

Subproblem Count. We note that, as expected, performance between the three CPU

counts only begins to differ as the number of subproblems grows. Notably, we also observe

that performance for each CPU count continues to improve further as the number of subprob-

lems is increased beyond the respective CPU count. We see it deteriorate again eventually.

This is because initially the overall performance is still dominated by a few long running

subproblems, i.e., the parallel load is fairly unbalanced. Further increasing the subproblem

count and thereby parallel granularity ideally splits these hard subproblems, allowing the

resulting parts to be spread across separate CPUs. In addition, once the number of sub-

problems exceeds the CPU count, the first-come, first-served assignment of jobs to workers

allows those CPUs that finish early to continue working on another subproblem. Eventually,

however, overall performance begins to suffer as all parallel CPUs approach saturation and

smaller and smaller subproblems induce increasingly more overhead, as outlined in Section

4.4. More analysis of this will be provided in Sections 4.6.5 and 4.6.6.

For the variable-depth scheme in Figure 4.13a, for instance, the turning point of parallel

performance for 20, 100, and 500 CPUs lies at 240, 936, and 1830 subproblems, respectively

(d = 7, d = 9, and d = 10, not all included in Table 4.6, cf. Table B.8 in Appendix

196



B). It makes sense intuitively that this “sweet spot” of parallel granularity increases with

the number of CPUs. In fact, for largeFam3-11-59 we observe that the “ideal” number of

subproblems is roughly one order magnitude larger than the number of parallel CPUs. We

will find this confirmed in subsequent parallel results and note that this relation actually

matches a fairly common “rule of thumb” in distributed computing, reported for instance

by the team of Superlink Online [105].

Fixed-depth vs. Variable-depth. It is evident that in the present case a variable-

depth parallelization frontier, using regression-based complexity estimations, has a decided

edge over the fixed-depth scheme and yields faster overall runtimes. For instance, with 500

CPUs, the best speedup obtained by variable-depth AOBB in Table 4.6b is 167x (d = 10

equivalent), compared to 104x for fixed-depth at d = 12 . Using 100 CPUs, variable-depth

parallelization achieves a speedup of 60x (d = 8), while fixed-depth peaks at 47x (d = 10).

To illustrate the advantage of variable-depth parallelization, the two plots in Figure 4.13b

show the runtimes of the individual subproblems for both the fixed-depth parallel cutoff at

depth d = 8 (on the left) as well as the corresponding variable-depth parallel cutoff with

p = 476 subproblems (on the right). Subproblems are indexed in the order of their position

in the Condor job queue, which, in case of the variable-depth scheme, is sorted by decreasing

complexity estimates. Each plot also includes the overall parallel runtime as a solid horizontal

line, as well as the 0th, 20th, 80th, and 100th percentile of subproblem runtimes marked with

dashed horizontal lines.

We observe that in spite of the relatively large number of subproblems (476 jobs vs. 100

CPUs), the parallel runtime of the fixed-depth scheme is dominated by a handful of long-

running subproblems – the largest subproblem takes 1394 seconds, while the overall runtime

is 1494 seconds. Using variable-depth parallelization, on the other hand, the longest-running

subproblem takes only 552 seconds and the overall time is 723 seconds – less than half that

of the fixed-depth scheme. We furthermore note that the standard deviation in subproblem
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runtime, as noted in the plots of Figure 4.13b, is twice as high for fixed-depth parallelization

(201 vs. 93 seconds).

Finally, thanks to the estimation scheme, variable-depth parallelization is fairly successful

in pushing the easiest subproblems to the end of the parallel job queue (corresponding to

higher subproblem indexes in the plots). This is desirable since these subproblems will be

assigned to workers towards the end of the parallel execution and starting a long-running

subproblem at that stage would be potentially disastrous to the overall runtime.

Parallel Resource Utilization. Resource utilization will be discussed in more detail later,

but we point out already that in this example the average resource utilization for fixed-depth

parallelization is only 34% versus 70% for variable-depth (cf. Appendix B Table B.20, page

326). That means that the 100 CPUs used for parallel computation are on average busy

34% and 70%, respectively, relative to the longest-running CPU. In other words, variable-

depth parallelization is more than twice as efficient in terms of using parallel resources in

this example.

4.6.3.3 Case Study 2: pedigree44

Secondly, we consider pedigree44 with i = 6 with 811 variables and induced width 25 (cf.

Table 4.2). Sequential runtime is Tseq = 95830 seconds or 26 hours and 37 minutes. Overall

parallel runtime and corresponding speedup are listed in Tables 4.6a and 4.6b, respectively.

As before, various aspects of parallel performance are plotted in Figure 4.14 for illustration.

Runtime and Speedup. Figure 4.14a shows plots of runtime (left) and speedup (right)

results as a function of subproblem count. Overall results are comparable to the previous

case study, with best obtained speedups of approx. 14, 56, and 179 for 20, 100, and 500

CPUs, respectively – corresponding to runtimes of 112 minutes, 28 minutes, and 9 minutes.

However, in contrast to the example in the previous section, the fixed-depth scheme appears
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(a) Left: parallel runtimes using 20, 100, and 500 CPUs for varying number of subproblems,
with sequential AOBB runtime indicated by horizontal dashed line. Right: corresponding parallel
speedups, with “optimal” values of 20, 100, and 500 marked by dashed horizontal lines.
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(b) Left: runtime statistics of individual subproblems for fixed-depth run with cutoff d = 6 using
100 CPUs. Right: corresponding variable-depth run with subproblem count p = 112 .
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(c) Scatter plot of actual vs. predicted subproblem complexity (in node expansions) for variable-
depth parallelization with p = 112 subproblems.

Figure 4.14: Parallel performance details of parallel AOBB with fixed-depth and variable-
depth cutoff on linkage instance pedigree44, i = 6 .

199



to have a slight edge in terms of overall performance, with better results than the variable-

depth parallel cutoff for many subproblem counts. This is most notable with 500 CPUs,

even though we note that variable-depth parallelization at one point (d = 9, not shown in

Table 4.6) matches the 9 minutes runtime of the fixed-depth scheme.

Performance Analysis through Subproblem Statistics. To analyze the inferior

performance of the variable-depth scheme as observed above, Figure 4.14b illustrates the

individual subproblem complexities for fixed-depth (left, with cutoff d = 6) and variable-

depth (right, with corresponding p = 112 subproblems) parallelization: we see that the

subproblems produced by fixed-depth parallelization are actually remarkably balanced al-

ready, yielding an overall runtime of 2344 seconds. Variable-depth parallelization, on the

other hand, gives a single outlier with 3584 seconds that far dominates the overall runtime

of 3586 seconds (we also note a handful of outliers that have significantly shorter runtimes

but don’t affect overall performance).

Recall that the subproblems in the case of variable-depth parallelization are ordered by de-

creasing complexity estimates. The position of the outlier in Figure 4.14b thus suggests

that the complexity estimate of the particular subproblem was subject to considerable in-

accuracy. This hypothesis is confirmed by plotting each subproblems’ actual vs. predicted

complexity in Figure 4.14c – the outlier in question is clearly visible to the right of the main

cluster of plot entries. This case study thus serves as an example where the variable-depth

scheme, dependent on subproblem complexity estimation, falls short of its intention to avoid

long-running subproblems that constitute bottlenecks for the overall performance.

Subproblem Count. The behavior we observe regarding the choice of subproblem count

is similar to the previous example instance largeFam3-15-59. In particular, for all three CPU

counts parallel performance is identical for small number of subproblems and peaks when

the number of subproblems is several times the number of CPUs – for 20, 100, and 500 CPUs

at 112, 560, and 2240 subproblems, respectively.
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4.6.3.4 Case Study 3: pedigree7

Lastly, we consider pedigree7 with i-bound i = 6 which has a sequential runtime of Tseq =

118383 seconds, or a little under 33 hours. The problem has 1068 variables and induced

width 32 (cf. Table 4.2). A subset of parallel runtimes using 20, 100, and 500 CPUs are

shown in Table 4.6a, with corresponding speedups in Table 4.6b. As for the previous two

examples we plot the progression of runtimes and speedups as the number of subproblem

increases in Figure 4.15a.

Runtime and Speedup. In the best case, we observe parallel runtimes of about 2 hours,

27 minutes, and 15 minutes using 20, 100, and 500 CPUs, respectively – this corresponds to

speedups of 16, 72, and 126. We note that the parallel runtimes of variable-depth paralleliza-

tion show poor, almost constant parallel performance up to cutoff depth p = 32 subproblems

(corresponding to d = 4). Just like in the previous example, this suggests that one complex

subproblem (or a small number of them) is underestimated significantly by the complexity

prediction, thus dominating parallel performance. However, the performance of variable-

depth parallelization improves drastically as we increase the number of subproblems beyond

p = 96 to (corresponding to cutoff depth d = 6 and higher.

Subproblem Statistics. To investigate the performance of the variable-depth scheme,

we again consider the runtime of the individual subproblems. We find our hypothesis of an

outlier subproblem confirmed when plotting, for instance, comparing fixed-depth cutoff at

d = 5 with the corresponding variable-depth run using p = 96 (Figure 4.15b). In the latter

case the maximum subproblem runtime is 23955 seconds, which directly determines the

overall runtime of 23958 seconds – parallel resource utilization using 20 CPUs is accordingly

at a low 28% (cf. Section 4.6.5). The fixed-depth run, however, while arguably not very

balanced in terms of subproblem complexity, finished in 10239 seconds overall, with the

largest subproblem at 6632 seconds (parallel resource utilization comes out to 0.64%). Figure
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(a) Left: parallel runtimes using 20, 100, and 500 CPUs for varying number of subproblems,
with sequential AOBB runtime indicated by horizontal dashed line. Right: corresponding parallel
speedups, with “optimal” values of 20, 100, and 500 marked by dashed horizontal lines.
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(b) Left: runtime statistics of individual subproblems for fixed-depth run with cutoff d = 5 using
20 CPUs. Right: corresponding variable-depth run with subproblem count p = 96 .
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(c) Left: runtime statistics of individual subproblems for fixed-depth run with cutoff d = 8 using
100 CPUs. Right: corresponding variable-depth run with subproblem count p = 640 .

Figure 4.15: Parallel performance details of parallel AOBB with fixed-depth and variable-
depth cutoff on linkage instance pedigree7, i = 6 .
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Figure 4.16: Scatter plot of actual vs. predicted subproblem complexity for variable-depth
parallel runs with p = 96 (left) and p = 640 (right) subproblems on pedigree7, i = 6 .

4.16 (left) further illustrates the issue, plotting actual vs. predicted subproblem complexity

for the variable-depth parallel run in question, and clearly showing an outlier to the right of

the main group of plot points.

We also noted that performance of the variable-depth scheme sees drastic improvements with

more than p = 96 subproblems. In this context, Figure 4.15c shows the runtime of individual

subproblems for fixed-depth and variable-depth parallelization with 100 CPUs, using cutoff

depth d = 8 and the corresponding p = 640 subproblems, respectively. In addition, Figure

4.16 (right) contrasts the actual and predicted complexities of the variable-depth run. We

see that an outlier subproblem with drastically larger complexity is no longer present (even

though the prediction mean squared error increased). This and the generally better load

balancing (subproblem runtime standard deviation of 263 vs. 510 seconds of fixed-depth

scheme) allows the variable-depth parallelization to outperform the fixed-depth variant by

a factor of two, 2306 seconds to 4860. Parallel resource utilization is also a lot better, with

62% to 29% (cf. Section 4.6.5).
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4.6.4 Overall Parallel Performance

After highlighting and analyzing a variety of performance characteristics through three par-

ticular case studies in Section 4.6.3, this section will provide a more general overview and

analysis on the parallel runtime and speedup results of our parallel scheme.

To that end we provide a comprehensive subset of results for each problem class, with runtime

and speedup tables across all instances. In addition we show additional performance plots

of select problem instances, together with more detailed subproblem analysis in a number of

cases.

4.6.4.1 Overall Analysis of Linkage Problems

Tables 4.7 and 4.8 show a parallel runtime results for pedigree linkage analysis instances on

a subset of cutoff depths while Tables 4.9 and 4.10 list the corresponding speedup values.

Full result tables are included in Appendix B.

As for Table 4.6a, each field gives the number of subproblems p as well as parallel run-

time/speedup of fixed-depth (left) and variable-depth parallelization (right) with 20, 100,

and 500 CPUs, from top to bottom. The last row, in italic font, lists the “best possible”

parallel runtime or speedup that could be obtained if we had an unlimited number of CPUs

at our disposal – in that case each subproblem would be solved by a separate worker host

and the parallel runtime is the sum of preprocessing time and the runtime of the largest

subproblem.

As before, the best entry of each row is highlighted by a gray background. In addition, for

each pair of fixed-/variable-depth results, if one runtime is faster than the other by more

than 10%, it is marked bold. The bottom two rows of each table provide a summary of how
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Cutoff depth d
instance i Tseq #cpu 2 4 6 8 10 12

fix var fix var fix var fix var fix var fix var

ped13
n=1077
k=3
w=32
h=102

8 252654

(p=4) (p=16) (p=64) (p=256) (p=1024) (p=4096)
20 69461 136558 19125 70897 16290 24717 15228 13822 14074 13883 14734 14486

100 69461 136558 19125 70897 5945 18836 4867 11027 3603 3979 3713 3620
500 69461 136558 19125 70897 5945 18836 3339 11027 1741 2816 1516 1608
∞ 69461 136558 19125 70897 5945 18836 3339 11027 1658 2816 1139 1399

9 102385

(p=4) (p=16) (p=64) (p=256) (p=1024) (p=4096)
20 30925 31659 10539 11993 5806 9706 5111 5691 5223 5573 5656 5574

100 30925 31659 10539 11993 3481 9706 1941 3237 1337 2082 1463 1546
500 30925 31659 10539 11993 3481 9706 1682 3202 835 1764 824 841
∞ 30925 31659 10539 11993 3481 9706 1682 3202 807 1764 752 765

ped19
n=793
k=5
w=25
h=98

16 375110

(p=12) (p=144) (p=1440) (p=5752) (p=11254)
20 119407 73960 30976 28027 27290 28435 35187 37384 47882 48784

100 119407 73960 30976 20593 12125 7294 7492 7947 9705 9887
500 119407 73960 30976 20593 11930 5158 5222 3301 2912 2381

∞ 119407 73960 30976 20593 11930 5158 5079 2639 2709 1934

ped20
n=437
k=5
w=22
h=60

3 5136

(p=6) (p=32) (p=160) (p=800) (p=6400)
20 1361 1392 454 423 395 433 514 505 1164 1167

100 1361 1392 383 381 111 238 127 133 249 252
500 1361 1392 383 381 95 238 52 133 67 72
∞ 1361 1392 383 381 95 238 41 133 32 43

4 2185

(p=6) (p=32) (p=160) (p=800) (p=6400)
20 229 227 81 90 79 75 149 149 733 728

100 229 227 51 90 21 24 34 32 161 160
500 229 227 51 90 15 24 12 11 46 47
∞ 229 227 51 90 15 24 10 11 20 20

ped31
n=1183
k=5
w=30
h=85

10 1258519

(p=4) (p=16) (p=64) (p=256) (p=1024) (p=4096)
20 360625 358220 104694 103211 103639 89404 85986 81762 81513 80922 82833 81644

100 360625 358220 104694 103211 48472 49703 30712 26508 19653 17786 17082 16784
500 360625 358220 104694 103211 48472 49703 23569 17423 8172 5668 4607 3929

∞ 360625 358220 104694 103211 48472 49703 23569 17423 7100 5118 2033 1584

11 433029

(p=4) (p=16) (p=64) (p=256) (p=1024) (p=4096)
20 107463 108489 30376 29491 31225 26680 22809 24087 24048 24254 25193 25315

100 107463 108489 30376 29491 15695 15780 7333 7668 5748 5069 5367 5144
500 107463 108489 30376 29491 15695 15780 7333 7668 2384 1820 1473 1360
∞ 107463 108489 30376 29491 15695 15780 7333 7668 2141 1820 1083 818

12 16238

(p=4) (p=16) (p=64) (p=256) (p=1024) (p=4096)
20 3758 4046 1298 1224 1463 1126 1086 929 1055 1037 1444 1447

100 3758 4046 1298 1224 1176 811 437 393 287 233 325 319
500 3758 4046 1298 1224 1176 811 406 393 139 131 115 95

∞ 3758 4046 1298 1224 1176 811 406 393 127 131 70 63

ped33
n=798
k=4
w=28
h=98

4 6010

(p=3) (p=6) (p=24) (p=96) (p=384) (p=1536)
20 3071 3238 1645 1521 649 486 478 467 467 434 594 597

100 3071 3238 1645 1521 519 367 252 173 173 112 159 139

500 3071 3238 1645 1521 519 367 252 173 124 91 87 59

∞ 3071 3238 1645 1521 519 367 252 173 124 91 77 49

ped34
n=1160
k=5
w=31
h=102

10 962006

(p=5) (p=20) (p=60) (p=180) (p=716) (p=1896)
20 424691 424270 175178 144147 145741 122690 109138 93405 98912 97309 97118 96468

100 424691 424270 175178 144147 115446 75577 42110 39354 27212 21134 21438 21187
500 424691 424270 175178 144147 115446 75577 41663 39354 13890 11203 6670 6136
∞ 424691 424270 175178 144147 115446 75577 41663 39354 13680 11203 5773 5926

11 350574

(p=5) (p=20) (p=60) (p=180) (p=720) (p=1912)
20 216931 217171 103935 155893 95723 95475 80649 74447 74526 76593 76817 76397

100 216931 217171 103935 155893 79842 79099 30073 29976 19172 18735 16714 16145
500 216931 217171 103935 155893 79842 79099 30042 29976 10423 9238 5282 5692
∞ 216931 217171 103935 155893 79842 79099 30042 29976 10423 9238 4666 4194

12 96122

(p=5) (p=20) (p=60) (p=180) (p=716) (p=1896)
20 26241 26328 20456 15283 15829 15743 13996 13785 12819 13081 12979 13421

100 26241 26328 20456 15283 13298 9028 5402 5648 3489 2971 2887 2972
500 26241 26328 20456 15283 13298 9028 5390 5648 2100 1298 1014 988
∞ 26241 26328 20456 15283 13298 9028 5390 5648 2096 1298 916 625

ped39
n=1272
k=5
w=21
h=76

4 6632

(p=4) (p=16) (p=128) (p=768) (p=2304)
20 2690 2731 1494 1503 697 728 709 566 672 677

100 2690 2731 1494 1503 596 571 516 318 252 190

500 2690 2731 1494 1503 596 571 491 304 181 129

∞ 2690 2731 1494 1503 596 571 491 304 169 121

5 2202

(p=4) (p=16) (p=128) (p=768) (p=2304)
20 793 867 409 359 421 292 422 306 443 452

100 793 867 409 359 317 292 278 141 156 122

500 793 867 409 359 312 292 253 111 103 70

∞ 793 867 409 359 312 292 252 109 94 70

Better by 10% 4x 4x 16x 16x 14x 21x 10x 20x 7x 26x 1x 10x
Better by 50% 4x 4x 7x 3x 13x 6x 8x 8x 5x 3x 0x 1x

Table 4.7: Subset of parallel runtime results on linkage instances, part 1 of 2. Each
entry lists, from top to bottom, the runtime with 20, 100, (simulated) 500, and “unlimited”
parallel cores, with fixed-depth parallel cutoff on the left (“fix”) and variable-depth on the
right (“var”). If one scheme is better than the other by more than 10% (relative) its results
is marked bold. The best value in each row is highlighted in gray.
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Cutoff depth d
instance i Tseq #cpu 2 4 6 8 10 12

fix var fix var fix var fix var fix var fix var

ped41
n=1062
k=5
w=33
h=100

9 25607

(p=8) (p=32) (p=128) (p=352) (p=1408) (p=4352)
20 16193 14319 4737 2882 2193 2186 2445 2118 2427 2457 2972 2982

100 16193 14319 4565 2436 1307 793 827 576 545 520 805 666

500 16193 14319 4565 2436 1272 793 650 340 251 211 446 225

∞ 16193 14319 4565 2436 1272 793 650 340 222 172 401 148

10 46819

(p=8) (p=32) (p=128) (p=352) (p=1408) (p=4352)
20 33309 17287 9679 4851 3613 3331 3307 3199 3059 3237 3507 3538

100 33309 17287 9573 4851 2762 1711 1483 1175 904 1032 751 866
500 33309 17287 9573 4851 2728 1711 1274 1175 705 999 519 504
∞ 33309 17287 9573 4851 2728 1711 1274 1175 694 999 514 435

11 27583

(p=8) (p=32) (p=128) (p=352) (p=1408) (p=4352)
20 20222 10169 6101 3877 2189 1866 2051 1784 1988 1964 2268 2266

100 20222 10169 6039 3877 1639 1099 1010 553 548 794 548 491

500 20222 10169 6039 3877 1615 1099 900 497 292 607 259 179

∞ 20222 10169 6039 3877 1615 1099 900 497 270 581 212 117

ped44
n=811
k=4
w=25
h=65

5 207136

(p=4) (p=16) (p=112) (p=560) (p=2240) (p=8960)
20 65724 65934 20396 31287 12719 13425 17214 16269 20630 20412 29114 25629

100 65724 65934 20396 31287 3415 10659 4040 3600 4281 4551 5919 5481
500 65724 65934 20396 31287 3415 10659 1554 1868 1000 1405 1270 1584
∞ 65724 65934 20396 31287 3415 10659 1371 1868 366 1002 737 921

6 95830

(p=4) (p=16) (p=112) (p=560) (p=2240) (p=8960)
20 26776 26836 9716 9481 6741 6811 7959 7947 10103 9763 12418 12472

100 26776 26836 9716 9481 2344 3586 1799 1700 2126 2276 2545 2543
500 26776 26836 9716 9481 1659 3586 583 886 536 905 569 824
∞ 26776 26836 9716 9481 1659 3586 459 886 433 774 103 696

ped50
n=514
k=6
w=17
h=47

3 4135

(p=4) (p=144) (p=2160) (p=14401)
20 1485 1477 423 345 465 451 1734 1730

100 1485 1477 345 345 198 106 381 378
500 1485 1477 345 345 159 88 127 111

∞ 1485 1477 345 345 153 88 89 53

4 1780

(p=4) (p=144) (p=2160) (p=14400)
20 272 255 75 67 273 277 1551 1549

100 272 255 42 41 62 61 342 340
500 272 255 42 41 27 19 101 99
∞ 272 255 42 41 22 17 46 42

ped51
n=1152
k=5
w=39
h=98

20 101788

(p=4) (p=16) (p=64) (p=256) (p=1024) (p=4064)
20 27299 27269 8261 7697 7051 6225 6404 5885 6573 6570 9899 9866

100 27299 27269 8261 7697 3457 2658 2340 1687 1578 2208 2186 2025
500 27299 27269 8261 7697 3457 2658 1772 1163 704 1525 852 748
∞ 27299 27269 8261 7697 3457 2658 1772 1163 681 1440 689 675

21 164817

(p=4) (p=16) (p=64) (p=256) (p=1024) (p=4096)
20 43197 42435 11542 11279 9030 10008 8727 9508 10221 10488 16982 17114

100 43197 42435 11542 11279 4867 4868 2349 2950 2132 2253 3537 3500
500 43197 42435 11542 11279 4867 4868 2349 1860 908 1571 1050 1165
∞ 43197 42435 11542 11279 4867 4868 2349 1860 908 1571 845 778

ped7
n=1068
k=4
w=32
h=90

6 118383

(p=4) (p=32) (p=160) (p=640) (p=1280) (p=3840)
20 35387 58872 12338 58121 9031 8515 9654 7319 8705 7582 8236 7693

100 35387 58872 11956 58121 5122 7690 4860 2306 3929 1814 2644 1649

500 35387 58872 11956 58121 4984 7690 4359 2086 3294 1301 1764 943

∞ 35387 58872 11956 58121 4984 7690 4359 2086 3256 1301 1740 876

7 93380

(p=4) (p=32) (p=160) (p=640) (p=1280) (p=3840)
20 25119 47316 7989 51318 5015 26061 5909 5366 6061 5461 5924 5706

100 25119 47316 7989 51318 2947 25320 3002 1997 2819 1505 2156 1268
500 25119 47316 7989 51318 2947 25320 2615 1368 2381 1180 1433 513

∞ 25119 47316 7989 51318 2947 25320 2615 1368 2381 1180 1421 394

8 30717

(p=4) (p=32) (p=160) (p=640) (p=1276) (p=3816)
20 8913 18311 2976 18357 2344 10390 2204 1938 2196 1786 2109 2069

100 8913 18311 2976 18357 1276 9856 1146 1004 1075 944 916 601
500 8913 18311 2976 18357 1256 9856 1090 854 1008 833 682 345

∞ 8913 18311 2976 18357 1256 9856 1090 854 1008 833 648 294

ped9
n=1118
k=7
w=27
h=100

6 101172

(p=4) (p=16) (p=32) (p=128) (p=512) (p=2048)
20 27626 52049 10362 17818 7283 7356 6232 6557 5945 6098 6648 6718

100 27626 52049 10362 17818 5438 7016 1559 2678 1273 1294 1390 1405
500 27626 52049 10362 17818 5438 7016 1406 2678 395 931 345 384
∞ 27626 52049 10362 17818 5438 7016 1406 2678 395 931 170 321

7 58657

(p=4) (p=16) (p=32) (p=128) (p=512) (p=2048)
20 15391 15640 5383 6071 5148 4791 3644 3746 3516 3561 3827 3933

100 15391 15640 5383 6071 2957 2923 1051 1128 806 763 816 834
500 15391 15640 5383 6071 2957 2923 753 1128 234 356 221 413
∞ 15391 15640 5383 6071 2957 2923 753 1128 234 356 99 413

8 41061

(p=4) (p=16) (p=32) (p=128) (p=512) (p=2048)
20 10995 10923 4827 4411 3634 3213 2560 3277 2439 2455 2736 2749

100 10995 10923 4827 4411 2259 3157 746 1826 541 583 578 574
500 10995 10923 4827 4411 2259 3157 604 1826 255 465 155 151
∞ 10995 10923 4827 4411 2259 3157 604 1826 255 465 78 108

Better by 10% 16x 12x 24x 14x 24x 20x 14x 29x 21x 14x 11x 18x
Better by 50% 16x 8x 20x 12x 17x 9x 8x 14x 15x 6x 4x 12x

Table 4.8: Subset of parallel runtime results on linkage instances, part 2 of 2. Each
entry lists, from top to bottom, the runtime with 20, 100, (simulated) 500, and “unlimited”
parallel cores, with fixed-depth parallel cutoff on the left (“fix”) and variable-depth on the
right (“var”). If one scheme is better than the other by more than 10% (relative) its results
is marked bold. The best value in each row is highlighted in gray.
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Cutoff depth d
instance i Tseq #cpu 2 4 6 8 10 12

fix var fix var fix var fix var fix var fix var

ped13
n=1077
k=3
w=32
h=102

8 252654

(p=4) (p=16) (p=64) (p=256) (p=1024) (p=4096)
20 3.64 1.85 13.21 3.56 15.51 10.22 16.59 18.28 17.95 18.20 17.15 17.44

100 3.64 1.85 13.21 3.56 42.50 13.41 51.91 22.91 70.12 63.50 68.05 69.79
500 3.64 1.85 13.21 3.56 42.50 13.41 75.67 22.91 145.12 89.72 166.66 157.12
∞ 3.64 1.85 13.21 3.56 42.50 13.41 75.67 22.91 152.38 89.72 221.82 180.60

9 102385

(p=4) (p=16) (p=64) (p=256) (p=1024) (p=4096)
20 3.31 3.23 9.71 8.54 17.63 10.55 20.03 17.99 19.60 18.37 18.10 18.37

100 3.31 3.23 9.71 8.54 29.41 10.55 52.75 31.63 76.58 49.18 69.98 66.23
500 3.31 3.23 9.71 8.54 29.41 10.55 60.87 31.98 122.62 58.04 124.25 121.74
∞ 3.31 3.23 9.71 8.54 29.41 10.55 60.87 31.98 126.87 58.04 136.15 133.84

ped19
n=793
k=5
w=25
h=98

16 375110

(p=12) (p=144) (p=1440) (p=5752) (p=11254)
20 3.14 5.07 12.11 13.38 13.75 13.19 10.66 10.03 7.83 7.69

100 3.14 5.07 12.11 18.22 30.94 51.43 50.07 47.20 38.65 37.94
500 3.14 5.07 12.11 18.22 31.44 72.72 71.83 113.64 128.82 157.54

∞ 3.14 5.07 12.11 18.22 31.44 72.72 73.86 142.14 138.47 193.96

ped20
n=437
k=5
w=22
h=60

3 5136

(p=6) (p=32) (p=160) (p=800) (p=6400)
20 3.77 3.69 11.31 12.14 13.00 11.86 9.99 10.17 4.41 4.40

100 3.77 3.69 13.41 13.48 46.27 21.58 40.44 38.62 20.63 20.38
500 3.77 3.69 13.41 13.48 54.06 21.58 98.77 38.62 76.66 71.33
∞ 3.77 3.69 13.41 13.48 54.06 21.58 125.27 38.62 160.50 119.44

4 2185

(p=6) (p=32) (p=160) (p=800) (p=6400)
20 9.54 9.63 26.98 24.28 27.66 29.13 14.66 14.66 2.98 3.00

100 9.54 9.63 42.84 24.28 104.05 91.04 64.26 68.28 13.57 13.66
500 9.54 9.63 42.84 24.28 145.67 91.04 182.08 198.64 47.50 46.49
∞ 9.54 9.63 42.84 24.28 145.67 91.04 218.50 198.64 109.25 109.25

ped31
n=1183
k=5
w=30
h=85

10 1258519

(p=4) (p=16) (p=64) (p=256) (p=1024) (p=4096)
20 3.49 3.51 12.02 12.19 12.14 14.08 14.64 15.39 15.44 15.55 15.19 15.41

100 3.49 3.51 12.02 12.19 25.96 25.32 40.98 47.48 64.04 70.76 73.68 74.98
500 3.49 3.51 12.02 12.19 25.96 25.32 53.40 72.23 154.00 222.04 273.18 320.32

∞ 3.49 3.51 12.02 12.19 25.96 25.32 53.40 72.23 177.26 245.90 619.05 794.52

11 433029

(p=4) (p=16) (p=64) (p=256) (p=1024) (p=4096)
20 4.03 3.99 14.26 14.68 13.87 16.23 18.99 17.98 18.01 17.85 17.19 17.11

100 4.03 3.99 14.26 14.68 27.59 27.44 59.05 56.47 75.34 85.43 80.68 84.18
500 4.03 3.99 14.26 14.68 27.59 27.44 59.05 56.47 181.64 237.93 293.98 318.40
∞ 4.03 3.99 14.26 14.68 27.59 27.44 59.05 56.47 202.26 237.93 399.84 529.38

12 16238

(p=4) (p=16) (p=64) (p=256) (p=1024) (p=4096)
20 4.32 4.01 12.51 13.27 11.10 14.42 14.95 17.48 15.39 15.66 11.25 11.22

100 4.32 4.01 12.51 13.27 13.81 20.02 37.16 41.32 56.58 69.69 49.96 50.90
500 4.32 4.01 12.51 13.27 13.81 20.02 40.00 41.32 116.82 123.95 141.20 170.93

∞ 4.32 4.01 12.51 13.27 13.81 20.02 40.00 41.32 127.86 123.95 231.97 257.75

ped33
n=798
k=4
w=28
h=98

4 6010

(p=3) (p=6) (p=24) (p=96) (p=384) (p=1536)
20 1.96 1.86 3.65 3.95 9.26 12.37 12.57 12.87 12.87 13.85 10.12 10.07

100 1.96 1.86 3.65 3.95 11.58 16.38 23.85 34.74 34.74 53.66 37.80 43.24

500 1.96 1.86 3.65 3.95 11.58 16.38 23.85 34.74 48.47 66.04 69.08 101.86

∞ 1.96 1.86 3.65 3.95 11.58 16.38 23.85 34.74 48.47 66.04 78.05 122.65

ped34
n=1160
k=5
w=31
h=102

10 962006

(p=5) (p=20) (p=60) (p=180) (p=716) (p=1896)
20 2.27 2.27 5.49 6.67 6.60 7.84 8.81 10.30 9.73 9.89 9.91 9.97

100 2.27 2.27 5.49 6.67 8.33 12.73 22.85 24.44 35.35 45.52 44.87 45.41
500 2.27 2.27 5.49 6.67 8.33 12.73 23.09 24.44 69.26 85.87 144.23 156.78
∞ 2.27 2.27 5.49 6.67 8.33 12.73 23.09 24.44 70.32 85.87 166.64 162.34

11 350574

(p=5) (p=20) (p=60) (p=180) (p=720) (p=1912)
20 1.62 1.61 3.37 2.25 3.66 3.67 4.35 4.71 4.70 4.58 4.56 4.59

100 1.62 1.61 3.37 2.25 4.39 4.43 11.66 11.70 18.29 18.71 20.97 21.71
500 1.62 1.61 3.37 2.25 4.39 4.43 11.67 11.70 33.63 37.95 66.37 61.59
∞ 1.62 1.61 3.37 2.25 4.39 4.43 11.67 11.70 33.63 37.95 75.13 83.59

12 96122

(p=5) (p=20) (p=60) (p=180) (p=716) (p=1896)
20 3.66 3.65 4.70 6.29 6.07 6.11 6.87 6.97 7.50 7.35 7.41 7.16

100 3.66 3.65 4.70 6.29 7.23 10.65 17.79 17.02 27.55 32.35 33.29 32.34
500 3.66 3.65 4.70 6.29 7.23 10.65 17.83 17.02 45.77 74.05 94.79 97.29
∞ 3.66 3.65 4.70 6.29 7.23 10.65 17.83 17.02 45.86 74.05 104.94 153.80

ped39
n=1272
k=5
w=21
h=76

4 6632

(p=4) (p=16) (p=128) (p=768) (p=2304)
20 2.47 2.43 4.44 4.41 9.52 9.11 9.35 11.72 9.87 9.80

100 2.47 2.43 4.44 4.41 11.13 11.61 12.85 20.86 26.32 34.91

500 2.47 2.43 4.44 4.41 11.13 11.61 13.51 21.82 36.64 51.41

∞ 2.47 2.43 4.44 4.41 11.13 11.61 13.51 21.82 39.24 54.81

5 2202

(p=4) (p=16) (p=128) (p=768) (p=2304)
20 2.78 2.54 5.38 6.13 5.23 7.54 5.22 7.20 4.97 4.87

100 2.78 2.54 5.38 6.13 6.95 7.54 7.92 15.62 14.12 18.05

500 2.78 2.54 5.38 6.13 7.06 7.54 8.70 19.84 21.38 31.46

∞ 2.78 2.54 5.38 6.13 7.06 7.54 8.74 20.20 23.43 31.46

Better by 10% 4x 4x 16x 16x 14x 21x 10x 20x 7x 26x 1x 10x
Better by 50% 4x 4x 7x 3x 13x 6x 8x 8x 5x 3x 0x 1x

Table 4.9: Subset of parallel speedup results on linkage instances, part 1 of 2. Each
entry lists, from top to bottom, the speedup with 20, 100, (simulated) 500, and “unlimited”
parallel cores, with fixed-depth parallel cutoff on the left (“fix”) and variable-depth on the
right (“var”). If one scheme is better than the other by more than 10% (relative) its results
is marked bold. The best value in each row is highlighted in gray.
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Cutoff depth d
instance i Tseq #cpu 2 4 6 8 10 12

fix var fix var fix var fix var fix var fix var

ped41
n=1062
k=5
w=33
h=100

9 25607

(p=8) (p=32) (p=128) (p=352) (p=1408) (p=4352)
20 1.58 1.79 5.41 8.89 11.68 11.71 10.47 12.09 10.55 10.42 8.62 8.59

100 1.58 1.79 5.61 10.51 19.59 32.29 30.96 44.46 46.99 49.24 31.81 38.45

500 1.58 1.79 5.61 10.51 20.13 32.29 39.40 75.31 102.02 121.36 57.41 113.81

∞ 1.58 1.79 5.61 10.51 20.13 32.29 39.40 75.31 115.35 148.88 63.86 173.02

10 46819

(p=8) (p=32) (p=128) (p=352) (p=1408) (p=4352)
20 1.41 2.71 4.84 9.65 12.96 14.06 14.16 14.64 15.31 14.46 13.35 13.23

100 1.41 2.71 4.89 9.65 16.95 27.36 31.57 39.85 51.79 45.37 62.34 54.06
500 1.41 2.71 4.89 9.65 17.16 27.36 36.75 39.85 66.41 46.87 90.21 92.89
∞ 1.41 2.71 4.89 9.65 17.16 27.36 36.75 39.85 67.46 46.87 91.09 107.63

11 27583

(p=8) (p=32) (p=128) (p=352) (p=1408) (p=4352)
20 1.36 2.71 4.52 7.11 12.60 14.78 13.45 15.46 13.87 14.04 12.16 12.17

100 1.36 2.71 4.57 7.11 16.83 25.10 27.31 49.88 50.33 34.74 50.33 56.18

500 1.36 2.71 4.57 7.11 17.08 25.10 30.65 55.50 94.46 45.44 106.50 154.09

∞ 1.36 2.71 4.57 7.11 17.08 25.10 30.65 55.50 102.16 47.48 130.11 235.75

ped44
n=811
k=4
w=25
h=65

5 207136

(p=4) (p=16) (p=112) (p=560) (p=2240) (p=8960)
20 3.15 3.14 10.16 6.62 16.29 15.43 12.03 12.73 10.04 10.15 7.11 8.08

100 3.15 3.14 10.16 6.62 60.65 19.43 51.27 57.54 48.38 45.51 35.00 37.79
500 3.15 3.14 10.16 6.62 60.65 19.43 133.29 110.89 207.14 147.43 163.10 130.77
∞ 3.15 3.14 10.16 6.62 60.65 19.43 151.08 110.89 565.95 206.72 281.05 224.90

6 95830

(p=4) (p=16) (p=112) (p=560) (p=2240) (p=8960)
20 3.58 3.57 9.86 10.11 14.22 14.07 12.04 12.06 9.49 9.82 7.72 7.68

100 3.58 3.57 9.86 10.11 40.88 26.72 53.27 56.37 45.08 42.10 37.65 37.68
500 3.58 3.57 9.86 10.11 57.76 26.72 164.37 108.16 178.79 105.89 168.42 116.30
∞ 3.58 3.57 9.86 10.11 57.76 26.72 208.78 108.16 221.32 123.81 930.39 137.69

ped50
n=514
k=6
w=17
h=47

3 4135

(p=4) (p=144) (p=2160) (p=14401)
20 2.78 2.80 9.78 11.99 8.89 9.17 2.38 2.39

100 2.78 2.80 11.99 11.99 20.88 39.01 10.85 10.94
500 2.78 2.80 11.99 11.99 26.01 46.99 32.56 37.25

∞ 2.78 2.80 11.99 11.99 27.03 46.99 46.46 78.02

4 1780

(p=4) (p=144) (p=2160) (p=14400)
20 6.54 6.98 23.73 26.57 6.52 6.43 1.15 1.15

100 6.54 6.98 42.38 43.41 28.71 29.18 5.20 5.24
500 6.54 6.98 42.38 43.41 65.93 93.68 17.62 17.98
∞ 6.54 6.98 42.38 43.41 80.91 104.71 38.70 42.38

ped51
n=1152
k=5
w=39
h=98

20 101788

(p=4) (p=16) (p=64) (p=256) (p=1024) (p=4064)
20 3.73 3.73 12.32 13.22 14.44 16.35 15.89 17.30 15.49 15.49 10.28 10.32

100 3.73 3.73 12.32 13.22 29.44 38.29 43.50 60.34 64.50 46.10 46.56 50.27
500 3.73 3.73 12.32 13.22 29.44 38.29 57.44 87.52 144.59 66.75 119.47 136.08
∞ 3.73 3.73 12.32 13.22 29.44 38.29 57.44 87.52 149.47 70.69 147.73 150.80

21 164817

(p=4) (p=16) (p=64) (p=256) (p=1024) (p=4096)
20 3.82 3.88 14.28 14.61 18.25 16.47 18.89 17.33 16.13 15.71 9.71 9.63

100 3.82 3.88 14.28 14.61 33.86 33.86 70.16 55.87 77.31 73.15 46.60 47.09
500 3.82 3.88 14.28 14.61 33.86 33.86 70.16 88.61 181.52 104.91 156.97 141.47
∞ 3.82 3.88 14.28 14.61 33.86 33.86 70.16 88.61 181.52 104.91 195.05 211.85

ped7
n=1068
k=4
w=32
h=90

6 118383

(p=4) (p=32) (p=160) (p=640) (p=1280) (p=3840)
20 3.35 2.01 9.59 2.04 13.11 13.90 12.26 16.17 13.60 15.61 14.37 15.39

100 3.35 2.01 9.90 2.04 23.11 15.39 24.36 51.34 30.13 65.26 44.77 71.79

500 3.35 2.01 9.90 2.04 23.75 15.39 27.16 56.75 35.94 90.99 67.11 125.54

∞ 3.35 2.01 9.90 2.04 23.75 15.39 27.16 56.75 36.36 90.99 68.04 135.14

7 93380

(p=4) (p=32) (p=160) (p=640) (p=1280) (p=3840)
20 3.72 1.97 11.69 1.82 18.62 3.58 15.80 17.40 15.41 17.10 15.76 16.37

100 3.72 1.97 11.69 1.82 31.69 3.69 31.11 46.76 33.13 62.05 43.31 73.64
500 3.72 1.97 11.69 1.82 31.69 3.69 35.71 68.26 39.22 79.14 65.16 182.03

∞ 3.72 1.97 11.69 1.82 31.69 3.69 35.71 68.26 39.22 79.14 65.71 237.01

8 30717

(p=4) (p=32) (p=160) (p=640) (p=1276) (p=3816)
20 3.45 1.68 10.32 1.67 13.10 2.96 13.94 15.85 13.99 17.20 14.56 14.85

100 3.45 1.68 10.32 1.67 24.07 3.12 26.80 30.59 28.57 32.54 33.53 51.11
500 3.45 1.68 10.32 1.67 24.46 3.12 28.18 35.97 30.47 36.88 45.04 89.03

∞ 3.45 1.68 10.32 1.67 24.46 3.12 28.18 35.97 30.47 36.88 47.40 104.48

ped9
n=1118
k=7
w=27
h=100

6 101172

(p=4) (p=16) (p=32) (p=128) (p=512) (p=2048)
20 3.66 1.94 9.76 5.68 13.89 13.75 16.23 15.43 17.02 16.59 15.22 15.06

100 3.66 1.94 9.76 5.68 18.60 14.42 64.90 37.78 79.48 78.19 72.79 72.01
500 3.66 1.94 9.76 5.68 18.60 14.42 71.96 37.78 256.13 108.67 293.25 263.47
∞ 3.66 1.94 9.76 5.68 18.60 14.42 71.96 37.78 256.13 108.67 595.13 315.18

7 58657

(p=4) (p=16) (p=32) (p=128) (p=512) (p=2048)
20 3.81 3.75 10.90 9.66 11.39 12.24 16.10 15.66 16.68 16.47 15.33 14.91

100 3.81 3.75 10.90 9.66 19.84 20.07 55.81 52.00 72.78 76.88 71.88 70.33
500 3.81 3.75 10.90 9.66 19.84 20.07 77.90 52.00 250.67 164.77 265.42 142.03
∞ 3.81 3.75 10.90 9.66 19.84 20.07 77.90 52.00 250.67 164.77 592.49 142.03

8 41061

(p=4) (p=16) (p=32) (p=128) (p=512) (p=2048)
20 3.73 3.76 8.51 9.31 11.30 12.78 16.04 12.53 16.84 16.73 15.01 14.94

100 3.73 3.76 8.51 9.31 18.18 13.01 55.04 22.49 75.90 70.43 71.04 71.53
500 3.73 3.76 8.51 9.31 18.18 13.01 67.98 22.49 161.02 88.30 264.91 271.93
∞ 3.73 3.76 8.51 9.31 18.18 13.01 67.98 22.49 161.02 88.30 526.42 380.19

Better by 10% 16x 12x 24x 14x 24x 20x 14x 29x 21x 14x 11x 18x
Better by 50% 16x 8x 20x 12x 17x 9x 8x 14x 15x 6x 4x 12x

Table 4.10: Subset of parallel speedup results on linkage instances, part 2 of 2. Each
entry lists, from top to bottom, the speedup with 20, 100, (simulated) 500, and “unlimited”
parallel cores, with fixed-depth parallel cutoff on the left (“fix”) and variable-depth on the
right (“var”). If one scheme is better than the other by more than 10% (relative) its results
is marked bold. The best value in each row is highlighted in gray.
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many times (for the given cutoff depth d ) one scheme was better than the other by 10% (as

marked bold in the table above) and 50%, respectively.

We observe that if the fourth, “best possible” value is close to the parallel runtimes above

it, it indicates that the overall performance is dominated by a single subproblem, as it was

the case for some of the examples discussed earlier. Note that this will always be the case

when the number of subproblems is smaller than the number of CPUs.

In addition, Figures 4.17 and 4.18 show parallel runtime and speedup plots, respectively, of

six different linkage instances from Tables 4.7 through 4.10, contrasting as before fixed-depth

and variable-depth parallelization using 20, 100, and 500 CPUs.

General Performance. Results are in line with the examples discussed in-depth previ-

ously. On the one hand, we notice a number of excellent outcomes with significant speedup

values. For instance, pedigree31 (i = 10 and i = 11) reaches speedups of around 320 with

500 CPUs, and pedigree9 sees speedups of over 260 for all i-bounds. For 100 CPUs a number

of instances see speedups close to, or above 70 – for instance pedigree7 (i = 6, 7) and pedi-

gree13 (all i-bounds). Pedigree13 is in fact also one of the best-performing instances with

20 CPUs, with the speedup reaching 20 for i = 9 . On the other hand, we also observe a

number of weaker results, for example on instances with relatively short sequential solution

times like pedigree39 with highest speedup of 31.

As before, we recognize a number of cases where the performance of the variable-depth

scheme seems to suffer from an imprecise subproblem complexity estimate. In the following

we describe two of these, pedigree13 and pedigree9, in more detail.

Pedigree13. One notable example where the fixed-depths scheme maintains a marked

edge over the variable-depth cutoff for most depths is pedigree13, both for i = 8, shown

at the top left of Figures 4.17 and 4.18, and i = 9. Across all CPU counts, fixed-depth

performance ceases earlier to be bound by the longest-running subproblem; for i = 8 and
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Figure 4.17: Parallel runtime plots for select linkage problems. Shown is the runtime
using 20, 100, and 500 CPUs as a function of subproblem count (corresponding to an in-
creasing fixed-depth cutoff). The instance’s sequential solution time Tseq is indicated by the
dashed horizontal line.
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Figure 4.18: Parallel speedup plots for select linkage problems. Shown is the speedup
using 20, 100, and 500 CPUs as a function of subproblem count (corresponding to an increas-
ing fixed-depth cutoff). Optimal speedups 20, 100, and 500 are marked by dashed horizontal
lines.
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100 CPUs at depth d = 8, for instance, variable-depth cutoff runtime of 11027 seconds is

still determined by the longest running subproblem (as implied by the last row in Table 4.7,

in italic), while the fixed-depth scheme takes only 4867 seconds (longest running subproblem

3339 seconds in last row).

Pedigree9. Another example where fixed-depth parallelization appears ahead of variable-

depth throughout most of the range of d values is pedigree9. For both schemes, performance

is mostly dominated by the largest subproblem, as indicated by the last of Table 4.8 (espe-

cially for the higher CPU counts). Here variable-depth parallelization is often doing worse

thanks to a very few underestimated subproblem complexities, as seen on previous experi-

ments.

Pedigree19. Pedigree19, on the other hand, produces one of several “well-behaved”

experiments with respect to fixed-depth and variable-depth performance (top right in Figures

4.17 and 4.18). It profits nicely from variable-depth parallelization, outperforming fixed-

depth through most of the range of cutoff depths/sizes for all CPU counts and peaking at 2381

seconds (speedup 157) vs. 2912 seconds (speedup 129), with p = 11254 subproblems or depth

d = 10, respectively. Figure 4.19a illustrates this by plotting subproblem runtimes of fixed-

depth and variable-depth parallelization at depth d = 8 and with p = 1440 subproblems,

respectively – here the latter is balanced enough that the overall runtime is not dominated

by the largest subproblem. Looking at the scatter plot (Figure 4.19b) of actual vs. predicted

subproblem complexities for the variable-depth run, we do observe a few minor outliers, but

in this case these are not substantial enough to impact the overall performance.

Overall, however, these results are evidence of the Achilles’ heel of the variable-depth parallel

scheme: its performance relies to some extent on the accuracy of the subproblem complexity

estimates. Namely, we have seen that it in some cases it takes just a single subproblem with

vastly underestimated complexity to dominate the overall runtime and negatively impact

parallel performance (recall also pedigree 7 in Section 4.6.3.4). On the other hand, in the
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(a) Left: runtime statistics of individual subproblems for fixed-depth run with cutoff d = 6 using
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(b) Scatter plot of actual vs. predicted subproblem complexity for variable-depth parallel run with
p = 1440 subproblems.

Figure 4.19: Performance details of fixed-depth and variable-depth parallel scheme on pedi-
gree19 instance (i = 16) with d = 6 and corresponding p = 1440 subproblems, respectively.

absence of such estimation outliers, we have shown our variable-depth scheme to be effective

in improving parallel performance.

Subproblem Count for Fixed/variable-depth. We find that the variable-depth scheme

seems to work better (relative to fixed-depth) for larger depths and the corresponding higher

subproblem count. At depth d = 4, for instance, across both Tables 4.7 and 4.8 fixed-

depth has the advantage in 40 cases and 27 cases for the 10% and 50% margin, respectively.

Variable-depth is superior by 10% and 50% in 30 and 15 cases, respectively. At depth d = 8 ,

however, this changes and variable-depth is superior by 10% and 50% in 49 and 22 cases,

respectively, versus 24 and 10 for fixed-depth. Finally, for depth d = 12 (which we didn’t
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run for all instances), variable-depth has a 10% and 50% advantage in 28 and 13 cases,

respectively, compared to 12 and 4 for the fixed-depth scheme.

Summary. We have observed a number of promising parallel runtime and speedup results

on linkage instances, but also saw some mixed performance. In particular, we identified

several of instances with very good speedups: close to 20 for 20 CPUS, 70-80 for 100 CPUs,

and in the 200s and even 300s for 500 CPUs. In some other cases, however, we’ve described

results that fall somewhat short, particularly for easier problem instances where the effects

of overhead from the grid environment and even Amdahl’s Law are more noticeable. We

have also reconfirmed that in some cases the variable-depth scheme can be impeded by very

inaccurate complexity estimates of a handful of subproblems (or even a single one). This,

however, becomes less likely as the number of subproblems grows, which is when we’ve seen

variable-depth parallelization dominate the fixed-depth variant.

4.6.4.2 Overall Analysis of Haplotyping Problems

Tables 4.11 and 4.12 present parallel runtime results on largeFam haplotyping instances and

Tables 4.13 and 4.14 show the corresponding speedup values. The format is the same as

explained for pedigree instances, i.e. we show parallel runtimes/speedups for fixed-depth

and variable-depth parallelization, left and right in each field, respectively, on 20, 100, 500,

and “unlimited” CPUs. In addition, Figures 4.20 and 4.21 show plots of parallel runtime

and speedup for six of the problems.

