
Benchmark on DAOOPT and GUROBI with the
PASCAL2 Inference Challenge Problems

Junkyu Lee, William Lam, Rina Dechter
Department of Computer Science

University of California, Irvine, U.S.A
junkyul@uci.edu,{willmlam,dechter}@ics.uci.edu

Abstract

We report the PASCAL2 benchmark for DAOOPT and GUROBI on MPE task
with 330 optimally solved instances from 8 benchmark domains. DAOOPT out-
performed GUROBI in 3 domains, while GUROBI was faster than DAOOPT in
the rest of the 5 domains. We show that DAOOPT performed well in domains
where it could have high quality initial solutions for pruning the AND/OR search
space, or skip search when the heuristic upper bounds were converged to the opti-
mal due to MPLP/JGLP algorithms. GUROBI presented excellent performance if
cutting planes were applied progressively and its heuristic algorithms could find
the optimal solution at the root of branch-and-cut tree.

1 Introduction

We benchmarked DAOOPT [1] and GUROBI [2] with selected problems from the 2011 PASCAL2
Inference Challenge [3] to see how DAOOPT, a state-of-the-art competitive Branch-and-Bound
solver for graphcial models that uses different principles for generating a lower bound and prun-
ing than ILP solvers, compares with GUROBI, a professional MILP solver that is optimized and
includes lessons studied over 30-40 years. In addition, a comparison can direct ideas to improve
both solvers by combining their benefits.

DAOOPT is a Breadth Rotating AND/OR Branch-and-Bound (BRAOBB) [4-5] based solver for
finding Most Probable Explanation (MPE) over graphical models, and is equipped with algorithmic
components for enhancing the approximate upper-bounds, finding variable orderings, and picking
up initial solutions via stochastic local search. More specifically, Message Passing Linear Pro-
gramming(MPLP) [6], Join Graph Linear Programming(JGLP) [7], and Mini Bucket Elimination
with Moment Matching(MBE-MM) [8] produce tighter upper bounds for the maximization prob-
lem on the top of the static heuristics from Mini-Bucket Elimination(MBE) [9]. Stochastic greedy
ordering scheme(CVO) [10] efficiently generates orderings with low induced widths by using min-
fill with stochastic tie-breaking and early cut-offs. This plays an important role the efficiency of
BRAOBB as its time complexity is exponential in the induced width w (O(n · kw)). Guided Local
Search+(SLS) [11] is used to find a good initial solution to allow pruning of a significant amount of
subtrees, improving search time. GUROBI is a commercial mathematical programming solver, and
we are interested in its MILP solver.

We used MPE to 0-1 ILP conversion illustrated in [12], and compared the runtime of DAOOPT and
GUROBI. It should be noted that the performance of GUROBI is subjected to the property of the
conversion employed, and we do not address the issue of performance variation due to graphical
model to ILP conversion methods. Section 2 introduces the benchmark setup, Section 3 reports
benchmark results of selected problem sets with additional benchmark results available on our web-
site1. We conclude in section 4.

1http://sites.uci.edu/automatedreasoninggroup/

1

http://sites.uci.edu/automatedreasoninggroup/

2 Benchmark Setup

Benchmark Platform We ran the benchmarks on a platform with two 2.66 GHz Intel Core2 Duo
Processors and 6 GB memory, running a Linux operating system. The total amount of memory avail-
able for both solvers was limited to 4 GB. We also focus these benchmarks on serial performance,
so we limited the cores used to 1.

Parameter set 1 set 2 set 3
MBE-MM i-bound maximum i selected by DAOOPT within 4GB memory
MPLP iteration limit 2 sec 30 sec / 500 iter 60 sec / 2000 iter
JGLP iteration limit 2 sec 30 sec / 250 iter 60 sec / 2000 iter
CVO iteration limit 3 sec / 500 iter 60 sec/ 10000 iter 180 sec / 30000 iter
SLS time limit 2 x 2 sec 10 x 6 sec 20 x 10 sec
BRAOBB time limit To termination or timeout greater than termination time of GUROBI

Table 1: DAOOPT input parameters. The same sets were used for the PASCAL2 competition, and
we matched them to the difficulty of benchmark domains; the set 1 was used for easy instances
expected to be terminated within a minute while the set 3 cope with the hardest problem instances.

DAOOPT Input Parameters DAOOPT has five algorithmic components, MBE-MM, MPLP, JGLP,
CVO, and SLS, that require input parameters; Table 1 defines three input parameter sets to cope
with different levels of difficulty based on the increased time at preprocessing step. The i-bound
for the MBE is chosen to be the maximum available within the memory limit, and the time limit
of BRAOBB was specified per problem. we set iteration limit and time limit for MPLP, JGLP, and
CVO, so that they could be terminated when one of the limits reached. SLS executed multiple times
with preset time duration.