General Performance. As for pedigrees in Section 4.6.4.1 we can identify several good

results. A number of instances yield speedups of 17 or 18 using 20 CPUs, e.g., 18.86 and 17.6

on largeFam3-13-58 for i = 14, 16, respectively, with d = 7 – or even above 19 (largeFam4-

12-50 for i = 14, d = 5). Similarly, for 100 CPUs, the highest speedups we see are in the 60s

(e.g., 63.86 for largeFam3-15-53 with i = 17 at d = 13) or 70s (largeFam3-13-58 with i = 14,
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Cutoff depth d
instance i Tseq #cpu 3 5 7 9 11 13

fix var fix var fix var fix var fix var fix var

lF3-11-57
n=2670
k=3
w=37
h=95

15 121311

(p=6) (p=30) (p=60) (p=120) (p=360) (p=1440)

20 34103 49291 14789 14313 14431 10438 12991 10664 11669 10866 11038 11574
100 34103 49291 14789 14313 13039 8015 12868 5947 6518 3148 4038 2611

500 34103 49291 14789 14313 13039 8015 12868 5947 6501 2419 3150 891

∞ 34103 49291 14789 14313 13039 8015 12868 5947 6501 2419 3099 877

16 35820

(p=6) (p=30) (p=60) (p=120) (p=360) (p=1440)

20 9703 13630 4689 4728 3535 3902 3453 2984 3002 2943 3508 3542
100 9703 13630 4214 4728 3383 3415 3446 2272 1733 1018 1156 802

500 9703 13630 4214 4728 3383 3415 3446 2272 1733 970 935 392

∞ 9703 13630 4214 4728 3383 3415 3446 2272 1733 970 935 384

17 18312

(p=6) (p=30) (p=60) (p=120) (p=360) (p=1440)

20 5413 7022 2285 2436 1933 1848 2047 1527 1978 1772 2815 2760
100 5413 7022 2285 2436 1933 1848 1858 970 954 531 788 585

500 5413 7022 2285 2436 1933 1848 1858 970 925 531 565 202

∞ 5413 7022 2285 2436 1933 1848 1858 970 925 531 549 176

lF3-11-59
n=2711
k=3
w=32
h=73

14 35457

(p=10) (p=30) (p=150) (p=600) (p=2000) (p=4000)

20 6309 5960 4790 3789 3214 2866 3539 3404 4308 4157 4838 4856
100 6309 5960 4790 3789 2147 1220 1161 722 1309 871 1315 1019

500 6309 5960 4790 3789 2147 1220 1128 341 736 304 709 259

∞ 6309 5960 4790 3789 2147 1220 1128 341 638 242 576 129

15 8523

(p=10) (p=30) (p=150) (p=596) (p=1962) (p=3886)

20 1597 1590 1117 1127 959 786 1202 1130 1704 1658 2284 2259
100 1597 1590 1117 1127 530 242 469 245 404 356 508 495
500 1597 1590 1117 1127 530 242 362 101 162 103 176 142

∞ 1597 1590 1117 1127 530 242 362 101 154 67 122 78

16 3023

(p=10) (p=30) (p=150) (p=600) (p=1999) (p=3992)

20 739 494 442 368 446 412 788 835 1819 1783 3061 3017
100 739 494 372 368 166 157 209 187 395 389 664 654
500 739 494 372 368 163 157 143 71 129 112 190 183
∞ 739 494 372 368 163 157 143 71 79 65 90 80

lF3-13-58
n=3352
k=3
w=31
h=88

14 46464

(p=12) (p=60) (p=200) (p=600) (p=2000) (p=6400)

20 9384 11947 3220 3007 2754 2464 2695 2562 2795 2727 3459 3441
100 9384 11947 2350 3007 1337 1089 1134 1044 708 584 760 751
500 9384 11947 2350 3007 1222 1089 884 1030 380 340 224 225
∞ 9384 11947 2350 3007 1222 1089 884 1030 380 340 130 180

16 20270

(p=12) (p=60) (p=200) (p=600) (p=1998) (p=6390)

20 5073 5097 1648 1361 1244 1152 1366 1389 1575 1567 2829 2825
100 5073 5097 1478 1361 824 508 807 606 425 340 636 630
500 5073 5097 1478 1361 800 508 742 490 302 179 207 190
∞ 5073 5097 1478 1361 800 508 742 490 282 179 116 111

18 7647

(p=12) (p=60) (p=200) (p=591) (p=1958) (p=6121)

20 1705 1597 785 488 707 605 1049 1024 2502 2483 6933 6918
100 1705 1597 588 488 294 210 346 235 566 538 1472 1464
500 1705 1597 588 488 262 210 319 115 177 148 389 375
∞ 1705 1597 588 488 262 210 319 115 103 100 129 120

lF3-15-53
n=3384
k=3
w=32
h=108

17 345544

(p=12) (p=34) (p=78) (p=358) (p=1093) (p=2831)

20 99673 100130 94280 59566 79765 32938 34001 24934 28754 24071 26657 21190

100 99673 100130 94280 59566 79765 32938 32364 12653 16594 8995 12624 5411

500 99673 100130 94280 59566 79765 32938 32364 12271 16594 7324 12230 4727

∞ 99673 100130 94280 59566 79765 32938 32364 12271 16594 7324 12230 4727

18 98346

(p=12) (p=32) (p=68) (p=284) (p=912) (p=2496)

20 28557 29872 26907 24321 23792 9719 10796 7007 10158 7481 9946 9127
100 28557 29872 26907 24321 23792 9719 9803 4136 5403 2788 4702 2592

500 28557 29872 26907 24321 23792 9719 9803 4136 5347 2788 4020 1894

∞ 28557 29872 26907 24321 23792 9719 9803 4136 5347 2788 4020 1856

Better by 10% 16x 4x 6x 18x 1x 31x 2x 35x 0x 33x 1x 22x
Better by 50% 0x 0x 0x 5x 0x 20x 0x 28x 0x 22x 0x 16x

Table 4.11: Subset of parallel runtime results on haplotyping instances, part 1 of
2. Each entry lists, from top to bottom, the runtime with 20, 100, (simulated) 500, and
“unlimited” parallel cores, with fixed-depth parallel cutoff on the left (“fix”) and variable-
depth on the right (“var”). If one scheme is better than the other by more than 10% (relative)
its results is marked bold. The best value in each row is highlighted in gray.

215



Cutoff depth d
instance i Tseq #cpu 3 5 7 9 11 13

fix var fix var fix var fix var fix var fix var

lF3-15-59
n=3730
k=3
w=31
h=84

18 28613

(p=8) (p=40) (p=240) (p=942) (p=3633) (p=13781)

20 5293 6734 2840 2068 1791 1610 2045 1959 3227 3302 8120 8209
100 5293 6734 2055 2068 893 585 824 462 730 707 1773 1792
500 5293 6734 2055 2068 842 535 636 462 319 211 518 508
∞ 5293 6734 2055 2068 842 535 636 462 250 127 253 229

19 43307

(p=8) (p=40) (p=240) (p=936) (p=3571) (p=13482)

20 10234 10164 3684 3417 2626 2398 2852 2854 4734 4775 11914 11913
100 10234 10164 3684 3417 1485 1079 1296 658 1042 1008 2534 2541
500 10234 10164 3684 3417 1485 1079 1113 417 508 291 660 667
∞ 10234 10164 3684 3417 1485 1079 1113 417 442 177 317 251

lF3-16-56
n=3930
k=3
w=38
h=77

15 1891710

(p=9) (p=43) (p=205) (p=934) (p=1827) (p=7582)

20 643626 639982 325905 200608 164502 149029 160338 177599 180036 198701 217768 251809
100 643626 639982 316651 186789 119413 42519 46136 38277 47363 40579 48752 50451
500 643626 639982 316651 186789 119016 42519 35911 15754 28697 11309 17870 11166

∞ 643626 639982 316651 186789 119016 42519 35893 15754 26721 10225 15239 4262

16 489614

(p=9) (p=42) (p=201) (p=900) (p=1766) (p=7122)

20 182770 125290 89282 56806 53173 47562 56246 58857 60079 67647 78744 90965
100 182770 125290 81351 56806 33623 26361 19126 12956 15158 13653 19498 18292
500 182770 125290 81351 56806 33425 26361 12942 6514 10045 5321 8158 4118

∞ 182770 125290 81351 56806 33425 26361 12595 6514 9849 5321 6573 1345

lF4-12-50
n=2569
k=4
w=28
h=80

13 57842

(p=24) (p=288) (p=3456)

20 4810 4863 3413 3408 4245 4149
100 4810 4863 1190 1052 908 861
500 4810 4863 1103 899 555 281

∞ 4810 4863 1103 899 536 236

14 33676

(p=24) (p=288) (p=3456)

20 2946 2423 1750 1897 2542 2551
100 2720 2238 637 1425 575 535
500 2720 2238 564 1425 204 140

∞ 2720 2238 564 1425 151 101

lF4-12-55
n=2926
k=4
w=28
h=78

13 104837

(p=8) (p=64) (p=256) (p=1024) (p=1792) (p=3072)

20 16287 27758 8247 15781 7623 15799 7279 9773 7746 7590 8110 7913
100 16287 27758 3732 13666 2278 13877 1651 5958 1953 1764 2004 1721

500 16287 27758 3732 13666 1689 13628 672 5540 813 712 887 863
∞ 16287 27758 3732 13666 1689 13628 672 5540 606 691 730 760

14 25905

(p=8) (p=48) (p=192) (p=768) (p=1536) (p=3072)

20 3595 6882 2103 3599 1968 1788 2006 1931 2386 2296 2986 2991
100 3595 6882 1181 3599 699 759 574 474 589 498 717 648

500 3595 6882 1181 3599 566 759 281 216 230 341 375 233

∞ 3595 6882 1181 3599 566 759 255 216 164 341 329 191

lF4-17-51
n=3837
k=4
w=29
h=85

15 10607

(p=4) (p=16) (p=40) (p=128) (p=176) (p=400)

20 2819 2785 1322 1287 1223 1165 1053 933 1039 994 1312 1285
100 2819 2785 1322 1287 766 773 392 336 413 332 310 487
500 2819 2785 1322 1287 766 773 333 336 317 332 136 391
∞ 2819 2785 1322 1287 766 773 333 336 317 332 136 391

16 66103

(p=8) (p=32) (p=80) (p=256) (p=352) (p=800)

20 15508 29154 7281 28848 4805 15050 4224 3934 3922 4213 4049 4086
100 15508 29154 7281 28848 3719 15050 1733 1860 1848 1992 1125 1065
500 15508 29154 7281 28848 3719 15050 1668 1620 1641 1633 606 951
∞ 15508 29154 7281 28848 3719 15050 1668 1620 1641 1633 606 951

Better by 10% 16x 8x 15x 12x 10x 20x 5x 17x 5x 14x 7x 10x
Better by 50% 12x 0x 15x 5x 8x 8x 3x 8x 1x 8x 5x 6x

Table 4.12: Subset of parallel runtime results on haplotyping instances, part 2 of
2. Each entry lists, from top to bottom, the runtime with 20, 100, (simulated) 500, and
“unlimited” parallel cores, with fixed-depth parallel cutoff on the left (“fix”) and variable-
depth on the right (“var”). If one scheme is better than the other by more than 10% (relative)
its results is marked bold. The best value in each row is highlighted in gray.
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Cutoff depth d
instance i Tseq #cpu 3 5 7 9 11 13

fix var fix var fix var fix var fix var fix var

lF3-11-57
n=2670
k=3
w=37
h=95

15 121311

(p=6) (p=30) (p=60) (p=120) (p=360) (p=1440)

20 3.56 2.46 8.20 8.48 8.41 11.62 9.34 11.38 10.40 11.16 10.99 10.48
100 3.56 2.46 8.20 8.48 9.30 15.14 9.43 20.40 18.61 38.54 30.04 46.46

500 3.56 2.46 8.20 8.48 9.30 15.14 9.43 20.40 18.66 50.15 38.51 136.15

∞ 3.56 2.46 8.20 8.48 9.30 15.14 9.43 20.40 18.66 50.15 39.15 138.32

16 35820

(p=6) (p=30) (p=60) (p=120) (p=360) (p=1440)

20 3.69 2.63 7.64 7.58 10.13 9.18 10.37 12.00 11.93 12.17 10.21 10.11
100 3.69 2.63 8.50 7.58 10.59 10.49 10.39 15.77 20.67 35.19 30.99 44.66

500 3.69 2.63 8.50 7.58 10.59 10.49 10.39 15.77 20.67 36.93 38.31 91.38

∞ 3.69 2.63 8.50 7.58 10.59 10.49 10.39 15.77 20.67 36.93 38.31 93.28

17 18312

(p=6) (p=30) (p=60) (p=120) (p=360) (p=1440)

20 3.38 2.61 8.01 7.52 9.47 9.91 8.95 11.99 9.26 10.33 6.51 6.63
100 3.38 2.61 8.01 7.52 9.47 9.91 9.86 18.88 19.19 34.49 23.24 31.30

500 3.38 2.61 8.01 7.52 9.47 9.91 9.86 18.88 19.80 34.49 32.41 90.65

∞ 3.38 2.61 8.01 7.52 9.47 9.91 9.86 18.88 19.80 34.49 33.36 104.05

lF3-11-59
n=2711
k=3
w=32
h=73

14 35457

(p=10) (p=30) (p=150) (p=600) (p=2000) (p=4000)

20 5.62 5.95 7.40 9.36 11.03 12.37 10.02 10.42 8.23 8.53 7.33 7.30
100 5.62 5.95 7.40 9.36 16.51 29.06 30.54 49.11 27.09 40.71 26.96 34.80

500 5.62 5.95 7.40 9.36 16.51 29.06 31.43 103.98 48.18 116.63 50.01 136.90

∞ 5.62 5.95 7.40 9.36 16.51 29.06 31.43 103.98 55.58 146.52 61.56 274.86

15 8523

(p=10) (p=30) (p=150) (p=596) (p=1962) (p=3886)

20 5.34 5.36 7.63 7.56 8.89 10.84 7.09 7.54 5.00 5.14 3.73 3.77
100 5.34 5.36 7.63 7.56 16.08 35.22 18.17 34.79 21.10 23.94 16.78 17.22
500 5.34 5.36 7.63 7.56 16.08 35.22 23.54 84.39 52.61 82.75 48.43 60.02

∞ 5.34 5.36 7.63 7.56 16.08 35.22 23.54 84.39 55.34 127.21 69.86 109.27

16 3023

(p=10) (p=30) (p=150) (p=600) (p=1999) (p=3992)

20 4.09 6.12 6.84 8.21 6.78 7.34 3.84 3.62 1.66 1.70 0.99 1.00
100 4.09 6.12 8.13 8.21 18.21 19.25 14.46 16.17 7.65 7.77 4.55 4.62
500 4.09 6.12 8.13 8.21 18.55 19.25 21.14 42.58 23.43 26.99 15.91 16.52
∞ 4.09 6.12 8.13 8.21 18.55 19.25 21.14 42.58 38.27 46.51 33.59 37.79

lF3-13-58
n=3352
k=3
w=31
h=88

14 46464

(p=12) (p=60) (p=200) (p=600) (p=2000) (p=6400)

20 4.95 3.89 14.43 15.45 16.87 18.86 17.24 18.14 16.62 17.04 13.43 13.50
100 4.95 3.89 19.77 15.45 34.75 42.67 40.97 44.51 65.63 79.56 61.14 61.87
500 4.95 3.89 19.77 15.45 38.02 42.67 52.56 45.11 122.27 136.66 207.43 206.51
∞ 4.95 3.89 19.77 15.45 38.02 42.67 52.56 45.11 122.27 136.66 357.42 258.13

16 20270

(p=12) (p=60) (p=200) (p=600) (p=1998) (p=6390)

20 4.00 3.98 12.30 14.89 16.29 17.60 14.84 14.59 12.87 12.94 7.17 7.18
100 4.00 3.98 13.71 14.89 24.60 39.90 25.12 33.45 47.69 59.62 31.87 32.17
500 4.00 3.98 13.71 14.89 25.34 39.90 27.32 41.37 67.12 113.24 97.92 106.68
∞ 4.00 3.98 13.71 14.89 25.34 39.90 27.32 41.37 71.88 113.24 174.74 182.61

18 7647

(p=12) (p=60) (p=200) (p=591) (p=1958) (p=6121)

20 4.49 4.79 9.74 15.67 10.82 12.64 7.29 7.47 3.06 3.08 1.10 1.11
100 4.49 4.79 13.01 15.67 26.01 36.41 22.10 32.54 13.51 14.21 5.19 5.22
500 4.49 4.79 13.01 15.67 29.19 36.41 23.97 66.50 43.20 51.67 19.66 20.39
∞ 4.49 4.79 13.01 15.67 29.19 36.41 23.97 66.50 74.24 76.47 59.28 63.73

lF3-15-53
n=3384
k=3
w=32
h=108

17 345544

(p=12) (p=34) (p=78) (p=358) (p=1093) (p=2831)

20 3.47 3.45 3.67 5.80 4.33 10.49 10.16 13.86 12.02 14.36 12.96 16.31

100 3.47 3.45 3.67 5.80 4.33 10.49 10.68 27.31 20.82 38.42 27.37 63.86

500 3.47 3.45 3.67 5.80 4.33 10.49 10.68 28.16 20.82 47.18 28.25 73.10

∞ 3.47 3.45 3.67 5.80 4.33 10.49 10.68 28.16 20.82 47.18 28.25 73.10

18 98346

(p=12) (p=32) (p=68) (p=284) (p=912) (p=2496)

20 3.44 3.29 3.66 4.04 4.13 10.12 9.11 14.04 9.68 13.15 9.89 10.78
100 3.44 3.29 3.66 4.04 4.13 10.12 10.03 23.78 18.20 35.27 20.92 37.94

500 3.44 3.29 3.66 4.04 4.13 10.12 10.03 23.78 18.39 35.27 24.46 51.93

∞ 3.44 3.29 3.66 4.04 4.13 10.12 10.03 23.78 18.39 35.27 24.46 52.99

Better by 10% 16x 4x 6x 18x 1x 31x 2x 35x 0x 33x 1x 22x
Better by 50% 0x 0x 0x 5x 0x 20x 0x 28x 0x 22x 0x 16x

Table 4.13: Subset of parallel speedup results on haplotyping instances, part 1 of
2. Each entry lists, from top to bottom, the speedup with 20, 100, (simulated) 500, and
“unlimited” parallel cores, with fixed-depth parallel cutoff on the left (“fix”) and variable-
depth on the right (“var”). If one scheme is better than the other by more than 10% (relative)
its results is marked bold. The best value in each row is highlighted in gray.
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Cutoff depth d
instance i Tseq #cpu 3 5 7 9 11 13

fix var fix var fix var fix var fix var fix var

lF3-15-59
n=3730
k=3
w=31
h=84

18 28613

(p=8) (p=40) (p=240) (p=942) (p=3633) (p=13781)

20 5.41 4.25 10.07 13.84 15.98 17.77 13.99 14.61 8.87 8.67 3.52 3.49
100 5.41 4.25 13.92 13.84 32.04 48.91 34.72 61.93 39.20 40.47 16.14 15.97
500 5.41 4.25 13.92 13.84 33.98 53.48 44.99 61.93 89.70 135.61 55.24 56.32
∞ 5.41 4.25 13.92 13.84 33.98 53.48 44.99 61.93 114.45 225.30 113.09 124.95

19 43307

(p=8) (p=40) (p=240) (p=936) (p=3571) (p=13482)

20 4.23 4.26 11.76 12.67 16.49 18.06 15.18 15.17 9.15 9.07 3.63 3.64
100 4.23 4.26 11.76 12.67 29.16 40.14 33.42 65.82 41.56 42.96 17.09 17.04
500 4.23 4.26 11.76 12.67 29.16 40.14 38.91 103.85 85.25 148.82 65.62 64.93
∞ 4.23 4.26 11.76 12.67 29.16 40.14 38.91 103.85 97.98 244.67 136.62 172.54

lF3-16-56
n=3930
k=3
w=38
h=77

15 1891710

(p=9) (p=43) (p=205) (p=934) (p=1827) (p=7582)

20 2.94 2.96 5.80 9.43 11.50 12.69 11.80 10.65 10.51 9.52 8.69 7.51
100 2.94 2.96 5.97 10.13 15.84 44.49 41.00 49.42 39.94 46.62 38.80 37.50
500 2.94 2.96 5.97 10.13 15.89 44.49 52.68 120.08 65.92 167.27 105.86 169.42

∞ 2.94 2.96 5.97 10.13 15.89 44.49 52.70 120.08 70.79 185.01 124.14 443.85

16 489614

(p=9) (p=42) (p=201) (p=900) (p=1766) (p=7122)

20 2.68 3.91 5.48 8.62 9.21 10.29 8.70 8.32 8.15 7.24 6.22 5.38
100 2.68 3.91 6.02 8.62 14.56 18.57 25.60 37.79 32.30 35.86 25.11 26.77
500 2.68 3.91 6.02 8.62 14.65 18.57 37.83 75.16 48.74 92.02 60.02 118.90

∞ 2.68 3.91 6.02 8.62 14.65 18.57 38.87 75.16 49.71 92.02 74.49 364.03

lF4-12-50
n=2569
k=4
w=28
h=80

13 57842

(p=24) (p=288) (p=3456)

20 12.03 11.89 16.95 16.97 13.63 13.94
100 12.03 11.89 48.61 54.98 63.70 67.18
500 12.03 11.89 52.44 64.34 104.22 205.84

∞ 12.03 11.89 52.44 64.34 107.91 245.09

14 33676

(p=24) (p=288) (p=3456)

20 11.43 13.90 19.24 17.75 13.25 13.20
100 12.38 15.05 52.87 23.63 58.57 62.95
500 12.38 15.05 59.71 23.63 165.08 240.54

∞ 12.38 15.05 59.71 23.63 223.02 333.43

lF4-12-55
n=2926
k=4
w=28
h=78

13 104837

(p=8) (p=64) (p=256) (p=1024) (p=1792) (p=3072)

20 6.44 3.78 12.71 6.64 13.75 6.64 14.40 10.73 13.53 13.81 12.93 13.25
100 6.44 3.78 28.09 7.67 46.02 7.55 63.50 17.60 53.68 59.43 52.31 60.92

500 6.44 3.78 28.09 7.67 62.07 7.69 156.01 18.92 128.95 147.24 118.19 121.48
∞ 6.44 3.78 28.09 7.67 62.07 7.69 156.01 18.92 173.00 151.72 143.61 137.94

14 25905

(p=8) (p=48) (p=192) (p=768) (p=1536) (p=3072)

20 7.21 3.76 12.32 7.20 13.16 14.49 12.91 13.42 10.86 11.28 8.68 8.66
100 7.21 3.76 21.93 7.20 37.06 34.13 45.13 54.65 43.98 52.02 36.13 39.98

500 7.21 3.76 21.93 7.20 45.77 34.13 92.19 119.93 112.63 75.97 69.08 111.18

∞ 7.21 3.76 21.93 7.20 45.77 34.13 101.59 119.93 157.96 75.97 78.74 135.63

lF4-17-51
n=3837
k=4
w=29
h=85

15 10607

(p=4) (p=16) (p=40) (p=128) (p=176) (p=400)

20 3.76 3.81 8.02 8.24 8.67 9.10 10.07 11.37 10.21 10.67 8.08 8.25
100 3.76 3.81 8.02 8.24 13.85 13.72 27.06 31.57 25.68 31.95 34.22 21.78
500 3.76 3.81 8.02 8.24 13.85 13.72 31.85 31.57 33.46 31.95 77.99 27.13
∞ 3.76 3.81 8.02 8.24 13.85 13.72 31.85 31.57 33.46 31.95 77.99 27.13

16 66103

(p=8) (p=32) (p=80) (p=256) (p=352) (p=800)

20 4.26 2.27 9.08 2.29 13.76 4.39 15.65 16.80 16.85 15.69 16.33 16.18
100 4.26 2.27 9.08 2.29 17.77 4.39 38.14 35.54 35.77 33.18 58.76 62.07
500 4.26 2.27 9.08 2.29 17.77 4.39 39.63 40.80 40.28 40.48 109.08 69.51
∞ 4.26 2.27 9.08 2.29 17.77 4.39 39.63 40.80 40.28 40.48 109.08 69.51

Better by 10% 16x 8x 15x 12x 10x 20x 5x 17x 5x 14x 7x 10x
Better by 50% 12x 0x 15x 5x 8x 8x 3x 8x 1x 8x 5x 6x

Table 4.14: Subset of parallel speedup results on haplotyping instances, part 2 of
2. Each entry lists, from top to bottom, the speedup with 20, 100, (simulated) 500, and
“unlimited” parallel cores, with fixed-depth parallel cutoff on the left (“fix”) and variable-
depth on the right (“var”). If one scheme is better than the other by more than 10% (relative)
its results is marked bold. The best value in each row is highlighted in gray.
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Figure 4.20: Parallel runtime plots for select haplotyping problems. Shown is the
runtime using 20, 100, and 500 CPUs as a function of subproblem count (corresponding to
an increasing fixed-depth cutoff). The instance’s sequential solution time Tseq is indicated
by the dashed horizontal line.
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Figure 4.21: Parallel speedup plots for select haplotyping problems. Shown is the
speedup using 20, 100, and 500 CPUs as a function of subproblem count (corresponding to
an increasing fixed-depth cutoff). Optimal speedups 20, 100, and 500 are marked by dashed
horizontal lines.
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d = 11). Finally, the best speedups with 500 CPUs are just over 200, for instance 207 for

largeFam3-13-38 with i = 14 and d = 13, or 206 and 241 for largeFam4-12-50 at d = 7 with

i = 13, 14, respectively.

Overall, however, speedups are somewhat lower than what we saw for linkage instances in

Section 4.6.4.1, in particular with 500 CPUs. We see two main reasons for these weaker

results. First, in many cases the instances with low parallel performance are relatively

easy and have short sequential runtimes Tseq . LargeFam3-13-58 with i = 18 or largeFam3-

11-59 with i = 15, 16, for instance, take only between 1 and 2 1/2 hours sequentially –

thus attempting to run with 500 CPUs would put subproblem complexity at under well

one minute, at which point overhead from the grid system and the effect of centralized

preprocessing in the master host have a substantial impact (cf. also Amdahl’s Law, Section

4.2.5). Secondly, in several other cases with weaker parallel results, we note that the number

of parallel subproblems is relatively low even for the higher cutoff depths we experimented

with (for instance, 2496 subproblems for largeFam3-15-53, i = 18 at d = 13). As we’ve seen

in previous analysis, the parallel scheme tends to work best if the number of subproblems

is about a factor of 10 larger the number of CPUs, which is not the case for a number

of instances in Tables 4.11 through 4.14, including largeFam3-15-53. The next paragraph

investigates this aspect more broadly.

Number of Subproblems vs. CPU Count. Regarding the number of subproblems p

in relation to the number of CPUs, earlier analysis (Sect. 4.6.3.4, e.g.) suggested a trade-

off where p is about 10 times the CPU count, matching a “rule of thumb” reported by

other researchers [105]. As a reminder, the choice of p needs to to balance two conflicting

aspects: first, to allow sufficient parallel granularity to compensate for some longer-running

subproblems with multiple smaller ones, which suggests a higher cutoff depth; second, to

avoid introducing unnecessary overhead from the sequential preprocessing, grid processing

delays, and parallel redundancies (cf. Section 4.5), which advocates for a lower cutoff depth.
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Figures 4.20 and 4.21 provide a convenient illustration of this trade-off. It is most notably for

20 and 100 CPUs, where performance begins to deteriorate once the number of subproblems

grows too large, inducing disproportionate overhead. We can furthermore affirm this general

behavior and, more specifically, the particular suggested rule of thumb by consulting Tables

4.11 through 4.14. Consider, for instance, largeFam3-16-56 for both i = 15, 16. In Table

4.14 the best speedups for 20, 100, and 500 CPUs are obtained with p = 205, 934, and 7582

subproblems, respectively. Similarly, for largeFam4-12-50, we get the highest speedups for

20, 100, and 500 CPUs, respectively, at p = 288, 804, and 3456 subproblems (p = 804 at

d = 6 not included in Table 4.14 – cf. Appendix Table B.14, page 320).

Fixed-depth vs. Variable-depth. As before, we observe different outcomes in the

comparison of fixed-depth and variable-depth parallelization. In a few cases, especially for

lower values of d , a fixed-depth cutoff yields better runtimes and higher speedups – we

will discuss largeFam4-12-55 as an example of this. However, we note that in most cases,

particularly with many CPUs, variable-depth parallelization significantly outperforms the

fixed-depth scheme; here a good example is largeFam3-16-56, also analyzed below.

LargeFam4-12-55. Parallel runtime and speedup for instance largeFam4-12-55 (n = 2926

variables and induced width w = 28) is detailed in Table 4.12 and 4.14. For i-bound 13

(sequential runtime over 29 hours) the fixed-depth scheme is overall significantly faster than

the variable-depth for all but the highest depth value and variable-depth equivalent – 2278

seconds vs. 13877 seconds, d = 7 with 100 CPUs, for instance. Just like above, we look at the

last row (with “unlimited” CPUs) to recognize that the performance of the variable-depth

scheme is dominated by the largest subproblem in many of these cases – 13628 seconds for

d = 7, for instance.

This is confirmed by the detailed subproblem results plotted in Figure 4.22: the scatter plot

in Figure 4.22b clearly shows a handful of vastly underestimated outliers that dominate the

parallel execution in Figure 4.22a (right). However, in Figure 4.22a we also see that, with
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(a) Left: runtime statistics of individual subproblems for fixed-depth run with cutoff d = 7 using
100 CPUs. Right: corresponding variable-depth run with subproblem count p = 256 .
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(b) Scatter plot of actual vs. predicted subproblem complexity for variable-depth parallel run with
p = 256 subproblems.

Figure 4.22: Performance details of fixed-depth and variable-depth parallel scheme on
largeFam4-12-55 instance (i = 13) with d = 7 and corresponding p = 256 subproblems,
respectively.

the exception of these outliers, the vast majority of subproblems in the variable-depth run

is more balanced than the fixed-depth run on the left of Figure 4.22a.

LargeFam3-15-56. One of several more positive examples is largeFam3-16-56 (n = 3930,

w = 38), which has a sequential runtime of almost 22 days (i = 15). Figure 4.23a details the

subproblem runtimes for fixed-depth parallelization with cutoff d = 7 (left) and the variable-

depth scheme with the corresponding subproblem count p = 205 (right). With 100 CPUs,

the variable-depth parallel scheme finished in just under 12 hours, while the fixed-depth

scheme takes over 33 hours. Figure 4.23b shows that in this case the subproblem complexity

estimates of the variable-depth run are a lot more accurate and, crucially, don’t exhibit any
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(a) Left: runtime statistics of individual subproblems for fixed-depth run with cutoff d = 7 using
100 CPUs. Right: corresponding variable-depth run with subproblem count p = 205 .
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(b) Scatter plot of actual vs. predicted subproblem complexities for variable-depth parallel run
with p = 205 subproblems.

Figure 4.23: Performance details of fixed-depth and variable-depth parallel scheme on
largeFam3-16-56 instance (i = 15) with d = 7 and corresponding p = 205 subproblems,
respectively.

outliers. This is also the reason why the subproblem runtimes on the right of Figure 4.23a

appear to be a lot more balanced (note that the variance is half that of fixed-depth on the

left).

Overall, we definitely see impressive improvements by the variable-depth scheme over the

fixed-depth one, which is captured by the summary rows at the bottom of Tables 4.13 and

4.14. For d = 7, for instance, the variable-depth performance is at least 10% and 50% better

in 51 and 28 cases, while fixed-depth leads only in 11 and 8 cases, respectively. Similarly, at

depth d = 11, we see 10% and 50% better performance by variable-depth parallelization in

74 and 30 cases, respectively, with only 5 and 1 for fixed-depth.

224



Summary. In summary, results of our parallel scheme on haplotyping instances were

mixed, with some evidence of good performance, but also a number of less convincing cases.

These weaker results, however, prove helpful in understanding the parallel scheme better.

We have noted that large-scale parallelism (i.e. hundreds of CPUs) is rather wasteful if the

problem instance is relatively simple and only takes a few hours sequentially. In the same

context, we have confirmed the “rule of thumb” regarding the choice of subproblem count,

which should be several times the number of CPUs – our experiments (and report from

others) suggest that this factor should be around 10. With respect to fixed-depth versus

variable-depth parallelization, we have reconfirmed the dependence of the variable-depth

scheme on accurate subproblem complexity estimates, where significant outliers can reduce

the overall performance considerably. That being said, in case of haplotyping instances

we have found a very impressive advantage for variable-depth parallelization, especially for

higher subproblem counts that facilitate a large number of CPUs.

4.6.4.3 Overall Analysis of Protein Side-Chain Prediction Problems

Table 4.15 shows runtime results of running the two parallel schemes, as before with 20, 100,

500, and “unlimited” CPUs, on side-chain prediction instances while Table 4.16 lists the

corresponding speedups. Also as before, Figures 4.24 and 4.25 plot runtime and speedup,

respectively, for a subset of problem instances.

Impact of Large Domain Size. Side-chain prediction problems are special because of

their very large variable domains, with a maximum domain size of k = 81 . As a consequence

of this the mini-bucket heuristic can only be compiled with a relatively low i-bound of 3 –

i = 4 and higher would quickly exceed the 2 GB memory limit in our experiments. Secondly,

even relatively low parallel cutoff depths d already yield a significant number of subproblems,

which limits the experiments we can conduct in practice (cf. Section 4.6.2 and Table 4.4). For

instance, pdb1hd2 has 3777 subproblems with d = 2, but setting d = 3 would yield over 66
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Cutoff depth d
instance i Tseq #cpu 1 2 3 4 5 6

fix var fix var fix var fix var fix var fix var

pdb1a6m
n=124
k=81
w=15
h=34

3 198326

(p=9) (p=81) (p=511)

20 109236 109236 96811 29713 51456 8839

100 109236 109236 96811 29713 51456 8839

500 109236 109236 96811 29713 51456 8839

∞ 109236 109236 96811 29713 51456 8839

pdb1duw
n=241
k=81
w=9
h=32

3 627106

(p=9) (p=54) (p=784) (p=15081)

20 261878 261878 185941 144524 148576 34290 66316 40886

100 261878 261878 185941 144524 148576 13294 51977 8190

500 261878 261878 185941 144524 148576 13294 51977 3998

∞ 261878 261878 185941 144524 148576 13294 51977 3998

pdb1e5k
n=154
k=81
w=12
h=43

3 112654

(p=66) (p=1046) (p=11321)

20 20322 20322 6876 7630 10653 10712
100 20322 20322 5994 2024 2299 2153
500 20322 20322 5994 2024 2034 783

∞ 20322 20322 5994 2024 2034 783

pdb1f9i
n=103
k=81
w=10
h=24

3 68804

(p=81) (p=6534)

20 27995 27995 23496 21220

100 27995 27995 8752 4249

500 27995 27995 8752 2587

∞ 27995 27995 8752 2587

pdb1ft5
n=172
k=81
w=14
h=33

3 81118

(p=27) (p=118) (p=5281)

20 39764 39764 29982 8248 8302 8469
100 39764 39764 29982 8248 4478 1715

500 39764 39764 29982 8248 4478 802

∞ 39764 39764 29982 8248 4478 802

pdb1hd2
n=126
k=81
w=12
h=27

3 101550

(p=79) (p=3777)

20 58967 58967 15426 6470

100 58967 58967 15426 2275

500 58967 58967 15426 2275

∞ 58967 58967 15426 2275

pdb1huw
n=152
k=81
w=15
h=43

3 545249

(p=9) (p=42) (p=293) (p=654) (p=1588) (p=2597)

20 478239 478239 477785 402748 467632 41642 462167 36305 446255 31297 367056 31646

100 478239 478239 477785 402748 467632 41642 462167 34051 446255 18483 367056 12750

500 478239 478239 477785 402748 467632 41642 462167 34051 446255 18483 367056 12750

∞ 478239 478239 477785 402748 467632 41642 462167 34051 446255 18483 367056 12750

pdb1kao
n=148
k=81
w=15
h=41

3 716795

(p=27) (p=215) (p=752) (p=3241)

20 252879 252879 213134 64745 145683 32176 63832 18172

100 252879 252879 213134 55749 145683 25927 63832 6126

500 252879 252879 213134 55749 145683 25927 63832 6126

∞ 252879 252879 213134 55749 145683 25927 63832 6126

pdb1nfp
n=204
k=81
w=18
h=38

3 354720

(p=6) (p=48) (p=336) (p=3812)

20 328980 328980 292628 73365 194064 38568 101131 42531

100 328980 328980 292628 73365 194064 27180 101131 8752

500 328980 328980 292628 73365 194064 27180 101131 6768

∞ 328980 328980 292628 73365 194064 27180 101131 6768

pdb1rss
n=115
k=81
w=12
h=35

3 378579

(p=8) (p=109) (p=908) (p=1336)

20 392069 392069 110936 57202 37791 31715 33834 24441

100 392069 392069 110904 57202 37654 25702 33706 24266

500 392069 392069 110904 57202 37625 25702 33689 24266

∞ 392069 392069 110904 57202 37625 25702 33689 24266

pdb1vhh
n=133
k=81
w=14
h=35

3 944633

(p=27) (p=1842) (p=67760)

20 233763 233763 52565 231663 92605 69612

100 233763 233763 22967 231663 20965 13970

500 233763 233763 21751 231663 15746 3921

∞ 233763 233763 21751 231663 14878 3133

Better by 10% 0x 0x 5x 39x 0x 33x 0x 20x 0x 4x 0x 4x
Better by 50% 0x 0x 4x 30x 0x 28x 0x 16x 0x 4x 0x 4x

Table 4.15: Subset of parallel runtime results on side-chain prediction instances. Each
entry lists, from top to bottom, the runtime with 20, 100, (simulated) 500, and “unlimited”
parallel cores, with fixed-depth parallel cutoff on the left (“fix”) and variable-depth on the
right (“var”). If one scheme is better than the other by more than 10% (relative) its results
is marked bold. The best value in each row is highlighted in gray.
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Cutoff depth d
instance i Tseq #cpu 1 2 3 4 5 6

fix var fix var fix var fix var fix var fix var

pdb1a6m
n=124
k=81
w=15
h=34

3 198326

(p=9) (p=81) (p=511)

20 1.82 1.82 2.05 6.67 3.85 22.44

100 1.82 1.82 2.05 6.67 3.85 22.44

500 1.82 1.82 2.05 6.67 3.85 22.44

∞ 1.82 1.82 2.05 6.67 3.85 22.44

pdb1duw
n=241
k=81
w=9
h=32

3 627106

(p=9) (p=54) (p=784) (p=15081)

20 2.39 2.39 3.37 4.34 4.22 18.29 9.46 15.34

100 2.39 2.39 3.37 4.34 4.22 47.17 12.07 76.57

500 2.39 2.39 3.37 4.34 4.22 47.17 12.07 156.85

∞ 2.39 2.39 3.37 4.34 4.22 47.17 12.07 156.85

pdb1e5k
n=154
k=81
w=12
h=43

3 112654

(p=66) (p=1046) (p=11321)

20 5.54 5.54 16.38 14.76 10.57 10.52
100 5.54 5.54 18.79 55.66 49.00 52.32
500 5.54 5.54 18.79 55.66 55.39 143.87

∞ 5.54 5.54 18.79 55.66 55.39 143.87

pdb1f9i
n=103
k=81
w=10
h=24

3 68804

(p=81) (p=6534)

20 2.46 2.46 2.93 3.24

100 2.46 2.46 7.86 16.19

500 2.46 2.46 7.86 26.60

∞ 2.46 2.46 7.86 26.60

pdb1ft5
n=172
k=81
w=14
h=33

3 81118

(p=27) (p=118) (p=5281)

20 2.04 2.04 2.71 9.83 9.77 9.58
100 2.04 2.04 2.71 9.83 18.11 47.30

500 2.04 2.04 2.71 9.83 18.11 101.14

∞ 2.04 2.04 2.71 9.83 18.11 101.14

pdb1hd2
n=126
k=81
w=12
h=27

3 101550

(p=79) (p=3777)

20 1.72 1.72 6.58 15.70

100 1.72 1.72 6.58 44.64

500 1.72 1.72 6.58 44.64

∞ 1.72 1.72 6.58 44.64

pdb1huw
n=152
k=81
w=15
h=43

3 545249

(p=9) (p=42) (p=293) (p=654) (p=1588) (p=2597)

20 1.14 1.14 1.14 1.35 1.17 13.09 1.18 15.02 1.22 17.42 1.49 17.23

100 1.14 1.14 1.14 1.35 1.17 13.09 1.18 16.01 1.22 29.50 1.49 42.76

500 1.14 1.14 1.14 1.35 1.17 13.09 1.18 16.01 1.22 29.50 1.49 42.76

∞ 1.14 1.14 1.14 1.35 1.17 13.09 1.18 16.01 1.22 29.50 1.49 42.76

pdb1kao
n=148
k=81
w=15
h=41

3 716795

(p=27) (p=215) (p=752) (p=3241)

20 2.83 2.83 3.36 11.07 4.92 22.28 11.23 39.45

100 2.83 2.83 3.36 12.86 4.92 27.65 11.23 117.01

500 2.83 2.83 3.36 12.86 4.92 27.65 11.23 117.01

∞ 2.83 2.83 3.36 12.86 4.92 27.65 11.23 117.01

pdb1nfp
n=204
k=81
w=18
h=38

3 354720

(p=6) (p=48) (p=336) (p=3812)

20 1.08 1.08 1.21 4.84 1.83 9.20 3.51 8.34

100 1.08 1.08 1.21 4.84 1.83 13.05 3.51 40.53

500 1.08 1.08 1.21 4.84 1.83 13.05 3.51 52.41

∞ 1.08 1.08 1.21 4.84 1.83 13.05 3.51 52.41

pdb1rss
n=115
k=81
w=12
h=35

3 378579

(p=8) (p=109) (p=908) (p=1336)

20 0.97 0.97 3.41 6.62 10.02 11.94 11.19 15.49

100 0.97 0.97 3.41 6.62 10.05 14.73 11.23 15.60

500 0.97 0.97 3.41 6.62 10.06 14.73 11.24 15.60

∞ 0.97 0.97 3.41 6.62 10.06 14.73 11.24 15.60

pdb1vhh
n=133
k=81
w=14
h=35

3 944633

(p=27) (p=1842) (p=67760)

20 4.04 4.04 17.97 4.08 10.20 13.57

100 4.04 4.04 41.13 4.08 45.06 67.62

500 4.04 4.04 43.43 4.08 59.99 240.92

∞ 4.04 4.04 43.43 4.08 63.49 301.51

Better by 10% 0x 0x 5x 39x 0x 33x 0x 20x 0x 4x 0x 4x
Better by 50% 0x 0x 4x 30x 0x 28x 0x 16x 0x 4x 0x 4x

Table 4.16: Subset of parallel speedup results on side-chain prediction instances. Each
entry lists, from top to bottom, the speedup with 20, 100, (simulated) 500, and “unlimited”
parallel cores, with fixed-depth parallel cutoff on the left (“fix”) and variable-depth on the
right (“var”). If one scheme is better than the other by more than 10% (relative) its results
is marked bold. The best value in each row is highlighted in gray.
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thousand subproblems, which leads to thrashing with our current implementation (because

of the massive number of temporary files involved, for instance). pdb1vhh is similar, with

over 67 thousand subproblems for d = 3 – several attempts and a laborious, manual tweaking

of the Condor system actually enabled us to produce a successful parallel run at this scale

with the current system. Adapting to these situations more generally would require a major

re-engineering of our parallel scheme.

General Performance. We observe mixed, somewhat inconsistent results in Tables 4.15

and 4.16. For 20 CPUs we still see acceptable behavior, with speedups of 17 or 18 on

a number of instances (pdb1duw at d = 3, e.g.); with 100 CPUs the best speedup is 76

(pdb1duw), but we also see a number of values in the 40s (pdb1ft5, pdb1hd2, and pdb1duw,

for instance). For 500 CPUs, however, results are less convincing: the best speedup of 241

is achieved on pdb1vhh, in the experiment over 60 thousand subproblems that required

extensive manual tweaking to run. Many other instances that did not receive this special

treatment see notably worse performance – e.g., pdb1nfp only reaches speedup 52 with 500

CPUs.

In this context, however, we observe that in almost all cases, fixed-depth or variable-depth

and with 100 or 500 CPUs in particular, the parallel runtime is dominated by the longest-

running subproblem, as implied by the last row (in italic) of each table field. This issue

goes to back to the large variable domains in this class of problems. More specifically,

here it is often the case that complex subproblems split very unevenly, in the most extreme

case yielding one similarly complex one and many very simple ones. The variable-depth

parallelization scheme is designed to address this in principle, but due to the large variable

domain size it reaches its subproblem target count p before it can establish a sufficiently

balanced parallelization frontier. The following example illustrates this.

Pdb1nfp. Consider the problem instance pdb1nfp with sequential runtime over 4 days.

At depth d = 4 the fixed-depth scheme manages a very bad speedup of 3.51 across all CPU
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Figure 4.24: Parallel runtime plots for select side-chain prediction problems. Shown is
the runtime using 20, 100, and 500 CPUs as a function of subproblem count (corresponding
to an increasing fixed-depth cutoff). The instance’s sequential solution time Tseq is indicated
by the dashed horizontal line.
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Figure 4.25: Parallel speedup plots for select side-chain prediction problems. Shown is
the speedup using 20, 100, and 500 CPUs as a function of subproblem count (corresponding
to an increasing fixed-depth cutoff). Optimal speedups 20, 100, and 500 are marked by
dashed horizontal lines.
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(a) Left: runtime statistics of individual subproblems for fixed-depth run with cutoff d = 4 using
500 CPUs. Right: corresponding variable-depth run with subproblem count p = 3812 .
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(b) Scatter plot of actual vs. predicted subproblem complexities for variable-depth parallel run
with p = 3812 subproblems.

Figure 4.26: Performance details of fixed-depth and variable-depth parallel scheme on
pdb1nfp instance (i = 3) with d = 4 and corresponding p = 3812 subproblems, respectively.

counts, while variable-depth parallelization with the corresponding p = 3812 subproblems

allows a speedup of 52.41 with 500 CPUs – in both cases performance is bottlenecked by

the longest-running subproblem, as indicated by the identical result of “unlimited” CPUs.

For a more detailed analysis, Figure 4.26a shows the runtimes of individual subproblems

for the fixed-depth (left) and variable-depth (right) run. In both cases we see a significant

number of very small subproblems – the dashed 80 percentile line is just above 10 and 100

seconds runtime, respectively. As in earlier experiments we also see that the variable-depth

scheme produces a significantly more balanced parallelization frontier (even though it is still

fairly unbalanced in itself). Most interestingly, however, we note that the variable-depth

scheme actually correctly identifies the hardest subproblems (also see the scatter plot in
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Figure 4.26b) – i.e., these subproblems would be broken apart next if we were to allow a

larger parallelization frontier and thereby more subproblem splits. And in fact, the results

of our manually facilitated run on pdb1vhh with over 60 thousand subproblems (see above)

suggest that this is indeed the case.

Fixed-depth vs. Variable Depth. Looking at the parallel performance in Table 4.15

and the exemplary plots in Figures 4.24 and 4.25, we see a very strong advantage for the

variable-depth in almost all cases. Specifically, due to the search space unbalancedness

discussed above the fixed-depth scheme does very poorly on instances from this problem

class – even when running with 500 CPUs, the parallel speedup rarely exceeds 20. Within

the constraints of our setup, as outlined above, the variable-depth scheme performs a lot

better. The following example illustrates.

Pdb1huw. Figure 4.27a shows detailed plots of the subproblem runtimes of pdb1huw when

running fixed-depth and variable-depth parallelization with d = 4 and the corresponding

p = 654 . We observe that the variable-depth scheme is able to reduce the size of the hardest

subproblem, and thereby the overall running time, by a factor of more than 13, from 462155

to 34040 seconds. The variable-depth scheme also yields a drastically reduced standard

deviation in subproblem runtime, its parallel resource utilization is about 18% , vs. just over

1% for fixed-depth (cf. Table B.21). Figure 4.27b plots the results of subproblem complexity

estimation from the variable-depth run; we see a very high degree of correlation between

actual and predicted complexity (correlation coefficient 0.95).

Overall, the last two summary rows of Table 4.15 exhibit superior performance by the

variable-depth scheme in the vast majority of instances. The only exception is pdb1vhh

at d = 2 , where the variable-depth scheme is dominated by a few complex subproblems,

which were, as in earlier examples, underestimated by the complexity prediction. For d = 3

and above, however, the variable-depth scheme is superior by a large margin for all instances.
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(a) Left: runtime statistics of individual subproblems for fixed-depth run with cutoff d = 4 using
100 CPUs. Right: corresponding variable-depth run with subproblem count p = 654 .
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(b) Scatter plot of actual vs. predicted subproblem complexities for variable-depth parallel run
with p = 654 subproblems.

Figure 4.27: Performance details of fixed-depth and variable-depth parallel scheme on
pdb1huw instance (i = 3) with d = 4 and corresponding p = 654 subproblems, respectively.

At d = 3, for instance, it outperforms the fixed-depth variant by 10% and 50% in 33 and 28

cases, respectively (out of 36 at that level).

Summary. The problem class of side-chain prediction instances turned out to be very

tough for our parallel search scheme for two reasons. First, the problem search spaces are

typically very unbalanced. Second, the large variable domain size means that even with

accurate subproblem complexity estimates a very large parallelization frontier would be

required to reach these complex subproblems and break them apart – something that is not

easily achieved with our current implementation for technical reasons. Consequently, parallel

speedup performance is relatively poor, especially for a high number of CPUs. The exception
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was in one parallel run where we manually facilitated a very large parallelization frontier,

yielding very good speedup results. In general, however, we saw the variable-depth scheme,

aided by reliable subproblem complexity estimates, perform very admirably within these

given adverse constraints. In particular, it typically far surpasses the fixed-depth variant

across all choices of cutoff depth and corresponding subproblem count.

4.6.4.4 Overall Analysis of Grid Network Problems

Table 4.17 shows parallel runtimes of parallel AOBB on grid network instances for a subset

of fixed depths d and corresponding variable-depth subproblem count and Table 4.18 has the

corresponding parallel speedup results. In contrast to the other problem classes discussed

above, instances of this type have strictly binary domains, so we ran slightly higher cutoff

depths to obtain a suitable number of subproblems. In addition to the full tables, Figures

4.28 and 4.29 plot the parallel runtime and speedup, respectively, for a subset of instances.

General performance. Results in Tables 4.17 and 4.18 span a range of outcomes, although

generally not as good as results observed, for instance, for grid and haplotyping problems

in Sections 4.6.4.1 and 4.6.4.2. Using 20 CPUs, the best speedup we obtain is around 16

for 75-15-1 at depth d = 13 . Many other instances, however, don’t exceed a speedup of 10

with 20 CPUs, which is somewhat disappointing. Similarly, most instances’ speedups with

100 CPUs and barely exceed 50 (75-25-1 is the best again with 58). Finally, results remain

fairly weak with 500 CPUs. The best speedup of 165 for 75-25-7 at d = 15 is more of an

exception, as the speedup for most other instances remains well below 100. We can identify

a number of reasons these disappointing results:

• First, in spite of running with higher cutoff depths, the subproblem count is still

relatively low in some cases. In particular for higher CPU counts the number of

subproblems does often not meet the “rule of thumb” we described earlier, according
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Cutoff depth d
instance i Tseq #cpu 5 7 9 11 13 15

fix var fix var fix var fix var fix var fix var

75-25-1
n=624
k=2
w=38
h=111

12 77941

(p=16) (p=64) (p=192) (p=192) (p=768) (p=2112)
20 11642 11562 5929 5776 5425 6458 5548 6458 4948 5313 4965 4970

100 11642 11562 4944 3940 3831 3880 3870 3880 1968 2810 1643 1343

500 11642 11562 4944 3940 3831 3638 3870 3638 1791 2810 1643 1343

∞ 11642 11562 4944 3940 3831 3638 3870 3638 1791 2810 1643 1343

14 15402

(p=8) (p=32) (p=96) (p=192) (p=576) (p=1584)
20 3630 3737 1564 1433 1479 1671 1296 1726 962 1160 1014 999

100 3630 3737 1413 1227 1211 1253 987 1264 651 861 652 325

500 3630 3737 1413 1227 1211 1253 987 1227 651 839 649 226

∞ 3630 3737 1413 1227 1211 1253 987 1227 651 839 649 219

75-25-3
n=624
k=2
w=37
h=115

12 104037

(p=6) (p=24) (p=48) (p=144) (p=576) (p=1536)
20 40537 40453 31861 31583 21832 21646 13118 14594 15733 17700 19745 19197

100 40537 40453 31861 31583 21832 21646 9671 10481 3841 7952 6938 5964

500 40537 40453 31861 31583 21832 21646 9671 10481 3841 7952 4791 4793
∞ 40537 40453 31861 31583 21832 21646 9671 10481 3841 7952 4600 4628

15 33656

(p=6) (p=24) (p=48) (p=144) (p=576) (p=1536)
20 13049 13139 5443 5486 4807 4403 4467 4662 4683 4977 5255 5115

100 13049 13139 5443 5486 3505 3103 1448 1720 1116 1220 1579 1134

500 13049 13139 5443 5486 3505 3103 1448 1720 602 567 850 601

∞ 13049 13139 5443 5486 3505 3103 1448 1720 602 567 718 601

75-25-7
n=624
k=2
w=37
h=120

16 297377

(p=24) (p=72) (p=216) (p=504) (p=2016) (p=3360)
20 66859 47596 30640 28910 26206 28019 28611 29296 30050 30460 30582 31325

100 66859 47596 29325 28910 10908 11472 7645 6944 7254 6699 6726 6722
500 66859 47596 29325 28910 10908 11472 6568 6351 3077 2080 2062 1805

∞ 66859 47596 29325 28910 10908 11472 6568 6351 3077 1465 2002 1242

18 21694

(p=24) (p=72) (p=216) (p=504) (p=2014) (p=3325)
20 6467 10548 2890 10958 2618 6484 2718 6508 3204 3244 3455 3492

100 6467 10548 2890 10603 1236 6384 752 6164 1049 1130 908 838
500 6467 10548 2890 10603 1236 6384 752 6164 713 804 702 309

∞ 6467 10548 2890 10603 1236 6384 752 6164 692 804 702 220

75-26-10
n=675
k=2
w=39
h=124

16 46985

(p=16) (p=32) (p=128) (p=384) (p=768) (p=1280)
20 8736 8789 5770 5738 5244 5724 5058 5874 5299 5252 5061 5177

100 8736 8789 5480 5738 3223 2986 2465 2787 1624 1602 1352 1324
500 8736 8789 5480 5738 3223 2986 2465 2762 1314 1534 1029 913

∞ 8736 8789 5480 5738 3223 2986 2465 2762 1314 1534 1029 913

18 26855

(p=16) (p=48) (p=160) (p=480) (p=960) (p=1216)
20 4676 5301 2382 2334 2344 2628 2444 2351 2788 2553 2522 2915

100 4676 5301 2053 2148 1039 1021 838 827 941 989 619 1138
500 4676 5301 2053 2148 1039 901 705 702 710 748 487 780
∞ 4676 5301 2053 2148 1039 901 705 702 696 748 487 731

75-26-2
n=675
k=2
w=39
h=120

16 25274

(p=24) (p=96) (p=288) (p=640) (p=1280) (p=3840)
20 4412 6656 3092 3808 2878 3210 3092 3378 3231 3230 3560 3587

100 4412 6656 1437 2317 1078 1153 687 971 908 936 763 781
500 4412 6656 1437 2317 997 997 392 631 490 511 216 266
∞ 4412 6656 1437 2317 997 997 392 631 434 445 155 199

20 8053

(p=24) (p=96) (p=288) (p=640) (p=1280) (p=3840)
20 1520 2106 1182 1345 1258 1338 1502 1521 1800 1803 2968 2974

100 1520 2106 568 977 382 555 339 411 386 411 634 639
500 1520 2106 568 977 326 517 159 304 123 157 175 178
∞ 1520 2106 568 977 326 517 159 304 102 141 88 106

75-26-6
n=675
k=2
w=39
h=133

10 199460

(p=32) (p=128) (p=128) (p=384) (p=1152) (p=4608)
20 55099 48079 43719 40998 42048 40998 35060 38131 35096 36198 35958 36103

100 47702 48079 24974 25174 24827 25174 13222 12451 11125 10299 7550 8627
500 47702 48079 24974 25174 24827 25174 11941 11978 7401 7283 3551 3758
∞ 47702 48079 24974 25174 24827 25174 11941 11978 7298 7283 3240 3613

12 64758

(p=32) (p=128) (p=128) (p=384) (p=1152) (p=4608)
20 19267 31349 16756 15218 16417 15218 13599 16307 13668 14763 14336 14423

100 19267 29308 10632 10537 10545 10537 6731 10472 5464 6589 3328 4761
500 19267 29308 10632 10537 10545 10537 6298 10472 4097 6044 1925 4086
∞ 19267 29308 10632 10537 10545 10537 6298 10472 4097 6044 1925 4086

75-26-9
n=675
k=2
w=39
h=124

16 59609

(p=24) (p=96) (p=240) (p=960) (p=3840) (p=7680)
20 13651 13862 9075 8135 7040 7012 7981 8498 9006 9027 9427 9637

100 13651 13862 7829 7779 4194 5802 3517 2756 2113 2281 1992 2094
500 13651 13862 7829 7779 4194 5802 3231 2331 1923 1044 972 886
∞ 13651 13862 7829 7779 4194 5802 3231 2331 1923 1000 868 879

18 66533

(p=24) (p=96) (p=240) (p=960) (p=3840) (p=7680)
20 19383 11794 11634 11731 8726 8184 8786 8801 9414 9549 10178 10276

100 19383 11794 10856 11731 4912 8184 4078 2375 2370 2007 2186 2140
500 19383 11794 10856 11731 4912 8184 3787 1424 1633 853 1014 596

∞ 19383 11794 10856 11731 4912 8184 3787 1424 1553 780 935 304

20 5708

(p=24) (p=96) (p=240) (p=640) (p=2560) (p=5120)
20 2366 1597 1472 1199 885 909 1164 1148 2146 2163 3416 3446

100 2366 1597 1316 1199 588 332 356 278 464 460 723 731
500 2366 1597 1316 1199 588 332 225 166 159 127 184 191
∞ 2366 1597 1316 1199 588 332 225 166 114 73 104 77

Better by 10% 20x 13x 12x 9x 17x 8x 27x 10x 20x 9x 12x 19x
Better by 50% 12x 4x 10x 0x 9x 3x 11x 3x 5x 6x 5x 8x

Table 4.17: Subset of parallel runtime results on grid instances. Each entry lists, from
top to bottom, the runtime with 20, 100, (simulated) 500, and “unlimited” parallel cores,
with fixed-depth parallel cutoff on the left (“fix”) and variable-depth on the right (“var”). If
one scheme is better than the other by more than 10% (relative) its results is marked bold.
The best value in each row is highlighted in gray.
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Cutoff depth d
instance i Tseq #cpu 5 7 9 11 13 15

fix var fix var fix var fix var fix var fix var

75-25-1
n=624
k=2
w=38
h=111

12 77941

(p=16) (p=64) (p=192) (p=192) (p=768) (p=2112)
20 6.69 6.74 13.15 13.49 14.37 12.07 14.05 12.07 15.75 14.67 15.70 15.68

100 6.69 6.74 15.76 19.78 20.34 20.09 20.14 20.09 39.60 27.74 47.44 58.03

500 6.69 6.74 15.76 19.78 20.34 21.42 20.14 21.42 43.52 27.74 47.44 58.03

∞ 6.69 6.74 15.76 19.78 20.34 21.42 20.14 21.42 43.52 27.74 47.44 58.03

14 15402

(p=8) (p=32) (p=96) (p=192) (p=576) (p=1584)
20 4.24 4.12 9.85 10.75 10.41 9.22 11.88 8.92 16.01 13.28 15.19 15.42

100 4.24 4.12 10.90 12.55 12.72 12.29 15.60 12.19 23.66 17.89 23.62 47.39

500 4.24 4.12 10.90 12.55 12.72 12.29 15.60 12.55 23.66 18.36 23.73 68.15

∞ 4.24 4.12 10.90 12.55 12.72 12.29 15.60 12.55 23.66 18.36 23.73 70.33

75-25-3
n=624
k=2
w=37
h=115

12 104037

(p=6) (p=24) (p=48) (p=144) (p=576) (p=1536)
20 2.57 2.57 3.27 3.29 4.77 4.81 7.93 7.13 6.61 5.88 5.27 5.42

100 2.57 2.57 3.27 3.29 4.77 4.81 10.76 9.93 27.09 13.08 15.00 17.44

500 2.57 2.57 3.27 3.29 4.77 4.81 10.76 9.93 27.09 13.08 21.72 21.71
∞ 2.57 2.57 3.27 3.29 4.77 4.81 10.76 9.93 27.09 13.08 22.62 22.48

15 33656

(p=6) (p=24) (p=48) (p=144) (p=576) (p=1536)
20 2.58 2.56 6.18 6.13 7.00 7.64 7.53 7.22 7.19 6.76 6.40 6.58

100 2.58 2.56 6.18 6.13 9.60 10.85 23.24 19.57 30.16 27.59 21.31 29.68

500 2.58 2.56 6.18 6.13 9.60 10.85 23.24 19.57 55.91 59.36 39.60 56.00

∞ 2.58 2.56 6.18 6.13 9.60 10.85 23.24 19.57 55.91 59.36 46.87 56.00

75-25-7
n=624
k=2
w=37
h=120

16 297377

(p=24) (p=72) (p=216) (p=504) (p=2016) (p=3360)
20 4.45 6.25 9.71 10.29 11.35 10.61 10.39 10.15 9.90 9.76 9.72 9.49

100 4.45 6.25 10.14 10.29 27.26 25.92 38.90 42.83 40.99 44.39 44.21 44.24
500 4.45 6.25 10.14 10.29 27.26 25.92 45.28 46.82 96.65 142.97 144.22 164.75

∞ 4.45 6.25 10.14 10.29 27.26 25.92 45.28 46.82 96.65 202.99 148.54 239.43

18 21694

(p=24) (p=72) (p=216) (p=504) (p=2014) (p=3325)
20 3.35 2.06 7.51 1.98 8.29 3.35 7.98 3.33 6.77 6.69 6.28 6.21

100 3.35 2.06 7.51 2.05 17.55 3.40 28.85 3.52 20.68 19.20 23.89 25.89
500 3.35 2.06 7.51 2.05 17.55 3.40 28.85 3.52 30.43 26.98 30.90 70.21

∞ 3.35 2.06 7.51 2.05 17.55 3.40 28.85 3.52 31.35 26.98 30.90 98.61

75-26-10
n=675
k=2
w=39
h=124

16 46985

(p=16) (p=32) (p=128) (p=384) (p=768) (p=1280)
20 5.38 5.35 8.14 8.19 8.96 8.21 9.29 8.00 8.87 8.95 9.28 9.08

100 5.38 5.35 8.57 8.19 14.58 15.74 19.06 16.86 28.93 29.33 34.75 35.49
500 5.38 5.35 8.57 8.19 14.58 15.74 19.06 17.01 35.76 30.63 45.66 51.46

∞ 5.38 5.35 8.57 8.19 14.58 15.74 19.06 17.01 35.76 30.63 45.66 51.46

18 26855

(p=16) (p=48) (p=160) (p=480) (p=960) (p=1216)
20 5.74 5.07 11.27 11.51 11.46 10.22 10.99 11.42 9.63 10.52 10.65 9.21

100 5.74 5.07 13.08 12.50 25.85 26.30 32.05 32.47 28.54 27.15 43.38 23.60
500 5.74 5.07 13.08 12.50 25.85 29.81 38.09 38.25 37.82 35.90 55.14 34.43
∞ 5.74 5.07 13.08 12.50 25.85 29.81 38.09 38.25 38.58 35.90 55.14 36.74

75-26-2
n=675
k=2
w=39
h=120

16 25274

(p=24) (p=96) (p=288) (p=640) (p=1280) (p=3840)
20 5.73 3.80 8.17 6.64 8.78 7.87 8.17 7.48 7.82 7.82 7.10 7.05

100 5.73 3.80 17.59 10.91 23.45 21.92 36.79 26.03 27.83 27.00 33.12 32.36
500 5.73 3.80 17.59 10.91 25.35 25.35 64.47 40.05 51.58 49.46 117.01 95.02
∞ 5.73 3.80 17.59 10.91 25.35 25.35 64.47 40.05 58.24 56.80 163.06 127.01

20 8053

(p=24) (p=96) (p=288) (p=640) (p=1280) (p=3840)
20 5.30 3.82 6.81 5.99 6.40 6.02 5.36 5.29 4.47 4.47 2.71 2.71

100 5.30 3.82 14.18 8.24 21.08 14.51 23.76 19.59 20.86 19.59 12.70 12.60
500 5.30 3.82 14.18 8.24 24.70 15.58 50.65 26.49 65.47 51.29 46.02 45.24
∞ 5.30 3.82 14.18 8.24 24.70 15.58 50.65 26.49 78.95 57.11 91.51 75.97

75-26-6
n=675
k=2
w=39
h=133

10 199460

(p=32) (p=128) (p=128) (p=384) (p=1152) (p=4608)
20 3.62 4.15 4.56 4.87 4.74 4.87 5.69 5.23 5.68 5.51 5.55 5.52

100 4.18 4.15 7.99 7.92 8.03 7.92 15.09 16.02 17.93 19.37 26.42 23.12
500 4.18 4.15 7.99 7.92 8.03 7.92 16.70 16.65 26.95 27.39 56.17 53.08
∞ 4.18 4.15 7.99 7.92 8.03 7.92 16.70 16.65 27.33 27.39 61.56 55.21

12 64758

(p=32) (p=128) (p=128) (p=384) (p=1152) (p=4608)
20 3.36 2.07 3.86 4.26 3.94 4.26 4.76 3.97 4.74 4.39 4.52 4.49

100 3.36 2.21 6.09 6.15 6.14 6.15 9.62 6.18 11.85 9.83 19.46 13.60
500 3.36 2.21 6.09 6.15 6.14 6.15 10.28 6.18 15.81 10.71 33.64 15.85
∞ 3.36 2.21 6.09 6.15 6.14 6.15 10.28 6.18 15.81 10.71 33.64 15.85

75-26-9
n=675
k=2
w=39
h=124

16 59609

(p=24) (p=96) (p=240) (p=960) (p=3840) (p=7680)
20 4.37 4.30 6.57 7.33 8.47 8.50 7.47 7.01 6.62 6.60 6.32 6.19

100 4.37 4.30 7.61 7.66 14.21 10.27 16.95 21.63 28.21 26.13 29.92 28.47
500 4.37 4.30 7.61 7.66 14.21 10.27 18.45 25.57 31.00 57.10 61.33 67.28
∞ 4.37 4.30 7.61 7.66 14.21 10.27 18.45 25.57 31.00 59.61 68.67 67.81

18 66533

(p=24) (p=96) (p=240) (p=960) (p=3840) (p=7680)
20 3.43 5.64 5.72 5.67 7.62 8.13 7.57 7.56 7.07 6.97 6.54 6.47

100 3.43 5.64 6.13 5.67 13.54 8.13 16.32 28.01 28.07 33.15 30.44 31.09
500 3.43 5.64 6.13 5.67 13.54 8.13 17.57 46.72 40.74 78.00 65.61 111.63

∞ 3.43 5.64 6.13 5.67 13.54 8.13 17.57 46.72 42.84 85.30 71.16 218.86

20 5708

(p=24) (p=96) (p=240) (p=640) (p=2560) (p=5120)
20 2.41 3.57 3.88 4.76 6.45 6.28 4.90 4.97 2.66 2.64 1.67 1.66

100 2.41 3.57 4.34 4.76 9.71 17.19 16.03 20.53 12.30 12.41 7.89 7.81
500 2.41 3.57 4.34 4.76 9.71 17.19 25.37 34.39 35.90 44.94 31.02 29.88
∞ 2.41 3.57 4.34 4.76 9.71 17.19 25.37 34.39 50.07 78.19 54.88 74.13

Better by 10% 20x 13x 12x 9x 17x 8x 27x 10x 20x 9x 12x 19x
Better by 50% 12x 4x 10x 0x 9x 3x 11x 3x 5x 6x 5x 8x

Table 4.18: Subset of parallel speedup results on grid instances. Each entry lists, from
top to bottom, the speedup with 20, 100, (simulated) 500, and “unlimited” parallel cores,
with fixed-depth parallel cutoff on the left (“fix”) and variable-depth on the right (“var”). If
one scheme is better than the other by more than 10% (relative) its results is marked bold.
The best value in each row is highlighted in gray.
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Figure 4.28: Parallel runtime plots for select grid problems. Shown is the runtime using
20, 100, and 500 CPUs as a function of subproblem count (corresponding to an increasing
fixed-depth cutoff). The instance’s sequential solution time Tseq is indicated by the dashed
horizontal line.
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Figure 4.29: Parallel speedup plots for select grid problems. Shown is the speedup using
20, 100, and 500 CPUs as a function of subproblem count (corresponding to an increasing
fixed-depth cutoff). Optimal speedups 20, 100, and 500 are marked by dashed horizontal
lines.
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to which the number of subproblems should be about ten times the CPU count. As a

consequence, the parallel performance is often still dominated by the longest-running

subproblem, as indicated by comparing to the last, “unlimited” CPU row within each

field – see for instance 75-26-10 at d = 15, where the 500 CPU speedup almost matches

the “unlimited” one.

• The examples below will show that the obtained parallelization frontier is often not very

balanced, even for variable-depth parallelization. As we demonstrate below, the reason

for the relatively poor performance of the variable-depth scheme (in comparison to

results on other problem classes) lies again in the quality of the subproblem complexity

predictions, which turn out to be fairly inaccurate across most of the grid network

instances.

• Most importantly, and in contrast to previously discussed problem classes, experiments

on grid networks exhibit a relative large degree of parallel redundancies, as defined in

Section 4.5. This section will mention this only briefly, however, with full analysis to

follow in Section 4.6.6.

75-25-1. As a first example, we consider problem 75-25-1 with i = 14 – detailed subproblem

statistics for fixed-depth d = 13 and corresponding variable-depth parallelization p = 576

are shown in Figure 4.30a. We note that both schemes produce a similarly scattered profile

– in fact, the subproblems yielded by the variable-depth scheme have slightly larger standard

deviation in subproblem runtime (75 vs. 60) as well as longer maximum subproblem (833 vs.

645 seconds) and therefore overall runtime (861 vs. 651 seconds). Figure 4.30b illustrates the

results of the subproblem complexity prediction. The estimation results (vertical axis) can

be seen as grouping subproblems into two groups – however, the actual range of complexities

(horizontal axes) within each group is a lot more varied than what the estimation suggests.

And in fact, the two groups designated by the prediction scheme actually overlap to a large

extent, rendering the complexity estimates not very helpful.
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(a) Left: runtime statistics of individual subproblems for fixed-depth run with cutoff d = 13 using
100 CPUs. Right: corresponding variable-depth run with subproblem count p = 576 .
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(b) Scatter plot of actual vs. predicted subproblem complexities for variable-depth parallel run
with p = 576 subproblems.

Figure 4.30: Performance details of fixed-depth and variable-depth parallel scheme on
75-25-1 instance (i = 14) with d = 13 and corresponding p = 576 subproblems, respectively.

75-26-9. One of the few cases where the variable-depth scheme works better than the

fixed-depth one is instance 75-26-9 (i = 18), as shown in Figure 4.31. As before Figure 4.31a

shows subproblem statistics for fixed-depth (left) and variable-depth (right) parallelization.

In this instance variable-depth performs a lot better, both in terms of maximum subproblem

runtime (1413 vs. 3777 seconds) and overall runtime (2375 vs. 4078 seconds). Notably, the

standard deviation over subproblem runtimes is a lot lower as well (155 vs. 362). Figure

4.31b shows the corresponding scatter plot of actual vs. predicted subproblem complexity,

which has notably better prediction quality than what we observed for instance 75-25-1 in

Figure 4.30b.
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(a) Left: runtime statistics of individual subproblems for fixed-depth run with cutoff d = 11 using
100 CPUs. Right: corresponding variable-depth run with subproblem count p = 960 .
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(b) Scatter plot of actual vs. predicted subproblem complexities for variable-depth parallel run
with p = 960 subproblems.

Figure 4.31: Performance details of fixed-depth and variable-depth parallel scheme on
75-26-9 instance (i = 18) with d = 11 and corresponding p = 960 subproblems, respectively.

Fixed-depth vs. Variable-depth. Given the exposition above, it should not be surprising

that the variable-depth scheme does not hold a strong advantage over the fixed-depth variant,

as it did for other problem classes. In fact, the latter has an edge over variable-depth

performance overall. For instance, at d = 13 it is better by 10% and 50% in 20 and 5

cases, respectively, while variable-depth has the advantage in only 9 and 6 cases. Similar

results hold for other cutoff depths, with the exception of d = 15, where the variable-depth

scheme recovers and is superior on average, being better by 10% and 50% in 19 and 8 cases,

respectively, versus 12 and 5 for fixed-depth.
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Summary. Our results on grid network instances can only be described as sobering, with

fairly low parallel speedups throughout. Variable-depth parallelization showed disappointing

behavior, compared to previously discussed problem classes, even though it recovers some-

what for deep cutoffs and high subproblem counts. We have attributed this a combination

of three factors: First, a relatively low number of subproblems, which is particularly dis-

advantageous to higher CPU counts. This goes hand in with the second point, poor load

balancing. The variable-depth scheme in particular suffers from the often inaccurate sub-

problem complexity estimates. Lastly, we hinted at the presence of parallel redundancies,

which put an inherent limit on the achievable parallel performance. This aspect will be

analyzed on its own in Section 4.6.6.

4.6.5 Parallel Resource Utilization

This section will consider the parallel resource utilization, which we defined in Section 4.2.4

as the average processor utilization, relative to the longest-running processor. A value close

to 1 (or 100%) indicates that all workers spent about the same time on computation, while

a value close to 0 indicates that a majority of parallel cores sat idly throughout most of the

overall parallel execution.

Table 4.19 shows a subset of parallel resource utilization values for those problem instances

that were used as examples above – the complete set of results is available in Appendix

B, Tables B.17 through B.22. Similar to previous tables, for each instance and depth d

we give the resource utilization for 20, 100, and 500 CPUs (top to bottom) for fixed-depth

parallelization (left) and the corresponding variable-depth run (right). Also as before, for

each pair we mark one in bold if it is better by more than 10% (relative) than the other.

We note that the specific problem instances in Table 4.19 were chosen to illustrate certain

performance characteristics above. In particular, our goal was generally to highlight one
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Cutoff depth d
instance i Tseq #cpu 2 4 6 8 10 12

fix var fix var fix var fix var fix var fix var

75-25-1
n=624
k=2
w=38
h=111

14 15402

(p=4) (p=8) (p=16) (p=64) (p=96) (p=288)

20 0.14 0.14 0.23 0.22 0.35 0.34 0.63 0.52 0.71 0.50 0.76 0.63
100 0.03 0.03 0.05 0.04 0.07 0.07 0.14 0.14 0.14 0.13 0.20 0.14
500 0.01 0.01 0.01 0.01 0.01 0.01 0.03 0.03 0.03 0.03 0.04 0.03

75-26-9
n=675
k=2
w=39
h=124

18 66533

(p=4) (p=16) (p=48) (p=120) (p=480) (p=1920)

20 0.13 0.13 0.17 0.31 0.54 0.57 0.72 0.79 0.86 0.96 0.99 0.98
100 0.03 0.03 0.03 0.06 0.11 0.11 0.19 0.18 0.32 0.75 0.58 0.87

500 0.01 0.01 0.01 0.01 0.02 0.02 0.04 0.04 0.07 0.23 0.13 0.40

lF3-15-59
n=3730
k=3
w=31
h=84

19 43307

(p=4) (p=20) (p=80) (p=476) (p=1830) (p=6964)

20 0.13 0.13 0.36 0.39 0.59 0.77 0.91 1.00 1.00 1.00 1.00 1.00
100 0.03 0.03 0.07 0.08 0.13 0.20 0.34 0.70 0.77 0.98 0.99 0.99
500 0.01 0.01 0.01 0.02 0.03 0.04 0.07 0.18 0.21 0.62 0.90 0.96

lF3-16-56
n=3930
k=3
w=38
h=77

15 1891710

(p=3) (p=15) (p=71) (p=470) (p=934) (p=2707)

20 0.08 0.08 0.26 0.27 0.61 0.78 0.91 0.97 0.98 0.99 0.99 1.00
100 0.02 0.02 0.05 0.05 0.14 0.16 0.47 0.81 0.67 0.92 0.83 0.99

500 0.00 0.00 0.01 0.01 0.03 0.03 0.11 0.30 0.17 0.45 0.31 0.77

lF4-12-55
n=2926
k=4
w=28
h=78

13 104837

(p=4) (p=16) (p=128) (p=512) (p=1024) (p=1792)

20 0.19 0.19 0.54 0.37 0.83 0.39 0.96 0.42 0.98 0.73 0.99 1.00
100 0.04 0.04 0.11 0.07 0.44 0.09 0.76 0.10 0.86 0.24 0.86 0.87
500 0.01 0.01 0.02 0.01 0.09 0.02 0.27 0.02 0.44 0.05 0.41 0.44

pdb1huw
n=152
k=81
w=15
h=43

3 545249

(p=42) (p=654) (p=2597)

20 0.06 0.06 0.06 0.84 0.07 1.00

100 0.01 0.01 0.01 0.18 0.01 0.50

500 0.00 0.00 0.00 0.04 0.00 0.10

pdb1nfp
n=204
k=81
w=18
h=38

3 354720

(p=48) (p=3812)

20 0.07 0.43 0.36 1.00

100 0.01 0.09 0.07 0.97

500 0.00 0.02 0.01 0.25

ped19
n=793
k=5
w=25
h=98

16 375110

(p=12) (p=144) (p=1440) (p=5752) (p=11254)

20 0.18 0.29 0.78 0.89 0.98 0.99 1.00 1.00 1.00 1.00
100 0.04 0.06 0.16 0.24 0.44 0.78 0.95 0.95 1.00 1.00
500 0.01 0.01 0.03 0.05 0.09 0.22 0.27 0.46 0.69 0.87

ped44
n=811
k=4
w=25
h=65

6 95830

(p=4) (p=16) (p=112) (p=560) (p=2240) (p=8960)

20 0.18 0.18 0.57 0.58 0.90 0.92 0.97 0.99 0.99 0.99 1.00 1.00
100 0.04 0.04 0.11 0.12 0.52 0.35 0.86 0.92 0.95 0.86 0.99 1.00
500 0.01 0.01 0.02 0.02 0.15 0.07 0.54 0.36 0.78 0.43 0.95 0.64

ped7
n=1068
k=4
w=32
h=90

6 118383

(p=4) (p=32) (p=160) (p=640) (p=1280) (p=3840)

20 0.17 0.10 0.52 0.11 0.74 0.79 0.73 0.98 0.84 0.97 0.94 1.00
100 0.03 0.02 0.11 0.02 0.26 0.17 0.29 0.62 0.37 0.81 0.59 0.95

500 0.01 0.00 0.02 0.00 0.05 0.03 0.06 0.14 0.09 0.23 0.18 0.34

Better by 10% 3x 6x 6x 12x 7x 9x 5x 8x 6x 11x 4x 6x
Better by 50% 3x 6x 3x 11x 5x 7x 4x 7x 3x 6x 0x 4x

Table 4.19: Subset of parallel resource utilization results on example instances. Each entry
lists, from top to bottom, the average utilization with 20, 100, and (simulated) 500 parallel
cores with fixed-depth parallel cutoff on the left (“fix”) and variable-depth on the right
(“var”). If one scheme is better than the other by more than 10% (relative) its results is
marked bold.

positive and one negative example of variable-depth performance performance, which is why

the summary results in Table 4.19 are not representative of the full results, which are given

in Appendix B.

General Observations. We observe that parallel resource utilization increases as the

depth, and with it number of subproblems, grows. This is not surprising given the scheduling

approach of the Condor system, which assigns jobs from the queue as workers complete their

previous subproblem – a larger number of subproblems allows CPUs that finish early to
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remain busy with another subproblem. We also observe that, obviously, a larger number of

parallel CPUs requires a larger number of subproblems to approach full utilization of 100%

(or close to it).

Utilization, Load Balancing, and Speedup. We can view the parallel resource uti-

lization as an indicator of load balancing, where higher utilization implies better balanced

parallel load. In this light we can also make a connection to the overall parallel performance,

which is at least partially correlated as follows: as the number of subproblems grows, parallel

speedup for a given number of CPUs increases with the parallel resource utilization, since the

workload is distributed better across the parallel resources and we expect the overall runtime

to decrease (i.e., speedup increases). Once the utilization is at or close to 1, increasing the

number of subproblems beyond that level will not improve load balancing and the speedup

with it, but it is likely to introduce additional distributed overhead that will hurt parallel

runtime. In other words, high resource utilization is a necessary condition for good speedup,

but not sufficient.

Overall resource utilization results (cf. Appendix B) are also in line with overall performance

and speedup results as seen on the particular problem classes. Namely, the variable-depth

scheme yields better resource utilization compared to fixed-depth parallelization for three

out of the four problem classes, as we exemplify in the following:

Linkage Problems. For instance, at depth d = 8 and the corresponding subproblem count,

on linkage instances the variable-depth scheme produces at least 10% better utilization in

35 cases compared to 15 for the fixed-depth scheme, with 15 better by at least 50% vs. 10

for fixed-depth (taken from Tables B.17 and B.18). This matches the results for parallel

speedups on linkage problems, where at depth d = 8 variable-depth has a 10% and 50%

advantage in 49 and 22 cases, respectively, while fixed-depth is better in 24 and 16 cases (cf.

Tables 4.9 and 4.10).
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Haplotyping Problems. On haplotyping problems, also at cutoff depth d = 8, the

advantage for variable-depth parallelization is even more pronounced, with 40 cases better

by at least 10% and 22 by at least 50% vs. 6 and 4 cases, respectively, for fixed-depth (taken

from Tables B.19 and B.20). The respective percent advantages of the variable-depth scheme

speedup on haplotyping problems can be found in 51 and 32 cases, respectively, with only

10 and 6 such outcomes for fixed-depth (cf. Tables 4.13 and 4.14).

Side-chain Prediction Problems. As seen with parallel runtimes above, variable-depth

parallelization does vastly better on side-chain prediction instances, as well. In fact, for

depth d = 4 and the corresponding subproblem count, its resource utilization is better then

fixed-depth by at least 10% for all 18 cases, by at least 50% in 15 cases, and (not shown

in Table B.21) by at least 500% in 9 cases. The corresponding case counts of the parallel

speedup results in Table 4.16 are 20 and 16 better by 10% and 50% respectively, for the

variable-depth runs, with zero results in favor fixed-depth.

Grid Network Problems. Finally, just as before, results are rather mixed for grid

instances, where for most depths the fixed-depth scheme in fact yields similar or slightly

better resource utilization numbers. For instance, at depth d = 10 it is better by at least

10% in 15 cases (compared to 11 cases for variable-depth) and by at least 15% in 5 cases

(compared to 3). Again we relate this to the parallel speedup results (cf. Table 4.18), where

fixed-depth had an advantage by 10% and 50% in 20 and 8 cases, respectively, with 9 and 5

in favor of variable-depth.

Summary. Parallel resource utilization is a secondary performance metric that can serve

to assess the level of load balancing. As such, we have demonstrated that it is partially

correlated to the overall parallel performance and speedup. Namely, high resource utiliza-

tion is necessary to achieve good speedups, since it captures efficient load balancing across

parallel resources. However, it is not a guarantee for good speedups, since further increasing
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the subproblem count leaves high resource utilization in tact, but most likely introduces

additional, detrimental overhead to the parallel performance.

4.6.6 Parallel Redundancies

In this section we investigate the issue of parallel redundancies, as discussed and analyzed

in detail in Section 4.5. Recall that these potential redundancies stem from the conditioning

of subproblems in the parallelization process together with the fact that communication

between worker hosts is not possible in our parallel model. In particular, optimal solutions

to earlier subproblems, that could have facilitated stronger pruning in sequential AOBB, will

not be available to guide the pruning in the parallel execution, as laid out in Section 4.5.1.

Secondly, some degree of caching of context-unifiable subproblems is lost across subproblems

– Section 4.5.2 provided detailed analysis and examples.

In Section 4.5.2 we also derived an expression SSpar(d) (Equation 4.3) that captures the size

of the underlying parallel search space as a function of the cutoff depth d which constitutes

an upper bound on the number of node expansions by parallel AOBB. Note that the value

of SSpar(d) can be computed ahead of time, as it depends only on a problem’s structural

parameters.

In line with the analysis of Section 4.5, here we limit ourselves to fixed-depth parallelization.

This simplifies the presentation of results, but any of our findings are straightforward to

apply to the variable-depth scheme as well.

4.6.6.1 Tightness of Parallel Search Space Bound SSpar

To evaluate the practical impact of the aforementioned redundancies we record the sum of

node expansions by parallel AOBB across all subproblems for a given cutoff depth d and
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Figure 4.32: Comparison of the parallel state space upper bound SSpar(d) against the
actual number of node expansions Npar(d) by parallel AOBB with various i-bounds, summed
across subproblems, on pedigree instances.
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Figure 4.33: Comparison of the parallel state space upper bound SSpar(d) against the
actual number of node expansions Npar(d) by parallel AOBB with various i-bounds, summed
across subproblems, on haplotyping instances.

denote this measure Npar(d) . We also compute the respective underlying search space sizes

SSpar(d) as referenced above. Comparing the sequence of Npar(d) and SSpar(d) for increasing

d will then give us an idea of the impact of redundancies in theory and practice. We note

again that Npar(0) and SSpar(0) actually correspond to the number of node expansions by

sequential AOBB and the non-parallel state space bound discussed in Chapter 3 (Section

3.2.1, Eq. 3.1), respectively.
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Figure 4.34: Comparison of the parallel state space upper bound SSpar(d) against the
actual number of node expansions Npar(d) by parallel AOBB with various i-bounds, summed
across subproblems, on side-chain prediction instances.
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Figure 4.35: Comparison of the parallel state space upper bound SSpar(d) against the
actual number of node expansions Npar(d) by parallel AOBB with various i-bounds, summed
across subproblems, on grid network instances.

To that end Figures 4.32 through 4.35 plot the comparison of SSpar(d) and Npar(d) for two

instances each of linkage, haplotyping, side-chain prediction, and grid network instances,

respectively (results for other instances are very similar). Each plot shows SSpar(d) with a

dashed line as well as one or more solid line plots of Npar(d) for varying mini-bucket i-bound

(as indicated by the plot legend).

Upper Bound SSpar(d) . A number of observations can be made regarding SSpar(d) across

all instances in Figures 4.32 through 4.35. First, we can again confirm one of the central
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premises of Chapter 3, namely that for sequential AOBB (corresponding to d = 0) the state

space bound is loose by several orders of magnitude – this is most extreme for side-chain

prediction instances in Figure 4.34, where the difference is roughly ten orders of magnitude.

Secondly, we observe that for d > 0 the size of the underlying parallel search space SSpar(d)

does indeed generally grow exponentially – note the logarithmic vertical scale. This signifies

the marked impact that the loss of caching across subproblem instances has on the underlying

parallel search space. Recall from the analysis in Section 4.5.2 that we expect the value of

SSpar(d) to decrease again eventually, since SSpar(h) = SSpar(0) , where h is the height of

the guiding pseudo tree – however, we don’t see this for the cutoff depths we consider here,

which are relatively low compared to the height of the guiding pseudo trees.

Behavior of Npar(d) . In contrast, the actual number of explored nodes Npar(d) grows

far slower than exponentially, if at all, and the upper bound SSpar(d) , i.e., the size of the

underlying search space, becomes exceedingly lose for bounding the explored search space.

In fact, on the logarithmic scale of the plots the increase in node expansions Npar(d) is in

many cases not clearly discernible. The most notable exception is the grid instance 75-26-10

(Figure 4.35), where a growth of Npar(d) is visible on the log scale, albeit still slower than the

upper bound (Section 4.6.6.2 will investigate this in more depth). All in all, we take these

results as a confirmation that the pruning power of AOBB with the mini-bucket heuristic is

able to largely compensate for the fast-growing underlying parallel search space.

Impact of Mini-bucket i-bound. As noted, Figures 4.32 through 4.35 include results for

various mini-bucket i-bounds used with parallel AOBB, letting us compare parallel perfor-

mance from this angle as well. We know that higher i-bounds typically yield a more accurate

heuristic function, so it is not surprising to see this manifested in fewer node expansions across

subproblems for parallel AOBB as well. The most prominent example is pedigree7 (Figure

4.32, right), where the i = 19 expands approximately two orders of magnitude fewer nodes
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Figure 4.36: Parallel overhead Opar(d) of the parallel scheme on pedigree instances,
relative the number of node expansions of sequential AOBB.

than the i = 6 . Similarly, for the grid instance 75-26-10 in Figure 4.35 (right) the difference

between i = 15 and i = 20 is almost one order of magnitude in expanded number of nodes.

4.6.6.2 Parallel Overhead Opar

To better analyze the behavior of Npar(d) we consider the metric of parallel overhead Opar ,

defined in Section 4.2.4 as the ratio Npar/Nseq of nodes expanded overall by the parallel

algorithm compared to sequential AOBB. Analogous to the analysis of SSpar(d) here we

consider the overhead as a function of the cutoff depth d through Opar(d) = Npar(d)/Nseq =

Npar(d)/Npar(0) , since Npar(0) = Nseq . Note that the absence of parallel overhead translates

to a value of 1.0.

Figures 4.36 through 4.39 plot parallel overhead Opar(d) as a function of d for instances from

the four problem classes. As before, each plot contains results for more than one mini-bucket

i-bound, if available.

Overview of Results. Results with respect to parallel overhead are twofold. On linkage,

haplotyping, and side-chain prediction instances in Figures 4.36, 4.37, and 4.38, respectively,

we observe low overhead values close to 1.0 – pedigree7 with i = 6 here sees the highest
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Figure 4.37: Parallel overhead Opar(d) of the parallel scheme on haplotyping instances,
relative the number of node expansions of sequential AOBB.
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Figure 4.38: Parallel overhead Opar(d) of the parallel scheme on side-chain prediction
instances, relative the number of node expansions of sequential AOBB.

overhead of just under 1.3 at d = 12 , but several other instances don’t exceed 1.1 across

the range of cutoff depths evaluated. Notably, the parallel overhead (and thus the number

of explored nodes Npar(d) ) also appears to grow linearly with d – in stark contrast to the

exponential growth of the underlying search space SSpar(d) .

Parallel Overhead on Grid Networks. We observe slightly different results for grid net-

works in Figure 4.39. Namely, the parallel overhead is considerably higher than in the other

three problem classes, with 75-25-3 and 75-27-2 reaching values of 3.5 and 3.0, respectively,
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Figure 4.39: Parallel overhead Opar(d) of the parallel scheme on grid network instances,
relative the number of node expansions of sequential AOBB.

for deeper cutoff depths d . To make the impact on parallel performance more explicit, we

can formulate the following straightforward proposition.

Proposition 4.1. Assuming a parallel overhead of o and parallel execution on c CPUs, the

parallel speedup the system can achieve is bounded by c/o – even with perfect load balancing

and under the assumption of zero communication overhead.

Note that the parallel overhead o is typically not known until after the parallel scheme

finishes, yet it is useful to apply Proposition 4.1 to reason about reduced speedups after the

fact. In the case of grid instance 75-25-3 with i = 15, for instance, with an parallel overhead

of about 3.0 at depth d = 14 the best speedup we can hope for with 100 CPUs would be

around 33 – which is fairly close to the speedup of 29.7 we observed in Table 4.18.
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Impact of Mini-bucket i-bound. When we compare the plots for different i-bounds

within each Figure against each other, we note that higher i-bounds and thus stronger mini-

bucket heuristics tend to reduce the parallel overhead and its growth. As before, this is

particularly evident for pedigree7, which has at d = 12 a maximum overhead of close to

1.30 using i-bound 6, but only overhead 1.05 with i = 19 . Other pronounced example are

largeFam3-13-58, which sees a maximum overhead of 1.18 for i = 14 and only 1.08 for i = 18 ,

and the grid instance 75-26-10 with maximum overhead close to 1.9 for i = 15 and 1.4 for

i = 20 , respectively. And while the effect is not as pronounced for all instances, it makes

intuitive sense that a stronger heuristic allows AOBB to combat the structural overhead

more efficiently.

4.6.6.3 Parallel Redundancies Summary

We have investigated the practical implications of the redundancies introduced by the paral-

lelization process, as described in Section 4.5. Through computing the size of the underlying

parallel search space, we have shown that in theory the degree of redundancy can be consider-

able and, in particular, grows exponentially in the cutoff depth for many problem instances.

However, contrasting this with experiments recording the actual number of node expansions

by parallel AOBB showed that the impact in practice is far less pronounced, rendering the

aforementioned parallel search space bounds exceedingly lose. Namely, for three out of the

four problem classes evaluated, the parallel overhead is very close to the optimum 1.0, only

growing linearly and very slowly in d . For grid instances, however, we mostly found the

overhead to be considerably higher, sometimes reaching values of 3.0 or 3.5. This, in spite of

the overhead’s linear-only growth, imposes a decided limit on the achievable parallel speedup

(cf. Proposition 4.1), which matches the relatively weak parallel performance we have ob-

served on grid networks in Section 4.6.4.4. Finally, we have also confirmed that a stronger
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mini-bucket heuristic, with a higher i-bound, is generally more effective at suppressing this

overhead.

4.6.7 Parallel Scaling

This section addresses the question how parallel performance scales with the number of

CPUs. Note that this information was already contained in Section 4.6.4, as part of the

parallel speedup tables 4.9 and 4.10 for pedigrees, 4.13 and 4.14 for haplotyping, 4.16 for

side-chain prediction, and 4.18 for grid networks. However, parallel performance scaling is

a common metric in the field of parallel and distributed computing, hence we highlight the

results here once more.

Figures 4.40 through 4.43 plot the parallel speedup of fixed-depth and variable-depth paral-

lelization as a function of the CPU count. Shown are a selection of problem instances from

each problem class – the same set of instances that was highlighted in earlier analysis, in

fact. Besides our earlier results for 20, 100, and 500 CPUs, each plot also includes simulated

speedups for 50, 200, 300, and 400 CPUs (cf. Section 4.6.1.2 for simulation details).

Results in Section 4.6.4 and throughout this chapter have suggested a “rule of thumb” that

targets a subproblem count roughly at ten times the number of CPUs, which also matches

the experience of other researchers. Each plot entry is thus a cross section of an instance’s

row in the full speedup table as follows: to obtain the speedup value for c CPUs, take the

parallel run that has a subproblem count closest to 10c and use it as a basis for simulation.

For instance, the 20-CPU speedup of the fixed-depth scheme on largeFam3-15-59 as shown

in Figure 4.41 (left) is taken to be 17.77 from the d = 7 column in Table 4.14, which

corresponds to p = 240 subproblems. Similarly, the 50-CPU speedup is simulated from the

set of subproblems at d = 8 (not shown in Table 4.14, cf. Appendix B) which in case of

largeFam3-15-59 has p = 476 subproblems.
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Figure 4.40: Scaling of parallel speedup with the number of CPUs, using fixed-depth or
variable-depth parallelization on select pedigree instances. Subproblem count chosen to
be (approximately) 10 times the number of CPUs.

Pedigree Linkage Instances. Figure 4.40 show scaling results for three pedigree in-

stances, reflecting what we pointed out in Section 4.6.4.1 already. Both pedigree7 and

pedigree19 are instances where the subproblem complexity estimation works well, leading to

a more balanced parallel cutoff, better load balancing, and ultimately higher speedups for

the variable-depth scheme. Pedigree7 in particular sees a very nice speedup of over 200 with

500 CPUs. Pedigree44, on the other hand, was one of the few pedigree examples where the

variable-depth scheme fails to improve performance (and arguably decreases it) because of

an outlier in the subproblem complexity estimates, and we see this mirrored in the plot in

the plot on the right of 4.40.

LargeFam Haplotyping Instances. Scaling results for three haplotyping problems are

depicted in Figure 4.41. We observe similar behavior to linkage instances: the variable-depth

scheme and its subproblem estimates work well on largeFam3-15-59 and largeFam3-16-56

and achieve relatively high speedup values. Variable-depth performance on largeFam4-12-55

initially suffers from outlier subproblems, as illustrated earlier in Figure 4.22, but resolves

this at 200 CPUs / 2000 subproblems and catches up to the fixed-depths scheme. (We note

that we haven’t conducted any runs with more than 3000 subproblems, which is why the

plot entries for 400 and 500 CPUs left out.)
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Figure 4.41: Scaling of parallel speedup with the number of CPUs, using fixed-depth or
variable-depth parallelization on select haplotyping instances. Subproblem count chosen
to be (approximately) 10 times the number of CPUs.
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Figure 4.42: Scaling of parallel speedup with the number of CPUs, using fixed-depth
or variable-depth parallelization on select side-chain prediction instances. Subproblem
count chosen to be (approximately) 10 times the number of CPUs.

Pdb Protein Side-chain Prediction Instances. We plot scaling results for three side-

chain prediction instances in Figure 4.42. As mentioned in Section 4.6.4.3, the combination

of large domain size and very unbalanced search spaces makes effective load balancing very

hard on these problems, at least without generating tens of thousands of problems. The

one problem where we manually facilitated this process, pdb1vhh, is blocked by another

complexity outlier early on but does indeed see very good speedups eventually in Figure 4.42

(right). And in all three cases shown the complexity prediction can alleviate some of the

load imbalance, leading the variable-depth scheme to vastly outperform the fixed-depth one.

256



0 20 40 60 80 100
Number of CPUs

10

20

30

40

50
Pa

ra
lle
l s
pe

ed
up

 S
p
a
r

75-25-1, i=14
(n=624, k=111, w=38, h=111)

fix
var

0 50 100 150 200 250 300
Number of CPUs

5

10

15

20

25

30

35

Pa
ra
lle

l s
pe

ed
up

 S
p
a
r

75-26-2, i=20
(n=675, k=120, w=39, h=120)

fix
var

0 100 200 300 400 500
Number of CPUs

20

40

60

80

100

120

Pa
ra
lle
l s
pe
ed
up
 S

p
a
r

75-26-9, i=18
(n=675, k=124, w=39, h=124)

fix
var

Figure 4.43: Scaling of parallel speedup with the number of CPUs, using fixed-depth or
variable-depth parallelization on select grid network instances. Subproblem count chosen
to be (approximately) 10 times the number of CPUs.

Grid Network Instances. Finally, Figure 4.43 show scaling results for three grid net-

work instances. Section 4.6.4.4 explained how the performance on this class of instances

is negatively impacted by a number of factors, including the implications of Amdahl’s Law

and parallel redundancies introduced by the conditioning process. Consequently, we find

the scaling results in this section similarly sobering, in particular for network 75-26-2 (Fig.

4.43, middle). We note that 75-26-9 was in fact one of the few grid network examples where

variable-depth parallelization did better, which is reflected here, too.

4.6.8 Summary of Empirical Evaluation and Analysis

We have conducted an in-depth experimental evaluation of parallelized AOBB, both in

its fixed-depth as well as variable-depth incarnation, which uses the complexity estimation

model proposed in Chapter 3 in order to improve parallel load balancing. We have considered

four different problem classes which we characterized in Section 4.6.2, with experiments con-

ducted on a variety of problem configurations. We have furthermore investigated a number

of metrics and performance measures in Sections 4.6.3 through 4.6.7, from parallel runtime
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and speedup to resource utilization and parallel overhead. In the following we put these

results into a common, overall context.

4.6.8.1 Performance Considerations

The central element of parallel AOBB, and the distinguishing detail of its different imple-

mentations, is the choice of parallelization frontier. As stated previously and demonstrated

in our experiments, it determines whether the parallel scheme can spread the overall work-

load evenly across the available parallel CPUs on the computational grid. This choice can

be thought of along two dimensions: its size, i.e., how many subproblems to generate, and

its shape, i.e., which particular subproblems to choose. The following sections elaborate and

put our reported empirical results into this context.

Number of Subproblems. Regarding the size of the parallelization frontier, we can

identify two conflicting motivations:

• Intuitively, it is desirable to have a large number of subproblems for the following

reasons:

– Trivially, large-scale parallel computations to solve harder and harder problem in-

stances, with more and more CPUs, require an ever-increasing number of parallel

subproblems.

– Branch-and-Bound search spaces are often inherently unbalanced and due to their

discrete nature a perfectly balanced parallel cutoff is unrealistic. Hence we aim to

have a sufficiently large number of subproblems (beyond the number of parallel

CPUs), so that a longer-running one can be compensated for by several smaller

ones on another CPU. We have confirmed this experimentally and provided an

intuitive formalization in form of the parallel resource utilization as detailed
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in Section 4.6.5, in the sense that good parallel speedup necessitates high parallel

resource utilization.

• At the same time, however, it is very easy to get to a point where too large a number

of subproblems hurts the parallel performance:

– First, as subproblems get smaller and smaller, the impact of distributed pro-

cessing overhead like communication delays gets more noticeable. We have

observed this in many cases of relatively simple problems in Section 4.6.4, where

sequential AOBB takes only an hour or two – increasing the subproblem count

more and more eventually leads to degraded parallel performance.

– Second, somewhat related to the first point, generating many subproblems can

take considerable time. Since it occurs in the master host and is non-parallelizable,

it can seriously constrain the achievable parallel performance. This relationship is

captured by Amdahl’s Law (cf. Section 4.2.5); our experiments in Section 4.6.4

have yielded some indication of this, again mostly on simpler problem instances.

– Third, following the theoretical analysis of Section 4.5, Section 4.6.6 has demon-

strated that parallel AOBB can indeed suffer from a certain degree of parallel

redundancies in practice. In particular, our experiments found that this redun-

dancy appears to grow linearly with the cutoff depth. Even though far from the

exponential growth typical of the underlying parallel search space, this suggests

not pushing the parallel cutoff deeper than absolutely necessary.

– Although more of a technical than a conceptual challenge, any implementation

has to take various practical limitations into account, such as fixed, bounded

network capacity or, in our case, a limit on how many subproblems the master

process can reasonably handle before encountering unexpected behavior of the

underlying operating system and file system, for instance.
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Thus deciding on a parallelization frontier means finding the right trade-off between these two

conflicting motivations: enough subproblems to facilitate parallelization on the given number

of CPUs with efficient load balancing, but not too many to incur significant performance

penalties as outlined above.

Subproblem Balancedness. The second performance consideration, the shape of the

parallel cutoff through the particular choice of subproblems, is inherently intertwined with

the issue of subproblem count discussed above. Namely, a small and balanced paralleliza-

tion frontier can be superior to a larger, but unbalanced one. At the same time, we can

sometimes compensate for an unbalanced parallel cutoff by simply increasing the number of

subproblems, again as discussed above. This dichotomy is at the heart of the two different

parallel AOBB implementations we’ve considered.

• Fixed-depth parallelization generates all subproblems at the same depth d , thus ignor-

ing the inherent unbalancedness of branch-and-bound search spaces. Our experiments

have shown that indeed in almost all cases this yields a very inhomogeneous, i.e.,

unbalanced parallelization frontier. The fixed-depth approach thus solely relies on

generating a sufficiently large parallelization frontier to allow balanced parallel load

and good parallel performance.

• The variable-depth scheme, in contrast, explicitly aims to generate a parallel cutoff with

a more balanced set of subproblems by employing estimates of subproblem complexities

and adapts the parallelization frontier accordingly. It should be clear that the scheme

depends to a large extent on the accuracy of these estimates. If working as intended,

however, our experiments have shown that a more balanced frontier can supersede the

need to increase the number of subproblems.
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With these considerations in mind, the following section will put into context the performance

of parallel AND/OR Branch-and-Bound in general, as well as our two specific implementa-

tions, for the different problem classes we considered.

4.6.8.2 Empirical Results in Context

Given the above analysis regarding the variety of performance trade-offs, we can recapitulate

the results of our experiments as follows:

Linkage and Haplotyping Instances. Problems from these two classes yielded the

best results overall, which is facilitated by a number of things. First, our experiments have

shown that parallel AOBB suffers from only small degrees of parallel overhead on these

classes, with values of Opar fairly close to the optimum of 1.0. This allows us to establish

sufficiently deep parallelization frontiers that enable good load balancing and high resource

utilization, a prerequisite for high parallel speedups, as explained above. Second, we have

found the complexity estimates within these two classes to be fairly reliable, which enables

variable-depth parallel AOBB in particular to sufficiently balance the size of the parallel

subproblems. This results in the parallel-depth scheme generally outperforming the fixed-

depth one, especially for high subproblem counts and large number of CPUs.

Cases with weaker results were generally either too simple (such that distributed process-

ing overhead and the implications of Amdahl’s Law become a concern) or, specifically in

the context of the variable-dept scheme, saw one or a handful of subproblems with vastly

underestimated complexity that would turn out to dominate the overall performance.

Side-chain Prediction Instances. These problems are unique because of their large

variable domains sizes and their generally very unbalanced search spaces. In our paral-

lelization context this is a problematic combination since the number of subproblems grows

very rapidly as the master process performs its conditioning operations, yet most of these
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subproblems are very simple. This fact, together with technical limitations of our current

implementation, makes it hard to achieve efficient load balancing and good parallel speedups,

especially for large number of CPUs. Notably, however, in one example where we manually

worked around said technical limitations we did end up with very good parallel performance

(a future, improved version of the system might be able to work around these technical

issues more generally). Secondly, within these given constraints we saw the variable-depth

scheme drastically outperform the fixed-depth version, thanks to rather accurate subproblem

complexity estimates.

Grid Network Instances. These problems showed relatively weak performance in our

tests, both for the fixed-depth and variable-depth scheme. First, the subproblem complexity

estimates turn out to be not accurate enough, which causes the variable-depth scheme to

lose its advantage over fixed-depth that we’ve seen in other problem classes. Secondly, with

all-binary variables, even the increased cutoff depths we experimented with often didn’t yield

a sufficiently large number of subproblems to achieve good load balancing. Thirdly, and most

crucially, Section 4.6.6 demonstrated considerable degree of parallel overhead introduced in

the conditioning process, sometimes reducing the theoretically achievable speedup by a factor

of 3 or 3.5.

4.7 Conclusion to Chapter 4

This chapter presented a principled approach to parallelizing AND/OR Branch-and-Bound

on a grid of computers, with the goal of pushing the boundaries of feasibility for exact

inference. In contrast to many shared-memory or message-passing approaches, our assumed

distributed framework is very general and resembles a general grid computing environment

– i.e., our proposed scheme operates on a set of loosely coupled, independent computer

systems, with one host acting as a “master” system, which is the only point of communication
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for the remaining “workers,” This model allows deployment in a wide range of network

configurations and is to our knowledge, the only such implementation.

The master host explores a central search space over partial assignments, which serve as the

conditioning set for the parallel subproblems and imply a “parallelization frontier.” We have

described two methods for choosing this frontier, one based on placing the parallel cutoff at

a fixed-depth within the master search space, the other using the complexity estimates as

developed in Chapter 3 to find a balanced set of subproblems at varying depth within the

master process’ search space.

The parallel scheme’s properties were evaluated in-depth. We discussed the distributed

overhead associated with any parallel system and laid out how it manifests itself in our case.

We furthermore analyzed in detail the redundancies inherent to our specific problem setting

of parallelizing AND/OR Branch-and-Bound graph search. In particular, we showed two

things: first, how the lack of communication between workers can impact the pruning (due to

unavailability of subproblem solutions as bounds for pruning); second and more importantly,

how the theoretical upper bound on the number of explored node, the underlying parallel

state space, grows with increased parallel cutoff depth, because caching of context-unifiable

subproblems is lost across parallel processes. Overall, we have thus clearly demonstrated

that parallelizing AND/OR Branch-and-Bound is far from embarrassingly parallel.

Experimental performance of the proposed parallel AOBB schemes was assessed and ana-

lyzed in an extensive empirical evaluation over a wide range of problem instances from four

different classes, with a variety of algorithm parameters (e.g., mini-bucket i-bound). Run-

ning on linkage and haplotyping problems yielded generally positive results. Speedups were

often relatively close to the theoretical limit, especially for small-scale and medium-scale

parallelism with 20 and 100 CPUs, respectively. Large-scale parallel performance results

on 500 CPUs are still good and further decrease parallel runtime; they are however not as

strong in terms of the parallel speedup obtained relative to the theoretical maximum, in
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particular for simpler problem instances where the implications of Amdahl’s Law and things

like grid communication delay become an issue at large scale. Either way, the variable-depth

scheme was mostly able to outperform the fixed-depth one by a good margin, thanks to

its better load balancing and avoidance of bottlenecks in the form of single, overly complex

subproblems – in the few examples where that was not the case, it was commonly due to one

such vastly underestimated parallel subproblem that would end up dominating the overall

runtime.

In contrast, running side-chain prediction and grid network problem proved illustrative in

highlighting the limitations of the proposed parallel scheme, both conceptually and in prac-

tice. On grid networks results were not as strong, the observed speedups were still substantial

but generally far lower than the theoretical maximum suggested by the parallel CPU count.

On the one hand, subproblem complexity estimates turned out to be rather unreliable,

which caused bad variable-depth performance, often worse than the fixed-depth scheme.

More importantly, however, instances in this problem class actually exhibit a fair degree of

redundancies in the parallel search space, which immediately reduces the achievable parallel

speedup. These redundancies were identified and quantified during theoretical analysis of

the approach, but have not been a significant factor for the other problem classes.

Finally, for side-chain prediction instances a combination of large variable domain sizes and

very unbalanced search spaces implies that a very large number of parallel subproblems is

needed for efficient load balancing. However, our current implementation does not generally

support this due to technical limitations. With these constraints in mind, however, we still

found variable-depth parallelization to greatly outperform the fixed-depth scheme.

Overall, we are confident in the potential of the suggested parallel AND/OR implementation.

Far from embarrassingly parallel, it succeeded in solving a large number of very complex

problem instances several orders of magnitude faster than the already very advanced and

award-winning sequential AND/OR Branch-and-Bound.
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4.7.1 Integration with Superlink-Online SNP

As mentioned above, some of the initial motivation for this work was the wish to develop

an advanced haplotyping component for the Superlink Online system (recall that maximum

likelihood haplotyping can be translated to an MPE query over a suitably generated Bayesian

network) [39, 105]. At the same time, this objective also determined some, if not most of

the choices regarding the parallel architecture (grid-based, master-worker organization, with

no shared memory or worker-to-worker message passing, using the Condor grid management

system).

This goal was achieved in early 2012 as part of the release of Superlink-Online SNP, which

is available at http://cbl-hap.cs.technion.ac.il/superlink-snp/. Besides enabling

analysis of dense SNP data, this improved version of Superlink Online also includes parallel

AOBB to enable haplotyping on previously infeasible input pedigree instances. Specifically,

the deployed algorithm uses variable-depth parallelization as described above, based on an

earlier instance of a regression model learned just from haplotyping instances. It runs on a

shared cluster of computers at the Technion Institute of Technology in Haifa, Israel with up

to 120 parallel cores – the target subproblem count is thus set to 1200.

A considerable amount of time was spent on the integration of parallel AOBB with the

existing workflow of the Superlink Online system, including, but not limited to, preprocess-

ing of the pedigree data, proper error handling, and (most irritatingly) cross-system and

cross-platform compatibility of the executable binary files. The result of our efforts, the

Superlink-Online SNP system, has been described in a recent journal article entitled “A Sys-

tem for Exact and Approximate Genetic Linkage Analysis of SNP Data in Large Pedigrees”

in Bioinformatics (accepted for publication in November 2012).
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4.7.2 Open Questions & Possible Future Work

There are a number of open research issues that could be addressed in the future. Concep-

tually, we can distinguish two principal directions:

First, the proposed scheme can be extended and improved within the framework discussed

above. Possible questions to ask include how the variable ordering impacts parallel perfor-

mance – specifically, can we find variable orderings that are “more suitable” in the sense that

they minimize the structural redundancies resulting from the loss of (some of the) caching

across subproblems? For instance, we might want variables that appear in the context of

many other variables to appear close to the root in the guiding pseudo tree (recall that

redundancies are caused by out-of-context variables that are part of the conditioning set).

Alternatively, variables that only have relevance to a few other variables might be acceptable

as part of the parallel conditioning (i.e., close to the root of the pseudo tree) if those other

variables are also conditioned on – in that case proper caching can be applied within the

master process.

Similarly within the existing framework, we can aim to make the variable-depth parallel

scheme in particular more robust to inaccurate subproblem complexity estimates, which we

have shown to be the limiting element in a number of cases. For instance, when additional

parallel resources are available, the master process could decide to break up long-running

subproblems into smaller pieces and submit those to the grid as well, in the hope that they

might finish faster than the existing single job (which could be kept active regardless).

Second, we can consider moving away from our current model of parallelism, which is very

widely applicable at the expense of its restrictiveness in terms of parallel communication.

As discussed in the introductory sections of this chapter, there are a whole range of options

to consider. A first step might be to allow workers to send updates back to the master host,

as well as receive messages from it, at runtime. For instance, this could be used to exchange
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live bounding information. A second, more direct approach is clearly to make the workers

aware of each other and allow them to communicate directly, in a truly distributed fashion.

In comparing these two possible distributed approaches, many aspects can be considered.

For one, we recognize that allowing workers to communicate directly could be more flexible

in principle, but it also requires a more permissive network topology (which might be pro-

hibitive for geographically distributed computing resources with firewall systems in-between).

Moreover, in a näıve implementation the amount of communication would grow quadrati-

cally with the number of parallel CPUs, when it is only linear if communication is channeled

through the master host.

4.8 Overview of Earlier Work

For completeness we include here a brief summary of some earlier work we conducted in

the context of parallelizing AOBB. In particular, our initial investigation into parallelizing

AOBB was based on somewhat more dynamic parallelism, where subproblems are generated

“on-demand” instead of statically ahead of time. Full details are described in [90, 91, 92],

the following outlines and discusses the central ideas.

4.8.1 Parallel Design

We assume the same setup as in earlier sections of this chapter, i.e. a computational grid

with c independent, parallel processors. The parallelization process then proceeds as follows:

• The master generates the first c subproblems through depth-first search of the condi-

tioning space and sends them to the grid worker hosts, one per worker. At this point

the master pauses its exploration of the conditioning space.

267



– The selection of parallel subproblems is dependent on an estimate of a subprob-

lem’s runtime and a “target” subproblem complexity T , provided as input to the

algorithm (e.g., targeting 30 minutes): a subproblem is chosen for parallelization

and submitted to the grid when its estimated complexity is below the threshold

T , otherwise it is conditioned further.

• Upon receipt of a subproblem solution from a worker, the master processes it and

immediately generates another subproblem for the newly idle worker, continuing with

the previously halted exploration of the conditioning space.

• This continues until no further subproblems can be generated, at which point the

master waits for the remaining subproblem solutions.

The on-demand generation of subproblems has a number of advantages. For instance, solu-

tion costs of solved subproblems can be propagated in a branch-and-bound fashion within

the conditioning search space. Subsequent subproblems can then possibly profit from tighter

cost bounds. In addition, this design allows the master to adjust its complexity predictions

in an online fashion by incorporating information from solved subproblems. The following

section elaborates.

4.8.1.1 Subproblem Complexity Assessment

The work presented in [90, 92] uses an earlier approach of subproblem complexity modeling

that is slightly different from the general linear regression approach presented earlier in

this thesis. Building on insight gained from general heuristic search [87], the underlying

assumption is that the complexity of the subproblem below a given node n is captured by

the expression N(n) = b(n)D(n) , where b(n) is the effective branching factor and D(n) is the

average leaf node depth of the subproblem below n .
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Effective Branching Factor. We assume that for each problem instance there is a “true”

underlying effective branching factor b . Given a set of previously solved sample subproblems

{n1, . . . , nm} from the same instance, we note thatN(nj) andD(nj) are easily counted, based

on which b(nj) =
D(nj )

√
N(nj) can be computed after the fact. For a new subproblem n′ we

then use the average b̄ = 1
m

∑m

j=1 b(nj) as an estimate for the branching factor b(n′) .

Average leaf node depth. We model the average depth of a given subproblem search

space below root node n as a function of the upper and lower cost bound U(n) and L(n),

respectively, the height of the subproblem pseudo tree h(n) , as well as the average increment

denoted inc(n) . The following expands on these properties:

• The subproblem cost bounds U(n) and L(n) are provided by the mini-bucket heuristic

and the branch-and-bound logic, respectively, and are known before the subproblem

is explored. The difference U(n) − L(n) then measures the “constrainedness” of the

subproblem below n – intuitively, subproblems with a large gap between upper and

lower cost bound require more effort, while a small value of U(n) − L(n) tendentially

signifies a highly constrained subproblem in which large parts of the underlying search

space will be pruned.

• inc(n) is meant to capture the average value of function instantiations from one level

in the search space to the next, which can alternatively be called the cost increment.

In the context of the subproblem cost bounds, the idea is that larger increment values

require fewer steps to bridge the gap U(n) − L(n) – empirical motivation and a more

detailed derivation is given in [90, 92].

Based on this, the model for the average leaf node depth proposed in [90, 92] is the following:

D(n) =
U(n)− L(n)

inc(n)
·
√
h(n) , (4.4)
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where the factor
√
h(n) was empirically motivated. As with the branching factor b(n)

above, the average increment can be determined after a subproblem is solved by inc(n) =

(U(n) − L(n)) ·
√
h(n) ·D(n)−1 , where U(n), L(n), and h(n) are know ahead of time, and

D(n) is computed during subproblem exploration by recording and averaging the depth of

all encountered leaf nodes.

To estimate the average leaf node depth of a new subproblem instance n′ , we in turn estimate

its average increment inc(n′) as the arithmetic mean înc = 1
m

∑m

j=1 inc(nj) of the average

increments of previously solved subproblems {n1, . . . , nm} (i.e., we assume an underlying

average increment value). With that and the new subproblem’s upper and lower cost bound

as well as pseudo tree height, we can compute an estimate of the average leaf depth using

Equation 4.4.

Overall estimation scheme. To compute a complexity estimate for a new subproblem

n′ we simply combine the two elements above as follows:

N̂(n′) = b̂
U(n′)−L(n′)

înc
·

√
h(n′) (4.5)

Here b̂ and înc are the arithmetic means of effective branching degrees and average incre-

ments, respectively, as computed across previously solved subproblems (these values can thus

be updated every time a new subproblem solution is received by the master process).

Note that this approach to complexity estimation is in fact somewhat similar to, albeit more

restricted than, the general regression approach described earlier in this thesis (cf. Section

3). Namely, modulo log transformation it can be regarded as a linear regression model with

exactly one feature (U(n)− L(n)) ·
√
h(n), with feature weight λ = 1

înc
.

270



 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5  10  15  20

S
pe

ed
up

 v
s.

 5
 w

or
ke

rs

Number of workers p

ped51
ped31

ped7
ped19
ped41
ped13

Figure 4.44: Speedup results of early dynamic parallel scheme on select pedigree instances,
relative to 5 parallel workers (taken form [92]).

4.8.2 Limitations

At this early stage of our research as described in this section, experimental evaluation was

only conducted on a handful of pedigree linkage instances. Secondly, a lack of computational

resources limited the experimental setup to 20 parallel CPUs. Speedup results ranged from

good to fair. Figure 4.44 reproduces one of the plots from [92]. Shown is the parallel speedup,

relative to 5 CPUs, for up to 20 CPUs on the set of pedigree instances that we experimented

with at that time. Comparison with the more recent results presented in this chapter is not

straightforward, since the baseline in Figure 4.44 was chosen as the parallel runtime with 5

CPUs. We do note, however, that some of the instances (e.g., ped41) improve by less than

a factor of 2 when going from 5 CPUs to 20 CPUs, which is quite inefficient at this small

scale of parallelism.

Other metrics like parallel overhead were not directly considered at that point in time, see

[90, 92] for more details. More importantly, however, our work on this system made a number

of crucial limitations evident:
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• Subsequent experiments with larger numbers of CPUs have demonstrated severe scaling

issues – for instance, the master host is prone to being bottlenecked and getting blocked

by the constant stream of grid input and output.

• At this early stage of our work no appropriate initialization techniques for the online

estimation scheme had been developed. The starting estimates for branching degree

and average increment were based on a short AOBB-based probe of the search space,

results of which exhibited significant variance in terms of usefulness.

• The on-demand parallelization approach is not very suitable for a shared grid environ-

ment – a new subproblem is generated whenever an existing one finishes, but in the

meantime other users might have scheduled many jobs in the shared parallel queue,

thereby delaying the execution of new subproblems.

• Simulation of parallel runs, as employed throughout earlier parts of this chapter, is not

easily attainable, since solution costs from earlier subproblems are reused as bounds

for later ones, which depends very much on the actual order of subproblem execution.

All of the above points were at odds with a potential deployment of parallel AOBB within

Superlink Online – additionally, they made systematic empirical evaluation very challenging

and at times frustrating. This is why our subsequent efforts, presented comprehensively

in Chapters 3 and 4, have focused on more static parallelization schemes and a more gen-

eral, more reliable approach to subproblem prediction. However, in future research certain

elements like refining complexity models in an online fashion might be worth revisiting.
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Chapter 5

Conclusion

This thesis has presented a number of different contributions in the area of combinatorial

optimization over graphical models. Our work comprises significant extensions and in-depth

analysis of AND/OR Branch-and-Bound, a state-of-the art search algorithm for these typi-

cally NP-hard problems. The research we report on has pushed the boundaries of AOBB and

combinatorial optimization in general along three distinct dimensions. We provide a brief

summary for each of these in the following, open questions and future research directions

were discussed in the respective chapters.

First, we significantly enhanced the applicability of AOBB for approximate inference by

restoring and improving its anytime performance. Based on our analysis of the shortcomings

of AOBB in this context, we have developed Breadth-Rotating AOBB, which combines

ideas from breadth-first search with the principles of depth-first branch-and-bound while

still maintaining favorable complexity guarantees. Extensive empirical evaluation has shown

great and very robust results, both with regards to solution time and solution quality, on a

large set of problem instances. We have also performed comparison against the leading local
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search solver, inherently designed for anytime performance, and observed very competitive,

if not better, anytime performance.

Second, we have investigated the issue of runtime complexity of AOBB. Known asymptotic

bounds based on structural parameters like the induced width are often very loose in prac-

tice, due to determinism in the problem specification and the algorithm’s pruning power.

Instead we have developed simple complexity models based on statistical regression learn-

ing. Based on a set of 35 problem or subproblem features that we devised, we proceeded to

learn a number of complexity models on and across different classes of problem instances.

Through in-depth experimental evaluation of these models we demonstrated good predictive

performance in the majority of cases across a variety of scenarios. Further analysis also con-

sidered the informativeness of the different problem features and confirmed that structural

properties are less helpful than dynamic ones that incorporate, for instance, information

derived from the problem’s cost functions.

Third, we returned to exact inference, where we have pushed AOBB’s ability to find and

prove optimal solutions by several orders of magnitude through the introduction of dis-

tributed processing on a grid of computer. Our analysis has shown this to be far from

embarrassingly parallel and therefore inherently hard to parallelize. On top of the detrimen-

tal effect of search space redundancies introduced in the parallelization process, the pruning

power of AOBB as well as determinism in the problem’s function tables render the choice of

parallel subproblems and subsequent efficient load balancing, a prerequisite for good parallel

performance, very challenging. We have proposed two implementations of parallel AOBB,

one which chooses subproblems at a fixed depth in the overall search space, and one which

tries to employ the complexity estimation developed previously to create a more balanced set

of subproblems at varying depths. Detailed, large-scale experiments on instances from sev-

eral problem classes have highlighted the various performance considerations and trade-offs

to be made. In that context, we were able to demonstrate very good parallel performance
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on two problem classes, with good load balancing and relatively high speedups. Two other

problem classes each exhibit distinct properties that make them inherently less suitable for

our parallel implementation, for conceptual and technical reasons, respectively – perfor-

mance improvements over the sequential algorithm were not as impressive as in the other

experiments, but still notable. Separately, we have also found that the variable-depth paral-

lelization scheme has the ability to substantially outperform its fixed-depth sibling, provided

that the underlying complexity estimates are sufficiently accurate.

The viability of our contributions has been further validated in practice as follows: First,

Breadth-Rotating AOBB has recently won 1st places in all three relevant tracks of the PAS-

CAL 2011 Probabilistic Inference Challenge, edging out a variety of other powerful solvers.

Second, parallel AOBB with learning-based variable-depth load balancing, as described in

Chapter 4, has been successfully integrated into Superlink Online-SNP, an online platform

for large-scale genetic analysis used by geneticists and medical researchers worldwide.
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A Additional Complexity Estimation Results

A.1 Complexity Estimation per Instance

• Figure A.1 shows results of per-instance learning on eight pedigree linkage problem

instances, using 5-fold cross validation.

• Figure A.2 shows results of per-instance learning on eight largeFam haplotyping prob-

lem instances, using 5-fold cross validation.

• Figure A.3 shows results of per-instance learning on eight pdb protein side-chain pre-

diction problem instances, using 5-fold cross validation.

• Figure A.4 shows results of per-instance learning on eight grid network problem in-

stances, using 5-fold cross validation.

A.2 Complexity Estimation per Problem Class

• Figure A.5 shows results of per-class learning on eight pedigree linkage problem in-

stances, using the respective other instances of the same class for model training.

• Figure A.6 shows results of per-class learning on eight largeFam haplotyping problem

instances, using the respective other instances of the same class for model training.

• Figure A.7 shows results of per-class learning on eight pdb protein side-chain prediction

problem instances, using the respective other instances of the same class for model

training.

• Figure A.8 shows results of per-class learning on eight grid network problem instances,

using the respective other instances of the same class for model training.
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A.3 Complexity Estimation across Problem Classes

• Figure A.9 shows results of cross-class learning on eight pedigree linkage problem in-

stances, using instances from all classes for model training.

• Figure A.10 shows results of cross-class learning on eight largeFam haplotyping problem

instances, using instances from all classes for model training.

• Figure A.11 shows results of cross-class learning on eight pdb protein side-chain pre-

diction problem instances, using instances from all classes for model training.

• Figure A.12 shows results of cross-class learning on eight grid network problem in-

stances, using instances from all classes for model training.

A.4 Complexity Estimation for Unseen Problem Class

• Figure A.13 shows results of unseen-class learning on eight pedigree linkage problem

instances, using instances from all non-pedigree classes for model training.

• Figure A.14 shows results of unseen-class learning on eight largeFam haplotyping prob-

lem instances, using instances from all non-largeFam classes for model training.

• Figure A.15 shows results of unseen-class learning on eight pdb protein side-chain pre-

diction problem instances, using instances from all non-pdb classes for model training.

• Figure A.16 shows results of unseen-class learning on eight grid network problem in-

stances, using instances from all non-grid classes for model training.
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Figure A.1: Per-instance estimation results on pedigree linkage instances, using 5-fold cross
validation.
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Figure A.2: Per-instance estimation results on largeFam haplotyping instances, using 5-fold
cross validation.
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Figure A.3: Per-instance estimation results on pdb side-chain prediction instances, using
5-fold cross validation.
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Figure A.4: Per-instance estimation results on grid network instances, using 5-fold cross
validation.
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Figure A.5: Per-class estimation results on pedigree linkage instances, using the respective
other instances of the same class for model training.
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Figure A.6: Per-class estimation results on largeFam haplotype instances, using the re-
spective other instances of the same class for model training.
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Figure A.7: Per-class estimation results on pdb side-chain prediction instances, using the
respective other instances of the same class for model training.
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Figure A.8: Per-class estimation results on grid network instances, using the respective
other instances of the same class for model training.
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Figure A.9: Cross-class estimation results on pedigree linkage instances, using instances
from all classes for model training.
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Figure A.10: Cross-class estimation results on largeFam haplotype instances, using in-
stances from all classes for model training.
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Figure A.11: Cross-class estimation results on pdb side-chain prediction instances, using
instances from all classes for model training.
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Figure A.12: Cross-class estimation results on grid network instances, using instances from
all classes for model training.
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Figure A.13: Unseen-class estimation results on pedigree linkage instances, using instances
from all other classes for model training.
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Figure A.14: Unseen-class estimation results on largeFam haplotype instances, using in-
stances from all other classes for model training.
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Figure A.15: Unseen-class estimation results on pdb side-chain prediction instances, using
instances from all other classes for model training.
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Figure A.16: Unseen-class estimation results on grid network instances, using instances
from all other classes for model training.
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B Complete Parallel Result Tables

This section contains the complete tables of parallel results, a subset of which was presented

in Section 4.6. The experimental setup is describe more in-depth in Section 4.6.1, details

regarding the problem instances are given in Section 4.6.2.

As a reminder, for each instance and cutoff depth d, we first run parallel AOBB with fixed-

depth parallel cutoff (Algorithm 4.1). The resulting number of subproblems p is then used

for the variable-depth scheme (Algorithm 4.2). In all cases, if one scheme is better than the

other by more than 10% (relative) its results is marked bold in the following tables. The

best entry in each row is highlighted in gray.

B.1 Parallel Preprocessing Times

Preprocessing includes the time needed for mini-bucket heuristic computation as well as

determining the parallelization frontier.

• Table B.1 lists preprocessing times on pedigree linkage analysis problem instances.

• Table B.2 lists preprocessing times on largeFam haplotyping problem instances.

• Table B.3 lists preprocessing times on pdb side-chain prediction problem instances.

• Table B.4 lists preprocessing times on grid network problem instances.

B.2 Parallel Runtime Results

• Tables B.5 and B.6 (pages 311 and 312) list full parallel runtime results on pedigree

linkage analysis problem instances.
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• Tables B.7 and B.8 (pages 313 and 314) list full parallel runtime results on largeFam

haplotyping problem instances.

• Table B.9 (page 315) lists full parallel runtime results on protein side-chain prediction

problem instances.

• Table B.10 (page 316) lists full parallel runtime results on grid network problem in-

stances.

B.3 Parallel Speedup Results

• Tables B.11 and B.12 (pages 317 and 318) list full parallel speedup results on pedigree

linkage analysis problem instances.

• Tables B.13 and B.14 (pages 319 and 320) list full parallel speedup results on largeFam

haplotyping problem instances.

• Table B.15 (page 321) lists full parallel speedup results on protein side-chain prediction

problem instances.

• Table B.16 (page 322) lists full parallel speedup results on grid network problem in-

stances.

B.4 Average Resource Utilization Results

• Tables B.17 and B.18 (pages 323 and 324) list full parallel resource utilization results

on pedigree linkage analysis problem instances.

• Tables B.19 and B.20 (pages 325 and 326) list full parallel resource utilization results

on largeFam haplotyping problem instances.

305



• Table B.21 (page 327) lists full parallel resource utilization results on protein side-chain

prediction problem instances.

• Table B.22 (page 328) lists full parallel resource utilization results on grid network

problem instances.
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Cutoff depth d

instance n m k w h i Tseq 1 2 3 4 5 6 7 8 9 10 11 12 13

fix var fix var fix var fix var fix var fix var fix var fix var fix var fix var fix var fix var fix var

ped13 1077 1077 3 32 102
8 252654 0 1 1 0 0 0 0 0 0 1 1 1 1 1 2 3 5 5 10 9 19 19 37 39 65 58

9 102385 0 0 0 0 0 0 0 0 0 0 1 0 2 1 3 3 6 5 13 9 25 19 53 37 61 55

ped19 793 793 5 25 98 16 375110 41 41 41 41 41 41 45 42 44 42 54 50 74 61 111 89 153 109 144 141 198 181

ped20 437 437 5 22 60
3 5136 0 0 0 0 0 0 0 0 1 0 1 1 1 1 3 2 7 9 18 18

4 2185 0 0 0 0 0 0 0 1 0 0 1 0 1 1 2 2 7 8 16 17

ped31 1183 1183 5 30 85

10 1258519 1 1 0 0 1 0 0 0 1 0 1 0 1 1 3 3 5 5 10 9 19 19 38 37 73 75

11 433029 0 0 0 0 0 1 1 0 1 1 1 1 2 1 4 3 8 5 13 10 25 20 50 40 77 78

12 16238 0 0 1 0 1 1 0 1 1 1 1 1 2 2 3 3 5 5 9 9 18 19 34 36 66 70

ped33 798 798 4 28 98 4 6010 0 0 0 0 0 0 1 0 1 0 0 0 1 0 1 0 1 1 3 2 4 4 8 9 12 9

ped34 1160 1160 5 31 102

10 962006 0 0 0 1 0 0 0 0 1 0 1 1 1 1 2 2 4 5 8 9 12 11 23 21 41 41

11 350574 1 1 0 0 1 0 0 0 0 0 1 1 1 1 2 2 4 4 8 8 13 11 24 21 40 40

12 96122 0 0 0 1 1 0 1 1 1 1 1 1 2 1 3 2 6 4 10 9 15 11 29 21 53 39

ped39 1272 1272 5 21 76
4 6632 0 0 0 0 0 0 0 0 0 0 2 1 3 3 6 6 11 9 19 19 39 38

5 2202 0 0 1 0 0 0 1 0 0 1 1 1 2 3 6 6 10 9 19 18 37 36

ped41 1062 1062 5 33 100

9 25607 0 0 0 0 0 0 0 1 0 1 1 1 2 2 3 3 6 6 11 10 18 17 34 35 65 NA

10 46819 0 0 0 0 1 0 1 0 1 1 2 1 2 2 4 2 8 5 17 11 27 16 57 34 65 NA

11 27583 0 0 1 0 0 0 1 0 0 0 1 1 2 2 3 3 5 5 10 11 18 18 34 37 65 NA

ped44 811 811 4 25 65
5 207136 0 0 0 0 0 0 0 0 1 0 0 0 2 2 3 2 7 6 12 12 25 24 49 49 99 98

6 95830 1 1 0 0 0 0 0 0 1 0 1 0 4 2 7 3 12 6 24 11 49 24 48 48 96 96

ped50 514 514 6 17 47
3 4135 0 0 0 0 0 0 2 0 1 1 5 6 15 14 41 37

4 1780 0 0 0 0 0 0 1 0 1 2 5 5 14 14 39 37

ped51 1152 1152 5 39 98
20 101788 21 21 21 21 21 21 21 21 21 21 21 21 22 22 23 23 25 25 30 29 36 37 52 52 82 84

21 164817 43 43 44 43 43 43 43 43 43 43 44 44 45 44 47 45 49 48 55 51 71 59 94 75 107 108

ped7 1068 1068 4 32 90

6 118383 0 0 0 0 0 0 0 1 0 1 1 1 4 5 6 6 12 12 15 12 26 24 40 36 70 72

7 93380 0 0 0 0 0 0 1 0 1 0 2 1 6 5 9 6 17 13 23 13 38 26 61 40 110 85

8 30717 0 0 1 0 0 1 1 0 1 1 1 1 4 4 6 5 11 12 16 12 27 25 42 38 72 80

ped9 1118 1118 7 27 100

6 101172 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 2 2 3 5 5 10 9 17 19 35 36

7 58657 1 0 0 0 0 1 0 0 0 1 1 1 1 1 2 1 3 2 7 5 12 8 27 16 47 34

8 41061 0 0 0 0 0 0 0 1 0 1 1 1 1 1 1 2 3 2 5 4 9 8 16 17 33 33

Table B.1: Preprocessing times of fixed-depth and variable-depth parallel AOBB on linkage instances.
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Cutoff depth d

instance n m k w h i Tseq 1 2 3 4 5 6 7 8 9 10 11 12 13

fix var fix var fix var fix var fix var fix var fix var fix var fix var fix var fix var fix var fix var

lF3-11-57 2670 2670 3 37 95

15 121311 3 3 4 4 3 3 4 4 4 4 4 4 5 5 5 5 5 5 7 6 8 9 14 18 23 23

16 35820 6 6 6 6 6 6 6 7 6 6 7 6 7 7 7 7 8 8 9 8 11 10 17 20 24 24

17 18312 15 15 15 15 15 16 15 16 16 15 16 15 16 16 16 16 17 17 18 17 20 20 26 28 33 32

lF3-11-59 2711 2711 3 32 73

14 35457 4 4 4 4 3 4 4 4 4 4 4 4 5 5 7 6 10 11 15 15 25 27 36 27 58 51

15 8523 5 5 4 5 4 5 5 5 4 4 5 5 6 6 7 6 10 11 15 15 24 27 34 27 53 49

16 3023 11 11 10 11 11 11 11 11 11 11 11 12 12 12 13 13 16 17 20 22 30 33 39 33 59 55

lF3-13-58 3352 3352 3 31 88

14 46464 1 1 1 1 1 1 1 1 2 2 2 2 3 3 4 3 8 8 14 14 25 24 45 47 78 76

16 20270 4 4 4 4 4 4 4 5 5 5 5 5 6 6 7 6 10 10 16 17 27 25 47 47 80 74

18 7647 21 21 20 20 21 20 21 20 21 21 21 21 22 23 24 23 26 27 33 33 44 41 63 62 96 89

lF3-15-53 3384 3384 3 32 108
17 345544 7 7 7 7 7 7 7 7 7 7 8 7 8 8 10 10 12 13 16 17 24 24 39 38 61 55

18 98346 15 15 16 15 15 15 15 16 16 15 16 15 16 16 18 18 19 19 23 23 29 29 40 39 51 55

lF3-15-59 3730 3730 3 31 84
18 28613 8 8 8 8 8 8 8 8 8 8 9 9 11 11 13 13 20 19 30 30 52 53 95 95 180 183

19 43307 14 14 13 13 13 13 14 13 13 14 14 14 15 16 18 19 23 25 36 36 56 58 100 103 183 190

lF3-16-56 3930 3930 3 38 77
15 1891710 8 8 8 8 8 9 8 8 9 8 11 11 14 14 21 22 28 22 41 35 59 46 115 107

16 489614 21 21 21 21 21 21 21 21 22 22 22 22 24 23 27 27 34 34 39 34 52 47 76 59 123 113

lF4-12-50 2569 2569 4 28 80
13 57842 7 7 7 7 7 6 7 7 9 8 12 11 25 28 48 43

14 33676 5 5 5 5 5 4 6 5 6 7 12 10 24 27 47 42

lF4-12-55 2926 2926 4 28 78
13 104837 3 3 2 3 3 3 3 3 3 4 4 4 6 6 8 10 13 17 18 17 27 30 35 30 51 54

14 25905 8 8 8 7 8 8 8 8 8 8 8 9 9 10 11 13 17 18 19 18 26 32 35 32 48 58

lF4-17-51 3837 3837 4 29 85
15 10607 8 8 8 8 8 8 8 8 8 8 8 8 9 8 9 8 10 10 11 11 12 11 15 15 17 16

16 66103 13 13 14 13 13 14 14 14 14 13 14 14 14 14 15 15 17 18 19 19 21 20 26 26 30 27

Table B.2: Preprocessing times of fixed-depth and variable-depth parallel AOBB on haplotyping instances.
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Cutoff depth d

instance n m k w h i Tseq 1 2 3 4 5 6

fix var fix var fix var fix var fix var fix var

pdb1a6m 124 521 81 15 34 3 198326 3 3 3 3 7 4

pdb1duw 241 743 81 9 32 3 627106 4 4 3 4 4 4 19 15

pdb1e5k 154 587 81 12 43 3 112654 4 4 10 4 11 10

pdb1f9i 103 387 81 10 24 3 68804 2 2 40 4

pdb1ft5 172 645 81 14 33 3 81118 15 15 16 16 53 20

pdb1hd2 126 448 81 12 27 3 101550 6 6 33 8

pdb1huw 152 587 81 15 43 3 545249 9 9 8 9 9 9 10 9 11 10 13 11

pdb1kao 148 568 81 15 41 3 716795 6 6 6 6 6 6 8 7

pdb1nfp 204 791 81 18 38 3 354720 3 3 3 3 3 3 6 6

pdb1rss 115 448 81 12 35 3 378579 16 16 16 17 16 17 15 17

pdb1vhh 133 556 81 14 35 3 944633 12 12 12 13 50 53

Table B.3: Preprocessing times of fixed-depth and variable-depth parallel AOBB on side-chain prediction instances.
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Cutoff depth d

instance n m k w h i Tseq 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

fix var fix var fix var fix var fix var fix var fix var fix var fix var fix var fix var fix var fix var fix var fix var

75-25-1 624 626 2 38 111
12 77941 0 0 1 0 0 0 0 1 1 1 0 0 0 0 1 2 2 2 2 2 3 2 4 4 5 6 9 9 15 15

14 15402 1 1 0 0 0 0 1 0 0 0 1 1 1 0 0 1 0 2 1 2 2 2 2 3 4 4 7 7 10 12

75-25-3 624 626 2 37 115
12 104037 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 1 2 3 2 4 4 7 8 12 11

15 33656 1 1 0 1 1 1 0 0 1 0 0 0 1 1 1 0 1 0 1 1 2 1 2 2 4 4 7 7 11 11

75-25-7 624 626 2 37 120
16 297377 1 1 1 1 0 0 1 0 1 1 1 1 1 1 1 2 3 3 3 3 5 5 8 8 13 20 22 27 31 36

18 21694 2 2 2 2 3 3 2 2 3 2 2 2 2 3 3 3 4 4 5 4 6 6 9 11 14 19 21 27 30 35

75-26-10 675 677 2 39 124
16 46985 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 2 1 1 2 2 3 3 4 3 6 6 10 11 12 11

18 26855 2 2 2 3 2 3 2 3 2 2 3 2 3 2 3 3 3 3 4 4 5 5 6 5 8 9 11 13 15 13

75-26-2 675 677 2 39 120
16 25274 1 1 1 1 1 1 1 0 1 1 1 1 2 2 2 2 3 4 4 4 6 6 11 12 15 12 24 25 37 38

20 8053 7 7 7 7 7 7 7 7 8 7 8 8 8 8 9 8 9 9 10 10 12 12 16 19 21 19 29 31 41 44

75-26-6 675 677 2 39 133
10 199460 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 2 1 3 3 4 4 6 6 10 10 17 18 33 37

12 64758 0 0 1 1 0 0 0 1 1 0 0 0 1 1 1 1 1 1 2 2 3 3 5 5 9 9 16 17 30 38

75-26-9 675 677 2 39 124

16 59609 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 2 3 2 4 4 6 7 11 13 21 27 31 27 50 53

18 66533 2 2 2 3 2 2 2 2 2 2 2 2 3 2 3 3 3 3 5 5 8 9 13 17 22 33 33 33 54 64

20 5708 8 8 9 8 8 8 8 8 8 8 8 8 9 9 9 9 10 10 11 10 12 12 16 18 22 28 29 28 43 47

Table B.4: Preprocessing times of fixed-depth and variable-depth parallel AOBB on grid instances.
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Cutoff depth d
instance i Tseq #cpu 1 2 3 4 5 6 7 8 9 10 11 12 13

fix var fix var fix var fix var fix var fix var fix var fix var fix var fix var fix var fix var fix var

ped13
n=1077
k=3
w=32
h=102

8 252654

(p=2) (p=4) (p=8) (p=16) (p=32) (p=64) (p=128) (p=256) (p=512) (p=1024) (p=2048) (p=4096) (p=6144)
20 133286 139596 69461 136558 34982 137281 19125 70897 18615 35261 16290 24717 15655 21913 15228 13822 14545 14071 14074 13883 14859 13985 14734 14486 14680 14520
100 133286 139596 69461 136558 34982 137281 19125 70897 11684 35261 5945 18836 5808 19106 4867 11027 4205 5157 3603 3979 3768 3047 3713 3620 3712 3277

500 133286 139596 69461 136558 34982 137281 19125 70897 11684 35261 5945 18836 5041 19106 3339 11027 2430 5157 1741 2816 2008 1871 1516 1608 1525 1176

∞ 133286 139596 69461 136558 34982 137281 19125 70897 11684 35261 5945 18836 5041 19106 3339 11027 2430 5157 1658 2816 1774 1871 1139 1399 1140 1125

9 102385

(p=2) (p=4) (p=8) (p=16) (p=32) (p=64) (p=128) (p=256) (p=512) (p=1024) (p=2048) (p=4096) (p=6144)
20 53547 54036 30925 31659 15869 23811 10539 11993 9440 12041 5806 9706 5214 6891 5111 5691 5327 5244 5223 5573 5547 5319 5656 5574 5905 5747
100 53547 54036 30925 31659 15869 23811 10539 11993 7148 12041 3481 9706 3318 6891 1941 3237 1829 1934 1337 2082 1648 1436 1463 1546 1532 1458
500 53547 54036 30925 31659 15869 23811 10539 11993 7148 12041 3481 9706 3318 6891 1682 3202 1523 1564 835 1764 857 880 824 841 850 831
∞ 53547 54036 30925 31659 15869 23811 10539 11993 7148 12041 3481 9706 3318 6891 1682 3202 1523 1564 807 1764 739 822 752 765 776 770

ped19
n=793
k=5
w=25
h=98

16 375110

(p=4) (p=12) (p=48) (p=144) (p=288) (p=1440) (p=2880) (p=5752) (p=7672) (p=11254) (p=14968)
20 180120 184438 119407 73960 66165 41630 30976 28027 25924 26562 27290 28435 29811 31468 35187 37384 39868 41288 47882 48784 54845 56214
100 180120 184438 119407 73960 66165 39990 30976 20593 17294 12489 12125 7294 8340 7807 7492 7947 8141 8360 9705 9887 11147 11401
500 180120 184438 119407 73960 66165 39990 30976 20593 17294 12489 11930 5158 6716 3474 5222 3301 3454 2983 2912 2381 3061 2465

∞ 180120 184438 119407 73960 66165 39990 30976 20593 17294 12489 11930 5158 6716 2738 5079 2639 3170 2595 2709 1934 2687 1638

ped20
n=437
k=5
w=22
h=60

3 5136

(p=2) (p=6) (p=12) (p=32) (p=96) (p=160) (p=480) (p=800) (p=3200) (p=6400)
20 2461 2461 1361 1392 739 717 454 423 420 416 395 433 468 455 514 505 804 817 1164 1167
100 2461 2461 1361 1392 739 717 383 381 231 235 111 238 132 163 127 133 169 176 249 252
500 2461 2461 1361 1392 739 717 383 381 231 235 95 238 71 134 52 133 46 54 67 72
∞ 2461 2461 1361 1392 739 717 383 381 231 235 95 238 71 134 41 133 27 48 32 43

4 2185

(p=2) (p=6) (p=12) (p=32) (p=96) (p=160) (p=480) (p=800) (p=3200) (p=6400)
20 571 571 229 227 118 192 81 90 83 78 79 75 114 112 149 149 395 401 733 728
100 571 571 229 227 118 192 51 90 30 31 21 24 28 24 34 32 86 88 161 160
500 571 571 229 227 118 192 51 90 30 31 15 24 12 12 12 11 25 25 46 47
∞ 571 571 229 227 118 192 51 90 30 31 15 24 12 12 10 11 11 12 20 20

ped31
n=1183
k=5
w=30
h=85

10 1258519

(p=2) (p=4) (p=8) (p=16) (p=32) (p=64) (p=128) (p=256) (p=512) (p=1024) (p=2048) (p=4096) (p=8192)
20 711530 711530 360625 358220 187151 170419 104694 103211 106669 91276 103639 89404 92364 83492 85986 81762 85658 81048 81513 80922 80859 80611 82833 81644 84114 84426
100 711530 711530 360625 358220 187151 170419 104694 103211 60463 84793 48472 49703 33396 36791 30712 26508 24505 18669 19653 17786 17498 16711 17082 16784 17462 17430
500 711530 711530 360625 358220 187151 170419 104694 103211 60463 84793 48472 49703 28510 36791 23569 17423 12522 9981 8172 5668 5756 4111 4607 3929 4246 3971
∞ 711530 711530 360625 358220 187151 170419 104694 103211 60463 84793 48472 49703 28510 36791 23569 17423 12522 9981 7100 5118 4008 2969 2033 1584 1374 1032

11 433029

(p=2) (p=4) (p=8) (p=16) (p=32) (p=64) (p=128) (p=256) (p=512) (p=1024) (p=2048) (p=4096) (p=8192)
20 195317 195317 107463 108489 54365 54458 30376 29491 33632 28823 31225 26680 22498 24712 22809 24087 23045 24312 24048 24254 23950 24723 25193 25315 26527 26400
100 195317 195317 107463 108489 54365 54458 30376 29491 19267 28823 15695 15780 8873 9263 7333 7668 4877 5923 5748 5069 5393 5218 5367 5144 5698 5405
500 195317 195317 107463 108489 54365 54458 30376 29491 19267 28823 15695 15780 8873 9263 7333 7668 4073 3382 2384 1820 1746 1372 1473 1360 1674 1526
∞ 195317 195317 107463 108489 54365 54458 30376 29491 19267 28823 15695 15780 8873 9263 7333 7668 4073 3382 2141 1820 1082 834 1083 818 985 834

12 16238

(p=2) (p=4) (p=8) (p=16) (p=32) (p=64) (p=128) (p=256) (p=512) (p=1024) (p=2048) (p=4096) (p=8192)
20 8097 8097 3758 4046 2355 2098 1298 1224 1342 1472 1463 1126 1406 1028 1086 929 1091 938 1055 1037 1165 1172 1444 1447 1974 1971
100 8097 8097 3758 4046 2355 2098 1298 1224 820 1472 1176 811 784 471 437 393 356 262 287 233 276 256 325 319 452 451
500 8097 8097 3758 4046 2355 2098 1298 1224 820 1472 1176 811 771 471 406 393 225 225 139 131 106 80 115 95 160 148
∞ 8097 8097 3758 4046 2355 2098 1298 1224 820 1472 1176 811 771 471 406 393 225 225 127 131 89 74 70 63 92 88

ped33
n=798
k=4
w=28
h=98

4 6010

(p=2) (p=3) (p=6) (p=6) (p=12) (p=24) (p=48) (p=96) (p=192) (p=384) (p=768) (p=1536) (p=1536)
20 3975 3975 3071 3238 1668 1521 1645 1521 841 712 649 486 541 426 478 467 474 406 467 434 535 490 594 597 610 597
100 3975 3975 3071 3238 1668 1521 1645 1521 841 712 519 367 365 323 252 173 236 123 173 112 176 119 159 139 172 139

500 3975 3975 3071 3238 1668 1521 1645 1521 841 712 519 367 365 323 252 173 209 123 124 91 108 71 87 59 88 59

∞ 3975 3975 3071 3238 1668 1521 1645 1521 841 712 519 367 365 323 252 173 209 123 124 91 101 71 77 49 78 49

ped34
n=1160
k=5
w=31
h=102

10 962006

(p=3) (p=5) (p=10) (p=20) (p=30) (p=60) (p=90) (p=180) (p=360) (p=716) (p=952) (p=1896) (p=3752)
20 490747 490747 424691 424270 280891 275499 175178 144147 145176 143540 145741 122690 104354 101243 109138 93405 98912 95149 98912 97309 102778 97530 97118 96468 97005 96170
100 490747 490747 424691 424270 280891 275499 175178 144147 144552 143540 115446 75577 75563 75573 42110 39354 32808 24178 27212 21134 27151 21039 21438 21187 20390 19432
500 490747 490747 424691 424270 280891 275499 175178 144147 144552 143540 115446 75577 75563 75573 41663 39354 24752 20572 13890 11203 11491 10730 6670 6136 5260 4882
∞ 490747 490747 424691 424270 280891 275499 175178 144147 144552 143540 115446 75577 75563 75573 41663 39354 24752 20572 13680 11203 11033 10730 5773 5926 3260 3044

11 350574

(p=3) (p=5) (p=10) (p=20) (p=30) (p=60) (p=90) (p=180) (p=360) (p=720) (p=956) (p=1912) (p=3808)
20 271792 271792 216931 217171 156741 218420 103935 155893 96190 108730 95723 95475 85044 95135 80649 74447 72536 71327 74526 76593 80137 76424 76817 76397 76963 76469
100 271792 271792 216931 217171 156741 218420 103935 155893 95443 95987 79842 79099 51909 51305 30073 29976 23264 23301 19172 18735 19242 18813 16714 16145 16234 15655
500 271792 271792 216931 217171 156741 218420 103935 155893 95443 95987 79842 79099 51909 51305 30042 29976 16019 16121 10423 9238 9443 8312 5282 5692 4505 3877

∞ 271792 271792 216931 217171 156741 218420 103935 155893 95443 95987 79842 79099 51909 51305 30042 29976 16019 16121 10423 9238 9326 8312 4666 4194 2499 2155

12 96122

(p=3) (p=5) (p=10) (p=20) (p=30) (p=60) (p=90) (p=180) (p=360) (p=716) (p=948) (p=1896) (p=3728)
20 42753 43233 26241 26328 23300 23569 20456 15283 15305 15227 15829 15743 15980 13462 13996 13785 12204 12681 12819 13081 13294 13104 12979 13421 13568 13891
100 42753 43233 26241 26328 23300 23569 20456 15283 15283 15227 13298 9028 9383 9107 5402 5648 4086 3706 3489 2971 3439 2883 2887 2972 2955 2956
500 42753 43233 26241 26328 23300 23569 20456 15283 15283 15227 13298 9028 9383 9107 5390 5648 3302 2841 2100 1298 1718 1089 1014 988 898 1119
∞ 42753 43233 26241 26328 23300 23569 20456 15283 15283 15227 13298 9028 9383 9107 5390 5648 3302 2841 2096 1298 1715 1089 916 625 623 972

ped39
n=1272
k=5
w=21
h=76

4 6632

(p=2) (p=4) (p=8) (p=16) (p=64) (p=128) (p=384) (p=768) (p=1152) (p=2304) (p=4608)
20 3070 3070 2690 2731 2661 2546 1494 1503 736 610 697 728 834 727 709 566 666 556 672 677 928 937
100 3070 3070 2690 2731 2661 2546 1494 1503 669 606 596 571 591 504 516 318 353 237 252 190 265 234

500 3070 3070 2690 2731 2661 2546 1494 1503 669 606 596 571 568 485 491 304 311 202 181 129 160 133

∞ 3070 3070 2690 2731 2661 2546 1494 1503 669 606 596 571 568 485 491 304 309 200 169 121 141 116

5 2202

(p=2) (p=4) (p=8) (p=16) (p=64) (p=128) (p=384) (p=768) (p=1152) (p=2304) (p=4608)
20 1030 1030 793 867 750 756 409 359 420 368 421 292 406 268 422 306 414 329 443 452 709 723
100 1030 1030 793 867 750 756 409 359 345 336 317 292 307 166 278 141 204 113 156 122 203 176

500 1030 1030 793 867 750 756 409 359 345 336 312 292 296 156 253 111 166 110 103 70 109 76

∞ 1030 1030 793 867 750 756 409 359 345 336 312 292 296 156 252 109 161 110 94 70 87 65

Better by 10% 0x 0x 4x 4x 16x 8x 16x 16x 18x 14x 14x 21x 15x 21x 10x 20x 6x 27x 7x 26x 1x 25x 1x 10x 2x 9x
Better by 50% 0x 0x 4x 4x 12x 4x 7x 3x 10x 0x 13x 6x 8x 9x 8x 8x 3x 7x 5x 3x 0x 4x 0x 1x 1x 1x

Table B.5: Parallel runtime with 20, 100, 500, and “unlimited” CPUs, on linkage instances, part 1 of 2.
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Cutoff depth d
instance i Tseq #cpu 1 2 3 4 5 6 7 8 9 10 11 12 13

fix var fix var fix var fix var fix var fix var fix var fix var fix var fix var fix var fix var fix var

ped41
n=1062
k=5
w=33
h=100

9 25607

(p=3) (p=8) (p=16) (p=32) (p=64) (p=128) (p=176) (p=352) (p=704) (p=1408) (p=2176) (p=4352) (p=8556)
20 20030 20030 16193 14319 9067 4598 4737 2882 2872 2162 2193 2186 1997 2085 2445 2118 2262 2269 2427 2457 2603 2674 2972 2982 3542 NA
100 20030 20030 16193 14319 9067 4598 4565 2436 2410 1256 1307 793 848 809 827 576 508 503 545 520 591 877 805 666 764 NA
500 20030 20030 16193 14319 9067 4598 4565 2436 2410 1256 1272 793 817 611 650 340 347 265 251 211 337 604 446 225 264 NA
∞ 20030 20030 16193 14319 9067 4598 4565 2436 2410 1256 1272 793 817 611 650 340 347 265 222 172 301 553 401 148 184 NA

10 46819

(p=3) (p=8) (p=16) (p=32) (p=64) (p=128) (p=176) (p=352) (p=704) (p=1408) (p=2176) (p=4352) (p=8576)
20 38982 39015 33309 17287 17767 9186 9679 4851 5031 3577 3613 3331 3212 3299 3307 3199 2951 3014 3059 3237 3177 3250 3507 3538 4104 NA
100 38982 39015 33309 17287 17767 9186 9573 4851 4707 2909 2762 1711 1633 1478 1483 1175 977 996 904 1032 920 783 751 866 1034 NA
500 38982 39015 33309 17287 17767 9186 9573 4851 4707 2909 2728 1711 1595 1345 1274 1175 808 785 705 999 600 580 519 504 642 NA
∞ 38982 39015 33309 17287 17767 9186 9573 4851 4707 2909 2728 1711 1595 1345 1274 1175 808 785 694 999 570 574 514 435 567 NA

11 27583

(p=3) (p=8) (p=16) (p=32) (p=64) (p=128) (p=176) (p=352) (p=704) (p=1408) (p=2176) (p=4352) (p=8460)
20 23060 23060 20222 10169 10263 6033 6101 3877 3263 2031 2189 1866 2067 1771 2051 1784 2002 1782 1988 1964 2209 2036 2268 2266 2796 NA
100 23060 23060 20222 10169 10263 6033 6039 3877 3066 1580 1639 1099 1208 821 1010 553 852 455 548 794 909 660 548 491 643 NA
500 23060 23060 20222 10169 10263 6033 6039 3877 3066 1580 1615 1099 1183 821 900 497 688 284 292 607 672 660 259 179 279 NA
∞ 23060 23060 20222 10169 10263 6033 6039 3877 3066 1580 1615 1099 1183 821 900 497 688 284 270 581 642 660 212 117 216 NA

ped44
n=811
k=4
w=25
h=65

5 207136

(p=2) (p=4) (p=8) (p=16) (p=64) (p=112) (p=336) (p=560) (p=1120) (p=2240) (p=4480) (p=8960) (p=17920)
20 112293 112293 65724 65934 35680 65496 20396 31287 17026 18552 12719 13425 14321 14295 17214 16269 18655 18339 20630 20412 25054 23501 29114 25629 34070 28744

100 112293 112293 65724 65934 35680 65496 20396 31287 11906 18552 3415 10659 3553 3463 4040 3600 3942 3959 4281 4551 5113 5551 5919 5481 6919 5992

500 112293 112293 65724 65934 35680 65496 20396 31287 11906 18552 3415 10659 2080 2622 1554 1868 1033 1279 1000 1405 1182 2167 1270 1584 1489 1569
∞ 112293 112293 65724 65934 35680 65496 20396 31287 11906 18552 3415 10659 2080 2622 1371 1868 604 1041 366 1002 564 1840 737 921 202 840

6 95830

(p=2) (p=4) (p=8) (p=16) (p=64) (p=112) (p=336) (p=560) (p=1120) (p=2240) (p=4480) (p=8960) (p=17920)
20 52643 52643 26776 26836 15267 15340 9716 9481 9503 6399 6741 6811 7308 7330 7959 7947 9084 8749 10103 9763 10586 10828 12418 12472 16551 14725

100 52643 52643 26776 26836 15267 15340 9716 9481 5939 5968 2344 3586 1852 1636 1799 1700 1957 1861 2126 2276 2204 2273 2545 2543 3400 3035

500 52643 52643 26776 26836 15267 15340 9716 9481 5939 5968 1659 3586 1016 1352 583 886 546 571 536 905 525 794 569 824 771 699

∞ 52643 52643 26776 26836 15267 15340 9716 9481 5939 5968 1659 3586 1016 1352 459 886 269 425 433 774 235 680 103 696 135 229

ped50
n=514
k=6
w=17
h=47

3 4135

(p=2) (p=4) (p=24) (p=144) (p=720) (p=2160) (p=5760) (p=14401)
20 2376 2376 1485 1477 594 587 423 345 367 344 465 451 825 820 1734 1730
100 2376 2376 1485 1477 594 587 345 345 254 131 198 106 200 180 381 378
500 2376 2376 1485 1477 594 587 345 345 236 88 159 88 125 55 127 111

∞ 2376 2376 1485 1477 594 587 345 345 236 84 153 88 109 42 89 53

4 1780

(p=2) (p=4) (p=24) (p=144) (p=720) (p=2160) (p=5760) (p=14400)
20 499 499 272 255 77 76 75 67 125 127 273 277 652 648 1551 1549
100 499 499 272 255 77 76 42 41 38 30 62 61 143 142 342 340
500 499 499 272 255 77 76 42 41 27 20 27 19 42 41 101 99
∞ 499 499 272 255 77 76 42 41 27 20 22 17 26 19 46 42

ped51
n=1152
k=5
w=39
h=98

20 101788

(p=2) (p=4) (p=8) (p=16) (p=32) (p=64) (p=128) (p=256) (p=512) (p=1024) (p=2048) (p=4064) (p=7968)
20 52571 52571 27299 27269 13531 13725 8261 7697 8536 6638 7051 6225 6362 5859 6404 5885 6354 6090 6573 6570 7678 7596 9899 9866 13946 14039
100 52571 52571 27299 27269 13531 13725 8261 7697 5692 5530 3457 2658 2714 2441 2340 1687 1616 1711 1578 2208 1831 1560 2186 2025 2957 2884
500 52571 52571 27299 27269 13531 13725 8261 7697 5692 5530 3457 2658 2714 2441 1772 1163 914 894 704 1525 732 729 852 748 762 944
∞ 52571 52571 27299 27269 13531 13725 8261 7697 5692 5530 3457 2658 2714 2441 1772 1163 914 894 681 1440 699 649 689 675 294 828

21 164817

(p=2) (p=4) (p=8) (p=16) (p=32) (p=64) (p=128) (p=256) (p=512) (p=1024) (p=2048) (p=4096) (p=8192)
20 80553 80553 43197 42435 21290 21434 11542 11279 14055 10122 9030 10008 9568 9656 8727 9508 9155 9629 10221 10488 12359 12656 16982 17114 25880 25922
100 80553 80553 43197 42435 21290 21434 11542 11279 7985 8106 4867 4868 3288 3357 2349 2950 1911 2631 2132 2253 2886 2595 3537 3500 5300 5294
500 80553 80553 43197 42435 21290 21434 11542 11279 7985 8106 4867 4868 3288 3357 2349 1860 1210 1606 908 1571 1004 666 1050 1165 1573 1485
∞ 80553 80553 43197 42435 21290 21434 11542 11279 7985 8106 4867 4868 3288 3357 2349 1860 1210 1606 908 1571 638 567 845 778 852 740

ped7
n=1068
k=4
w=32
h=90

6 118383

(p=2) (p=4) (p=12) (p=32) (p=96) (p=160) (p=480) (p=640) (p=1280) (p=1280) (p=2560) (p=3840) (p=7680)
20 60912 56966 35387 58872 20683 58988 12338 58121 10239 23958 9031 8515 8704 7469 9654 7319 8689 7582 8705 7582 8689 7735 8236 7693 8348 8154
100 60912 56966 35387 58872 20683 58988 11956 58121 6634 23958 5122 7690 4768 2555 4860 2306 4045 1814 3929 1814 3145 1745 2644 1649 2646 1719

500 60912 56966 35387 58872 20683 58988 11956 58121 6634 23958 4984 7690 4442 2387 4359 2086 3276 1301 3294 1301 2176 892 1764 943 1564 551

∞ 60912 56966 35387 58872 20683 58988 11956 58121 6634 23958 4984 7690 4442 2387 4359 2086 3268 1301 3256 1301 2102 892 1740 876 1346 499

7 93380

(p=2) (p=4) (p=12) (p=32) (p=96) (p=160) (p=480) (p=640) (p=1280) (p=1280) (p=2560) (p=3840) (p=7680)
20 46685 48986 25119 47316 15964 51644 7989 51318 6230 26604 5015 26061 4992 5357 5909 5366 6103 5461 6061 5461 5642 5524 5924 5706 6138 6099
100 46685 48986 25119 47316 15964 51644 7989 51318 4928 25173 2947 25320 2667 2136 3002 1997 2769 1505 2819 1505 2217 1277 2156 1268 2075 1349

500 46685 48986 25119 47316 15964 51644 7989 51318 4928 25173 2947 25320 2667 1827 2615 1368 2348 1180 2381 1180 1610 506 1433 513 1366 501

∞ 46685 48986 25119 47316 15964 51644 7989 51318 4928 25173 2947 25320 2667 1827 2615 1368 2348 1180 2381 1180 1608 445 1421 394 1312 372

8 30717

(p=2) (p=4) (p=12) (p=32) (p=96) (p=160) (p=480) (p=640) (p=1276) (p=1276) (p=2552) (p=3816) (p=7588)
20 17113 17113 8913 18311 5432 18331 2976 18357 2301 10245 2344 10390 2300 2125 2204 1938 2634 1786 2196 1786 2110 1936 2109 2069 2550 2503
100 17113 17113 8913 18311 5432 18331 2976 18357 2257 9883 1276 9856 1229 989 1146 1004 1306 944 1075 944 964 753 916 601 974 583

500 17113 17113 8913 18311 5432 18331 2976 18357 2257 9883 1256 9856 1157 989 1090 854 1104 833 1008 833 750 537 682 345 700 273

∞ 17113 17113 8913 18311 5432 18331 2976 18357 2257 9883 1256 9856 1157 989 1090 854 1094 833 1008 833 739 497 648 294 644 216

ped9
n=1118
k=7
w=27
h=100

6 101172

(p=2) (p=4) (p=8) (p=16) (p=32) (p=32) (p=64) (p=128) (p=256) (p=512) (p=1024) (p=2048) (p=4096)
20 51735 52172 27626 52049 17242 25293 10362 17818 7231 7356 7283 7356 6174 7215 6232 6557 5972 5986 5945 6098 6631 6378 6648 6718 7218 7192
100 51735 52172 27626 52049 17242 25293 10362 17818 5377 7016 5438 7016 2613 5093 1559 2678 1558 1826 1273 1294 1407 1340 1390 1405 1491 1721
500 51735 52172 27626 52049 17242 25293 10362 17818 5377 7016 5438 7016 2613 5093 1406 2678 1012 1826 395 931 467 467 345 384 346 879
∞ 51735 52172 27626 52049 17242 25293 10362 17818 5377 7016 5438 7016 2613 5093 1406 2678 1012 1826 395 931 467 467 170 321 128 752

7 58657

(p=2) (p=4) (p=8) (p=16) (p=32) (p=32) (p=64) (p=128) (p=256) (p=512) (p=1024) (p=2048) (p=4096)
20 30956 30531 15391 15640 10090 10195 5383 6071 5181 4791 5148 4791 3931 3976 3644 3746 3558 3629 3516 3561 3744 3765 3827 3933 4124 4183
100 30956 30531 15391 15640 10090 10195 5383 6071 3017 2923 2957 2923 1457 2185 1051 1128 884 943 806 763 825 1048 816 834 876 889
500 30956 30531 15391 15640 10090 10195 5383 6071 3017 2923 2957 2923 1457 2185 753 1128 454 567 234 356 250 708 221 413 227 241
∞ 30956 30531 15391 15640 10090 10195 5383 6071 3017 2923 2957 2923 1457 2185 753 1128 454 567 234 356 153 677 99 413 93 132

8 41061

(p=2) (p=4) (p=8) (p=16) (p=32) (p=32) (p=64) (p=128) (p=256) (p=512) (p=1024) (p=2048) (p=4096)
20 20842 20842 10995 10923 7032 6913 4827 4411 3670 3213 3634 3213 2783 3532 2560 3277 2412 2407 2439 2455 2635 2573 2736 2749 3059 3011
100 20842 20842 10995 10923 7032 6913 4827 4411 2239 3157 2259 3157 1322 1883 746 1826 626 976 541 583 577 551 578 574 647 637
500 20842 20842 10995 10923 7032 6913 4827 4411 2239 3157 2259 3157 1322 1883 604 1826 420 927 255 465 191 282 155 151 168 167
∞ 20842 20842 10995 10923 7032 6913 4827 4411 2239 3157 2259 3157 1322 1883 604 1826 420 927 255 465 153 282 78 108 70 93

Better by 10% 0x 0x 16x 12x 20x 12x 24x 14x 21x 22x 24x 20x 15x 27x 14x 29x 14x 18x 21x 14x 12x 16x 11x 18x 9x 15x
Better by 50% 0x 0x 16x 8x 16x 12x 20x 12x 15x 13x 17x 9x 3x 5x 8x 14x 7x 9x 15x 6x 9x 7x 4x 12x 5x 9x

Table B.6: Parallel runtime with 20, 100, 500, and “unlimited” CPUs, on linkage instances, part 2 of 2.
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Cutoff depth d

instance i Tseq #cpu 1 2 3 4 5 6 7 8 9 10 11 12 13

fix var fix var fix var fix var fix var fix var fix var fix var fix var fix var fix var fix var fix var

lF3-11-57
n=2670
k=3
w=37
h=95

15 121311

(p=2) (p=4) (p=6) (p=18) (p=30) (p=30) (p=60) (p=60) (p=120) (p=180) (p=360) (p=1080) (p=1440)
20 79143 79143 50557 55478 34103 49291 27035 32568 14789 14313 14956 14313 14431 10438 14247 10438 12991 10664 11939 10363 11669 10866 11132 11539 11038 11574
100 79143 79143 50557 55478 34103 49291 27035 32568 14789 14313 14956 14313 13039 8015 12864 8015 12868 5947 8580 3668 6518 3148 4237 2594 4038 2611

500 79143 79143 50557 55478 34103 49291 27035 32568 14789 14313 14956 14313 13039 8015 12864 8015 12868 5947 8580 3668 6501 2419 3675 951 3150 891

∞ 79143 79143 50557 55478 34103 49291 27035 32568 14789 14313 14956 14313 13039 8015 12864 8015 12868 5947 8580 3668 6501 2419 3675 915 3099 877

16 35820

(p=2) (p=4) (p=6) (p=18) (p=30) (p=30) (p=60) (p=60) (p=120) (p=180) (p=360) (p=1080) (p=1440)
20 25066 25066 16854 16593 9703 13630 7526 5650 4689 4728 4896 4728 3535 3902 3527 3902 3453 2984 3500 2993 3002 2943 3724 3464 3508 3542
100 25066 25066 16854 16593 9703 13630 7526 5650 4214 4728 4317 4728 3383 3415 3527 3415 3446 2272 2235 1615 1733 1018 1252 934 1156 802

500 25066 25066 16854 16593 9703 13630 7526 5650 4214 4728 4317 4728 3383 3415 3527 3415 3446 2272 2235 1615 1733 970 1081 617 935 392

∞ 25066 25066 16854 16593 9703 13630 7526 5650 4214 4728 4317 4728 3383 3415 3527 3415 3446 2272 2235 1615 1733 970 1081 617 935 384

17 18312

(p=2) (p=4) (p=6) (p=18) (p=30) (p=30) (p=60) (p=60) (p=120) (p=180) (p=360) (p=1080) (p=1440)
20 12656 12656 8700 6848 5413 7022 3933 3248 2285 2436 2382 2436 1933 1848 2002 1848 2047 1527 1673 1605 1978 1772 2398 2470 2815 2760
100 12656 12656 8700 6848 5413 7022 3933 3248 2285 2436 2382 2436 1933 1848 1927 1848 1858 970 1158 725 954 531 769 544 788 585

500 12656 12656 8700 6848 5413 7022 3933 3248 2285 2436 2382 2436 1933 1848 1927 1848 1858 970 1158 725 925 531 561 375 565 202

∞ 12656 12656 8700 6848 5413 7022 3933 3248 2285 2436 2382 2436 1933 1848 1927 1848 1858 970 1158 725 925 531 561 375 549 176

lF3-11-59
n=2711
k=3
w=32
h=73

14 35457

(p=3) (p=5) (p=10) (p=10) (p=30) (p=50) (p=150) (p=200) (p=600) (p=1000) (p=2000) (p=2000) (p=4000)
20 21976 21976 10447 11342 6309 5960 6388 5960 4790 3789 3861 2761 3214 2866 3333 2936 3539 3404 4081 3665 4308 4157 4298 4157 4838 4856
100 21976 21976 10447 11342 6309 5960 6388 5960 4790 3789 3861 2484 2147 1220 1547 832 1161 722 1234 773 1309 871 1006 871 1315 1019

500 21976 21976 10447 11342 6309 5960 6388 5960 4790 3789 3861 2484 2147 1220 1547 770 1128 341 657 229 736 304 694 304 709 259

∞ 21976 21976 10447 11342 6309 5960 6388 5960 4790 3789 3861 2484 2147 1220 1547 770 1128 341 603 229 638 242 694 242 576 129

15 8523

(p=3) (p=5) (p=10) (p=10) (p=30) (p=50) (p=150) (p=200) (p=596) (p=992) (p=1962) (p=1962) (p=3886)
20 4787 5090 2644 2924 1597 1590 1593 1590 1117 1127 1149 659 959 786 980 846 1202 1130 1265 1306 1704 1658 1716 1658 2284 2259
100 4787 5090 2644 2924 1597 1590 1593 1590 1117 1127 1149 655 530 242 523 290 469 245 340 280 404 356 407 356 508 495
500 4787 5090 2644 2924 1597 1590 1593 1590 1117 1127 1149 655 530 242 523 290 362 101 186 84 162 103 164 103 176 142

∞ 4787 5090 2644 2924 1597 1590 1593 1590 1117 1127 1149 655 530 242 523 290 362 101 186 78 154 67 164 67 122 78

16 3023

(p=3) (p=5) (p=10) (p=10) (p=30) (p=50) (p=150) (p=200) (p=600) (p=1000) (p=1999) (p=1999) (p=3992)
20 1792 1861 892 883 739 494 498 494 442 368 682 345 446 412 486 473 788 835 1106 1127 1819 1783 1816 1783 3061 3017
100 1792 1861 892 883 739 494 498 494 372 368 528 246 166 157 179 157 209 187 259 250 395 389 402 389 664 654
500 1792 1861 892 883 739 494 498 494 372 368 528 246 163 157 149 157 143 71 102 80 129 112 133 112 190 183
∞ 1792 1861 892 883 739 494 498 494 372 368 528 246 163 157 149 157 143 71 91 62 79 65 85 65 90 80

lF3-13-58
n=3352
k=3
w=31
h=88

14 46464

(p=2) (p=4) (p=12) (p=20) (p=60) (p=100) (p=200) (p=200) (p=600) (p=1200) (p=2000) (p=4000) (p=6400)
20 22027 22027 14647 13049 9384 11947 3902 9402 3220 3007 3489 2507 2754 2464 2713 2464 2695 2562 2811 2645 2795 2727 3053 3062 3459 3441
100 22027 22027 14647 13049 9384 11947 3902 9402 2350 3007 1789 2034 1337 1089 1510 1089 1134 1044 832 833 708 584 661 657 760 751
500 22027 22027 14647 13049 9384 11947 3902 9402 2350 3007 1789 2034 1222 1089 1423 1089 884 1030 737 630 380 340 194 256 224 225
∞ 22027 22027 14647 13049 9384 11947 3902 9402 2350 3007 1789 2034 1222 1089 1423 1089 884 1030 737 630 380 340 145 256 130 180

16 20270

(p=2) (p=4) (p=12) (p=20) (p=60) (p=100) (p=200) (p=200) (p=600) (p=1200) (p=1998) (p=3990) (p=6390)
20 12387 12387 7511 7516 5073 5097 2318 2303 1648 1361 1400 1226 1244 1152 1283 1152 1366 1389 1336 1334 1575 1567 2123 2139 2829 2825
100 12387 12387 7511 7516 5073 5097 2318 2303 1478 1361 1104 813 824 508 858 508 807 606 367 340 425 340 468 470 636 630
500 12387 12387 7511 7516 5073 5097 2318 2303 1478 1361 1104 813 800 508 833 508 742 490 256 247 302 179 147 140 207 190
∞ 12387 12387 7511 7516 5073 5097 2318 2303 1478 1361 1104 813 800 508 833 508 742 490 247 247 282 179 110 106 116 111

18 7647

(p=2) (p=4) (p=12) (p=20) (p=60) (p=100) (p=200) (p=200) (p=591) (p=1181) (p=1958) (p=3858) (p=6121)
20 3870 3870 2367 2391 1705 1597 912 1090 785 488 633 513 707 605 657 605 1049 1024 1653 1652 2502 2483 4521 4522 6933 6918
100 3870 3870 2367 2391 1705 1597 912 1090 588 488 326 336 294 210 288 210 346 235 387 364 566 538 967 964 1472 1464
500 3870 3870 2367 2391 1705 1597 912 1090 588 488 326 336 262 210 258 210 319 115 168 119 177 148 265 250 389 375
∞ 3870 3870 2367 2391 1705 1597 912 1090 588 488 326 336 262 210 258 210 319 115 143 94 103 100 105 100 129 120

lF3-15-53
n=3384
k=3
w=32
h=108

17 345544

(p=2) (p=4) (p=12) (p=16) (p=34) (p=46) (p=78) (p=201) (p=358) (p=632) (p=1093) (p=1927) (p=2831)
20 197187 197187 98772 103108 99673 100130 98117 96794 94280 59566 81379 36691 79765 32938 39599 24845 34001 24934 30659 24702 28754 24071 26633 20627 26657 21190

100 197187 197187 98772 103108 99673 100130 98117 96794 94280 59566 81379 33495 79765 32938 39599 16260 32364 12653 22044 12651 16594 8995 12595 5473 12624 5411

500 197187 197187 98772 103108 99673 100130 98117 96794 94280 59566 81379 33495 79765 32938 39599 16260 32364 12271 22044 12423 16594 7324 12595 4766 12230 4727

∞ 197187 197187 98772 103108 99673 100130 98117 96794 94280 59566 81379 33495 79765 32938 39599 16260 32364 12271 22044 12423 16594 7324 12595 4766 12230 4727

18 98346

(p=2) (p=4) (p=12) (p=16) (p=32) (p=44) (p=68) (p=165) (p=284) (p=526) (p=912) (p=1572) (p=2496)
20 54511 54511 28358 29935 28557 29872 28534 27602 26907 24321 23377 9942 23792 9719 12093 7328 10796 7007 10373 7669 10158 7481 9615 8337 9946 9127
100 54511 54511 28358 29935 28557 29872 28534 27602 26907 24321 23377 9942 23792 9719 12093 4088 9803 4136 6835 3689 5403 2788 4532 2121 4702 2592

500 54511 54511 28358 29935 28557 29872 28534 27602 26907 24321 23377 9942 23792 9719 12093 4088 9803 4136 6835 3511 5347 2788 4485 1873 4020 1894

∞ 54511 54511 28358 29935 28557 29872 28534 27602 26907 24321 23377 9942 23792 9719 12093 4088 9803 4136 6835 3511 5347 2788 4485 1873 4020 1856

Better by 10% 0x 0x 4x 8x 16x 4x 12x 8x 6x 18x 3x 26x 1x 31x 1x 32x 2x 35x 0x 32x 0x 33x 2x 25x 1x 22x
Better by 50% 0x 0x 0x 0x 0x 0x 4x 0x 0x 5x 0x 19x 0x 20x 0x 20x 0x 28x 0x 18x 0x 22x 1x 15x 0x 16x

Table B.7: Parallel runtime with 20, 100, 500, and “unlimited” CPUs, on haplotyping instances, part 1 of 2.
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Cutoff depth d

instance i Tseq #cpu 1 2 3 4 5 6 7 8 9 10 11 12 13

fix var fix var fix var fix var fix var fix var fix var fix var fix var fix var fix var fix var fix var

lF3-15-59
n=3730
k=3
w=31
h=84

18 28613

(p=2) (p=4) (p=8) (p=20) (p=40) (p=80) (p=240) (p=476) (p=942) (p=1855) (p=3633) (p=7098) (p=13781)
20 15023 15023 7910 7946 5293 6734 2935 4828 2840 2068 2595 1633 1791 1610 1950 1713 2045 1959 2558 2417 3227 3302 4945 5002 8120 8209
100 15023 15023 7910 7946 5293 6734 2935 4828 2055 2068 1735 1323 893 585 934 476 824 462 766 526 730 707 1081 1080 1773 1792
500 15023 15023 7910 7946 5293 6734 2935 4828 2055 2068 1735 1323 842 535 818 392 636 462 416 177 319 211 358 299 518 508
∞ 15023 15023 7910 7946 5293 6734 2935 4828 2055 2068 1735 1323 842 535 818 392 636 462 356 163 250 127 206 141 253 229

19 43307

(p=2) (p=4) (p=8) (p=20) (p=40) (p=80) (p=240) (p=476) (p=936) (p=1830) (p=3571) (p=6964) (p=13482)
20 29588 29588 15858 15694 10234 10164 5909 5470 3684 3417 3649 2845 2626 2398 2744 2501 2852 2854 3482 3505 4734 4775 7222 7238 11914 11913
100 29588 29588 15858 15694 10234 10164 5909 5470 3684 3417 3434 2247 1485 1079 1494 723 1296 658 928 741 1042 1008 1540 1536 2534 2541
500 29588 29588 15858 15694 10234 10164 5909 5470 3684 3417 3434 2247 1485 1079 1414 573 1113 417 692 260 508 291 415 399 660 667
∞ 29588 29588 15858 15694 10234 10164 5909 5470 3684 3417 3434 2247 1485 1079 1414 573 1113 417 675 260 442 177 311 189 317 251

lF3-16-56
n=3930
k=3
w=38
h=77

15 1891710

(p=3) (p=9) (p=15) (p=43) (p=71) (p=205) (p=470) (p=934) (p=934) (p=1827) (p=2707) (p=7582)
20 1163230 1155580 643626 639982 401282 398939 325905 200608 207721 165795 164502 149029 166386 164442 160338 177599 161219 177599 180036 198701 193080 211770 217768 251809
100 1163230 1155580 643626 639982 401282 398939 316651 186789 178618 165795 119413 42519 64570 39617 46136 38277 47356 38277 47363 40579 45790 42911 48752 50451
500 1163230 1155580 643626 639982 401282 398939 316651 186789 178618 165795 119016 42519 56746 21260 35911 15754 37114 15754 28697 11309 24390 11051 17870 11166

∞ 1163230 1155580 643626 639982 401282 398939 316651 186789 178618 165795 119016 42519 56746 21260 35893 15754 37069 15754 26721 10225 22845 7938 15239 4262

16 489614

(p=2) (p=3) (p=9) (p=15) (p=42) (p=70) (p=201) (p=455) (p=900) (p=900) (p=1766) (p=2629) (p=7122)
20 383172 383172 322266 323359 182770 125290 126100 85253 89282 56806 54618 54536 53173 47562 55996 52947 56246 58857 54609 58857 60079 67647 66004 73700 78744 90965
100 383172 383172 322266 323359 182770 125290 126100 85253 81351 56806 43689 36589 33623 26361 20474 13229 19126 12956 16459 12956 15158 13653 17377 14807 19498 18292
500 383172 383172 322266 323359 182770 125290 126100 85253 81351 56806 43689 36589 33425 26361 17488 8406 12942 6514 13210 6514 10045 5321 9416 4234 8158 4118

∞ 383172 383172 322266 323359 182770 125290 126100 85253 81351 56806 43689 36589 33425 26361 17488 8406 12595 6514 13185 6514 9849 5321 8945 3930 6573 1345

lF4-12-50
n=2569
k=4
w=28
h=80

13 57842

(p=3) (p=12) (p=24) (p=72) (p=288) (p=864) (p=3456) (p=5760)
20 32678 32678 10281 10182 4810 4863 3352 3070 3413 3408 3249 3252 4245 4149 5011 5059
100 32678 32678 10281 10182 4810 4863 2603 2663 1190 1052 827 962 908 861 1069 1051
500 32678 32678 10281 10182 4810 4863 2603 2663 1103 899 566 527 555 281 299 741
∞ 32678 32678 10281 10182 4810 4863 2603 2663 1103 899 566 527 536 236 155 717

14 33676

(p=3) (p=12) (p=24) (p=72) (p=288) (p=864) (p=3456) (p=5760)
20 17309 17309 6207 5210 2946 2423 2048 2359 1750 1897 1823 1790 2542 2551 3252 3272
100 17309 17309 6207 5210 2720 2238 1592 1644 637 1425 530 556 575 535 712 691
500 17309 17309 6207 5210 2720 2238 1592 1644 564 1425 337 491 204 140 203 177

∞ 17309 17309 6207 5210 2720 2238 1592 1644 564 1425 328 491 151 101 135 99

lF4-12-55
n=2926
k=4
w=28
h=78

13 104837

(p=2) (p=4) (p=8) (p=16) (p=64) (p=128) (p=256) (p=512) (p=1024) (p=1024) (p=1792) (p=1792) (p=3072)
20 53594 53594 28796 28568 16287 27758 11110 15603 8247 15781 7920 15870 7623 15799 7218 15737 7279 9773 7364 9773 7746 7590 7578 7590 8110 7913
100 53594 53594 28796 28568 16287 27758 11110 15603 3732 13666 2974 13923 2278 13877 1822 13412 1651 5958 1686 5958 1953 1764 1779 1764 2004 1721

500 53594 53594 28796 28568 16287 27758 11110 15603 3732 13666 2974 13636 1689 13628 1029 12986 672 5540 666 5540 813 712 764 712 887 863
∞ 53594 53594 28796 28568 16287 27758 11110 15603 3732 13666 2974 13636 1689 13628 1029 12986 672 5540 581 5540 606 691 679 691 730 760

14 25905

(p=2) (p=4) (p=8) (p=16) (p=48) (p=96) (p=192) (p=384) (p=768) (p=768) (p=1536) (p=1536) (p=3072)
20 13300 13300 7086 6693 3595 6882 2125 6797 2103 3599 2145 1975 1968 1788 2018 1844 2006 1931 2052 1931 2386 2296 2307 2296 2986 2991
100 13300 13300 7086 6693 3595 6882 2125 6797 1181 3599 1159 1975 699 759 691 536 574 474 583 474 589 498 575 498 717 648

500 13300 13300 7086 6693 3595 6882 2125 6797 1181 3599 1159 1975 566 759 438 352 281 216 357 216 230 341 235 341 375 233

∞ 13300 13300 7086 6693 3595 6882 2125 6797 1181 3599 1159 1975 566 759 438 352 255 216 357 216 164 341 173 341 329 191

lF4-17-51
n=3837
k=4
w=29
h=85

15 10607

(p=2) (p=4) (p=4) (p=8) (p=16) (p=32) (p=40) (p=56) (p=128) (p=152) (p=176) (p=352) (p=400)
20 5182 5182 2812 2785 2819 2785 1565 1538 1322 1287 1307 1065 1223 1165 1039 1052 1053 933 1106 950 1039 994 1244 1225 1312 1285
100 5182 5182 2812 2785 2819 2785 1565 1538 1322 1287 1118 1065 766 773 627 760 392 336 423 355 413 332 367 389 310 487
500 5182 5182 2812 2785 2819 2785 1565 1538 1322 1287 1118 1065 766 773 627 760 333 336 344 337 317 332 221 224 136 391
∞ 5182 5182 2812 2785 2819 2785 1565 1538 1322 1287 1118 1065 766 773 627 760 333 336 344 337 317 332 221 224 136 391

16 66103

(p=2) (p=4) (p=8) (p=16) (p=32) (p=64) (p=80) (p=112) (p=256) (p=304) (p=352) (p=704) (p=800)
20 33524 33524 15988 28639 15508 29154 8712 25678 7281 28848 6623 15067 4805 15050 5056 4473 4224 3934 4158 4111 3922 4213 3964 4162 4049 4086
100 33524 33524 15988 28639 15508 29154 8712 25678 7281 28848 6610 15067 3719 15050 3205 3399 1733 1860 1786 1808 1848 1992 1156 1194 1125 1065
500 33524 33524 15988 28639 15508 29154 8712 25678 7281 28848 6610 15067 3719 15050 3205 3399 1668 1620 1584 1805 1641 1633 850 918 606 951
∞ 33524 33524 15988 28639 15508 29154 8712 25678 7281 28848 6610 15067 3719 15050 3205 3399 1668 1620 1584 1805 1641 1633 850 918 606 951

Better by 10% 0x 0x 4x 4x 16x 8x 17x 4x 15x 12x 14x 13x 10x 20x 9x 19x 5x 17x 7x 17x 5x 14x 3x 9x 7x 10x
Better by 50% 0x 0x 4x 0x 12x 0x 12x 0x 15x 5x 11x 4x 8x 8x 6x 12x 3x 8x 3x 10x 1x 8x 1x 5x 5x 6x

Table B.8: Parallel runtime with 20, 100, 500, and “unlimited” CPUs, on haplotyping instances, part 2 of 2.

314



Cutoff depth d
instance i Tseq #cpu 1 2 3 4 5 6

fix var fix var fix var fix var fix var fix var

pdb1a6m
n=124
k=81
w=15
h=34

3 198326

(p=9) (p=81) (p=511)
20 109236 109236 96811 29713 51456 8839

100 109236 109236 96811 29713 51456 8839

500 109236 109236 96811 29713 51456 8839

∞ 109236 109236 96811 29713 51456 8839

pdb1duw
n=241
k=81
w=9
h=32

3 627106

(p=9) (p=54) (p=784) (p=15081)
20 261878 261878 185941 144524 148576 34290 66316 40886

100 261878 261878 185941 144524 148576 13294 51977 8190

500 261878 261878 185941 144524 148576 13294 51977 3998

∞ 261878 261878 185941 144524 148576 13294 51977 3998

pdb1e5k
n=154
k=81
w=12
h=43

3 112654

(p=66) (p=1046) (p=11321)
20 20322 20322 6876 7630 10653 10712
100 20322 20322 5994 2024 2299 2153
500 20322 20322 5994 2024 2034 783

∞ 20322 20322 5994 2024 2034 783

pdb1f9i
n=103
k=81
w=10
h=24

3 68804

(p=81) (p=6534)
20 27995 27995 23496 21220

100 27995 27995 8752 4249

500 27995 27995 8752 2587

∞ 27995 27995 8752 2587

pdb1ft5
n=172
k=81
w=14
h=33

3 81118

(p=27) (p=118) (p=5281)
20 39764 39764 29982 8248 8302 8469
100 39764 39764 29982 8248 4478 1715

500 39764 39764 29982 8248 4478 802

∞ 39764 39764 29982 8248 4478 802

pdb1hd2
n=126
k=81
w=12
h=27

3 101550

(p=79) (p=3777)
20 58967 58967 15426 6470

100 58967 58967 15426 2275

500 58967 58967 15426 2275

∞ 58967 58967 15426 2275

pdb1huw
n=152
k=81
w=15
h=43

3 545249

(p=9) (p=42) (p=293) (p=654) (p=1588) (p=2597)
20 478239 478239 477785 402748 467632 41642 462167 36305 446255 31297 367056 31646

100 478239 478239 477785 402748 467632 41642 462167 34051 446255 18483 367056 12750

500 478239 478239 477785 402748 467632 41642 462167 34051 446255 18483 367056 12750

∞ 478239 478239 477785 402748 467632 41642 462167 34051 446255 18483 367056 12750

pdb1kao
n=148
k=81
w=15
h=41

3 716795

(p=27) (p=215) (p=752) (p=3241)
20 252879 252879 213134 64745 145683 32176 63832 18172

100 252879 252879 213134 55749 145683 25927 63832 6126

500 252879 252879 213134 55749 145683 25927 63832 6126

∞ 252879 252879 213134 55749 145683 25927 63832 6126

pdb1nfp
n=204
k=81
w=18
h=38

3 354720

(p=6) (p=48) (p=336) (p=3812)
20 328980 328980 292628 73365 194064 38568 101131 42531

100 328980 328980 292628 73365 194064 27180 101131 8752

500 328980 328980 292628 73365 194064 27180 101131 6768

∞ 328980 328980 292628 73365 194064 27180 101131 6768

pdb1rss
n=115
k=81
w=12
h=35

3 378579

(p=8) (p=109) (p=908) (p=1336)
20 392069 392069 110936 57202 37791 31715 33834 24441

100 392069 392069 110904 57202 37654 25702 33706 24266

500 392069 392069 110904 57202 37625 25702 33689 24266

∞ 392069 392069 110904 57202 37625 25702 33689 24266

pdb1vhh
n=133
k=81
w=14
h=35

3 944633

(p=27) (p=1842) (p=67760)
20 233763 233763 52565 231663 92605 69612

100 233763 233763 22967 231663 20965 13970

500 233763 233763 21751 231663 15746 3921

∞ 233763 233763 21751 231663 14878 3133

Better by 10% 0x 0x 5x 39x 0x 33x 0x 20x 0x 4x 0x 4x
Better by 50% 0x 0x 4x 30x 0x 28x 0x 16x 0x 4x 0x 4x

Table B.9: Parallel runtime with 20, 100, 500, and “unlimited” CPUs, on side-chain prediction instances.
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Cutoff depth d
instance i Tseq #cpu 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

fix var fix var fix var fix var fix var fix var fix var fix var fix var fix var fix var fix var fix var fix var fix var

75-25-1
n=624
k=2
w=38
h=111

12 77941

(p=2) (p=4) (p=8) (p=16) (p=16) (p=32) (p=64) (p=128) (p=192) (p=192) (p=192) (p=384) (p=768) (p=1152) (p=2112)
20 48170 48170 26651 26500 20957 20332 11334 11562 11642 11562 8139 7966 5929 5776 5588 6625 5425 6458 5207 6458 5548 6458 5167 5976 4948 5313 5170 4815 4965 4970
100 48170 48170 26651 26500 20957 20332 11334 11562 11642 11562 8139 7966 4944 3940 3833 3915 3831 3880 3978 3880 3870 3880 3230 3978 1968 2810 1715 1907 1643 1343

500 48170 48170 26651 26500 20957 20332 11334 11562 11642 11562 8139 7966 4944 3940 3833 3846 3831 3638 3978 3638 3870 3638 3147 3865 1791 2810 1617 1813 1643 1343

∞ 48170 48170 26651 26500 20957 20332 11334 11562 11642 11562 8139 7966 4944 3940 3833 3846 3831 3638 3978 3638 3870 3638 3147 3865 1791 2810 1617 1813 1643 1343

14 15402

(p=2) (p=4) (p=8) (p=8) (p=8) (p=16) (p=32) (p=64) (p=96) (p=96) (p=192) (p=288) (p=576) (p=864) (p=1584)
20 10087 10087 5803 5922 3521 3737 3546 3737 3630 3737 2376 2437 1564 1433 1337 1617 1479 1671 1190 1671 1296 1726 1122 1363 962 1160 1227 953 1014 999
100 10087 10087 5803 5922 3521 3737 3546 3737 3630 3737 2376 2437 1413 1227 1184 1223 1211 1253 1187 1253 987 1264 847 1238 651 861 655 536 652 325

500 10087 10087 5803 5922 3521 3737 3546 3737 3630 3737 2376 2437 1413 1227 1184 1223 1211 1253 1187 1253 987 1227 847 1238 651 839 655 536 649 226

∞ 10087 10087 5803 5922 3521 3737 3546 3737 3630 3737 2376 2437 1413 1227 1184 1223 1211 1253 1187 1253 987 1227 847 1238 651 839 655 536 649 219

75-25-3
n=624
k=2
w=37
h=115

12 104037

(p=2) (p=4) (p=4) (p=6) (p=6) (p=12) (p=24) (p=48) (p=48) (p=72) (p=144) (p=288) (p=576) (p=960) (p=1536)
20 59546 59546 51966 51773 52978 51773 40868 40453 40537 40453 42494 42532 31861 31583 22438 21646 21832 21646 14803 18266 13118 14594 14937 16206 15733 17700 19130 18620 19745 19197
100 59546 59546 51966 51773 52978 51773 40868 40453 40537 40453 42494 42532 31861 31583 22438 21646 21832 21646 14803 14537 9671 10481 7135 11508 3841 7952 5975 6055 6938 5964

500 59546 59546 51966 51773 52978 51773 40868 40453 40537 40453 42494 42532 31861 31583 22438 21646 21832 21646 14803 14537 9671 10481 7135 11090 3841 7952 4706 4778 4791 4793
∞ 59546 59546 51966 51773 52978 51773 40868 40453 40537 40453 42494 42532 31861 31583 22438 21646 21832 21646 14803 14537 9671 10481 7135 11090 3841 7952 4706 4649 4600 4628

15 33656

(p=2) (p=4) (p=4) (p=6) (p=6) (p=12) (p=24) (p=48) (p=48) (p=72) (p=144) (p=288) (p=576) (p=960) (p=1536)
20 25356 25356 16330 16188 16447 16188 13225 13139 13049 13139 8356 8489 5443 5486 4916 4403 4807 4403 4275 4509 4467 4662 4443 4857 4683 4977 4909 4958 5255 5115
100 25356 25356 16330 16188 16447 16188 13225 13139 13049 13139 8356 8489 5443 5486 3563 3103 3505 3103 2313 2716 1448 1720 1047 1332 1116 1220 1077 1073 1579 1134

500 25356 25356 16330 16188 16447 16188 13225 13139 13049 13139 8356 8489 5443 5486 3563 3103 3505 3103 2313 2716 1448 1720 1001 1332 602 567 481 504 850 601

∞ 25356 25356 16330 16188 16447 16188 13225 13139 13049 13139 8356 8489 5443 5486 3563 3103 3505 3103 2313 2716 1448 1720 1001 1332 602 567 481 475 718 601

75-25-7
n=624
k=2
w=37
h=120

16 297377

(p=2) (p=3) (p=6) (p=12) (p=24) (p=36) (p=72) (p=144) (p=216) (p=288) (p=504) (p=1008) (p=2016) (p=2688) (p=3360)
20 249495 249495 165094 164069 111418 112110 112534 112086 66859 47596 46908 44937 30640 28910 27762 26814 26206 28019 29913 28771 28611 29296 29922 29912 30050 30460 29728 31082 30582 31325
100 249495 249495 165094 164069 111418 112110 112534 112086 66859 47596 46908 44937 29325 28910 16135 11426 10908 11472 10455 9703 7645 6944 8116 7303 7254 6699 7135 6873 6726 6722
500 249495 249495 165094 164069 111418 112110 112534 112086 66859 47596 46908 44937 29325 28910 16135 11426 10908 11472 10455 6374 6568 6351 4549 2653 3077 2080 2858 2163 2062 1805

∞ 249495 249495 165094 164069 111418 112110 112534 112086 66859 47596 46908 44937 29325 28910 16135 11426 10908 11472 10455 6374 6568 6351 4549 2571 3077 1465 2613 1196 2002 1242

18 21694

(p=2) (p=3) (p=6) (p=12) (p=24) (p=36) (p=72) (p=144) (p=216) (p=288) (p=504) (p=1008) (p=2014) (p=2661) (p=3325)
20 21374 21374 16704 16317 9641 10539 9654 10686 6467 10548 5033 10933 2890 10958 2688 10990 2618 6484 2658 6951 2718 6508 2989 2962 3204 3244 3292 3399 3455 3492
100 21374 21374 16704 16317 9641 10539 9654 10686 6467 10548 5033 10631 2890 10603 1836 10623 1236 6384 1221 6210 752 6164 775 1657 1049 1130 786 1132 908 838
500 21374 21374 16704 16317 9641 10539 9654 10686 6467 10548 5033 10631 2890 10603 1836 10588 1236 6384 1221 6210 752 6164 600 1595 713 804 601 709 702 309

∞ 21374 21374 16704 16317 9641 10539 9654 10686 6467 10548 5033 10631 2890 10603 1836 10588 1236 6384 1221 6210 752 6164 600 1595 692 804 601 623 702 220

75-26-10
n=675
k=2
w=39
h=124

16 46985

(p=2) (p=4) (p=8) (p=8) (p=16) (p=16) (p=32) (p=64) (p=128) (p=192) (p=384) (p=384) (p=768) (p=1280) (p=1280)
20 25695 25695 19776 21223 12259 13268 13515 13268 8736 8789 8896 8789 5770 5738 5304 6089 5244 5724 5534 5651 5058 5874 5021 5874 5299 5252 5079 5177 5061 5177
100 25695 25695 19776 21223 12259 13268 13515 13268 8736 8789 8896 8789 5480 5738 3529 3187 3223 2986 2963 2804 2465 2787 2434 2787 1624 1602 1413 1324 1352 1324
500 25695 25695 19776 21223 12259 13268 13515 13268 8736 8789 8896 8789 5480 5738 3529 3187 3223 2986 2963 2562 2465 2762 2434 2762 1314 1534 1027 913 1029 913

∞ 25695 25695 19776 21223 12259 13268 13515 13268 8736 8789 8896 8789 5480 5738 3529 3187 3223 2986 2963 2562 2465 2762 2434 2762 1314 1534 1027 913 1029 913

18 26855

(p=2) (p=4) (p=8) (p=8) (p=16) (p=24) (p=48) (p=80) (p=160) (p=240) (p=480) (p=480) (p=960) (p=1216) (p=1216)
20 17937 17937 12189 11268 7411 7498 7442 7498 4676 5301 3891 4787 2382 2334 2531 2566 2344 2628 2399 2158 2444 2351 2350 2351 2788 2553 2510 2915 2522 2915
100 17937 17937 12189 11268 7411 7498 7442 7498 4676 5301 3891 4787 2053 2148 1272 1187 1039 1021 910 900 838 827 702 827 941 989 1019 1138 619 1138
500 17937 17937 12189 11268 7411 7498 7442 7498 4676 5301 3891 4787 2053 2148 1272 1187 1039 901 894 900 705 702 702 702 710 748 745 780 487 780
∞ 17937 17937 12189 11268 7411 7498 7442 7498 4676 5301 3891 4787 2053 2148 1272 1187 1039 901 894 900 705 702 702 702 696 748 714 731 487 731

75-26-2
n=675
k=2
w=39
h=120

16 25274

(p=2) (p=4) (p=8) (p=12) (p=24) (p=48) (p=96) (p=144) (p=288) (p=384) (p=640) (p=1280) (p=1280) (p=2560) (p=3840)
20 16045 16045 11223 12553 8918 11024 6758 10812 4412 6656 3476 4101 3092 3808 3187 3024 2878 3210 3194 3303 3092 3378 3177 3230 3231 3230 3374 3382 3560 3587
100 16045 16045 11223 12553 8918 11024 6758 10812 4412 6656 2557 4101 1437 2317 1440 2253 1078 1153 847 1019 687 971 669 936 908 936 775 753 763 781
500 16045 16045 11223 12553 8918 11024 6758 10812 4412 6656 2557 4101 1437 2317 1440 2253 997 997 566 1003 392 631 240 511 490 511 526 326 216 266
∞ 16045 16045 11223 12553 8918 11024 6758 10812 4412 6656 2557 4101 1437 2317 1440 2253 997 997 566 1003 392 631 205 445 434 445 488 326 155 199

20 8053

(p=2) (p=4) (p=8) (p=12) (p=24) (p=48) (p=96) (p=144) (p=288) (p=384) (p=640) (p=1280) (p=1280) (p=2560) (p=3840)
20 5016 5016 5831 5794 4489 4443 2304 2274 1520 2106 1444 1344 1182 1345 1299 1253 1258 1338 1364 1377 1502 1521 1794 1803 1800 1803 2390 2385 2968 2974
100 5016 5016 5831 5794 4489 4443 2304 2274 1520 2106 1025 1344 568 977 549 976 382 555 351 484 339 411 381 411 386 411 515 511 634 639
500 5016 5016 5831 5794 4489 4443 2304 2274 1520 2106 1025 1344 568 977 549 976 326 517 226 484 159 304 114 157 123 157 137 157 175 178
∞ 5016 5016 5831 5794 4489 4443 2304 2274 1520 2106 1025 1344 568 977 549 976 326 517 226 484 159 304 95 141 102 141 76 95 88 106

75-26-6
n=675
k=2
w=39
h=133

10 199460

(p=2) (p=4) (p=8) (p=16) (p=32) (p=64) (p=128) (p=128) (p=128) (p=256) (p=384) (p=576) (p=1152) (p=2304) (p=4608)
20 282186 282186 164678 164547 84949 93045 74973 74584 55099 48079 52792 43415 43719 40998 42329 40998 42048 40998 39350 36861 35060 38131 35660 36487 35096 36198 35891 38091 35958 36103
100 282186 282186 164678 164547 84949 93045 74973 74584 47702 48079 41044 41612 24974 25174 24715 25174 24827 25174 16118 15174 13222 12451 13743 13219 11125 10299 8482 9918 7550 8627
500 282186 282186 164678 164547 84949 93045 74973 74584 47702 48079 41044 41612 24974 25174 24715 25174 24827 25174 15411 15174 11941 11978 12119 12187 7401 7283 5890 5970 3551 3758
∞ 282186 282186 164678 164547 84949 93045 74973 74584 47702 48079 41044 41612 24974 25174 24715 25174 24827 25174 15411 15174 11941 11978 12119 12187 7298 7283 5745 5606 3240 3613

12 64758

(p=2) (p=4) (p=8) (p=16) (p=32) (p=64) (p=128) (p=128) (p=128) (p=256) (p=384) (p=576) (p=1152) (p=2304) (p=4608)
20 87736 87736 66080 66050 36419 36030 30343 30469 19267 31349 19555 29465 16756 15218 17624 15218 16417 15218 15708 17567 13599 16307 14367 17184 13668 14763 14155 15305 14336 14423
100 87736 87736 66080 66050 36419 36030 30343 30469 19267 29308 17150 29465 10632 10537 11009 10537 10545 10537 7903 10594 6731 10472 6573 7941 5464 6589 5477 6802 3328 4761
500 87736 87736 66080 66050 36419 36030 30343 30469 19267 29308 17150 29465 10632 10537 11009 10537 10545 10537 7708 10594 6298 10472 6090 7690 4097 6044 4895 6097 1925 4086
∞ 87736 87736 66080 66050 36419 36030 30343 30469 19267 29308 17150 29465 10632 10537 11009 10537 10545 10537 7708 10594 6298 10472 6090 7690 4097 6044 4884 6068 1925 4086

75-26-9
n=675
k=2
w=39
h=124

16 59609

(p=2) (p=4) (p=8) (p=16) (p=24) (p=48) (p=96) (p=120) (p=240) (p=480) (p=960) (p=1920) (p=3840) (p=3840) (p=7680)
20 43299 43299 25348 25603 24417 23879 23900 13973 13651 13862 8939 13627 9075 8135 8075 7896 7040 7012 7779 7735 7981 8498 8562 8915 9006 9027 8924 9027 9427 9637
100 43299 43299 25348 25603 24417 23879 23900 13973 13651 13862 8939 13627 7829 7779 5956 6642 4194 5802 4010 3837 3517 2756 2671 2202 2113 2281 2168 2281 1992 2094
500 43299 43299 25348 25603 24417 23879 23900 13973 13651 13862 8939 13627 7829 7779 5956 6642 4194 5802 3793 3837 3231 2331 2386 1341 1923 1044 1389 1044 972 886
∞ 43299 43299 25348 25603 24417 23879 23900 13973 13651 13862 8939 13627 7829 7779 5956 6642 4194 5802 3793 3837 3231 2331 2380 1341 1923 1000 1334 1000 868 879

18 66533

(p=2) (p=4) (p=8) (p=16) (p=24) (p=48) (p=96) (p=120) (p=240) (p=480) (p=960) (p=1920) (p=3840) (p=3840) (p=7680)
20 50994 50994 31458 30934 30951 30367 31796 19235 19383 11794 11843 11948 11634 11731 9490 9228 8726 8184 9053 8634 8786 8801 8710 9202 9414 9549 9490 9549 10178 10276
100 50994 50994 31458 30934 30951 30367 31796 19235 19383 11794 11843 11948 10856 11731 7318 8083 4912 8184 4947 2215 4078 2375 2963 2088 2370 2007 2378 2007 2186 2140
500 50994 50994 31458 30934 30951 30367 31796 19235 19383 11794 11843 11948 10856 11731 7318 8083 4912 8184 4628 1443 3787 1424 2644 915 1633 853 1458 853 1014 596

∞ 50994 50994 31458 30934 30951 30367 31796 19235 19383 11794 11843 11948 10856 11731 7318 8083 4912 8184 4628 1443 3787 1424 2639 879 1553 780 1444 780 935 304

20 5708

(p=2) (p=4) (p=8) (p=16) (p=24) (p=48) (p=96) (p=120) (p=240) (p=320) (p=640) (p=1280) (p=2560) (p=2560) (p=5120)
20 3488 3488 2164 2160 2021 2026 2867 2344 2366 1597 1612 1607 1472 1199 1180 811 885 909 1027 958 1164 1148 1455 1514 2146 2163 2136 2163 3416 3446
100 3488 3488 2164 2160 2021 2026 2867 2344 2366 1597 1612 1607 1316 1199 979 523 588 332 374 331 356 278 347 336 464 460 457 460 723 731
500 3488 3488 2164 2160 2021 2026 2867 2344 2366 1597 1612 1607 1316 1199 979 523 588 332 351 331 225 166 181 103 159 127 154 127 184 191
∞ 3488 3488 2164 2160 2021 2026 2867 2344 2366 1597 1612 1607 1316 1199 979 523 588 332 351 331 225 166 170 84 114 73 121 73 104 77

Better by 10% 0x 0x 4x 0x 4x 0x 8x 12x 20x 13x 23x 1x 12x 9x 19x 15x 17x 8x 20x 9x 27x 10x 31x 11x 20x 9x 13x 17x 12x 19x
Better by 50% 0x 0x 0x 0x 0x 0x 4x 8x 12x 4x 15x 0x 10x 0x 10x 3x 9x 3x 8x 5x 11x 3x 8x 8x 5x 6x 0x 5x 5x 8x

Table B.10: Parallel runtime with 20, 100, 500, and “unlimited” CPUs, on grid instances.
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Cutoff depth d
instance i Tseq #cpu 1 2 3 4 5 6 7 8 9 10 11 12 13

fix var fix var fix var fix var fix var fix var fix var fix var fix var fix var fix var fix var fix var

ped13
n=1077
k=3
w=32
h=102

8 252654

(p=2) (p=4) (p=8) (p=16) (p=32) (p=64) (p=128) (p=256) (p=512) (p=1024) (p=2048) (p=4096) (p=6144)
20 1.90 1.81 3.64 1.85 7.22 1.84 13.21 3.56 13.57 7.17 15.51 10.22 16.14 11.53 16.59 18.28 17.37 17.96 17.95 18.20 17.00 18.07 17.15 17.44 17.21 17.40
100 1.90 1.81 3.64 1.85 7.22 1.84 13.21 3.56 21.62 7.17 42.50 13.41 43.50 13.22 51.91 22.91 60.08 48.99 70.12 63.50 67.05 82.92 68.05 69.79 68.06 77.10

500 1.90 1.81 3.64 1.85 7.22 1.84 13.21 3.56 21.62 7.17 42.50 13.41 50.12 13.22 75.67 22.91 103.97 48.99 145.12 89.72 125.82 135.04 166.66 157.12 165.67 214.84

∞ 1.90 1.81 3.64 1.85 7.22 1.84 13.21 3.56 21.62 7.17 42.50 13.41 50.12 13.22 75.67 22.91 103.97 48.99 152.38 89.72 142.42 135.04 221.82 180.60 221.63 224.58

9 102385

(p=2) (p=4) (p=8) (p=16) (p=32) (p=64) (p=128) (p=256) (p=512) (p=1024) (p=2048) (p=4096) (p=6144)
20 1.91 1.89 3.31 3.23 6.45 4.30 9.71 8.54 10.85 8.50 17.63 10.55 19.64 14.86 20.03 17.99 19.22 19.52 19.60 18.37 18.46 19.25 18.10 18.37 17.34 17.82
100 1.91 1.89 3.31 3.23 6.45 4.30 9.71 8.54 14.32 8.50 29.41 10.55 30.86 14.86 52.75 31.63 55.98 52.94 76.58 49.18 62.13 71.30 69.98 66.23 66.83 70.22
500 1.91 1.89 3.31 3.23 6.45 4.30 9.71 8.54 14.32 8.50 29.41 10.55 30.86 14.86 60.87 31.98 67.23 65.46 122.62 58.04 119.47 116.35 124.25 121.74 120.45 123.21
∞ 1.91 1.89 3.31 3.23 6.45 4.30 9.71 8.54 14.32 8.50 29.41 10.55 30.86 14.86 60.87 31.98 67.23 65.46 126.87 58.04 138.55 124.56 136.15 133.84 131.94 132.97

ped19
n=793
k=5
w=25
h=98

16 375110

(p=4) (p=12) (p=48) (p=144) (p=288) (p=1440) (p=2880) (p=5752) (p=7672) (p=11254) (p=14968)
20 2.08 2.03 3.14 5.07 5.67 9.01 12.11 13.38 14.47 14.12 13.75 13.19 12.58 11.92 10.66 10.03 9.41 9.09 7.83 7.69 6.84 6.67
100 2.08 2.03 3.14 5.07 5.67 9.38 12.11 18.22 21.69 30.04 30.94 51.43 44.98 48.05 50.07 47.20 46.08 44.87 38.65 37.94 33.65 32.90
500 2.08 2.03 3.14 5.07 5.67 9.38 12.11 18.22 21.69 30.04 31.44 72.72 55.85 107.98 71.83 113.64 108.60 125.75 128.82 157.54 122.54 152.17

∞ 2.08 2.03 3.14 5.07 5.67 9.38 12.11 18.22 21.69 30.04 31.44 72.72 55.85 137.00 73.86 142.14 118.33 144.55 138.47 193.96 139.60 229.00

ped20
n=437
k=5
w=22
h=60

3 5136

(p=2) (p=6) (p=12) (p=32) (p=96) (p=160) (p=480) (p=800) (p=3200) (p=6400)
20 2.09 2.09 3.77 3.69 6.95 7.16 11.31 12.14 12.23 12.35 13.00 11.86 10.97 11.29 9.99 10.17 6.39 6.29 4.41 4.40
100 2.09 2.09 3.77 3.69 6.95 7.16 13.41 13.48 22.23 21.86 46.27 21.58 38.91 31.51 40.44 38.62 30.39 29.18 20.63 20.38
500 2.09 2.09 3.77 3.69 6.95 7.16 13.41 13.48 22.23 21.86 54.06 21.58 72.34 38.33 98.77 38.62 111.65 95.11 76.66 71.33
∞ 2.09 2.09 3.77 3.69 6.95 7.16 13.41 13.48 22.23 21.86 54.06 21.58 72.34 38.33 125.27 38.62 190.22 107.00 160.50 119.44

4 2185

(p=2) (p=6) (p=12) (p=32) (p=96) (p=160) (p=480) (p=800) (p=3200) (p=6400)
20 3.83 3.83 9.54 9.63 18.52 11.38 26.98 24.28 26.33 28.01 27.66 29.13 19.17 19.51 14.66 14.66 5.53 5.45 2.98 3.00
100 3.83 3.83 9.54 9.63 18.52 11.38 42.84 24.28 72.83 70.48 104.05 91.04 78.04 91.04 64.26 68.28 25.41 24.83 13.57 13.66
500 3.83 3.83 9.54 9.63 18.52 11.38 42.84 24.28 72.83 70.48 145.67 91.04 182.08 182.08 182.08 198.64 87.40 87.40 47.50 46.49
∞ 3.83 3.83 9.54 9.63 18.52 11.38 42.84 24.28 72.83 70.48 145.67 91.04 182.08 182.08 218.50 198.64 198.64 182.08 109.25 109.25

ped31
n=1183
k=5
w=30
h=85

10 1258519

(p=2) (p=4) (p=8) (p=16) (p=32) (p=64) (p=128) (p=256) (p=512) (p=1024) (p=2048) (p=4096) (p=8192)
20 1.77 1.77 3.49 3.51 6.72 7.38 12.02 12.19 11.80 13.79 12.14 14.08 13.63 15.07 14.64 15.39 14.69 15.53 15.44 15.55 15.56 15.61 15.19 15.41 14.96 14.91
100 1.77 1.77 3.49 3.51 6.72 7.38 12.02 12.19 20.81 14.84 25.96 25.32 37.68 34.21 40.98 47.48 51.36 67.41 64.04 70.76 71.92 75.31 73.68 74.98 72.07 72.20
500 1.77 1.77 3.49 3.51 6.72 7.38 12.02 12.19 20.81 14.84 25.96 25.32 44.14 34.21 53.40 72.23 100.50 126.09 154.00 222.04 218.64 306.13 273.18 320.32 296.40 316.93
∞ 1.77 1.77 3.49 3.51 6.72 7.38 12.02 12.19 20.81 14.84 25.96 25.32 44.14 34.21 53.40 72.23 100.50 126.09 177.26 245.90 314.00 423.89 619.05 794.52 915.95 1219.50

11 433029

(p=2) (p=4) (p=8) (p=16) (p=32) (p=64) (p=128) (p=256) (p=512) (p=1024) (p=2048) (p=4096) (p=8192)
20 2.22 2.22 4.03 3.99 7.97 7.95 14.26 14.68 12.88 15.02 13.87 16.23 19.25 17.52 18.99 17.98 18.79 17.81 18.01 17.85 18.08 17.52 17.19 17.11 16.32 16.40
100 2.22 2.22 4.03 3.99 7.97 7.95 14.26 14.68 22.48 15.02 27.59 27.44 48.80 46.75 59.05 56.47 88.79 73.11 75.34 85.43 80.29 82.99 80.68 84.18 76.00 80.12
500 2.22 2.22 4.03 3.99 7.97 7.95 14.26 14.68 22.48 15.02 27.59 27.44 48.80 46.75 59.05 56.47 106.32 128.04 181.64 237.93 248.01 315.62 293.98 318.40 258.68 283.77
∞ 2.22 2.22 4.03 3.99 7.97 7.95 14.26 14.68 22.48 15.02 27.59 27.44 48.80 46.75 59.05 56.47 106.32 128.04 202.26 237.93 400.21 519.22 399.84 529.38 439.62 519.22

12 16238

(p=2) (p=4) (p=8) (p=16) (p=32) (p=64) (p=128) (p=256) (p=512) (p=1024) (p=2048) (p=4096) (p=8192)
20 2.01 2.01 4.32 4.01 6.90 7.74 12.51 13.27 12.10 11.03 11.10 14.42 11.55 15.80 14.95 17.48 14.88 17.31 15.39 15.66 13.94 13.85 11.25 11.22 8.23 8.24
100 2.01 2.01 4.32 4.01 6.90 7.74 12.51 13.27 19.80 11.03 13.81 20.02 20.71 34.48 37.16 41.32 45.61 61.98 56.58 69.69 58.83 63.43 49.96 50.90 35.92 36.00
500 2.01 2.01 4.32 4.01 6.90 7.74 12.51 13.27 19.80 11.03 13.81 20.02 21.06 34.48 40.00 41.32 72.17 72.17 116.82 123.95 153.19 202.97 141.20 170.93 101.49 109.72
∞ 2.01 2.01 4.32 4.01 6.90 7.74 12.51 13.27 19.80 11.03 13.81 20.02 21.06 34.48 40.00 41.32 72.17 72.17 127.86 123.95 182.45 219.43 231.97 257.75 176.50 184.52

ped33
n=798
k=4
w=28
h=98

4 6010

(p=2) (p=3) (p=6) (p=6) (p=12) (p=24) (p=48) (p=96) (p=192) (p=384) (p=768) (p=1536) (p=1536)
20 1.51 1.51 1.96 1.86 3.60 3.95 3.65 3.95 7.15 8.44 9.26 12.37 11.11 14.11 12.57 12.87 12.68 14.80 12.87 13.85 11.23 12.27 10.12 10.07 9.85 10.07
100 1.51 1.51 1.96 1.86 3.60 3.95 3.65 3.95 7.15 8.44 11.58 16.38 16.47 18.61 23.85 34.74 25.47 48.86 34.74 53.66 34.15 50.50 37.80 43.24 34.94 43.24

500 1.51 1.51 1.96 1.86 3.60 3.95 3.65 3.95 7.15 8.44 11.58 16.38 16.47 18.61 23.85 34.74 28.76 48.86 48.47 66.04 55.65 84.65 69.08 101.86 68.30 101.86

∞ 1.51 1.51 1.96 1.86 3.60 3.95 3.65 3.95 7.15 8.44 11.58 16.38 16.47 18.61 23.85 34.74 28.76 48.86 48.47 66.04 59.50 84.65 78.05 122.65 77.05 122.65

ped34
n=1160
k=5
w=31
h=102

10 962006

(p=3) (p=5) (p=10) (p=20) (p=30) (p=60) (p=90) (p=180) (p=360) (p=716) (p=952) (p=1896) (p=3752)
20 1.96 1.96 2.27 2.27 3.42 3.49 5.49 6.67 6.63 6.70 6.60 7.84 9.22 9.50 8.81 10.30 9.73 10.11 9.73 9.89 9.36 9.86 9.91 9.97 9.92 10.00
100 1.96 1.96 2.27 2.27 3.42 3.49 5.49 6.67 6.66 6.70 8.33 12.73 12.73 12.73 22.85 24.44 29.32 39.79 35.35 45.52 35.43 45.72 44.87 45.41 47.18 49.51
500 1.96 1.96 2.27 2.27 3.42 3.49 5.49 6.67 6.66 6.70 8.33 12.73 12.73 12.73 23.09 24.44 38.87 46.76 69.26 85.87 83.72 89.66 144.23 156.78 182.89 197.05
∞ 1.96 1.96 2.27 2.27 3.42 3.49 5.49 6.67 6.66 6.70 8.33 12.73 12.73 12.73 23.09 24.44 38.87 46.76 70.32 85.87 87.19 89.66 166.64 162.34 295.09 316.03

11 350574

(p=3) (p=5) (p=10) (p=20) (p=30) (p=60) (p=90) (p=180) (p=360) (p=720) (p=956) (p=1912) (p=3808)
20 1.29 1.29 1.62 1.61 2.24 1.61 3.37 2.25 3.64 3.22 3.66 3.67 4.12 3.69 4.35 4.71 4.83 4.92 4.70 4.58 4.37 4.59 4.56 4.59 4.56 4.58
100 1.29 1.29 1.62 1.61 2.24 1.61 3.37 2.25 3.67 3.65 4.39 4.43 6.75 6.83 11.66 11.70 15.07 15.05 18.29 18.71 18.22 18.63 20.97 21.71 21.60 22.39
500 1.29 1.29 1.62 1.61 2.24 1.61 3.37 2.25 3.67 3.65 4.39 4.43 6.75 6.83 11.67 11.70 21.88 21.75 33.63 37.95 37.13 42.18 66.37 61.59 77.82 90.42

∞ 1.29 1.29 1.62 1.61 2.24 1.61 3.37 2.25 3.67 3.65 4.39 4.43 6.75 6.83 11.67 11.70 21.88 21.75 33.63 37.95 37.59 42.18 75.13 83.59 140.29 162.68

12 96122

(p=3) (p=5) (p=10) (p=20) (p=30) (p=60) (p=90) (p=180) (p=360) (p=716) (p=948) (p=1896) (p=3728)
20 2.25 2.22 3.66 3.65 4.13 4.08 4.70 6.29 6.28 6.31 6.07 6.11 6.02 7.14 6.87 6.97 7.88 7.58 7.50 7.35 7.23 7.34 7.41 7.16 7.08 6.92
100 2.25 2.22 3.66 3.65 4.13 4.08 4.70 6.29 6.29 6.31 7.23 10.65 10.24 10.55 17.79 17.02 23.52 25.94 27.55 32.35 27.95 33.34 33.29 32.34 32.53 32.52
500 2.25 2.22 3.66 3.65 4.13 4.08 4.70 6.29 6.29 6.31 7.23 10.65 10.24 10.55 17.83 17.02 29.11 33.83 45.77 74.05 55.95 88.27 94.79 97.29 107.04 85.90
∞ 2.25 2.22 3.66 3.65 4.13 4.08 4.70 6.29 6.29 6.31 7.23 10.65 10.24 10.55 17.83 17.02 29.11 33.83 45.86 74.05 56.05 88.27 104.94 153.80 154.29 98.89

ped39
n=1272
k=5
w=21
h=76

4 6632

(p=2) (p=4) (p=8) (p=16) (p=64) (p=128) (p=384) (p=768) (p=1152) (p=2304) (p=4608)
20 2.16 2.16 2.47 2.43 2.49 2.60 4.44 4.41 9.01 10.87 9.52 9.11 7.95 9.12 9.35 11.72 9.96 11.93 9.87 9.80 7.15 7.08
100 2.16 2.16 2.47 2.43 2.49 2.60 4.44 4.41 9.91 10.94 11.13 11.61 11.22 13.16 12.85 20.86 18.79 27.98 26.32 34.91 25.03 28.34

500 2.16 2.16 2.47 2.43 2.49 2.60 4.44 4.41 9.91 10.94 11.13 11.61 11.68 13.67 13.51 21.82 21.32 32.83 36.64 51.41 41.45 49.86

∞ 2.16 2.16 2.47 2.43 2.49 2.60 4.44 4.41 9.91 10.94 11.13 11.61 11.68 13.67 13.51 21.82 21.46 33.16 39.24 54.81 47.04 57.17

5 2202

(p=2) (p=4) (p=8) (p=16) (p=64) (p=128) (p=384) (p=768) (p=1152) (p=2304) (p=4608)
20 2.14 2.14 2.78 2.54 2.94 2.91 5.38 6.13 5.24 5.98 5.23 7.54 5.42 8.22 5.22 7.20 5.32 6.69 4.97 4.87 3.11 3.05
100 2.14 2.14 2.78 2.54 2.94 2.91 5.38 6.13 6.38 6.55 6.95 7.54 7.17 13.27 7.92 15.62 10.79 19.49 14.12 18.05 10.85 12.51

500 2.14 2.14 2.78 2.54 2.94 2.91 5.38 6.13 6.38 6.55 7.06 7.54 7.44 14.12 8.70 19.84 13.27 20.02 21.38 31.46 20.20 28.97

∞ 2.14 2.14 2.78 2.54 2.94 2.91 5.38 6.13 6.38 6.55 7.06 7.54 7.44 14.12 8.74 20.20 13.68 20.02 23.43 31.46 25.31 33.88

Better by 10% 0x 0x 4x 4x 16x 8x 16x 16x 18x 14x 14x 21x 15x 21x 10x 20x 6x 27x 7x 26x 1x 25x 1x 10x 2x 9x
Better by 50% 0x 0x 4x 4x 12x 4x 7x 3x 10x 0x 13x 6x 8x 9x 8x 8x 3x 7x 5x 3x 0x 4x 0x 1x 1x 1x

Table B.11: Parallel speedup with 20, 100, 500, and “unlimited” CPUs, on linkage instances, part 1 of 2.
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Cutoff depth d
instance i Tseq #cpu 1 2 3 4 5 6 7 8 9 10 11 12 13

fix var fix var fix var fix var fix var fix var fix var fix var fix var fix var fix var fix var fix var

ped41
n=1062
k=5
w=33
h=100

9 25607

(p=3) (p=8) (p=16) (p=32) (p=64) (p=128) (p=176) (p=352) (p=704) (p=1408) (p=2176) (p=4352) (p=8556)
20 1.28 1.28 1.58 1.79 2.82 5.57 5.41 8.89 8.92 11.84 11.68 11.71 12.82 12.28 10.47 12.09 11.32 11.29 10.55 10.42 9.84 9.58 8.62 8.59 7.23 NA
100 1.28 1.28 1.58 1.79 2.82 5.57 5.61 10.51 10.63 20.39 19.59 32.29 30.20 31.65 30.96 44.46 50.41 50.91 46.99 49.24 43.33 29.20 31.81 38.45 33.52 NA
500 1.28 1.28 1.58 1.79 2.82 5.57 5.61 10.51 10.63 20.39 20.13 32.29 31.34 41.91 39.40 75.31 73.80 96.63 102.02 121.36 75.99 42.40 57.41 113.81 97.00 NA
∞ 1.28 1.28 1.58 1.79 2.82 5.57 5.61 10.51 10.63 20.39 20.13 32.29 31.34 41.91 39.40 75.31 73.80 96.63 115.35 148.88 85.07 46.31 63.86 173.02 139.17 NA

10 46819

(p=3) (p=8) (p=16) (p=32) (p=64) (p=128) (p=176) (p=352) (p=704) (p=1408) (p=2176) (p=4352) (p=8576)
20 1.20 1.20 1.41 2.71 2.64 5.10 4.84 9.65 9.31 13.09 12.96 14.06 14.58 14.19 14.16 14.64 15.87 15.53 15.31 14.46 14.74 14.41 13.35 13.23 11.41 NA
100 1.20 1.20 1.41 2.71 2.64 5.10 4.89 9.65 9.95 16.09 16.95 27.36 28.67 31.68 31.57 39.85 47.92 47.01 51.79 45.37 50.89 59.79 62.34 54.06 45.28 NA
500 1.20 1.20 1.41 2.71 2.64 5.10 4.89 9.65 9.95 16.09 17.16 27.36 29.35 34.81 36.75 39.85 57.94 59.64 66.41 46.87 78.03 80.72 90.21 92.89 72.93 NA
∞ 1.20 1.20 1.41 2.71 2.64 5.10 4.89 9.65 9.95 16.09 17.16 27.36 29.35 34.81 36.75 39.85 57.94 59.64 67.46 46.87 82.14 81.57 91.09 107.63 82.57 NA

11 27583

(p=3) (p=8) (p=16) (p=32) (p=64) (p=128) (p=176) (p=352) (p=704) (p=1408) (p=2176) (p=4352) (p=8460)
20 1.20 1.20 1.36 2.71 2.69 4.57 4.52 7.11 8.45 13.58 12.60 14.78 13.34 15.57 13.45 15.46 13.78 15.48 13.87 14.04 12.49 13.55 12.16 12.17 9.87 NA
100 1.20 1.20 1.36 2.71 2.69 4.57 4.57 7.11 9.00 17.46 16.83 25.10 22.83 33.60 27.31 49.88 32.37 60.62 50.33 34.74 30.34 41.79 50.33 56.18 42.90 NA
500 1.20 1.20 1.36 2.71 2.69 4.57 4.57 7.11 9.00 17.46 17.08 25.10 23.32 33.60 30.65 55.50 40.09 97.12 94.46 45.44 41.05 41.79 106.50 154.09 98.86 NA
∞ 1.20 1.20 1.36 2.71 2.69 4.57 4.57 7.11 9.00 17.46 17.08 25.10 23.32 33.60 30.65 55.50 40.09 97.12 102.16 47.48 42.96 41.79 130.11 235.75 127.70 NA

ped44
n=811
k=4
w=25
h=65

5 207136

(p=2) (p=4) (p=8) (p=16) (p=64) (p=112) (p=336) (p=560) (p=1120) (p=2240) (p=4480) (p=8960) (p=17920)
20 1.84 1.84 3.15 3.14 5.81 3.16 10.16 6.62 12.17 11.17 16.29 15.43 14.46 14.49 12.03 12.73 11.10 11.29 10.04 10.15 8.27 8.81 7.11 8.08 6.08 7.21

100 1.84 1.84 3.15 3.14 5.81 3.16 10.16 6.62 17.40 11.17 60.65 19.43 58.30 59.81 51.27 57.54 52.55 52.32 48.38 45.51 40.51 37.32 35.00 37.79 29.94 34.57

500 1.84 1.84 3.15 3.14 5.81 3.16 10.16 6.62 17.40 11.17 60.65 19.43 99.58 79.00 133.29 110.89 200.52 161.95 207.14 147.43 175.24 95.59 163.10 130.77 139.11 132.02
∞ 1.84 1.84 3.15 3.14 5.81 3.16 10.16 6.62 17.40 11.17 60.65 19.43 99.58 79.00 151.08 110.89 342.94 198.98 565.95 206.72 367.26 112.57 281.05 224.90 1025.43 246.59

6 95830

(p=2) (p=4) (p=8) (p=16) (p=64) (p=112) (p=336) (p=560) (p=1120) (p=2240) (p=4480) (p=8960) (p=17920)
20 1.82 1.82 3.58 3.57 6.28 6.25 9.86 10.11 10.08 14.98 14.22 14.07 13.11 13.07 12.04 12.06 10.55 10.95 9.49 9.82 9.05 8.85 7.72 7.68 5.79 6.51

100 1.82 1.82 3.58 3.57 6.28 6.25 9.86 10.11 16.14 16.06 40.88 26.72 51.74 58.58 53.27 56.37 48.97 51.49 45.08 42.10 43.48 42.16 37.65 37.68 28.19 31.57

500 1.82 1.82 3.58 3.57 6.28 6.25 9.86 10.11 16.14 16.06 57.76 26.72 94.32 70.88 164.37 108.16 175.51 167.83 178.79 105.89 182.53 120.69 168.42 116.30 124.29 137.10

∞ 1.82 1.82 3.58 3.57 6.28 6.25 9.86 10.11 16.14 16.06 57.76 26.72 94.32 70.88 208.78 108.16 356.25 225.48 221.32 123.81 407.79 140.93 930.39 137.69 709.85 418.47

ped50
n=514
k=6
w=17
h=47

3 4135

(p=2) (p=4) (p=24) (p=144) (p=720) (p=2160) (p=5760) (p=14401)
20 1.74 1.74 2.78 2.80 6.96 7.04 9.78 11.99 11.27 12.02 8.89 9.17 5.01 5.04 2.38 2.39
100 1.74 1.74 2.78 2.80 6.96 7.04 11.99 11.99 16.28 31.56 20.88 39.01 20.68 22.97 10.85 10.94
500 1.74 1.74 2.78 2.80 6.96 7.04 11.99 11.99 17.52 46.99 26.01 46.99 33.08 75.18 32.56 37.25

∞ 1.74 1.74 2.78 2.80 6.96 7.04 11.99 11.99 17.52 49.23 27.03 46.99 37.94 98.45 46.46 78.02

4 1780

(p=2) (p=4) (p=24) (p=144) (p=720) (p=2160) (p=5760) (p=14400)
20 3.57 3.57 6.54 6.98 23.12 23.42 23.73 26.57 14.24 14.02 6.52 6.43 2.73 2.75 1.15 1.15
100 3.57 3.57 6.54 6.98 23.12 23.42 42.38 43.41 46.84 59.33 28.71 29.18 12.45 12.54 5.20 5.24
500 3.57 3.57 6.54 6.98 23.12 23.42 42.38 43.41 65.93 89.00 65.93 93.68 42.38 43.41 17.62 17.98
∞ 3.57 3.57 6.54 6.98 23.12 23.42 42.38 43.41 65.93 89.00 80.91 104.71 68.46 93.68 38.70 42.38

ped51
n=1152
k=5
w=39
h=98

20 101788

(p=2) (p=4) (p=8) (p=16) (p=32) (p=64) (p=128) (p=256) (p=512) (p=1024) (p=2048) (p=4064) (p=7968)
20 1.94 1.94 3.73 3.73 7.52 7.42 12.32 13.22 11.92 15.33 14.44 16.35 16.00 17.37 15.89 17.30 16.02 16.71 15.49 15.49 13.26 13.40 10.28 10.32 7.30 7.25
100 1.94 1.94 3.73 3.73 7.52 7.42 12.32 13.22 17.88 18.41 29.44 38.29 37.50 41.70 43.50 60.34 62.99 59.49 64.50 46.10 55.59 65.25 46.56 50.27 34.42 35.29
500 1.94 1.94 3.73 3.73 7.52 7.42 12.32 13.22 17.88 18.41 29.44 38.29 37.50 41.70 57.44 87.52 111.37 113.86 144.59 66.75 139.05 139.63 119.47 136.08 133.58 107.83
∞ 1.94 1.94 3.73 3.73 7.52 7.42 12.32 13.22 17.88 18.41 29.44 38.29 37.50 41.70 57.44 87.52 111.37 113.86 149.47 70.69 145.62 156.84 147.73 150.80 346.22 122.93

21 164817

(p=2) (p=4) (p=8) (p=16) (p=32) (p=64) (p=128) (p=256) (p=512) (p=1024) (p=2048) (p=4096) (p=8192)
20 2.05 2.05 3.82 3.88 7.74 7.69 14.28 14.61 11.73 16.28 18.25 16.47 17.23 17.07 18.89 17.33 18.00 17.12 16.13 15.71 13.34 13.02 9.71 9.63 6.37 6.36
100 2.05 2.05 3.82 3.88 7.74 7.69 14.28 14.61 20.64 20.33 33.86 33.86 50.13 49.10 70.16 55.87 86.25 62.64 77.31 73.15 57.11 63.51 46.60 47.09 31.10 31.13
500 2.05 2.05 3.82 3.88 7.74 7.69 14.28 14.61 20.64 20.33 33.86 33.86 50.13 49.10 70.16 88.61 136.21 102.63 181.52 104.91 164.16 247.47 156.97 141.47 104.78 110.99
∞ 2.05 2.05 3.82 3.88 7.74 7.69 14.28 14.61 20.64 20.33 33.86 33.86 50.13 49.10 70.16 88.61 136.21 102.63 181.52 104.91 258.33 290.68 195.05 211.85 193.45 222.73

ped7
n=1068
k=4
w=32
h=90

6 118383

(p=2) (p=4) (p=12) (p=32) (p=96) (p=160) (p=480) (p=640) (p=1280) (p=1280) (p=2560) (p=3840) (p=7680)
20 1.94 2.08 3.35 2.01 5.72 2.01 9.59 2.04 11.56 4.94 13.11 13.90 13.60 15.85 12.26 16.17 13.62 15.61 13.60 15.61 13.62 15.30 14.37 15.39 14.18 14.52
100 1.94 2.08 3.35 2.01 5.72 2.01 9.90 2.04 17.84 4.94 23.11 15.39 24.83 46.33 24.36 51.34 29.27 65.26 30.13 65.26 37.64 67.84 44.77 71.79 44.74 68.87

500 1.94 2.08 3.35 2.01 5.72 2.01 9.90 2.04 17.84 4.94 23.75 15.39 26.65 49.59 27.16 56.75 36.14 90.99 35.94 90.99 54.40 132.72 67.11 125.54 75.69 214.85

∞ 1.94 2.08 3.35 2.01 5.72 2.01 9.90 2.04 17.84 4.94 23.75 15.39 26.65 49.59 27.16 56.75 36.22 90.99 36.36 90.99 56.32 132.72 68.04 135.14 87.95 237.24

7 93380

(p=2) (p=4) (p=12) (p=32) (p=96) (p=160) (p=480) (p=640) (p=1280) (p=1280) (p=2560) (p=3840) (p=7680)
20 2.00 1.91 3.72 1.97 5.85 1.81 11.69 1.82 14.99 3.51 18.62 3.58 18.71 17.43 15.80 17.40 15.30 17.10 15.41 17.10 16.55 16.90 15.76 16.37 15.21 15.31
100 2.00 1.91 3.72 1.97 5.85 1.81 11.69 1.82 18.95 3.71 31.69 3.69 35.01 43.72 31.11 46.76 33.72 62.05 33.13 62.05 42.12 73.12 43.31 73.64 45.00 69.22

500 2.00 1.91 3.72 1.97 5.85 1.81 11.69 1.82 18.95 3.71 31.69 3.69 35.01 51.11 35.71 68.26 39.77 79.14 39.22 79.14 58.00 184.55 65.16 182.03 68.36 186.39

∞ 2.00 1.91 3.72 1.97 5.85 1.81 11.69 1.82 18.95 3.71 31.69 3.69 35.01 51.11 35.71 68.26 39.77 79.14 39.22 79.14 58.07 209.84 65.71 237.01 71.17 251.02

8 30717

(p=2) (p=4) (p=12) (p=32) (p=96) (p=160) (p=480) (p=640) (p=1276) (p=1276) (p=2552) (p=3816) (p=7588)
20 1.79 1.79 3.45 1.68 5.65 1.68 10.32 1.67 13.35 3.00 13.10 2.96 13.36 14.46 13.94 15.85 11.66 17.20 13.99 17.20 14.56 15.87 14.56 14.85 12.05 12.27
100 1.79 1.79 3.45 1.68 5.65 1.68 10.32 1.67 13.61 3.11 24.07 3.12 24.99 31.06 26.80 30.59 23.52 32.54 28.57 32.54 31.86 40.79 33.53 51.11 31.54 52.69

500 1.79 1.79 3.45 1.68 5.65 1.68 10.32 1.67 13.61 3.11 24.46 3.12 26.55 31.06 28.18 35.97 27.82 36.88 30.47 36.88 40.96 57.20 45.04 89.03 43.88 112.52

∞ 1.79 1.79 3.45 1.68 5.65 1.68 10.32 1.67 13.61 3.11 24.46 3.12 26.55 31.06 28.18 35.97 28.08 36.88 30.47 36.88 41.57 61.80 47.40 104.48 47.70 142.21

ped9
n=1118
k=7
w=27
h=100

6 101172

(p=2) (p=4) (p=8) (p=16) (p=32) (p=32) (p=64) (p=128) (p=256) (p=512) (p=1024) (p=2048) (p=4096)
20 1.96 1.94 3.66 1.94 5.87 4.00 9.76 5.68 13.99 13.75 13.89 13.75 16.39 14.02 16.23 15.43 16.94 16.90 17.02 16.59 15.26 15.86 15.22 15.06 14.02 14.07
100 1.96 1.94 3.66 1.94 5.87 4.00 9.76 5.68 18.82 14.42 18.60 14.42 38.72 19.86 64.90 37.78 64.94 55.41 79.48 78.19 71.91 75.50 72.79 72.01 67.86 58.79
500 1.96 1.94 3.66 1.94 5.87 4.00 9.76 5.68 18.82 14.42 18.60 14.42 38.72 19.86 71.96 37.78 99.97 55.41 256.13 108.67 216.64 216.64 293.25 263.47 292.40 115.10
∞ 1.96 1.94 3.66 1.94 5.87 4.00 9.76 5.68 18.82 14.42 18.60 14.42 38.72 19.86 71.96 37.78 99.97 55.41 256.13 108.67 216.64 216.64 595.13 315.18 790.41 134.54

7 58657

(p=2) (p=4) (p=8) (p=16) (p=32) (p=32) (p=64) (p=128) (p=256) (p=512) (p=1024) (p=2048) (p=4096)
20 1.89 1.92 3.81 3.75 5.81 5.75 10.90 9.66 11.32 12.24 11.39 12.24 14.92 14.75 16.10 15.66 16.49 16.16 16.68 16.47 15.67 15.58 15.33 14.91 14.22 14.02
100 1.89 1.92 3.81 3.75 5.81 5.75 10.90 9.66 19.44 20.07 19.84 20.07 40.26 26.85 55.81 52.00 66.35 62.20 72.78 76.88 71.10 55.97 71.88 70.33 66.96 65.98
500 1.89 1.92 3.81 3.75 5.81 5.75 10.90 9.66 19.44 20.07 19.84 20.07 40.26 26.85 77.90 52.00 129.20 103.45 250.67 164.77 234.63 82.85 265.42 142.03 258.40 243.39
∞ 1.89 1.92 3.81 3.75 5.81 5.75 10.90 9.66 19.44 20.07 19.84 20.07 40.26 26.85 77.90 52.00 129.20 103.45 250.67 164.77 383.38 86.64 592.49 142.03 630.72 444.37

8 41061

(p=2) (p=4) (p=8) (p=16) (p=32) (p=32) (p=64) (p=128) (p=256) (p=512) (p=1024) (p=2048) (p=4096)
20 1.97 1.97 3.73 3.76 5.84 5.94 8.51 9.31 11.19 12.78 11.30 12.78 14.75 11.63 16.04 12.53 17.02 17.06 16.84 16.73 15.58 15.96 15.01 14.94 13.42 13.64
100 1.97 1.97 3.73 3.76 5.84 5.94 8.51 9.31 18.34 13.01 18.18 13.01 31.06 21.81 55.04 22.49 65.59 42.07 75.90 70.43 71.16 74.52 71.04 71.53 63.46 64.46
500 1.97 1.97 3.73 3.76 5.84 5.94 8.51 9.31 18.34 13.01 18.18 13.01 31.06 21.81 67.98 22.49 97.76 44.29 161.02 88.30 214.98 145.61 264.91 271.93 244.41 245.87
∞ 1.97 1.97 3.73 3.76 5.84 5.94 8.51 9.31 18.34 13.01 18.18 13.01 31.06 21.81 67.98 22.49 97.76 44.29 161.02 88.30 268.37 145.61 526.42 380.19 586.59 441.52

Better by 10% 0x 0x 16x 12x 20x 12x 24x 14x 21x 22x 24x 20x 15x 27x 14x 29x 14x 18x 21x 14x 12x 16x 11x 18x 9x 15x
Better by 50% 0x 0x 16x 8x 16x 12x 20x 12x 15x 13x 17x 9x 3x 5x 8x 14x 7x 9x 15x 6x 9x 7x 4x 12x 5x 9x

Table B.12: Parallel speedup with 20, 100, 500, and “unlimited” CPUs, on linkage instances, part 2 of 2.
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Cutoff depth d

instance i Tseq #cpu 1 2 3 4 5 6 7 8 9 10 11 12 13

fix var fix var fix var fix var fix var fix var fix var fix var fix var fix var fix var fix var fix var

lF3-11-57
n=2670
k=3
w=37
h=95

15 121311

(p=2) (p=4) (p=6) (p=18) (p=30) (p=30) (p=60) (p=60) (p=120) (p=180) (p=360) (p=1080) (p=1440)
20 1.53 1.53 2.40 2.19 3.56 2.46 4.49 3.72 8.20 8.48 8.11 8.48 8.41 11.62 8.51 11.62 9.34 11.38 10.16 11.71 10.40 11.16 10.90 10.51 10.99 10.48
100 1.53 1.53 2.40 2.19 3.56 2.46 4.49 3.72 8.20 8.48 8.11 8.48 9.30 15.14 9.43 15.14 9.43 20.40 14.14 33.07 18.61 38.54 28.63 46.77 30.04 46.46

500 1.53 1.53 2.40 2.19 3.56 2.46 4.49 3.72 8.20 8.48 8.11 8.48 9.30 15.14 9.43 15.14 9.43 20.40 14.14 33.07 18.66 50.15 33.01 127.56 38.51 136.15

∞ 1.53 1.53 2.40 2.19 3.56 2.46 4.49 3.72 8.20 8.48 8.11 8.48 9.30 15.14 9.43 15.14 9.43 20.40 14.14 33.07 18.66 50.15 33.01 132.58 39.15 138.32

16 35820

(p=2) (p=4) (p=6) (p=18) (p=30) (p=30) (p=60) (p=60) (p=120) (p=180) (p=360) (p=1080) (p=1440)
20 1.43 1.43 2.13 2.16 3.69 2.63 4.76 6.34 7.64 7.58 7.32 7.58 10.13 9.18 10.16 9.18 10.37 12.00 10.23 11.97 11.93 12.17 9.62 10.34 10.21 10.11
100 1.43 1.43 2.13 2.16 3.69 2.63 4.76 6.34 8.50 7.58 8.30 7.58 10.59 10.49 10.16 10.49 10.39 15.77 16.03 22.18 20.67 35.19 28.61 38.35 30.99 44.66

500 1.43 1.43 2.13 2.16 3.69 2.63 4.76 6.34 8.50 7.58 8.30 7.58 10.59 10.49 10.16 10.49 10.39 15.77 16.03 22.18 20.67 36.93 33.14 58.06 38.31 91.38

∞ 1.43 1.43 2.13 2.16 3.69 2.63 4.76 6.34 8.50 7.58 8.30 7.58 10.59 10.49 10.16 10.49 10.39 15.77 16.03 22.18 20.67 36.93 33.14 58.06 38.31 93.28

17 18312

(p=2) (p=4) (p=6) (p=18) (p=30) (p=30) (p=60) (p=60) (p=120) (p=180) (p=360) (p=1080) (p=1440)
20 1.45 1.45 2.10 2.67 3.38 2.61 4.66 5.64 8.01 7.52 7.69 7.52 9.47 9.91 9.15 9.91 8.95 11.99 10.95 11.41 9.26 10.33 7.64 7.41 6.51 6.63
100 1.45 1.45 2.10 2.67 3.38 2.61 4.66 5.64 8.01 7.52 7.69 7.52 9.47 9.91 9.50 9.91 9.86 18.88 15.81 25.26 19.19 34.49 23.81 33.66 23.24 31.30

500 1.45 1.45 2.10 2.67 3.38 2.61 4.66 5.64 8.01 7.52 7.69 7.52 9.47 9.91 9.50 9.91 9.86 18.88 15.81 25.26 19.80 34.49 32.64 48.83 32.41 90.65

∞ 1.45 1.45 2.10 2.67 3.38 2.61 4.66 5.64 8.01 7.52 7.69 7.52 9.47 9.91 9.50 9.91 9.86 18.88 15.81 25.26 19.80 34.49 32.64 48.83 33.36 104.05

lF3-11-59
n=2711
k=3
w=32
h=73

14 35457

(p=3) (p=5) (p=10) (p=10) (p=30) (p=50) (p=150) (p=200) (p=600) (p=1000) (p=2000) (p=2000) (p=4000)
20 1.61 1.61 3.39 3.13 5.62 5.95 5.55 5.95 7.40 9.36 9.18 12.84 11.03 12.37 10.64 12.08 10.02 10.42 8.69 9.67 8.23 8.53 8.25 8.53 7.33 7.30
100 1.61 1.61 3.39 3.13 5.62 5.95 5.55 5.95 7.40 9.36 9.18 14.27 16.51 29.06 22.92 42.62 30.54 49.11 28.73 45.87 27.09 40.71 35.25 40.71 26.96 34.80

500 1.61 1.61 3.39 3.13 5.62 5.95 5.55 5.95 7.40 9.36 9.18 14.27 16.51 29.06 22.92 46.05 31.43 103.98 53.97 154.83 48.18 116.63 51.09 116.63 50.01 136.90

∞ 1.61 1.61 3.39 3.13 5.62 5.95 5.55 5.95 7.40 9.36 9.18 14.27 16.51 29.06 22.92 46.05 31.43 103.98 58.80 154.83 55.58 146.52 51.09 146.52 61.56 274.86

15 8523

(p=3) (p=5) (p=10) (p=10) (p=30) (p=50) (p=150) (p=200) (p=596) (p=992) (p=1962) (p=1962) (p=3886)
20 1.78 1.67 3.22 2.91 5.34 5.36 5.35 5.36 7.63 7.56 7.42 12.93 8.89 10.84 8.70 10.07 7.09 7.54 6.74 6.53 5.00 5.14 4.97 5.14 3.73 3.77
100 1.78 1.67 3.22 2.91 5.34 5.36 5.35 5.36 7.63 7.56 7.42 13.01 16.08 35.22 16.30 29.39 18.17 34.79 25.07 30.44 21.10 23.94 20.94 23.94 16.78 17.22
500 1.78 1.67 3.22 2.91 5.34 5.36 5.35 5.36 7.63 7.56 7.42 13.01 16.08 35.22 16.30 29.39 23.54 84.39 45.82 101.46 52.61 82.75 51.97 82.75 48.43 60.02

∞ 1.78 1.67 3.22 2.91 5.34 5.36 5.35 5.36 7.63 7.56 7.42 13.01 16.08 35.22 16.30 29.39 23.54 84.39 45.82 109.27 55.34 127.21 51.97 127.21 69.86 109.27

16 3023

(p=3) (p=5) (p=10) (p=10) (p=30) (p=50) (p=150) (p=200) (p=600) (p=1000) (p=1999) (p=1999) (p=3992)
20 1.69 1.62 3.39 3.42 4.09 6.12 6.07 6.12 6.84 8.21 4.43 8.76 6.78 7.34 6.22 6.39 3.84 3.62 2.73 2.68 1.66 1.70 1.66 1.70 0.99 1.00
100 1.69 1.62 3.39 3.42 4.09 6.12 6.07 6.12 8.13 8.21 5.73 12.29 18.21 19.25 16.89 19.25 14.46 16.17 11.67 12.09 7.65 7.77 7.52 7.77 4.55 4.62
500 1.69 1.62 3.39 3.42 4.09 6.12 6.07 6.12 8.13 8.21 5.73 12.29 18.55 19.25 20.29 19.25 21.14 42.58 29.64 37.79 23.43 26.99 22.73 26.99 15.91 16.52
∞ 1.69 1.62 3.39 3.42 4.09 6.12 6.07 6.12 8.13 8.21 5.73 12.29 18.55 19.25 20.29 19.25 21.14 42.58 33.22 48.76 38.27 46.51 35.56 46.51 33.59 37.79

lF3-13-58
n=3352
k=3
w=31
h=88

14 46464

(p=2) (p=4) (p=12) (p=20) (p=60) (p=100) (p=200) (p=200) (p=600) (p=1200) (p=2000) (p=4000) (p=6400)
20 2.11 2.11 3.17 3.56 4.95 3.89 11.91 4.94 14.43 15.45 13.32 18.53 16.87 18.86 17.13 18.86 17.24 18.14 16.53 17.57 16.62 17.04 15.22 15.17 13.43 13.50
100 2.11 2.11 3.17 3.56 4.95 3.89 11.91 4.94 19.77 15.45 25.97 22.84 34.75 42.67 30.77 42.67 40.97 44.51 55.85 55.78 65.63 79.56 70.29 70.72 61.14 61.87
500 2.11 2.11 3.17 3.56 4.95 3.89 11.91 4.94 19.77 15.45 25.97 22.84 38.02 42.67 32.65 42.67 52.56 45.11 63.04 73.75 122.27 136.66 239.51 181.50 207.43 206.51
∞ 2.11 2.11 3.17 3.56 4.95 3.89 11.91 4.94 19.77 15.45 25.97 22.84 38.02 42.67 32.65 42.67 52.56 45.11 63.04 73.75 122.27 136.66 320.44 181.50 357.42 258.13

16 20270

(p=2) (p=4) (p=12) (p=20) (p=60) (p=100) (p=200) (p=200) (p=600) (p=1200) (p=1998) (p=3990) (p=6390)
20 1.64 1.64 2.70 2.70 4.00 3.98 8.74 8.80 12.30 14.89 14.48 16.53 16.29 17.60 15.80 17.60 14.84 14.59 15.17 15.19 12.87 12.94 9.55 9.48 7.17 7.18
100 1.64 1.64 2.70 2.70 4.00 3.98 8.74 8.80 13.71 14.89 18.36 24.93 24.60 39.90 23.62 39.90 25.12 33.45 55.23 59.62 47.69 59.62 43.31 43.13 31.87 32.17
500 1.64 1.64 2.70 2.70 4.00 3.98 8.74 8.80 13.71 14.89 18.36 24.93 25.34 39.90 24.33 39.90 27.32 41.37 79.18 82.06 67.12 113.24 137.89 144.79 97.92 106.68
∞ 1.64 1.64 2.70 2.70 4.00 3.98 8.74 8.80 13.71 14.89 18.36 24.93 25.34 39.90 24.33 39.90 27.32 41.37 82.06 82.06 71.88 113.24 184.27 191.23 174.74 182.61

18 7647

(p=2) (p=4) (p=12) (p=20) (p=60) (p=100) (p=200) (p=200) (p=591) (p=1181) (p=1958) (p=3858) (p=6121)
20 1.98 1.98 3.23 3.20 4.49 4.79 8.38 7.02 9.74 15.67 12.08 14.91 10.82 12.64 11.64 12.64 7.29 7.47 4.63 4.63 3.06 3.08 1.69 1.69 1.10 1.11
100 1.98 1.98 3.23 3.20 4.49 4.79 8.38 7.02 13.01 15.67 23.46 22.76 26.01 36.41 26.55 36.41 22.10 32.54 19.76 21.01 13.51 14.21 7.91 7.93 5.19 5.22
500 1.98 1.98 3.23 3.20 4.49 4.79 8.38 7.02 13.01 15.67 23.46 22.76 29.19 36.41 29.64 36.41 23.97 66.50 45.52 64.26 43.20 51.67 28.86 30.59 19.66 20.39
∞ 1.98 1.98 3.23 3.20 4.49 4.79 8.38 7.02 13.01 15.67 23.46 22.76 29.19 36.41 29.64 36.41 23.97 66.50 53.48 81.35 74.24 76.47 72.83 76.47 59.28 63.73

lF3-15-53
n=3384
k=3
w=32
h=108

17 345544

(p=2) (p=4) (p=12) (p=16) (p=34) (p=46) (p=78) (p=201) (p=358) (p=632) (p=1093) (p=1927) (p=2831)
20 1.75 1.75 3.50 3.35 3.47 3.45 3.52 3.57 3.67 5.80 4.25 9.42 4.33 10.49 8.73 13.91 10.16 13.86 11.27 13.99 12.02 14.36 12.97 16.75 12.96 16.31

100 1.75 1.75 3.50 3.35 3.47 3.45 3.52 3.57 3.67 5.80 4.25 10.32 4.33 10.49 8.73 21.25 10.68 27.31 15.68 27.31 20.82 38.42 27.44 63.14 27.37 63.86

500 1.75 1.75 3.50 3.35 3.47 3.45 3.52 3.57 3.67 5.80 4.25 10.32 4.33 10.49 8.73 21.25 10.68 28.16 15.68 27.81 20.82 47.18 27.44 72.50 28.25 73.10

∞ 1.75 1.75 3.50 3.35 3.47 3.45 3.52 3.57 3.67 5.80 4.25 10.32 4.33 10.49 8.73 21.25 10.68 28.16 15.68 27.81 20.82 47.18 27.44 72.50 28.25 73.10

18 98346

(p=2) (p=4) (p=12) (p=16) (p=32) (p=44) (p=68) (p=165) (p=284) (p=526) (p=912) (p=1572) (p=2496)
20 1.80 1.80 3.47 3.29 3.44 3.29 3.45 3.56 3.66 4.04 4.21 9.89 4.13 10.12 8.13 13.42 9.11 14.04 9.48 12.82 9.68 13.15 10.23 11.80 9.89 10.78
100 1.80 1.80 3.47 3.29 3.44 3.29 3.45 3.56 3.66 4.04 4.21 9.89 4.13 10.12 8.13 24.06 10.03 23.78 14.39 26.66 18.20 35.27 21.70 46.37 20.92 37.94

500 1.80 1.80 3.47 3.29 3.44 3.29 3.45 3.56 3.66 4.04 4.21 9.89 4.13 10.12 8.13 24.06 10.03 23.78 14.39 28.01 18.39 35.27 21.93 52.51 24.46 51.93

∞ 1.80 1.80 3.47 3.29 3.44 3.29 3.45 3.56 3.66 4.04 4.21 9.89 4.13 10.12 8.13 24.06 10.03 23.78 14.39 28.01 18.39 35.27 21.93 52.51 24.46 52.99

Better by 10% 0x 0x 4x 8x 16x 4x 12x 8x 6x 18x 3x 26x 1x 31x 1x 32x 2x 35x 0x 32x 0x 33x 2x 25x 1x 22x
Better by 50% 0x 0x 0x 0x 0x 0x 4x 0x 0x 5x 0x 19x 0x 20x 0x 20x 0x 28x 0x 18x 0x 22x 1x 15x 0x 16x

Table B.13: Parallel speedup with 20, 100, 500, and “unlimited” CPUs, on haplotyping instances, part 1 of 2.
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Cutoff depth d

instance i Tseq #cpu 1 2 3 4 5 6 7 8 9 10 11 12 13

fix var fix var fix var fix var fix var fix var fix var fix var fix var fix var fix var fix var fix var

lF3-15-59
n=3730
k=3
w=31
h=84

18 28613

(p=2) (p=4) (p=8) (p=20) (p=40) (p=80) (p=240) (p=476) (p=942) (p=1855) (p=3633) (p=7098) (p=13781)
20 1.90 1.90 3.62 3.60 5.41 4.25 9.75 5.93 10.07 13.84 11.03 17.52 15.98 17.77 14.67 16.70 13.99 14.61 11.19 11.84 8.87 8.67 5.79 5.72 3.52 3.49
100 1.90 1.90 3.62 3.60 5.41 4.25 9.75 5.93 13.92 13.84 16.49 21.63 32.04 48.91 30.63 60.11 34.72 61.93 37.35 54.40 39.20 40.47 26.47 26.49 16.14 15.97
500 1.90 1.90 3.62 3.60 5.41 4.25 9.75 5.93 13.92 13.84 16.49 21.63 33.98 53.48 34.98 72.99 44.99 61.93 68.78 161.66 89.70 135.61 79.92 95.70 55.24 56.32
∞ 1.90 1.90 3.62 3.60 5.41 4.25 9.75 5.93 13.92 13.84 16.49 21.63 33.98 53.48 34.98 72.99 44.99 61.93 80.37 175.54 114.45 225.30 138.90 202.93 113.09 124.95

19 43307

(p=2) (p=4) (p=8) (p=20) (p=40) (p=80) (p=240) (p=476) (p=936) (p=1830) (p=3571) (p=6964) (p=13482)
20 1.46 1.46 2.73 2.76 4.23 4.26 7.33 7.92 11.76 12.67 11.87 15.22 16.49 18.06 15.78 17.32 15.18 15.17 12.44 12.36 9.15 9.07 6.00 5.98 3.63 3.64
100 1.46 1.46 2.73 2.76 4.23 4.26 7.33 7.92 11.76 12.67 12.61 19.27 29.16 40.14 28.99 59.90 33.42 65.82 46.67 58.44 41.56 42.96 28.12 28.19 17.09 17.04
500 1.46 1.46 2.73 2.76 4.23 4.26 7.33 7.92 11.76 12.67 12.61 19.27 29.16 40.14 30.63 75.58 38.91 103.85 62.58 166.57 85.25 148.82 104.35 108.54 65.62 64.93
∞ 1.46 1.46 2.73 2.76 4.23 4.26 7.33 7.92 11.76 12.67 12.61 19.27 29.16 40.14 30.63 75.58 38.91 103.85 64.16 166.57 97.98 244.67 139.25 229.14 136.62 172.54

lF3-16-56
n=3930
k=3
w=38
h=77

15 1891710

(p=3) (p=9) (p=15) (p=43) (p=71) (p=205) (p=470) (p=934) (p=934) (p=1827) (p=2707) (p=7582)
20 1.63 1.64 2.94 2.96 4.71 4.74 5.80 9.43 9.11 11.41 11.50 12.69 11.37 11.50 11.80 10.65 11.73 10.65 10.51 9.52 9.80 8.93 8.69 7.51
100 1.63 1.64 2.94 2.96 4.71 4.74 5.97 10.13 10.59 11.41 15.84 44.49 29.30 47.75 41.00 49.42 39.95 49.42 39.94 46.62 41.31 44.08 38.80 37.50
500 1.63 1.64 2.94 2.96 4.71 4.74 5.97 10.13 10.59 11.41 15.89 44.49 33.34 88.98 52.68 120.08 50.97 120.08 65.92 167.27 77.56 171.18 105.86 169.42

∞ 1.63 1.64 2.94 2.96 4.71 4.74 5.97 10.13 10.59 11.41 15.89 44.49 33.34 88.98 52.70 120.08 51.03 120.08 70.79 185.01 82.81 238.31 124.14 443.85

16 489614

(p=2) (p=3) (p=9) (p=15) (p=42) (p=70) (p=201) (p=455) (p=900) (p=900) (p=1766) (p=2629) (p=7122)
20 1.28 1.28 1.52 1.51 2.68 3.91 3.88 5.74 5.48 8.62 8.96 8.98 9.21 10.29 8.74 9.25 8.70 8.32 8.97 8.32 8.15 7.24 7.42 6.64 6.22 5.38
100 1.28 1.28 1.52 1.51 2.68 3.91 3.88 5.74 6.02 8.62 11.21 13.38 14.56 18.57 23.91 37.01 25.60 37.79 29.75 37.79 32.30 35.86 28.18 33.07 25.11 26.77
500 1.28 1.28 1.52 1.51 2.68 3.91 3.88 5.74 6.02 8.62 11.21 13.38 14.65 18.57 28.00 58.25 37.83 75.16 37.06 75.16 48.74 92.02 52.00 115.64 60.02 118.90

∞ 1.28 1.28 1.52 1.51 2.68 3.91 3.88 5.74 6.02 8.62 11.21 13.38 14.65 18.57 28.00 58.25 38.87 75.16 37.13 75.16 49.71 92.02 54.74 124.58 74.49 364.03

lF4-12-50
n=2569
k=4
w=28
h=80

13 57842

(p=3) (p=12) (p=24) (p=72) (p=288) (p=864) (p=3456) (p=5760)
20 1.77 1.77 5.63 5.68 12.03 11.89 17.26 18.84 16.95 16.97 17.80 17.79 13.63 13.94 11.54 11.43
100 1.77 1.77 5.63 5.68 12.03 11.89 22.22 21.72 48.61 54.98 69.94 60.13 63.70 67.18 54.11 55.04
500 1.77 1.77 5.63 5.68 12.03 11.89 22.22 21.72 52.44 64.34 102.19 109.76 104.22 205.84 193.45 78.06
∞ 1.77 1.77 5.63 5.68 12.03 11.89 22.22 21.72 52.44 64.34 102.19 109.76 107.91 245.09 373.17 80.67

14 33676

(p=3) (p=12) (p=24) (p=72) (p=288) (p=864) (p=3456) (p=5760)
20 1.95 1.95 5.43 6.46 11.43 13.90 16.44 14.28 19.24 17.75 18.47 18.81 13.25 13.20 10.36 10.29
100 1.95 1.95 5.43 6.46 12.38 15.05 21.15 20.48 52.87 23.63 63.54 60.57 58.57 62.95 47.30 48.74
500 1.95 1.95 5.43 6.46 12.38 15.05 21.15 20.48 59.71 23.63 99.93 68.59 165.08 240.54 165.89 190.26

∞ 1.95 1.95 5.43 6.46 12.38 15.05 21.15 20.48 59.71 23.63 102.67 68.59 223.02 333.43 249.45 340.16

lF4-12-55
n=2926
k=4
w=28
h=78

13 104837

(p=2) (p=4) (p=8) (p=16) (p=64) (p=128) (p=256) (p=512) (p=1024) (p=1024) (p=1792) (p=1792) (p=3072)
20 1.96 1.96 3.64 3.67 6.44 3.78 9.44 6.72 12.71 6.64 13.24 6.61 13.75 6.64 14.52 6.66 14.40 10.73 14.24 10.73 13.53 13.81 13.83 13.81 12.93 13.25
100 1.96 1.96 3.64 3.67 6.44 3.78 9.44 6.72 28.09 7.67 35.25 7.53 46.02 7.55 57.54 7.82 63.50 17.60 62.18 17.60 53.68 59.43 58.93 59.43 52.31 60.92

500 1.96 1.96 3.64 3.67 6.44 3.78 9.44 6.72 28.09 7.67 35.25 7.69 62.07 7.69 101.88 8.07 156.01 18.92 157.41 18.92 128.95 147.24 137.22 147.24 118.19 121.48
∞ 1.96 1.96 3.64 3.67 6.44 3.78 9.44 6.72 28.09 7.67 35.25 7.69 62.07 7.69 101.88 8.07 156.01 18.92 180.44 18.92 173.00 151.72 154.40 151.72 143.61 137.94

14 25905

(p=2) (p=4) (p=8) (p=16) (p=48) (p=96) (p=192) (p=384) (p=768) (p=768) (p=1536) (p=1536) (p=3072)
20 1.95 1.95 3.66 3.87 7.21 3.76 12.19 3.81 12.32 7.20 12.08 13.12 13.16 14.49 12.84 14.05 12.91 13.42 12.62 13.42 10.86 11.28 11.23 11.28 8.68 8.66
100 1.95 1.95 3.66 3.87 7.21 3.76 12.19 3.81 21.93 7.20 22.35 13.12 37.06 34.13 37.49 48.33 45.13 54.65 44.43 54.65 43.98 52.02 45.05 52.02 36.13 39.98

500 1.95 1.95 3.66 3.87 7.21 3.76 12.19 3.81 21.93 7.20 22.35 13.12 45.77 34.13 59.14 73.59 92.19 119.93 72.56 119.93 112.63 75.97 110.23 75.97 69.08 111.18

∞ 1.95 1.95 3.66 3.87 7.21 3.76 12.19 3.81 21.93 7.20 22.35 13.12 45.77 34.13 59.14 73.59 101.59 119.93 72.56 119.93 157.96 75.97 149.74 75.97 78.74 135.63

lF4-17-51
n=3837
k=4
w=29
h=85

15 10607

(p=2) (p=4) (p=4) (p=8) (p=16) (p=32) (p=40) (p=56) (p=128) (p=152) (p=176) (p=352) (p=400)
20 2.05 2.05 3.77 3.81 3.76 3.81 6.78 6.90 8.02 8.24 8.12 9.96 8.67 9.10 10.21 10.08 10.07 11.37 9.59 11.17 10.21 10.67 8.53 8.66 8.08 8.25
100 2.05 2.05 3.77 3.81 3.76 3.81 6.78 6.90 8.02 8.24 9.49 9.96 13.85 13.72 16.92 13.96 27.06 31.57 25.08 29.88 25.68 31.95 28.90 27.27 34.22 21.78
500 2.05 2.05 3.77 3.81 3.76 3.81 6.78 6.90 8.02 8.24 9.49 9.96 13.85 13.72 16.92 13.96 31.85 31.57 30.83 31.47 33.46 31.95 48.00 47.35 77.99 27.13
∞ 2.05 2.05 3.77 3.81 3.76 3.81 6.78 6.90 8.02 8.24 9.49 9.96 13.85 13.72 16.92 13.96 31.85 31.57 30.83 31.47 33.46 31.95 48.00 47.35 77.99 27.13

16 66103

(p=2) (p=4) (p=8) (p=16) (p=32) (p=64) (p=80) (p=112) (p=256) (p=304) (p=352) (p=704) (p=800)
20 1.97 1.97 4.13 2.31 4.26 2.27 7.59 2.57 9.08 2.29 9.98 4.39 13.76 4.39 13.07 14.78 15.65 16.80 15.90 16.08 16.85 15.69 16.68 15.88 16.33 16.18
100 1.97 1.97 4.13 2.31 4.26 2.27 7.59 2.57 9.08 2.29 10.00 4.39 17.77 4.39 20.62 19.45 38.14 35.54 37.01 36.56 35.77 33.18 57.18 55.36 58.76 62.07
500 1.97 1.97 4.13 2.31 4.26 2.27 7.59 2.57 9.08 2.29 10.00 4.39 17.77 4.39 20.62 19.45 39.63 40.80 41.73 36.62 40.28 40.48 77.77 72.01 109.08 69.51
∞ 1.97 1.97 4.13 2.31 4.26 2.27 7.59 2.57 9.08 2.29 10.00 4.39 17.77 4.39 20.62 19.45 39.63 40.80 41.73 36.62 40.28 40.48 77.77 72.01 109.08 69.51

Better by 10% 0x 0x 4x 4x 16x 8x 17x 4x 15x 12x 14x 13x 10x 20x 9x 19x 5x 17x 7x 17x 5x 14x 3x 9x 7x 10x
Better by 50% 0x 0x 4x 0x 12x 0x 12x 0x 15x 5x 11x 4x 8x 8x 6x 12x 3x 8x 3x 10x 1x 8x 1x 5x 5x 6x

Table B.14: Parallel speedup with 20, 100, 500, and “unlimited” CPUs, on haplotyping instances, part 2 of 2.
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Cutoff depth d
instance i Tseq #cpu 1 2 3 4 5 6

fix var fix var fix var fix var fix var fix var

pdb1a6m
n=124
k=81
w=15
h=34

3 198326

(p=9) (p=81) (p=511)
20 1.82 1.82 2.05 6.67 3.85 22.44

100 1.82 1.82 2.05 6.67 3.85 22.44

500 1.82 1.82 2.05 6.67 3.85 22.44

∞ 1.82 1.82 2.05 6.67 3.85 22.44

pdb1duw
n=241
k=81
w=9
h=32

3 627106

(p=9) (p=54) (p=784) (p=15081)
20 2.39 2.39 3.37 4.34 4.22 18.29 9.46 15.34

100 2.39 2.39 3.37 4.34 4.22 47.17 12.07 76.57

500 2.39 2.39 3.37 4.34 4.22 47.17 12.07 156.85

∞ 2.39 2.39 3.37 4.34 4.22 47.17 12.07 156.85

pdb1e5k
n=154
k=81
w=12
h=43

3 112654

(p=66) (p=1046) (p=11321)
20 5.54 5.54 16.38 14.76 10.57 10.52
100 5.54 5.54 18.79 55.66 49.00 52.32
500 5.54 5.54 18.79 55.66 55.39 143.87

∞ 5.54 5.54 18.79 55.66 55.39 143.87

pdb1f9i
n=103
k=81
w=10
h=24

3 68804

(p=81) (p=6534)
20 2.46 2.46 2.93 3.24

100 2.46 2.46 7.86 16.19

500 2.46 2.46 7.86 26.60

∞ 2.46 2.46 7.86 26.60

pdb1ft5
n=172
k=81
w=14
h=33

3 81118

(p=27) (p=118) (p=5281)
20 2.04 2.04 2.71 9.83 9.77 9.58
100 2.04 2.04 2.71 9.83 18.11 47.30

500 2.04 2.04 2.71 9.83 18.11 101.14

∞ 2.04 2.04 2.71 9.83 18.11 101.14

pdb1hd2
n=126
k=81
w=12
h=27

3 101550

(p=79) (p=3777)
20 1.72 1.72 6.58 15.70

100 1.72 1.72 6.58 44.64

500 1.72 1.72 6.58 44.64

∞ 1.72 1.72 6.58 44.64

pdb1huw
n=152
k=81
w=15
h=43

3 545249

(p=9) (p=42) (p=293) (p=654) (p=1588) (p=2597)
20 1.14 1.14 1.14 1.35 1.17 13.09 1.18 15.02 1.22 17.42 1.49 17.23

100 1.14 1.14 1.14 1.35 1.17 13.09 1.18 16.01 1.22 29.50 1.49 42.76

500 1.14 1.14 1.14 1.35 1.17 13.09 1.18 16.01 1.22 29.50 1.49 42.76

∞ 1.14 1.14 1.14 1.35 1.17 13.09 1.18 16.01 1.22 29.50 1.49 42.76

pdb1kao
n=148
k=81
w=15
h=41

3 716795

(p=27) (p=215) (p=752) (p=3241)
20 2.83 2.83 3.36 11.07 4.92 22.28 11.23 39.45

100 2.83 2.83 3.36 12.86 4.92 27.65 11.23 117.01

500 2.83 2.83 3.36 12.86 4.92 27.65 11.23 117.01

∞ 2.83 2.83 3.36 12.86 4.92 27.65 11.23 117.01

pdb1nfp
n=204
k=81
w=18
h=38

3 354720

(p=6) (p=48) (p=336) (p=3812)
20 1.08 1.08 1.21 4.84 1.83 9.20 3.51 8.34

100 1.08 1.08 1.21 4.84 1.83 13.05 3.51 40.53

500 1.08 1.08 1.21 4.84 1.83 13.05 3.51 52.41

∞ 1.08 1.08 1.21 4.84 1.83 13.05 3.51 52.41

pdb1rss
n=115
k=81
w=12
h=35

3 378579

(p=8) (p=109) (p=908) (p=1336)
20 0.97 0.97 3.41 6.62 10.02 11.94 11.19 15.49

100 0.97 0.97 3.41 6.62 10.05 14.73 11.23 15.60

500 0.97 0.97 3.41 6.62 10.06 14.73 11.24 15.60

∞ 0.97 0.97 3.41 6.62 10.06 14.73 11.24 15.60

pdb1vhh
n=133
k=81
w=14
h=35

3 944633

(p=27) (p=1842) (p=67760)
20 4.04 4.04 17.97 4.08 10.20 13.57

100 4.04 4.04 41.13 4.08 45.06 67.62

500 4.04 4.04 43.43 4.08 59.99 240.92

∞ 4.04 4.04 43.43 4.08 63.49 301.51

Better by 10% 0x 0x 5x 39x 0x 33x 0x 20x 0x 4x 0x 4x
Better by 50% 0x 0x 4x 30x 0x 28x 0x 16x 0x 4x 0x 4x

Table B.15: Parallel speedup with 20, 100, 500, and “unlimited” CPUs, on side-chain prediction instances.
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Cutoff depth d
instance i Tseq #cpu 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

fix var fix var fix var fix var fix var fix var fix var fix var fix var fix var fix var fix var fix var fix var fix var

75-25-1
n=624
k=2
w=38
h=111

12 77941

(p=2) (p=4) (p=8) (p=16) (p=16) (p=32) (p=64) (p=128) (p=192) (p=192) (p=192) (p=384) (p=768) (p=1152) (p=2112)
20 1.62 1.62 2.92 2.94 3.72 3.83 6.88 6.74 6.69 6.74 9.58 9.78 13.15 13.49 13.95 11.76 14.37 12.07 14.97 12.07 14.05 12.07 15.08 13.04 15.75 14.67 15.08 16.19 15.70 15.68
100 1.62 1.62 2.92 2.94 3.72 3.83 6.88 6.74 6.69 6.74 9.58 9.78 15.76 19.78 20.33 19.91 20.34 20.09 19.59 20.09 20.14 20.09 24.13 19.59 39.60 27.74 45.45 40.87 47.44 58.03

500 1.62 1.62 2.92 2.94 3.72 3.83 6.88 6.74 6.69 6.74 9.58 9.78 15.76 19.78 20.33 20.27 20.34 21.42 19.59 21.42 20.14 21.42 24.77 20.17 43.52 27.74 48.20 42.99 47.44 58.03

∞ 1.62 1.62 2.92 2.94 3.72 3.83 6.88 6.74 6.69 6.74 9.58 9.78 15.76 19.78 20.33 20.27 20.34 21.42 19.59 21.42 20.14 21.42 24.77 20.17 43.52 27.74 48.20 42.99 47.44 58.03

14 15402

(p=2) (p=4) (p=8) (p=8) (p=8) (p=16) (p=32) (p=64) (p=96) (p=96) (p=192) (p=288) (p=576) (p=864) (p=1584)
20 1.53 1.53 2.65 2.60 4.37 4.12 4.34 4.12 4.24 4.12 6.48 6.32 9.85 10.75 11.52 9.53 10.41 9.22 12.94 9.22 11.88 8.92 13.73 11.30 16.01 13.28 12.55 16.16 15.19 15.42
100 1.53 1.53 2.65 2.60 4.37 4.12 4.34 4.12 4.24 4.12 6.48 6.32 10.90 12.55 13.01 12.59 12.72 12.29 12.98 12.29 15.60 12.19 18.18 12.44 23.66 17.89 23.51 28.74 23.62 47.39

500 1.53 1.53 2.65 2.60 4.37 4.12 4.34 4.12 4.24 4.12 6.48 6.32 10.90 12.55 13.01 12.59 12.72 12.29 12.98 12.29 15.60 12.55 18.18 12.44 23.66 18.36 23.51 28.74 23.73 68.15

∞ 1.53 1.53 2.65 2.60 4.37 4.12 4.34 4.12 4.24 4.12 6.48 6.32 10.90 12.55 13.01 12.59 12.72 12.29 12.98 12.29 15.60 12.55 18.18 12.44 23.66 18.36 23.51 28.74 23.73 70.33

75-25-3
n=624
k=2
w=37
h=115

12 104037

(p=2) (p=4) (p=4) (p=6) (p=6) (p=12) (p=24) (p=48) (p=48) (p=72) (p=144) (p=288) (p=576) (p=960) (p=1536)
20 1.75 1.75 2.00 2.01 1.96 2.01 2.55 2.57 2.57 2.57 2.45 2.45 3.27 3.29 4.64 4.81 4.77 4.81 7.03 5.70 7.93 7.13 6.97 6.42 6.61 5.88 5.44 5.59 5.27 5.42
100 1.75 1.75 2.00 2.01 1.96 2.01 2.55 2.57 2.57 2.57 2.45 2.45 3.27 3.29 4.64 4.81 4.77 4.81 7.03 7.16 10.76 9.93 14.58 9.04 27.09 13.08 17.41 17.18 15.00 17.44

500 1.75 1.75 2.00 2.01 1.96 2.01 2.55 2.57 2.57 2.57 2.45 2.45 3.27 3.29 4.64 4.81 4.77 4.81 7.03 7.16 10.76 9.93 14.58 9.38 27.09 13.08 22.11 21.77 21.72 21.71
∞ 1.75 1.75 2.00 2.01 1.96 2.01 2.55 2.57 2.57 2.57 2.45 2.45 3.27 3.29 4.64 4.81 4.77 4.81 7.03 7.16 10.76 9.93 14.58 9.38 27.09 13.08 22.11 22.38 22.62 22.48

15 33656

(p=2) (p=4) (p=4) (p=6) (p=6) (p=12) (p=24) (p=48) (p=48) (p=72) (p=144) (p=288) (p=576) (p=960) (p=1536)
20 1.33 1.33 2.06 2.08 2.05 2.08 2.54 2.56 2.58 2.56 4.03 3.96 6.18 6.13 6.85 7.64 7.00 7.64 7.87 7.46 7.53 7.22 7.58 6.93 7.19 6.76 6.86 6.79 6.40 6.58
100 1.33 1.33 2.06 2.08 2.05 2.08 2.54 2.56 2.58 2.56 4.03 3.96 6.18 6.13 9.45 10.85 9.60 10.85 14.55 12.39 23.24 19.57 32.15 25.27 30.16 27.59 31.25 31.37 21.31 29.68

500 1.33 1.33 2.06 2.08 2.05 2.08 2.54 2.56 2.58 2.56 4.03 3.96 6.18 6.13 9.45 10.85 9.60 10.85 14.55 12.39 23.24 19.57 33.62 25.27 55.91 59.36 69.97 66.78 39.60 56.00

∞ 1.33 1.33 2.06 2.08 2.05 2.08 2.54 2.56 2.58 2.56 4.03 3.96 6.18 6.13 9.45 10.85 9.60 10.85 14.55 12.39 23.24 19.57 33.62 25.27 55.91 59.36 69.97 70.85 46.87 56.00

75-25-7
n=624
k=2
w=37
h=120

16 297377

(p=2) (p=3) (p=6) (p=12) (p=24) (p=36) (p=72) (p=144) (p=216) (p=288) (p=504) (p=1008) (p=2016) (p=2688) (p=3360)
20 1.19 1.19 1.80 1.81 2.67 2.65 2.64 2.65 4.45 6.25 6.34 6.62 9.71 10.29 10.71 11.09 11.35 10.61 9.94 10.34 10.39 10.15 9.94 9.94 9.90 9.76 10.00 9.57 9.72 9.49
100 1.19 1.19 1.80 1.81 2.67 2.65 2.64 2.65 4.45 6.25 6.34 6.62 10.14 10.29 18.43 26.03 27.26 25.92 28.44 30.65 38.90 42.83 36.64 40.72 40.99 44.39 41.68 43.27 44.21 44.24
500 1.19 1.19 1.80 1.81 2.67 2.65 2.64 2.65 4.45 6.25 6.34 6.62 10.14 10.29 18.43 26.03 27.26 25.92 28.44 46.65 45.28 46.82 65.37 112.09 96.65 142.97 104.05 137.48 144.22 164.75

∞ 1.19 1.19 1.80 1.81 2.67 2.65 2.64 2.65 4.45 6.25 6.34 6.62 10.14 10.29 18.43 26.03 27.26 25.92 28.44 46.65 45.28 46.82 65.37 115.67 96.65 202.99 113.81 248.64 148.54 239.43

18 21694

(p=2) (p=3) (p=6) (p=12) (p=24) (p=36) (p=72) (p=144) (p=216) (p=288) (p=504) (p=1008) (p=2014) (p=2661) (p=3325)
20 1.01 1.01 1.30 1.33 2.25 2.06 2.25 2.03 3.35 2.06 4.31 1.98 7.51 1.98 8.07 1.97 8.29 3.35 8.16 3.12 7.98 3.33 7.26 7.32 6.77 6.69 6.59 6.38 6.28 6.21
100 1.01 1.01 1.30 1.33 2.25 2.06 2.25 2.03 3.35 2.06 4.31 2.04 7.51 2.05 11.82 2.04 17.55 3.40 17.77 3.49 28.85 3.52 27.99 13.09 20.68 19.20 27.60 19.16 23.89 25.89
500 1.01 1.01 1.30 1.33 2.25 2.06 2.25 2.03 3.35 2.06 4.31 2.04 7.51 2.05 11.82 2.05 17.55 3.40 17.77 3.49 28.85 3.52 36.16 13.60 30.43 26.98 36.10 30.60 30.90 70.21

∞ 1.01 1.01 1.30 1.33 2.25 2.06 2.25 2.03 3.35 2.06 4.31 2.04 7.51 2.05 11.82 2.05 17.55 3.40 17.77 3.49 28.85 3.52 36.16 13.60 31.35 26.98 36.10 34.82 30.90 98.61

75-26-10
n=675
k=2
w=39
h=124

16 46985

(p=2) (p=4) (p=8) (p=8) (p=16) (p=16) (p=32) (p=64) (p=128) (p=192) (p=384) (p=384) (p=768) (p=1280) (p=1280)
20 1.83 1.83 2.38 2.21 3.83 3.54 3.48 3.54 5.38 5.35 5.28 5.35 8.14 8.19 8.86 7.72 8.96 8.21 8.49 8.31 9.29 8.00 9.36 8.00 8.87 8.95 9.25 9.08 9.28 9.08
100 1.83 1.83 2.38 2.21 3.83 3.54 3.48 3.54 5.38 5.35 5.28 5.35 8.57 8.19 13.31 14.74 14.58 15.74 15.86 16.76 19.06 16.86 19.30 16.86 28.93 29.33 33.25 35.49 34.75 35.49
500 1.83 1.83 2.38 2.21 3.83 3.54 3.48 3.54 5.38 5.35 5.28 5.35 8.57 8.19 13.31 14.74 14.58 15.74 15.86 18.34 19.06 17.01 19.30 17.01 35.76 30.63 45.75 51.46 45.66 51.46

∞ 1.83 1.83 2.38 2.21 3.83 3.54 3.48 3.54 5.38 5.35 5.28 5.35 8.57 8.19 13.31 14.74 14.58 15.74 15.86 18.34 19.06 17.01 19.30 17.01 35.76 30.63 45.75 51.46 45.66 51.46

18 26855

(p=2) (p=4) (p=8) (p=8) (p=16) (p=24) (p=48) (p=80) (p=160) (p=240) (p=480) (p=480) (p=960) (p=1216) (p=1216)
20 1.50 1.50 2.20 2.38 3.62 3.58 3.61 3.58 5.74 5.07 6.90 5.61 11.27 11.51 10.61 10.47 11.46 10.22 11.19 12.44 10.99 11.42 11.43 11.42 9.63 10.52 10.70 9.21 10.65 9.21
100 1.50 1.50 2.20 2.38 3.62 3.58 3.61 3.58 5.74 5.07 6.90 5.61 13.08 12.50 21.11 22.62 25.85 26.30 29.51 29.84 32.05 32.47 38.25 32.47 28.54 27.15 26.35 23.60 43.38 23.60
500 1.50 1.50 2.20 2.38 3.62 3.58 3.61 3.58 5.74 5.07 6.90 5.61 13.08 12.50 21.11 22.62 25.85 29.81 30.04 29.84 38.09 38.25 38.25 38.25 37.82 35.90 36.05 34.43 55.14 34.43
∞ 1.50 1.50 2.20 2.38 3.62 3.58 3.61 3.58 5.74 5.07 6.90 5.61 13.08 12.50 21.11 22.62 25.85 29.81 30.04 29.84 38.09 38.25 38.25 38.25 38.58 35.90 37.61 36.74 55.14 36.74

75-26-2
n=675
k=2
w=39
h=120

16 25274

(p=2) (p=4) (p=8) (p=12) (p=24) (p=48) (p=96) (p=144) (p=288) (p=384) (p=640) (p=1280) (p=1280) (p=2560) (p=3840)
20 1.58 1.58 2.25 2.01 2.83 2.29 3.74 2.34 5.73 3.80 7.27 6.16 8.17 6.64 7.93 8.36 8.78 7.87 7.91 7.65 8.17 7.48 7.96 7.82 7.82 7.82 7.49 7.47 7.10 7.05
100 1.58 1.58 2.25 2.01 2.83 2.29 3.74 2.34 5.73 3.80 9.88 6.16 17.59 10.91 17.55 11.22 23.45 21.92 29.84 24.80 36.79 26.03 37.78 27.00 27.83 27.00 32.61 33.56 33.12 32.36
500 1.58 1.58 2.25 2.01 2.83 2.29 3.74 2.34 5.73 3.80 9.88 6.16 17.59 10.91 17.55 11.22 25.35 25.35 44.65 25.20 64.47 40.05 105.31 49.46 51.58 49.46 48.05 77.53 117.01 95.02
∞ 1.58 1.58 2.25 2.01 2.83 2.29 3.74 2.34 5.73 3.80 9.88 6.16 17.59 10.91 17.55 11.22 25.35 25.35 44.65 25.20 64.47 40.05 123.29 56.80 58.24 56.80 51.79 77.53 163.06 127.01

20 8053

(p=2) (p=4) (p=8) (p=12) (p=24) (p=48) (p=96) (p=144) (p=288) (p=384) (p=640) (p=1280) (p=1280) (p=2560) (p=3840)
20 1.61 1.61 1.38 1.39 1.79 1.81 3.50 3.54 5.30 3.82 5.58 5.99 6.81 5.99 6.20 6.43 6.40 6.02 5.90 5.85 5.36 5.29 4.49 4.47 4.47 4.47 3.37 3.38 2.71 2.71
100 1.61 1.61 1.38 1.39 1.79 1.81 3.50 3.54 5.30 3.82 7.86 5.99 14.18 8.24 14.67 8.25 21.08 14.51 22.94 16.64 23.76 19.59 21.14 19.59 20.86 19.59 15.64 15.76 12.70 12.60
500 1.61 1.61 1.38 1.39 1.79 1.81 3.50 3.54 5.30 3.82 7.86 5.99 14.18 8.24 14.67 8.25 24.70 15.58 35.63 16.64 50.65 26.49 70.64 51.29 65.47 51.29 58.78 51.29 46.02 45.24
∞ 1.61 1.61 1.38 1.39 1.79 1.81 3.50 3.54 5.30 3.82 7.86 5.99 14.18 8.24 14.67 8.25 24.70 15.58 35.63 16.64 50.65 26.49 84.77 57.11 78.95 57.11 105.96 84.77 91.51 75.97

75-26-6
n=675
k=2
w=39
h=133

10 199460

(p=2) (p=4) (p=8) (p=16) (p=32) (p=64) (p=128) (p=128) (p=128) (p=256) (p=384) (p=576) (p=1152) (p=2304) (p=4608)
20 0.71 0.71 1.21 1.21 2.35 2.14 2.66 2.67 3.62 4.15 3.78 4.59 4.56 4.87 4.71 4.87 4.74 4.87 5.07 5.41 5.69 5.23 5.59 5.47 5.68 5.51 5.56 5.24 5.55 5.52
100 0.71 0.71 1.21 1.21 2.35 2.14 2.66 2.67 4.18 4.15 4.86 4.79 7.99 7.92 8.07 7.92 8.03 7.92 12.37 13.14 15.09 16.02 14.51 15.09 17.93 19.37 23.52 20.11 26.42 23.12
500 0.71 0.71 1.21 1.21 2.35 2.14 2.66 2.67 4.18 4.15 4.86 4.79 7.99 7.92 8.07 7.92 8.03 7.92 12.94 13.14 16.70 16.65 16.46 16.37 26.95 27.39 33.86 33.41 56.17 53.08
∞ 0.71 0.71 1.21 1.21 2.35 2.14 2.66 2.67 4.18 4.15 4.86 4.79 7.99 7.92 8.07 7.92 8.03 7.92 12.94 13.14 16.70 16.65 16.46 16.37 27.33 27.39 34.72 35.58 61.56 55.21

12 64758

(p=2) (p=4) (p=8) (p=16) (p=32) (p=64) (p=128) (p=128) (p=128) (p=256) (p=384) (p=576) (p=1152) (p=2304) (p=4608)
20 0.74 0.74 0.98 0.98 1.78 1.80 2.13 2.13 3.36 2.07 3.31 2.20 3.86 4.26 3.67 4.26 3.94 4.26 4.12 3.69 4.76 3.97 4.51 3.77 4.74 4.39 4.57 4.23 4.52 4.49
100 0.74 0.74 0.98 0.98 1.78 1.80 2.13 2.13 3.36 2.21 3.78 2.20 6.09 6.15 5.88 6.15 6.14 6.15 8.19 6.11 9.62 6.18 9.85 8.15 11.85 9.83 11.82 9.52 19.46 13.60
500 0.74 0.74 0.98 0.98 1.78 1.80 2.13 2.13 3.36 2.21 3.78 2.20 6.09 6.15 5.88 6.15 6.14 6.15 8.40 6.11 10.28 6.18 10.63 8.42 15.81 10.71 13.23 10.62 33.64 15.85
∞ 0.74 0.74 0.98 0.98 1.78 1.80 2.13 2.13 3.36 2.21 3.78 2.20 6.09 6.15 5.88 6.15 6.14 6.15 8.40 6.11 10.28 6.18 10.63 8.42 15.81 10.71 13.26 10.67 33.64 15.85

75-26-9
n=675
k=2
w=39
h=124

16 59609

(p=2) (p=4) (p=8) (p=16) (p=24) (p=48) (p=96) (p=120) (p=240) (p=480) (p=960) (p=1920) (p=3840) (p=3840) (p=7680)
20 1.38 1.38 2.35 2.33 2.44 2.50 2.49 4.27 4.37 4.30 6.67 4.37 6.57 7.33 7.38 7.55 8.47 8.50 7.66 7.71 7.47 7.01 6.96 6.69 6.62 6.60 6.68 6.60 6.32 6.19
100 1.38 1.38 2.35 2.33 2.44 2.50 2.49 4.27 4.37 4.30 6.67 4.37 7.61 7.66 10.01 8.97 14.21 10.27 14.87 15.54 16.95 21.63 22.32 27.07 28.21 26.13 27.49 26.13 29.92 28.47
500 1.38 1.38 2.35 2.33 2.44 2.50 2.49 4.27 4.37 4.30 6.67 4.37 7.61 7.66 10.01 8.97 14.21 10.27 15.72 15.54 18.45 25.57 24.98 44.45 31.00 57.10 42.92 57.10 61.33 67.28
∞ 1.38 1.38 2.35 2.33 2.44 2.50 2.49 4.27 4.37 4.30 6.67 4.37 7.61 7.66 10.01 8.97 14.21 10.27 15.72 15.54 18.45 25.57 25.05 44.45 31.00 59.61 44.68 59.61 68.67 67.81

18 66533

(p=2) (p=4) (p=8) (p=16) (p=24) (p=48) (p=96) (p=120) (p=240) (p=480) (p=960) (p=1920) (p=3840) (p=3840) (p=7680)
20 1.30 1.30 2.11 2.15 2.15 2.19 2.09 3.46 3.43 5.64 5.62 5.57 5.72 5.67 7.01 7.21 7.62 8.13 7.35 7.71 7.57 7.56 7.64 7.23 7.07 6.97 7.01 6.97 6.54 6.47
100 1.30 1.30 2.11 2.15 2.15 2.19 2.09 3.46 3.43 5.64 5.62 5.57 6.13 5.67 9.09 8.23 13.54 8.13 13.45 30.04 16.32 28.01 22.45 31.86 28.07 33.15 27.98 33.15 30.44 31.09
500 1.30 1.30 2.11 2.15 2.15 2.19 2.09 3.46 3.43 5.64 5.62 5.57 6.13 5.67 9.09 8.23 13.54 8.13 14.38 46.11 17.57 46.72 25.16 72.71 40.74 78.00 45.63 78.00 65.61 111.63

∞ 1.30 1.30 2.11 2.15 2.15 2.19 2.09 3.46 3.43 5.64 5.62 5.57 6.13 5.67 9.09 8.23 13.54 8.13 14.38 46.11 17.57 46.72 25.21 75.69 42.84 85.30 46.08 85.30 71.16 218.86

20 5708

(p=2) (p=4) (p=8) (p=16) (p=24) (p=48) (p=96) (p=120) (p=240) (p=320) (p=640) (p=1280) (p=2560) (p=2560) (p=5120)
20 1.64 1.64 2.64 2.64 2.82 2.82 1.99 2.44 2.41 3.57 3.54 3.55 3.88 4.76 4.84 7.04 6.45 6.28 5.56 5.96 4.90 4.97 3.92 3.77 2.66 2.64 2.67 2.64 1.67 1.66
100 1.64 1.64 2.64 2.64 2.82 2.82 1.99 2.44 2.41 3.57 3.54 3.55 4.34 4.76 5.83 10.91 9.71 17.19 15.26 17.24 16.03 20.53 16.45 16.99 12.30 12.41 12.49 12.41 7.89 7.81
500 1.64 1.64 2.64 2.64 2.82 2.82 1.99 2.44 2.41 3.57 3.54 3.55 4.34 4.76 5.83 10.91 9.71 17.19 16.26 17.24 25.37 34.39 31.54 55.42 35.90 44.94 37.06 44.94 31.02 29.88
∞ 1.64 1.64 2.64 2.64 2.82 2.82 1.99 2.44 2.41 3.57 3.54 3.55 4.34 4.76 5.83 10.91 9.71 17.19 16.26 17.24 25.37 34.39 33.58 67.95 50.07 78.19 47.17 78.19 54.88 74.13

Better by 10% 0x 0x 4x 0x 4x 0x 8x 12x 20x 13x 23x 1x 12x 9x 19x 15x 17x 8x 20x 9x 27x 10x 31x 11x 20x 9x 13x 17x 12x 19x
Better by 50% 0x 0x 0x 0x 0x 0x 4x 8x 12x 4x 15x 0x 10x 0x 10x 3x 9x 3x 8x 5x 11x 3x 8x 8x 5x 6x 0x 5x 5x 8x

Table B.16: Parallel speedup with 20, 100, 500, and “unlimited” CPUs, on grid instances.
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Cutoff depth d

instance i Tseq #cpu 1 2 3 4 5 6 7 8 9 10 11 12 13

fix var fix var fix var fix var fix var fix var fix var fix var fix var fix var fix var fix var fix var

ped13
n=1077
k=3
w=32
h=102

8 252654

(p=2) (p=4) (p=8) (p=16) (p=32) (p=64) (p=128) (p=256) (p=512) (p=1024) (p=2048) (p=4096) (p=6144)
20 0.10 0.10 0.19 0.10 0.38 0.10 0.71 0.19 0.73 0.38 0.83 0.55 0.87 0.62 0.90 0.99 0.95 0.97 0.98 1.00 0.96 1.00 0.97 1.00 0.98 0.99
100 0.02 0.02 0.04 0.02 0.08 0.02 0.14 0.04 0.23 0.08 0.45 0.14 0.47 0.14 0.56 0.25 0.66 0.53 0.77 0.70 0.76 0.92 0.78 0.81 0.78 0.89

500 0.00 0.00 0.01 0.00 0.02 0.00 0.03 0.01 0.05 0.02 0.09 0.03 0.11 0.03 0.16 0.05 0.23 0.11 0.32 0.20 0.29 0.30 0.39 0.37 0.39 0.51

9 102385

(p=2) (p=4) (p=8) (p=16) (p=32) (p=64) (p=128) (p=256) (p=512) (p=1024) (p=2048) (p=4096) (p=6144)
20 0.09 0.09 0.16 0.16 0.33 0.21 0.49 0.42 0.55 0.42 0.85 0.52 0.96 0.74 0.99 0.89 0.94 0.98 0.97 0.94 0.93 1.00 0.96 1.00 0.97 1.00
100 0.02 0.02 0.03 0.03 0.07 0.04 0.10 0.08 0.15 0.08 0.28 0.10 0.30 0.15 0.52 0.31 0.55 0.53 0.76 0.51 0.63 0.75 0.77 0.73 0.77 0.81
500 0.00 0.00 0.01 0.01 0.01 0.01 0.02 0.02 0.03 0.02 0.06 0.02 0.06 0.03 0.12 0.06 0.13 0.13 0.25 0.12 0.25 0.25 0.28 0.28 0.29 0.29

ped19
n=793
k=5
w=25
h=98

16 375110

(p=4) (p=12) (p=48) (p=144) (p=288) (p=1440) (p=2880) (p=5752) (p=7672) (p=11254) (p=14968)
20 0.11 0.11 0.18 0.29 0.33 0.55 0.78 0.89 0.93 0.95 0.98 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
100 0.02 0.02 0.04 0.06 0.07 0.12 0.16 0.24 0.28 0.41 0.44 0.78 0.72 0.81 0.95 0.95 0.99 1.00 1.00 1.00 1.00 1.00
500 0.00 0.00 0.01 0.01 0.01 0.02 0.03 0.05 0.06 0.08 0.09 0.22 0.18 0.37 0.27 0.46 0.48 0.57 0.69 0.87 0.76 0.98

ped20
n=437
k=5
w=22
h=60

3 5136

(p=2) (p=6) (p=12) (p=32) (p=96) (p=160) (p=480) (p=800) (p=3200) (p=6400)
20 0.10 0.10 0.20 0.20 0.38 0.40 0.71 0.77 0.82 0.84 0.93 0.85 0.94 0.98 0.99 0.99 1.00 0.99 1.00 1.00
100 0.02 0.02 0.04 0.04 0.08 0.08 0.17 0.17 0.30 0.30 0.67 0.31 0.67 0.55 0.82 0.76 0.98 0.96 0.99 0.98
500 0.00 0.00 0.01 0.01 0.02 0.02 0.03 0.03 0.06 0.06 0.16 0.06 0.25 0.13 0.41 0.15 0.82 0.71 0.93 0.85

4 2185

(p=2) (p=6) (p=12) (p=32) (p=96) (p=160) (p=480) (p=800) (p=3200) (p=6400)
20 0.09 0.09 0.24 0.24 0.47 0.29 0.74 0.67 0.82 0.88 0.97 0.99 0.96 0.99 0.98 0.99 1.00 1.00 1.00 1.00
100 0.02 0.02 0.05 0.05 0.09 0.06 0.24 0.13 0.45 0.44 0.75 0.62 0.81 0.96 0.90 0.97 0.98 0.98 0.99 0.99
500 0.00 0.00 0.01 0.01 0.02 0.01 0.05 0.03 0.09 0.09 0.22 0.12 0.40 0.40 0.58 0.65 0.86 0.92 0.95 0.95

ped31
n=1183
k=5
w=30
h=85

10 1258519

(p=2) (p=4) (p=8) (p=16) (p=32) (p=64) (p=128) (p=256) (p=512) (p=1024) (p=2048) (p=4096) (p=8192)
20 0.10 0.10 0.20 0.20 0.38 0.39 0.72 0.72 0.70 0.82 0.74 0.85 0.84 0.93 0.90 0.96 0.91 0.98 0.97 0.98 1.00 1.00 1.00 1.00 1.00 1.00
100 0.02 0.02 0.04 0.04 0.08 0.08 0.14 0.14 0.25 0.18 0.31 0.31 0.47 0.42 0.51 0.59 0.63 0.85 0.81 0.90 0.92 0.97 0.97 0.97 0.96 0.97
500 0.00 0.00 0.01 0.01 0.02 0.02 0.03 0.03 0.05 0.04 0.06 0.06 0.11 0.08 0.13 0.18 0.25 0.32 0.39 0.56 0.56 0.79 0.72 0.84 0.80 0.87

11 433029

(p=2) (p=4) (p=8) (p=16) (p=32) (p=64) (p=128) (p=256) (p=512) (p=1024) (p=2048) (p=4096) (p=8192)
20 0.10 0.10 0.20 0.20 0.38 0.40 0.74 0.75 0.67 0.78 0.72 0.86 0.98 0.93 0.99 0.98 1.00 0.99 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00
100 0.02 0.02 0.04 0.04 0.08 0.08 0.15 0.15 0.24 0.16 0.29 0.29 0.50 0.50 0.62 0.61 0.94 0.81 0.82 0.96 0.89 0.95 0.94 0.99 0.94 0.99
500 0.00 0.00 0.01 0.01 0.02 0.02 0.03 0.03 0.05 0.03 0.06 0.06 0.10 0.10 0.12 0.12 0.23 0.28 0.40 0.53 0.55 0.73 0.71 0.77 0.66 0.73

12 16238

(p=2) (p=4) (p=8) (p=16) (p=32) (p=64) (p=128) (p=256) (p=512) (p=1024) (p=2048) (p=4096) (p=8192)
20 0.10 0.10 0.20 0.20 0.36 0.39 0.65 0.68 0.64 0.57 0.60 0.77 0.65 0.86 0.83 0.95 0.85 0.99 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00
100 0.02 0.02 0.04 0.04 0.07 0.08 0.13 0.14 0.21 0.11 0.15 0.21 0.23 0.38 0.41 0.45 0.53 0.72 0.74 0.91 0.89 0.97 0.97 1.00 0.99 1.00
500 0.00 0.00 0.01 0.01 0.01 0.02 0.03 0.03 0.04 0.02 0.03 0.04 0.05 0.08 0.09 0.09 0.17 0.17 0.31 0.34 0.52 0.75 0.70 0.96 0.81 0.97

ped33
n=798
k=4
w=28
h=98

4 6010

(p=2) (p=3) (p=6) (p=6) (p=12) (p=24) (p=48) (p=96) (p=192) (p=384) (p=768) (p=1536) (p=1536)
20 0.07 0.07 0.09 0.09 0.17 0.19 0.17 0.19 0.35 0.41 0.47 0.63 0.59 0.79 0.74 0.80 0.80 0.95 0.91 0.98 0.89 0.99 0.99 0.99 0.96 0.99
100 0.01 0.01 0.02 0.02 0.03 0.04 0.03 0.04 0.07 0.08 0.12 0.17 0.17 0.21 0.28 0.43 0.32 0.63 0.49 0.77 0.55 0.84 0.77 0.90 0.71 0.90

500 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.03 0.03 0.04 0.06 0.09 0.07 0.13 0.14 0.19 0.18 0.29 0.29 0.47 0.30 0.47

ped34
n=1160
k=5
w=31
h=102

10 962006

(p=3) (p=5) (p=10) (p=20) (p=30) (p=60) (p=90) (p=180) (p=360) (p=716) (p=952) (p=1896) (p=3752)
20 0.11 0.11 0.14 0.14 0.22 0.22 0.37 0.48 0.49 0.50 0.54 0.67 0.82 0.85 0.79 0.95 0.91 0.97 0.93 0.98 0.93 0.98 0.98 0.99 0.99 1.00
100 0.02 0.02 0.03 0.03 0.04 0.04 0.07 0.10 0.10 0.10 0.14 0.22 0.23 0.23 0.41 0.45 0.55 0.77 0.68 0.90 0.71 0.91 0.89 0.91 0.94 0.99
500 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.03 0.04 0.05 0.05 0.08 0.09 0.15 0.18 0.27 0.34 0.33 0.36 0.58 0.63 0.74 0.79

11 350574

(p=3) (p=5) (p=10) (p=20) (p=30) (p=60) (p=90) (p=180) (p=360) (p=720) (p=956) (p=1912) (p=3808)
20 0.07 0.07 0.11 0.11 0.19 0.14 0.38 0.26 0.47 0.43 0.60 0.61 0.76 0.66 0.81 0.88 0.93 0.98 0.98 0.98 0.96 0.99 0.99 1.00 0.99 1.00
100 0.01 0.01 0.02 0.02 0.04 0.03 0.08 0.05 0.09 0.10 0.14 0.15 0.25 0.25 0.43 0.44 0.58 0.60 0.76 0.80 0.80 0.81 0.91 0.95 0.94 0.98
500 0.00 0.00 0.00 0.00 0.01 0.01 0.02 0.01 0.02 0.02 0.03 0.03 0.05 0.05 0.09 0.09 0.17 0.17 0.28 0.32 0.33 0.36 0.58 0.54 0.68 0.80

12 96122

(p=3) (p=5) (p=10) (p=20) (p=30) (p=60) (p=90) (p=180) (p=360) (p=716) (p=948) (p=1896) (p=3728)
20 0.10 0.10 0.18 0.19 0.25 0.27 0.36 0.52 0.54 0.57 0.63 0.69 0.69 0.83 0.78 0.84 0.94 0.96 0.95 0.98 0.95 0.99 0.99 0.99 0.99 1.00
100 0.02 0.02 0.04 0.04 0.05 0.05 0.07 0.10 0.11 0.11 0.15 0.24 0.24 0.24 0.40 0.41 0.56 0.66 0.70 0.87 0.74 0.90 0.90 0.90 0.92 0.95
500 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.03 0.05 0.05 0.05 0.08 0.08 0.14 0.17 0.23 0.40 0.30 0.48 0.52 0.55 0.63 0.51

ped39
n=1272
k=5
w=21
h=76

4 6632

(p=2) (p=4) (p=8) (p=16) (p=64) (p=128) (p=384) (p=768) (p=1152) (p=2304) (p=4608)
20 0.10 0.10 0.12 0.12 0.13 0.14 0.24 0.23 0.52 0.62 0.54 0.54 0.51 0.59 0.66 0.85 0.79 0.95 0.98 0.99 1.00 1.00
100 0.02 0.02 0.02 0.02 0.03 0.03 0.05 0.05 0.11 0.12 0.13 0.14 0.14 0.17 0.18 0.30 0.30 0.46 0.55 0.76 0.79 0.92

500 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.02 0.02 0.03 0.03 0.03 0.04 0.04 0.06 0.07 0.11 0.16 0.24 0.29 0.38

5 2202

(p=2) (p=4) (p=8) (p=16) (p=64) (p=128) (p=384) (p=768) (p=1152) (p=2304) (p=4608)
20 0.10 0.10 0.14 0.14 0.18 0.18 0.34 0.39 0.37 0.42 0.39 0.56 0.49 0.76 0.59 0.85 0.74 0.95 0.99 0.99 0.99 1.00
100 0.02 0.02 0.03 0.03 0.04 0.04 0.07 0.08 0.09 0.09 0.10 0.11 0.13 0.25 0.18 0.38 0.31 0.59 0.61 0.83 0.81 0.98

500 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.02 0.02 0.03 0.05 0.04 0.10 0.08 0.12 0.20 0.33 0.37 0.69

Better by 10% 0x 0x 3x 3x 12x 3x 12x 12x 13x 9x 11x 16x 11x 17x 6x 14x 4x 19x 3x 17x 0x 17x 0x 4x 1x 6x
Better by 50% 0x 0x 3x 3x 9x 3x 5x 2x 9x 0x 9x 6x 5x 6x 5x 7x 1x 6x 3x 4x 0x 4x 0x 1x 0x 1x

Table B.17: Average resource utilization with 20, 100, 500, and “unlimited” CPUs, on linkage instances, part 1 of 2.
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Cutoff depth d
instance i Tseq #cpu 1 2 3 4 5 6 7 8 9 10 11 12 13

fix var fix var fix var fix var fix var fix var fix var fix var fix var fix var fix var fix var fix var

ped41
n=1062
k=5
w=33
h=100

9 25607

(p=3) (p=8) (p=16) (p=32) (p=64) (p=128) (p=176) (p=352) (p=704) (p=1408) (p=2176) (p=4352) (p=8556)
20 0.07 0.07 0.10 0.10 0.19 0.36 0.37 0.61 0.61 0.84 0.85 0.87 0.97 0.94 0.86 0.99 0.99 0.99 0.99 1.00 1.00 0.98 1.00 1.00 1.00 NA
100 0.01 0.01 0.02 0.02 0.04 0.07 0.08 0.14 0.14 0.29 0.28 0.48 0.46 0.49 0.51 0.73 0.89 0.90 0.90 0.96 0.90 0.61 0.76 0.93 0.99 NA
500 0.00 0.00 0.00 0.00 0.01 0.01 0.02 0.03 0.03 0.06 0.06 0.10 0.10 0.13 0.13 0.25 0.26 0.35 0.40 0.49 0.32 0.18 0.28 0.62 0.70 NA

10 46819

(p=3) (p=8) (p=16) (p=32) (p=64) (p=128) (p=176) (p=352) (p=704) (p=1408) (p=2176) (p=4352) (p=8576)
20 0.06 0.06 0.07 0.14 0.14 0.27 0.27 0.54 0.51 0.74 0.72 0.82 0.83 0.83 0.83 0.89 0.98 0.98 0.98 0.98 0.98 1.00 1.00 1.00 1.00 NA
100 0.01 0.01 0.01 0.03 0.03 0.05 0.05 0.11 0.11 0.18 0.19 0.32 0.33 0.37 0.37 0.49 0.59 0.60 0.67 0.62 0.69 0.84 0.99 0.84 0.83 NA
500 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.02 0.02 0.04 0.04 0.06 0.07 0.08 0.09 0.10 0.14 0.15 0.17 0.13 0.22 0.23 0.30 0.30 0.28 NA

11 27583

(p=3) (p=8) (p=16) (p=32) (p=64) (p=128) (p=176) (p=352) (p=704) (p=1408) (p=2176) (p=4352) (p=8460)
20 0.06 0.06 0.07 0.14 0.15 0.25 0.25 0.40 0.48 0.77 0.74 0.87 0.81 0.93 0.82 0.95 0.90 0.99 0.94 0.98 0.93 0.99 1.00 1.00 1.00 NA
100 0.01 0.01 0.01 0.03 0.03 0.05 0.05 0.08 0.10 0.20 0.20 0.30 0.28 0.40 0.34 0.61 0.42 0.78 0.69 0.49 0.46 0.63 0.87 0.98 0.94 NA
500 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.02 0.02 0.04 0.04 0.06 0.06 0.08 0.08 0.14 0.10 0.25 0.26 0.13 0.13 0.13 0.40 0.63 0.51 NA

ped44
n=811
k=4
w=25
h=65

5 207136

(p=2) (p=4) (p=8) (p=16) (p=64) (p=112) (p=336) (p=560) (p=1120) (p=2240) (p=4480) (p=8960) (p=17920)
20 0.10 0.10 0.17 0.17 0.32 0.17 0.55 0.35 0.69 0.63 0.94 0.89 0.96 0.99 0.97 0.99 0.99 0.99 0.99 0.99 1.00 0.99 1.00 0.99 1.00 1.00
100 0.02 0.02 0.03 0.03 0.06 0.03 0.11 0.07 0.20 0.13 0.70 0.22 0.77 0.82 0.83 0.89 0.94 0.92 0.96 0.89 0.98 0.84 0.99 0.93 1.00 0.97
500 0.00 0.00 0.01 0.01 0.01 0.01 0.02 0.01 0.04 0.03 0.14 0.04 0.26 0.22 0.43 0.34 0.72 0.57 0.83 0.58 0.86 0.43 0.95 0.66 0.98 0.78

6 95830

(p=2) (p=4) (p=8) (p=16) (p=64) (p=112) (p=336) (p=560) (p=1120) (p=2240) (p=4480) (p=8960) (p=17920)
20 0.09 0.09 0.18 0.18 0.34 0.34 0.57 0.58 0.63 0.93 0.90 0.92 0.95 0.98 0.97 0.99 0.99 0.99 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00
100 0.02 0.02 0.04 0.04 0.07 0.07 0.11 0.12 0.20 0.20 0.52 0.35 0.75 0.88 0.86 0.92 0.92 0.94 0.95 0.86 0.98 0.96 0.99 1.00 1.00 0.99
500 0.00 0.00 0.01 0.01 0.01 0.01 0.02 0.02 0.04 0.04 0.15 0.07 0.27 0.21 0.54 0.36 0.67 0.61 0.78 0.43 0.88 0.56 0.95 0.64 0.97 0.97

ped50
n=514
k=6
w=17
h=47

3 4135

(p=2) (p=4) (p=24) (p=144) (p=720) (p=2160) (p=5760) (p=14401)
20 0.09 0.09 0.14 0.14 0.44 0.41 0.53 0.66 0.80 0.84 0.95 0.99 1.00 1.00 1.00 1.00
100 0.02 0.02 0.03 0.03 0.09 0.08 0.13 0.13 0.23 0.44 0.45 0.88 0.87 0.97 1.00 0.99
500 0.00 0.00 0.01 0.01 0.02 0.02 0.03 0.03 0.05 0.13 0.11 0.21 0.29 0.78 0.79 0.91

4 1780

(p=2) (p=4) (p=24) (p=144) (p=720) (p=2160) (p=5760) (p=14400)
20 0.10 0.10 0.18 0.19 0.67 0.67 0.85 0.94 0.99 0.99 1.00 0.99 1.00 1.00 1.00 1.00
100 0.02 0.02 0.04 0.04 0.13 0.13 0.31 0.31 0.66 0.88 0.94 0.96 0.99 0.99 1.00 1.00
500 0.00 0.00 0.01 0.01 0.03 0.03 0.06 0.06 0.19 0.27 0.49 0.77 0.91 0.94 0.97 0.97

ped51
n=1152
k=5
w=39
h=98

20 101788

(p=2) (p=4) (p=8) (p=16) (p=32) (p=64) (p=128) (p=256) (p=512) (p=1024) (p=2048) (p=4064) (p=7968)
20 0.10 0.10 0.19 0.19 0.39 0.38 0.66 0.69 0.65 0.82 0.79 0.88 0.88 0.95 0.88 0.97 0.94 0.98 0.98 1.00 0.99 1.00 1.00 1.00 1.00 1.00
100 0.02 0.02 0.04 0.04 0.08 0.08 0.13 0.14 0.20 0.20 0.32 0.41 0.41 0.46 0.49 0.68 0.74 0.70 0.83 0.60 0.84 0.99 0.92 0.99 0.96 1.00
500 0.00 0.00 0.01 0.01 0.02 0.02 0.03 0.03 0.04 0.04 0.06 0.08 0.08 0.09 0.13 0.20 0.27 0.27 0.38 0.17 0.43 0.44 0.49 0.56 0.82 0.65

21 164817

(p=2) (p=4) (p=8) (p=16) (p=32) (p=64) (p=128) (p=256) (p=512) (p=1024) (p=2048) (p=4096) (p=8192)
20 0.10 0.10 0.19 0.19 0.38 0.37 0.72 0.73 0.60 0.83 0.93 0.85 0.87 0.91 0.99 0.94 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
100 0.02 0.02 0.04 0.04 0.08 0.07 0.14 0.15 0.21 0.21 0.35 0.35 0.51 0.53 0.75 0.61 0.97 0.73 0.98 0.95 0.87 0.99 0.98 0.99 0.99 0.99
500 0.00 0.00 0.01 0.01 0.02 0.01 0.03 0.03 0.04 0.04 0.07 0.07 0.10 0.11 0.15 0.20 0.31 0.24 0.48 0.27 0.52 0.83 0.71 0.62 0.70 0.75

ped7
n=1068
k=4
w=32
h=90

6 118383

(p=2) (p=4) (p=12) (p=32) (p=96) (p=160) (p=480) (p=640) (p=1280) (p=1280) (p=2560) (p=3840) (p=7680)
20 0.10 0.10 0.17 0.10 0.29 0.11 0.52 0.11 0.64 0.28 0.74 0.79 0.79 0.95 0.73 0.98 0.84 0.97 0.84 0.97 0.87 1.00 0.94 1.00 0.97 1.00
100 0.02 0.02 0.03 0.02 0.06 0.02 0.11 0.02 0.20 0.06 0.26 0.17 0.29 0.55 0.29 0.62 0.36 0.81 0.37 0.81 0.49 0.89 0.59 0.95 0.63 0.98

500 0.00 0.00 0.01 0.00 0.01 0.00 0.02 0.00 0.04 0.01 0.05 0.03 0.06 0.12 0.06 0.14 0.09 0.23 0.09 0.23 0.14 0.35 0.18 0.34 0.22 0.67

7 93380

(p=2) (p=4) (p=12) (p=32) (p=96) (p=160) (p=480) (p=640) (p=1280) (p=1280) (p=2560) (p=3840) (p=7680)
20 0.09 0.09 0.17 0.09 0.30 0.09 0.61 0.09 0.74 0.18 0.94 0.19 0.99 0.96 0.83 0.97 0.84 0.98 0.85 0.98 0.94 1.00 0.94 0.98 0.98 1.00
100 0.02 0.02 0.03 0.02 0.06 0.02 0.12 0.02 0.19 0.04 0.32 0.04 0.37 0.48 0.33 0.52 0.37 0.71 0.37 0.71 0.48 0.88 0.52 0.91 0.60 0.95

500 0.00 0.00 0.01 0.00 0.01 0.00 0.02 0.00 0.04 0.01 0.06 0.01 0.07 0.11 0.07 0.15 0.09 0.18 0.09 0.18 0.13 0.46 0.16 0.47 0.19 0.58

8 30717

(p=2) (p=4) (p=12) (p=32) (p=96) (p=160) (p=480) (p=640) (p=1276) (p=1276) (p=2552) (p=3816) (p=7588)
20 0.08 0.08 0.15 0.08 0.26 0.08 0.51 0.08 0.67 0.15 0.67 0.15 0.72 0.78 0.76 0.87 0.72 1.00 0.83 1.00 0.91 1.00 0.97 1.00 0.97 1.00
100 0.02 0.02 0.03 0.02 0.05 0.02 0.10 0.02 0.14 0.03 0.24 0.03 0.27 0.33 0.29 0.34 0.29 0.38 0.34 0.38 0.41 0.52 0.46 0.72 0.53 0.96

500 0.00 0.00 0.01 0.00 0.01 0.00 0.02 0.00 0.03 0.01 0.05 0.01 0.06 0.07 0.06 0.08 0.07 0.09 0.07 0.09 0.11 0.15 0.13 0.26 0.15 0.50

ped9
n=1118
k=7
w=27
h=100

6 101172

(p=2) (p=4) (p=8) (p=16) (p=32) (p=32) (p=64) (p=128) (p=256) (p=512) (p=1024) (p=2048) (p=4096)
20 0.10 0.10 0.19 0.10 0.30 0.21 0.53 0.30 0.77 0.75 0.77 0.75 0.90 0.78 0.93 0.87 0.98 0.99 0.99 0.99 0.98 0.99 1.00 0.99 1.00 1.00
100 0.02 0.02 0.04 0.02 0.06 0.04 0.11 0.06 0.21 0.16 0.21 0.16 0.43 0.22 0.74 0.43 0.75 0.65 0.93 0.94 0.93 0.95 0.96 0.96 0.98 0.85
500 0.00 0.00 0.01 0.00 0.01 0.01 0.02 0.01 0.04 0.03 0.04 0.03 0.09 0.04 0.17 0.09 0.23 0.13 0.60 0.26 0.57 0.55 0.81 0.73 0.92 0.34

7 58657

(p=2) (p=4) (p=8) (p=16) (p=32) (p=32) (p=64) (p=128) (p=256) (p=512) (p=1024) (p=2048) (p=4096)
20 0.10 0.10 0.19 0.19 0.31 0.30 0.58 0.51 0.66 0.70 0.65 0.70 0.85 0.85 0.93 0.93 0.96 0.96 0.97 0.99 0.98 0.99 1.00 0.99 1.00 0.99
100 0.02 0.02 0.04 0.04 0.06 0.06 0.12 0.10 0.23 0.23 0.23 0.23 0.46 0.31 0.65 0.62 0.78 0.74 0.86 0.93 0.90 0.72 0.96 0.95 0.98 0.96
500 0.00 0.00 0.01 0.01 0.01 0.01 0.02 0.02 0.05 0.05 0.05 0.05 0.09 0.06 0.18 0.12 0.30 0.25 0.60 0.40 0.61 0.21 0.78 0.39 0.90 0.80

8 41061

(p=2) (p=4) (p=8) (p=16) (p=32) (p=32) (p=64) (p=128) (p=256) (p=512) (p=1024) (p=2048) (p=4096)
20 0.10 0.10 0.19 0.19 0.30 0.30 0.45 0.49 0.64 0.70 0.64 0.70 0.84 0.66 0.94 0.72 0.97 0.99 0.99 0.99 0.98 0.99 1.00 1.00 1.00 1.00
100 0.02 0.02 0.04 0.04 0.06 0.06 0.09 0.10 0.21 0.14 0.21 0.14 0.36 0.25 0.64 0.26 0.75 0.49 0.90 0.84 0.90 0.94 0.97 0.98 0.98 0.98
500 0.00 0.00 0.01 0.01 0.01 0.01 0.02 0.02 0.04 0.03 0.04 0.03 0.07 0.05 0.16 0.05 0.22 0.10 0.38 0.21 0.56 0.37 0.78 0.81 0.89 0.89

Better by 10% 0x 0x 12x 6x 15x 9x 18x 11x 16x 17x 16x 14x 10x 18x 9x 21x 8x 13x 12x 10x 8x 12x 6x 11x 5x 6x
Better by 50% 0x 0x 12x 6x 12x 9x 15x 9x 11x 9x 10x 7x 2x 4x 5x 8x 3x 6x 6x 4x 5x 5x 1x 8x 1x 6x

Table B.18: Average resource utilization with 20, 100, 500, and “unlimited” CPUs, on linkage instances, part 2 of 2.
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Cutoff depth d

instance i Tseq #cpu 1 2 3 4 5 6 7 8 9 10 11 12 13

fix var fix var fix var fix var fix var fix var fix var fix var fix var fix var fix var fix var fix var

lF3-11-57
n=2670
k=3
w=37
h=95

15 121311

(p=2) (p=4) (p=6) (p=18) (p=30) (p=30) (p=60) (p=60) (p=120) (p=180) (p=360) (p=1080) (p=1440)
20 0.08 0.08 0.13 0.13 0.21 0.15 0.30 0.25 0.57 0.59 0.56 0.59 0.60 0.85 0.60 0.85 0.70 0.91 0.79 0.97 0.86 0.97 0.97 0.98 0.99 0.98
100 0.02 0.02 0.03 0.03 0.04 0.03 0.06 0.05 0.11 0.12 0.11 0.12 0.13 0.22 0.13 0.22 0.14 0.33 0.22 0.55 0.31 0.67 0.51 0.87 0.54 0.87

500 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.02 0.03 0.04 0.03 0.04 0.03 0.07 0.04 0.11 0.06 0.17 0.12 0.48 0.14 0.52

16 35820

(p=2) (p=4) (p=6) (p=18) (p=30) (p=30) (p=60) (p=60) (p=120) (p=180) (p=360) (p=1080) (p=1440)
20 0.08 0.08 0.12 0.12 0.22 0.15 0.28 0.40 0.49 0.49 0.47 0.49 0.66 0.63 0.68 0.63 0.73 0.88 0.74 0.92 0.95 0.99 0.88 1.00 0.97 1.00
100 0.02 0.02 0.02 0.02 0.04 0.03 0.06 0.08 0.11 0.10 0.11 0.10 0.14 0.14 0.14 0.14 0.15 0.23 0.23 0.34 0.33 0.57 0.53 0.75 0.60 0.90

500 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.02 0.02 0.02 0.02 0.02 0.03 0.03 0.03 0.03 0.03 0.05 0.05 0.07 0.07 0.12 0.12 0.23 0.15 0.38

17 18312

(p=2) (p=4) (p=6) (p=18) (p=30) (p=30) (p=60) (p=60) (p=120) (p=180) (p=360) (p=1080) (p=1440)

20 0.08 0.08 0.12 0.16 0.21 0.16 0.29 0.37 0.53 0.51 0.51 0.51 0.66 0.73 0.65 0.73 0.67 0.96 0.87 0.98 0.85 0.99 0.99 1.00 0.95 1.00
100 0.02 0.02 0.02 0.03 0.04 0.03 0.06 0.07 0.11 0.10 0.10 0.10 0.13 0.15 0.14 0.15 0.15 0.31 0.25 0.44 0.36 0.68 0.63 0.94 0.70 0.98

500 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.02 0.03 0.03 0.03 0.03 0.03 0.06 0.05 0.09 0.07 0.14 0.18 0.28 0.20 0.64

lF3-11-59
n=2711
k=3
w=32
h=73

14 35457

(p=3) (p=5) (p=10) (p=10) (p=30) (p=50) (p=150) (p=200) (p=600) (p=1000) (p=2000) (p=2000) (p=4000)
20 0.08 0.08 0.18 0.16 0.32 0.34 0.33 0.34 0.48 0.60 0.62 0.87 0.82 0.97 0.84 0.98 0.91 1.00 0.89 1.00 0.99 1.00 0.99 1.00 1.00 1.00
100 0.02 0.02 0.04 0.03 0.06 0.07 0.07 0.07 0.10 0.12 0.12 0.19 0.25 0.45 0.36 0.69 0.56 0.95 0.59 0.96 0.66 0.98 0.87 0.98 0.76 0.99

500 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.04 0.05 0.09 0.07 0.15 0.11 0.41 0.23 0.68 0.24 0.60 0.26 0.60 0.29 0.92

15 8523

(p=3) (p=5) (p=10) (p=10) (p=30) (p=50) (p=150) (p=200) (p=596) (p=992) (p=1962) (p=1962) (p=3886)
20 0.08 0.08 0.16 0.16 0.29 0.30 0.29 0.30 0.49 0.53 0.52 0.91 0.75 0.97 0.78 0.98 0.83 0.99 0.99 1.00 0.99 1.00 0.99 1.00 1.00 1.00
100 0.02 0.02 0.03 0.03 0.06 0.06 0.06 0.06 0.10 0.11 0.10 0.18 0.27 0.64 0.29 0.58 0.43 0.95 0.76 0.97 0.87 0.99 0.89 0.99 0.98 0.99
500 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.04 0.05 0.13 0.06 0.12 0.11 0.49 0.29 0.75 0.48 0.86 0.51 0.86 0.72 0.95

16 3023

(p=3) (p=5) (p=10) (p=10) (p=30) (p=50) (p=150) (p=200) (p=600) (p=1000) (p=1999) (p=1999) (p=3992)
20 0.08 0.08 0.18 0.19 0.27 0.37 0.37 0.37 0.51 0.62 0.42 0.76 0.85 0.97 0.86 0.98 0.99 0.98 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00
100 0.02 0.02 0.04 0.04 0.05 0.07 0.07 0.07 0.12 0.12 0.11 0.22 0.48 0.54 0.49 0.63 0.79 0.95 0.90 0.96 0.98 0.98 0.97 0.98 0.99 0.99
500 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.04 0.10 0.11 0.12 0.13 0.24 0.60 0.53 0.76 0.72 0.88 0.75 0.88 0.91 0.92

lF3-13-58
n=3352
k=3
w=31
h=88

14 46464

(p=2) (p=4) (p=12) (p=20) (p=60) (p=100) (p=200) (p=200) (p=600) (p=1200) (p=2000) (p=4000) (p=6400)
20 0.10 0.10 0.15 0.16 0.23 0.19 0.59 0.24 0.71 0.76 0.67 0.93 0.86 0.95 0.87 0.95 0.93 0.99 0.98 1.00 0.98 1.00 1.00 1.00 1.00 1.00
100 0.02 0.02 0.03 0.03 0.05 0.04 0.12 0.05 0.20 0.15 0.26 0.23 0.35 0.43 0.31 0.43 0.44 0.49 0.67 0.64 0.80 0.96 0.98 0.99 0.99 1.00
500 0.00 0.00 0.01 0.01 0.01 0.01 0.02 0.01 0.04 0.03 0.05 0.05 0.08 0.09 0.07 0.09 0.11 0.10 0.15 0.17 0.31 0.34 0.81 0.58 0.93 0.90

16 20270

(p=2) (p=4) (p=12) (p=20) (p=60) (p=100) (p=200) (p=200) (p=600) (p=1200) (p=1998) (p=3990) (p=6390)

20 0.08 0.08 0.13 0.13 0.19 0.19 0.42 0.43 0.62 0.72 0.73 0.83 0.83 0.90 0.85 0.90 0.86 0.86 0.99 1.00 0.99 1.00 1.00 1.00 1.00 1.00
100 0.02 0.02 0.03 0.03 0.04 0.04 0.08 0.09 0.14 0.14 0.18 0.25 0.25 0.41 0.25 0.41 0.29 0.40 0.75 0.81 0.77 0.98 0.98 0.99 0.99 0.99
500 0.00 0.00 0.01 0.01 0.01 0.01 0.02 0.02 0.03 0.03 0.04 0.05 0.05 0.08 0.05 0.08 0.06 0.10 0.22 0.23 0.22 0.40 0.83 0.90 0.86 0.95

18 7647

(p=2) (p=4) (p=12) (p=20) (p=60) (p=100) (p=200) (p=200) (p=591) (p=1181) (p=1958) (p=3858) (p=6121)
20 0.10 0.10 0.16 0.16 0.22 0.24 0.43 0.36 0.56 0.92 0.77 0.95 0.84 0.98 0.88 0.98 0.97 0.99 0.99 0.99 0.99 1.00 1.00 1.00 1.00 1.00
100 0.02 0.02 0.03 0.03 0.04 0.05 0.09 0.07 0.15 0.18 0.31 0.30 0.42 0.61 0.42 0.61 0.62 0.95 0.91 0.97 0.93 0.98 0.98 0.99 0.99 0.99
500 0.00 0.00 0.01 0.01 0.01 0.01 0.02 0.01 0.03 0.04 0.06 0.06 0.10 0.12 0.10 0.12 0.14 0.45 0.48 0.75 0.73 0.91 0.88 0.95 0.93 0.95

lF3-15-53
n=3384
k=3
w=32
h=108

17 345544

(p=2) (p=4) (p=12) (p=16) (p=34) (p=46) (p=78) (p=201) (p=358) (p=632) (p=1093) (p=1927) (p=2831)
20 0.08 0.08 0.16 0.16 0.16 0.17 0.17 0.17 0.18 0.28 0.21 0.48 0.21 0.55 0.46 0.78 0.53 0.78 0.61 0.79 0.68 0.83 0.76 1.00 0.77 1.00

100 0.02 0.02 0.03 0.03 0.03 0.03 0.03 0.03 0.04 0.06 0.04 0.11 0.04 0.11 0.09 0.24 0.11 0.31 0.17 0.31 0.24 0.45 0.32 0.76 0.33 0.79

500 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.02 0.02 0.05 0.02 0.06 0.03 0.06 0.05 0.11 0.06 0.17 0.07 0.18

18 98346

(p=2) (p=4) (p=12) (p=16) (p=32) (p=44) (p=68) (p=165) (p=284) (p=526) (p=912) (p=1572) (p=2496)
20 0.08 0.08 0.16 0.16 0.17 0.16 0.16 0.17 0.18 0.20 0.20 0.52 0.20 0.55 0.45 0.86 0.51 0.93 0.59 0.90 0.67 1.00 0.80 1.00 0.81 1.00

100 0.02 0.02 0.03 0.03 0.03 0.03 0.03 0.03 0.04 0.04 0.04 0.10 0.04 0.11 0.09 0.31 0.11 0.31 0.18 0.37 0.25 0.54 0.34 0.80 0.35 0.71

500 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.02 0.02 0.06 0.02 0.06 0.04 0.08 0.05 0.11 0.07 0.18 0.08 0.20

Better by 10% 0x 0x 0x 3x 12x 6x 9x 6x 4x 14x 2x 20x 0x 28x 0x 25x 1x 26x 0x 23x 0x 24x 1x 18x 0x 15x
Better by 50% 0x 0x 0x 0x 0x 0x 3x 0x 0x 4x 0x 14x 0x 14x 0x 14x 0x 19x 0x 13x 0x 13x 0x 10x 0x 10x

Table B.19: Average resource utilization with 20, 100, 500, and “unlimited” CPUs, on haplotyping instances, part 1
of 2.

325



Cutoff depth d

instance i Tseq #cpu 1 2 3 4 5 6 7 8 9 10 11 12 13

fix var fix var fix var fix var fix var fix var fix var fix var fix var fix var fix var fix var fix var

lF3-15-59
n=3730
k=3
w=31
h=84

18 28613

(p=2) (p=4) (p=8) (p=20) (p=40) (p=80) (p=240) (p=476) (p=942) (p=1855) (p=3633) (p=7098) (p=13781)
20 0.09 0.09 0.18 0.18 0.27 0.21 0.50 0.31 0.52 0.72 0.59 0.93 0.89 0.99 0.87 1.00 0.95 1.00 0.92 1.00 1.00 1.00 1.00 1.00 1.00 1.00
100 0.02 0.02 0.04 0.04 0.05 0.04 0.10 0.06 0.14 0.14 0.18 0.23 0.36 0.55 0.37 0.73 0.48 0.87 0.63 0.96 0.94 0.99 0.98 1.00 1.00 1.00
500 0.00 0.00 0.01 0.01 0.01 0.01 0.02 0.01 0.03 0.03 0.04 0.05 0.08 0.12 0.08 0.18 0.13 0.17 0.24 0.65 0.48 0.82 0.74 0.96 0.94 0.99

19 43307

(p=2) (p=4) (p=8) (p=20) (p=40) (p=80) (p=240) (p=476) (p=936) (p=1830) (p=3571) (p=6964) (p=13482)
20 0.07 0.07 0.13 0.13 0.20 0.21 0.36 0.39 0.60 0.63 0.59 0.77 0.88 0.97 0.91 1.00 0.95 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
100 0.01 0.01 0.03 0.03 0.04 0.04 0.07 0.08 0.12 0.13 0.13 0.20 0.31 0.44 0.34 0.70 0.42 0.89 0.77 0.98 0.95 0.99 0.99 0.99 1.00 1.00
500 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.03 0.03 0.04 0.06 0.09 0.07 0.18 0.10 0.29 0.21 0.62 0.41 0.81 0.90 0.96 0.98 0.98

lF3-16-56
n=3930
k=3
w=38
h=77

15 1891710

(p=3) (p=9) (p=15) (p=43) (p=71) (p=205) (p=470) (p=934) (p=934) (p=1827) (p=2707) (p=7582)
20 0.08 0.08 0.16 0.16 0.26 0.27 0.36 0.59 0.61 0.78 0.86 0.99 0.91 0.97 0.98 0.99 0.98 0.99 0.98 1.00 0.99 1.00 0.98 1.00
100 0.02 0.02 0.03 0.03 0.05 0.05 0.07 0.13 0.14 0.16 0.24 0.69 0.47 0.81 0.68 0.92 0.67 0.92 0.74 0.98 0.83 0.99 0.88 1.00

500 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.03 0.03 0.03 0.05 0.14 0.11 0.30 0.17 0.45 0.17 0.45 0.25 0.70 0.31 0.77 0.48 0.91

16 489614

(p=2) (p=3) (p=9) (p=15) (p=42) (p=70) (p=201) (p=455) (p=900) (p=900) (p=1766) (p=2629) (p=7122)
20 0.06 0.06 0.08 0.08 0.16 0.23 0.24 0.35 0.37 0.61 0.65 0.70 0.77 0.96 0.86 0.98 0.93 1.00 0.97 1.00 0.98 1.00 0.99 1.00 0.99 1.00
100 0.01 0.01 0.02 0.02 0.03 0.05 0.05 0.07 0.08 0.12 0.16 0.21 0.24 0.35 0.47 0.78 0.55 0.91 0.64 0.91 0.78 0.99 0.75 1.00 0.80 1.00

500 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.02 0.02 0.03 0.04 0.05 0.07 0.11 0.25 0.16 0.36 0.16 0.36 0.24 0.51 0.28 0.71 0.39 0.91

lF4-12-50
n=2569
k=4
w=28
h=80

13 57842

(p=3) (p=12) (p=24) (p=72) (p=288) (p=864) (p=3456) (p=5760)
20 0.08 0.08 0.29 0.30 0.54 0.54 0.75 0.88 0.89 0.88 0.98 0.99 1.00 1.00 0.99 1.00
100 0.02 0.02 0.06 0.06 0.11 0.11 0.19 0.20 0.51 0.57 0.78 0.68 0.95 0.99 0.97 0.99
500 0.00 0.00 0.01 0.01 0.02 0.02 0.04 0.04 0.11 0.13 0.23 0.25 0.32 0.65 0.79 0.29

14 33676

(p=3) (p=12) (p=24) (p=72) (p=288) (p=864) (p=3456) (p=5760)
20 0.09 0.09 0.28 0.31 0.48 0.57 0.67 0.59 0.94 0.82 0.94 1.00 1.00 1.00 0.99 1.00
100 0.02 0.02 0.06 0.06 0.10 0.12 0.17 0.17 0.52 0.22 0.66 0.65 0.91 0.99 0.96 0.99
500 0.00 0.00 0.01 0.01 0.02 0.02 0.03 0.03 0.12 0.04 0.21 0.15 0.56 0.89 0.82 0.96

lF4-12-55
n=2926
k=4
w=28
h=78

13 104837

(p=2) (p=4) (p=8) (p=16) (p=64) (p=128) (p=256) (p=512) (p=1024) (p=1024) (p=1792) (p=1792) (p=3072)
20 0.10 0.10 0.19 0.19 0.35 0.20 0.54 0.37 0.77 0.39 0.83 0.39 0.90 0.40 0.96 0.42 0.98 0.73 0.98 0.73 0.98 1.00 0.99 1.00 0.98 1.00
100 0.02 0.02 0.04 0.04 0.07 0.04 0.11 0.07 0.34 0.09 0.44 0.09 0.60 0.09 0.76 0.10 0.87 0.24 0.86 0.24 0.79 0.87 0.86 0.87 0.81 0.94

500 0.00 0.00 0.01 0.01 0.01 0.01 0.02 0.01 0.07 0.02 0.09 0.02 0.16 0.02 0.27 0.02 0.43 0.05 0.44 0.05 0.39 0.44 0.41 0.44 0.38 0.39

14 25905

(p=2) (p=4) (p=8) (p=16) (p=48) (p=96) (p=192) (p=384) (p=768) (p=768) (p=1536) (p=1536) (p=3072)
20 0.09 0.09 0.18 0.18 0.37 0.19 0.68 0.20 0.72 0.40 0.72 0.77 0.82 0.91 0.85 0.95 0.93 1.00 0.94 1.00 0.96 1.00 0.99 1.00 0.99 1.00
100 0.02 0.02 0.04 0.04 0.07 0.04 0.14 0.04 0.26 0.08 0.27 0.15 0.46 0.43 0.50 0.67 0.66 0.84 0.68 0.84 0.80 0.97 0.83 0.97 0.87 0.99

500 0.00 0.00 0.01 0.01 0.01 0.01 0.03 0.01 0.05 0.02 0.05 0.03 0.12 0.09 0.16 0.21 0.28 0.39 0.23 0.39 0.44 0.29 0.45 0.29 0.36 0.67

lF4-17-51
n=3837
k=4
w=29
h=85

15 10607

(p=2) (p=4) (p=4) (p=8) (p=16) (p=32) (p=40) (p=56) (p=128) (p=152) (p=176) (p=352) (p=400)
20 0.10 0.10 0.20 0.20 0.19 0.20 0.38 0.39 0.47 0.48 0.52 0.66 0.60 0.63 0.74 0.71 0.80 0.91 0.80 0.94 0.92 0.93 0.97 0.98 0.97 0.98
100 0.02 0.02 0.04 0.04 0.04 0.04 0.08 0.08 0.09 0.10 0.12 0.13 0.19 0.19 0.25 0.20 0.44 0.51 0.43 0.51 0.47 0.57 0.68 0.63 0.86 0.53
500 0.00 0.00 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.02 0.02 0.03 0.04 0.04 0.05 0.04 0.10 0.10 0.11 0.11 0.12 0.11 0.23 0.23 0.42 0.13

16 66103

(p=2) (p=4) (p=8) (p=16) (p=32) (p=64) (p=80) (p=112) (p=256) (p=304) (p=352) (p=704) (p=800)
20 0.09 0.09 0.18 0.11 0.19 0.11 0.36 0.11 0.44 0.11 0.49 0.22 0.68 0.22 0.66 0.74 0.83 0.90 0.85 0.87 0.91 0.86 0.98 0.95 0.98 0.97
100 0.02 0.02 0.04 0.02 0.04 0.02 0.07 0.02 0.09 0.02 0.10 0.04 0.18 0.04 0.21 0.20 0.41 0.38 0.40 0.40 0.39 0.36 0.68 0.67 0.72 0.76
500 0.00 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.02 0.00 0.02 0.01 0.04 0.01 0.04 0.04 0.08 0.09 0.09 0.08 0.09 0.09 0.19 0.18 0.27 0.17

Better by 10% 0x 0x 3x 0x 12x 6x 13x 4x 12x 9x 10x 10x 7x 15x 6x 15x 3x 12x 4x 12x 1x 10x 1x 6x 3x 7x
Better by 50% 0x 0x 3x 0x 9x 0x 9x 0x 11x 6x 8x 3x 6x 6x 4x 8x 2x 6x 2x 6x 1x 4x 1x 2x 3x 3x

Table B.20: Average resource utilization with 20, 100, 500, and “unlimited” CPUs, on haplotyping instances, part 2
of 2.
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Cutoff depth d

instance i Tseq #cpu 1 2 3 4 5 6

fix var fix var fix var fix var fix var fix var

pdb1a6m
n=124
k=81
w=15
h=34

3 198326

(p=9) (p=81) (p=511)

20 0.09 0.09 0.11 0.25 0.18 0.38

100 0.02 0.02 0.02 0.05 0.04 0.08

500 0.00 0.00 0.00 0.01 0.01 0.02

pdb1duw
n=241
k=81
w=9
h=32

3 627106

(p=9) (p=54) (p=784) (p=15081)

20 0.13 0.13 0.18 0.23 0.22 1.00 0.57 1.00

100 0.03 0.03 0.04 0.05 0.04 0.52 0.14 1.00

500 0.01 0.01 0.01 0.01 0.01 0.10 0.03 0.41

pdb1e5k
n=154
k=81
w=12
h=43

3 112654

(p=66) (p=1046) (p=11321)

20 0.28 0.28 1.00 1.00 1.00 1.00

100 0.06 0.06 0.23 0.75 0.93 1.00

500 0.01 0.01 0.05 0.15 0.21 0.55

pdb1f9i
n=103
k=81
w=10
h=24

3 68804

(p=81) (p=6534)

20 0.45 0.45 1.00 1.00

100 0.09 0.09 0.54 1.00

500 0.02 0.02 0.11 0.33

pdb1ft5
n=172
k=81
w=14
h=33

3 81118

(p=27) (p=118) (p=5281)

20 0.11 0.11 0.14 0.54 1.00 1.00

100 0.02 0.02 0.03 0.11 0.37 1.00

500 0.00 0.00 0.01 0.02 0.07 0.43

pdb1hd2
n=126
k=81
w=12
h=27

3 101550

(p=79) (p=3777)

20 0.09 0.09 0.41 1.00

100 0.02 0.02 0.08 0.57

500 0.00 0.00 0.02 0.11

pdb1huw
n=152
k=81
w=15
h=43

3 545249

(p=9) (p=42) (p=293) (p=654) (p=1588) (p=2597)

20 0.06 0.06 0.06 0.06 0.06 0.72 0.06 0.84 0.06 1.00 0.07 1.00

100 0.01 0.01 0.01 0.01 0.01 0.14 0.01 0.18 0.01 0.34 0.01 0.50

500 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.04 0.00 0.07 0.00 0.10

pdb1kao
n=148
k=81
w=15
h=41

3 716795

(p=27) (p=215) (p=752) (p=3241)

20 0.15 0.15 0.18 0.58 0.26 0.99 0.61 1.00

100 0.03 0.03 0.04 0.13 0.05 0.25 0.12 0.59

500 0.01 0.01 0.01 0.03 0.01 0.05 0.02 0.12

pdb1nfp
n=204
k=81
w=18
h=38

3 354720

(p=6) (p=48) (p=336) (p=3812)

20 0.06 0.06 0.07 0.43 0.13 0.99 0.36 1.00

100 0.01 0.01 0.01 0.09 0.03 0.28 0.07 0.97

500 0.00 0.00 0.00 0.02 0.01 0.06 0.01 0.25

pdb1rss
n=115
k=81
w=12
h=35

3 378579

(p=8) (p=109) (p=908) (p=1336)

20 0.05 0.05 0.19 0.37 0.59 0.72 0.68 0.95

100 0.01 0.01 0.04 0.07 0.12 0.18 0.14 0.19

500 0.00 0.00 0.01 0.01 0.02 0.04 0.03 0.04

pdb1vhh
n=133
k=81
w=14
h=35

3 944633

(p=27) (p=1842) (p=67760)

20 0.21 0.21 1.00 0.23 1.00 1.00

100 0.04 0.04 0.46 0.05 0.89 1.00

500 0.01 0.01 0.10 0.01 0.24 0.72

Better by 10% 0x 0x 3x 25x 0x 23x 0x 15x 0x 3x 0x 3x

Better by 50% 0x 0x 3x 22x 0x 19x 0x 12x 0x 3x 0x 3x

Table B.21: Average resource utilization with 20, 100, 500, and “unlimited” CPUs, on side-chain prediction instances.
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Cutoff depth d
instance i Tseq #cpu 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

fix var fix var fix var fix var fix var fix var fix var fix var fix var fix var fix var fix var fix var fix var fix var

75-25-1
n=624
k=2
w=38
h=111

12 77941

(p=2) (p=4) (p=8) (p=16) (p=16) (p=32) (p=64) (p=128) (p=192) (p=192) (p=192) (p=384) (p=768) (p=1152) (p=2112)
20 0.09 0.09 0.15 0.14 0.21 0.21 0.39 0.37 0.37 0.37 0.56 0.57 0.72 0.76 0.78 0.67 0.82 0.69 0.85 0.69 0.81 0.69 0.86 0.75 0.90 0.84 0.88 0.94 0.94 0.96
100 0.02 0.02 0.03 0.03 0.04 0.04 0.08 0.07 0.07 0.07 0.11 0.11 0.17 0.22 0.23 0.23 0.23 0.23 0.22 0.23 0.23 0.23 0.27 0.22 0.45 0.32 0.53 0.48 0.57 0.72

500 0.00 0.00 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.02 0.02 0.03 0.04 0.05 0.05 0.05 0.05 0.04 0.05 0.05 0.05 0.06 0.05 0.10 0.06 0.11 0.10 0.11 0.14

14 15402

(p=2) (p=4) (p=8) (p=8) (p=8) (p=16) (p=32) (p=64) (p=96) (p=96) (p=192) (p=288) (p=576) (p=864) (p=1584)
20 0.08 0.08 0.14 0.14 0.23 0.22 0.23 0.22 0.23 0.22 0.35 0.34 0.52 0.58 0.63 0.52 0.57 0.50 0.71 0.50 0.65 0.49 0.76 0.63 0.92 0.77 0.74 0.97 0.98 1.00
100 0.02 0.02 0.03 0.03 0.05 0.04 0.05 0.04 0.05 0.04 0.07 0.07 0.12 0.14 0.14 0.14 0.14 0.13 0.14 0.13 0.17 0.13 0.20 0.14 0.27 0.21 0.28 0.35 0.31 0.63

500 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.04 0.03 0.05 0.04 0.06 0.07 0.06 0.18

75-25-3
n=624
k=2
w=37
h=115

12 104037

(p=2) (p=4) (p=4) (p=6) (p=6) (p=12) (p=24) (p=48) (p=48) (p=72) (p=144) (p=288) (p=576) (p=960) (p=1536)
20 0.09 0.09 0.14 0.14 0.13 0.14 0.19 0.19 0.19 0.19 0.22 0.22 0.35 0.35 0.50 0.53 0.51 0.53 0.81 0.66 0.98 0.89 0.93 0.85 0.95 0.95 0.99 0.99 0.97 0.98
100 0.02 0.02 0.03 0.03 0.03 0.03 0.04 0.04 0.04 0.04 0.04 0.04 0.07 0.07 0.10 0.11 0.10 0.11 0.16 0.17 0.27 0.25 0.39 0.24 0.78 0.42 0.64 0.61 0.55 0.63

500 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.02 0.03 0.03 0.05 0.05 0.08 0.05 0.16 0.08 0.16 0.15 0.16 0.16

15 33656

(p=2) (p=4) (p=4) (p=6) (p=6) (p=12) (p=24) (p=48) (p=48) (p=72) (p=144) (p=288) (p=576) (p=960) (p=1536)
20 0.08 0.08 0.14 0.14 0.14 0.14 0.19 0.19 0.19 0.19 0.34 0.34 0.62 0.61 0.70 0.80 0.72 0.80 0.86 0.86 0.92 0.91 0.97 0.95 0.98 0.97 0.99 1.00 0.97 0.99
100 0.02 0.02 0.03 0.03 0.03 0.03 0.04 0.04 0.04 0.04 0.07 0.07 0.12 0.12 0.19 0.23 0.20 0.23 0.32 0.28 0.57 0.50 0.82 0.69 0.82 0.79 0.91 0.92 0.65 0.90

500 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.04 0.05 0.04 0.05 0.06 0.06 0.11 0.10 0.17 0.14 0.31 0.34 0.41 0.40 0.24 0.34

75-25-7
n=624
k=2
w=37
h=120

16 297377

(p=2) (p=3) (p=6) (p=12) (p=24) (p=36) (p=72) (p=144) (p=216) (p=288) (p=504) (p=1008) (p=2016) (p=2688) (p=3360)
20 0.07 0.07 0.12 0.12 0.18 0.18 0.18 0.18 0.32 0.46 0.47 0.50 0.75 0.83 0.85 0.96 0.96 0.97 0.86 0.96 0.96 0.96 0.94 0.96 0.96 0.98 0.98 0.99 0.99 0.99
100 0.01 0.01 0.02 0.02 0.04 0.04 0.04 0.04 0.06 0.09 0.09 0.10 0.16 0.17 0.29 0.45 0.46 0.47 0.49 0.57 0.72 0.81 0.70 0.79 0.80 0.90 0.82 0.90 0.90 0.93
500 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.03 0.03 0.06 0.09 0.09 0.09 0.10 0.17 0.17 0.18 0.25 0.44 0.38 0.58 0.41 0.58 0.59 0.70

18 21694

(p=2) (p=3) (p=6) (p=12) (p=24) (p=36) (p=72) (p=144) (p=216) (p=288) (p=504) (p=1008) (p=2014) (p=2661) (p=3325)
20 0.07 0.07 0.09 0.09 0.16 0.16 0.16 0.17 0.29 0.17 0.40 0.17 0.67 0.18 0.77 0.18 0.85 0.31 0.88 0.32 0.94 0.38 0.94 0.97 0.97 0.99 0.99 0.98 0.98 0.99
100 0.01 0.01 0.02 0.02 0.03 0.03 0.03 0.03 0.06 0.03 0.08 0.04 0.13 0.04 0.22 0.04 0.36 0.06 0.38 0.07 0.68 0.08 0.73 0.35 0.60 0.57 0.85 0.60 0.76 0.85

500 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.03 0.01 0.04 0.01 0.07 0.01 0.08 0.01 0.14 0.02 0.19 0.07 0.18 0.16 0.22 0.19 0.20 0.50

75-26-10
n=675
k=2
w=39
h=124

16 46985

(p=2) (p=4) (p=8) (p=8) (p=16) (p=16) (p=32) (p=64) (p=128) (p=192) (p=384) (p=384) (p=768) (p=1280) (p=1280)
20 0.09 0.09 0.14 0.14 0.26 0.24 0.24 0.24 0.44 0.44 0.44 0.44 0.72 0.73 0.81 0.71 0.83 0.77 0.78 0.78 0.88 0.77 0.88 0.77 0.92 0.93 0.97 0.95 0.97 0.95
100 0.02 0.02 0.03 0.03 0.05 0.05 0.05 0.05 0.09 0.09 0.09 0.09 0.15 0.15 0.24 0.27 0.27 0.29 0.29 0.32 0.36 0.32 0.36 0.32 0.60 0.61 0.70 0.75 0.73 0.75
500 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.02 0.03 0.03 0.05 0.05 0.05 0.06 0.06 0.07 0.07 0.07 0.07 0.07 0.15 0.13 0.19 0.22 0.19 0.22

18 26855

(p=2) (p=4) (p=8) (p=8) (p=16) (p=24) (p=48) (p=80) (p=160) (p=240) (p=480) (p=480) (p=960) (p=1216) (p=1216)
20 0.08 0.08 0.13 0.14 0.22 0.22 0.22 0.22 0.39 0.33 0.49 0.39 0.82 0.84 0.80 0.78 0.88 0.78 0.86 0.97 0.88 0.92 0.92 0.92 0.85 0.97 0.97 0.83 0.96 0.83
100 0.02 0.02 0.03 0.03 0.04 0.04 0.04 0.04 0.08 0.07 0.10 0.08 0.19 0.18 0.32 0.34 0.40 0.40 0.46 0.47 0.51 0.52 0.62 0.52 0.51 0.50 0.48 0.43 0.79 0.43
500 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.02 0.02 0.04 0.04 0.06 0.07 0.08 0.09 0.09 0.09 0.12 0.12 0.12 0.12 0.14 0.13 0.13 0.12 0.20 0.12

75-26-2
n=675
k=2
w=39
h=120

16 25274

(p=2) (p=4) (p=8) (p=12) (p=24) (p=48) (p=96) (p=144) (p=288) (p=384) (p=640) (p=1280) (p=1280) (p=2560) (p=3840)
20 0.09 0.09 0.17 0.14 0.23 0.20 0.34 0.22 0.58 0.37 0.75 0.64 0.87 0.73 0.88 0.93 0.98 0.90 0.94 0.91 0.99 0.91 0.99 0.98 0.99 0.98 0.99 0.99 1.00 0.99
100 0.02 0.02 0.03 0.03 0.05 0.04 0.07 0.04 0.12 0.07 0.20 0.13 0.38 0.24 0.39 0.25 0.52 0.50 0.71 0.59 0.89 0.63 0.95 0.68 0.71 0.68 0.89 0.92 0.97 0.95
500 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.04 0.03 0.08 0.05 0.08 0.05 0.11 0.12 0.21 0.12 0.32 0.20 0.55 0.25 0.27 0.25 0.27 0.44 0.78 0.62

20 8053

(p=2) (p=4) (p=8) (p=12) (p=24) (p=48) (p=96) (p=144) (p=288) (p=384) (p=640) (p=1280) (p=1280) (p=2560) (p=3840)
20 0.09 0.09 0.12 0.11 0.17 0.17 0.39 0.39 0.65 0.46 0.73 0.78 0.93 0.84 0.88 0.92 0.98 0.96 0.97 0.98 0.99 0.98 1.00 0.99 0.99 0.99 1.00 1.00 1.00 1.00
100 0.02 0.02 0.03 0.02 0.03 0.03 0.08 0.08 0.13 0.09 0.21 0.16 0.39 0.23 0.42 0.24 0.66 0.47 0.77 0.56 0.90 0.74 0.97 0.90 0.97 0.90 0.97 0.98 0.99 0.98
500 0.00 0.00 0.01 0.00 0.01 0.01 0.02 0.02 0.03 0.02 0.04 0.03 0.08 0.05 0.08 0.05 0.15 0.10 0.24 0.11 0.40 0.20 0.72 0.51 0.69 0.51 0.87 0.75 0.87 0.87

75-26-6
n=675
k=2
w=39
h=133

10 199460

(p=2) (p=4) (p=8) (p=16) (p=32) (p=64) (p=128) (p=128) (p=128) (p=256) (p=384) (p=576) (p=1152) (p=2304) (p=4608)
20 0.07 0.07 0.16 0.16 0.30 0.30 0.36 0.37 0.53 0.62 0.59 0.73 0.74 0.80 0.77 0.80 0.77 0.80 0.85 0.91 0.96 0.89 0.96 0.94 0.98 0.95 0.99 0.93 1.00 0.99
100 0.01 0.01 0.03 0.03 0.06 0.06 0.07 0.07 0.12 0.12 0.15 0.15 0.26 0.26 0.26 0.26 0.26 0.26 0.41 0.44 0.51 0.55 0.50 0.52 0.62 0.67 0.84 0.71 0.95 0.84
500 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.03 0.03 0.05 0.05 0.05 0.05 0.05 0.05 0.09 0.09 0.11 0.11 0.11 0.11 0.19 0.19 0.24 0.24 0.41 0.39

12 64758

(p=2) (p=4) (p=8) (p=16) (p=32) (p=64) (p=128) (p=128) (p=128) (p=256) (p=384) (p=576) (p=1152) (p=2304) (p=4608)
20 0.08 0.08 0.14 0.14 0.27 0.26 0.34 0.31 0.58 0.33 0.60 0.36 0.74 0.80 0.71 0.80 0.76 0.80 0.80 0.72 0.95 0.77 0.89 0.74 0.97 0.87 0.99 0.87 0.99 0.96
100 0.02 0.02 0.03 0.03 0.05 0.05 0.07 0.06 0.12 0.07 0.14 0.07 0.23 0.23 0.23 0.23 0.24 0.23 0.32 0.24 0.38 0.24 0.39 0.32 0.49 0.39 0.51 0.39 0.86 0.59
500 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.03 0.01 0.05 0.05 0.05 0.05 0.05 0.05 0.07 0.05 0.08 0.05 0.08 0.07 0.13 0.09 0.12 0.09 0.30 0.14

75-26-9
n=675
k=2
w=39
h=124

16 59609

(p=2) (p=4) (p=8) (p=16) (p=24) (p=48) (p=96) (p=120) (p=240) (p=480) (p=960) (p=1920) (p=3840) (p=3840) (p=7680)
20 0.08 0.08 0.15 0.15 0.15 0.18 0.20 0.38 0.37 0.40 0.62 0.43 0.64 0.77 0.76 0.81 0.93 0.97 0.92 0.93 0.97 0.94 0.96 0.96 1.00 1.00 1.00 1.00 1.00 1.00
100 0.02 0.02 0.03 0.03 0.03 0.04 0.04 0.08 0.07 0.08 0.12 0.09 0.15 0.16 0.21 0.19 0.31 0.23 0.36 0.38 0.44 0.58 0.62 0.78 0.86 0.80 0.83 0.80 0.97 0.94
500 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.02 0.02 0.02 0.03 0.03 0.04 0.04 0.06 0.05 0.08 0.08 0.10 0.14 0.14 0.26 0.19 0.35 0.26 0.35 0.41 0.46

18 66533

(p=2) (p=4) (p=8) (p=16) (p=24) (p=48) (p=96) (p=120) (p=240) (p=480) (p=960) (p=1920) (p=3840) (p=3840) (p=7680)
20 0.08 0.08 0.13 0.13 0.13 0.13 0.17 0.31 0.31 0.54 0.54 0.57 0.55 0.61 0.72 0.79 0.82 0.94 0.86 0.96 0.93 0.97 0.99 0.98 1.00 0.99 0.99 0.99 0.99 1.00
100 0.02 0.02 0.03 0.03 0.03 0.03 0.03 0.06 0.06 0.11 0.11 0.11 0.12 0.12 0.19 0.18 0.29 0.19 0.32 0.75 0.40 0.72 0.58 0.87 0.80 0.96 0.80 0.96 0.94 0.98
500 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.02 0.02 0.04 0.04 0.06 0.04 0.07 0.23 0.09 0.24 0.13 0.40 0.23 0.46 0.26 0.46 0.42 0.77

20 5708

(p=2) (p=4) (p=8) (p=16) (p=24) (p=48) (p=96) (p=120) (p=240) (p=320) (p=640) (p=1280) (p=2560) (p=2560) (p=5120)
20 0.10 0.10 0.17 0.17 0.19 0.19 0.19 0.24 0.24 0.38 0.39 0.40 0.46 0.60 0.62 0.93 0.91 0.98 0.85 0.97 0.94 0.99 1.00 0.99 0.99 1.00 1.00 1.00 1.00 1.00
100 0.02 0.02 0.03 0.03 0.04 0.04 0.04 0.05 0.05 0.08 0.08 0.08 0.10 0.12 0.15 0.29 0.28 0.55 0.48 0.57 0.63 0.84 0.87 0.93 0.95 0.99 0.98 0.99 0.99 0.99
500 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.02 0.02 0.03 0.06 0.06 0.11 0.10 0.11 0.20 0.29 0.35 0.70 0.61 0.86 0.67 0.86 0.96 0.94

Better by 10% 0x 0x 6x 0x 3x 3x 6x 9x 15x 10x 17x 1x 9x 11x 10x 12x 12x 7x 15x 11x 20x 7x 22x 7x 12x 8x 11x 10x 7x 13x
Better by 50% 0x 0x 0x 0x 0x 0x 3x 6x 9x 6x 8x 0x 7x 0x 7x 5x 6x 2x 5x 3x 7x 2x 5x 4x 4x 3x 0x 2x 3x 4x

Table B.22: Average resource utilization with 20, 100, 500, and “unlimited” CPUs, on grid instances.
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