GUROBI Input Parameters GUROBI is comprised of numerous algorithms for finding heuristic
solutions, cutting planes, managing the branch-and-cut tree, etc. We used the default options and
explicitly set the dual simplex method as the root relaxation.

Graphical Model A graphical model is a tuple R =< X,D,F,
∏

>, where X = {x1, x2, · · · , xn}
is a set of variables, D = {D1, D2, · · · , Dn} is a set of domains of variables, xi ∈ Di, F =
{F1, F2, · · · , Fm} is a set of factors defined over a set S = {S1, S2, · · · , Sm} of a scope Sj ⊆ X
for the factor Fj , and

∏
is a combination operator. The MPE task is to find maxX

∏m
j=1 Fj(xj),

where the xj is a vector of variables on the Sj . In particular, a probability distribution can be written
as F(X) = 1

Z

∏m
j=1 Fj(xj) = 1

Z exp(−
∑m

j=1 gj(xj)), and the MPE task is minX

∑m
j=1 gj(xj),

where the Z is a normalization constant, and the gj(xj) = − logFj(xj).

MPE to 0-1 ILP Conversion [12] A set of binary decision variables V = {vkj } is defined over
the kth row of the jth factor tables. Mutual exclusivity constraints enforce a decision variable to
select a row exclusively within a factor,

∑jr
k=1 v

k
j = 1, the sum of all decision variables in the jth

factor table equals 1. Cross consistency constraints constrain such selections to be consistent across
all pairs of factor assignments,

∑
k∼z v

k
p =

∑
l∼z v

l
q , where z ∈

∏
i Di, i ∈ Sp ∩ Sq , the sum of

all decision variables over all instantiations of an intersection of scope of the factor p and q is the
same. The objective is max

∑
j

∑
k v

k
j · F k

j maximizing the sum of decision variables weighted by
its corresponding factor value. Thus, the number of decision variables is O(m ·KS), where the m
is the numer of factor tables, the K is the maximum domain size and the S is the maximum arity of
factors, and the number of constraints is O(m2 ·K(S−1)).

Benchmark Problem Domains We report the size of benchmarks and the problem statistics;
Grid(Markov), Segmentaion and WCSP were divided into subgroups based on the input parame-
ters to avoid bias due to the different level of difficulty. There are three parts in Table 2. The
first two columns are benchmark domain information: the name of benchmark domain with a tuple
(n̄, f̄ , k̄, s̄, w̄, h̄) showing average of the number of variables, the number of factors, maximum do-
main sizes, maximum arities, induced widths of orderings, and pseudotree heights, the number of
optimally solved instance out of the total number of instances (#opt

#tot) for each solver. The following
part is the problem statistics based on the graphical model representation for DAOOPT: the mini-
mum and maximum number of nodes, factors, domain sizes, arities, induced widths, and pseudotree

2

heights. The last two columns are dimension of constraint matrices for GUROBI: the minimum and
maximum number of rows and columns.

DAOOPT GUROBI
Name (#opt

#tot
)da nmin fmin kmin smin wmin hmin rowmin colmin

(n̄,f̄ ,k̄,s̄,w̄,h̄) (#opt
#tot

)gu nMax fMax kMax sMax wMax hMax rowMax colMax

Grid(Bayes) 32/32 144 145 2 3 16 53 914 1058
(649,650,2,3,35,121) 32/32 2500 2501 2 3 81 309 17102 19602
Pedigree 22/22 298 335 3 4 15 53 2518 4476
(736,918,5,4,24,99) 22/22 1015 1290 7 5 35 160 8429 9986
Grid(Markov).20x20 5/5 400 1161 2 2 26 66 8529 3841
(400,1185,2,2,38,70) 5/5 400 1201 2 2 46 73 9201 4001
Grid(Markov).40x40 8/8 1600 4721 2 2 53 144 35449 15681
(1600,4761,2,2,74,147) 8/8 1600 4801 2 2 95 149 36801 16001
Grid(Markov).80x80 0/8 6400 19041 2 2 107 307 14489 63361
(6400,19121,2,2,152,310) 8/8 6400 19201 2 2 197 313 147201 64001
Segmentation.K2 50/50 221 823 2 2 15 44 8823 2845
(229,852,2,2,17,55) 50/50 237 887 2 2 19 68 9699 3071
Segmentation.K21 50/50 221 823 21 2 15 44 84823 269263
(229,852,21,2,17,55) 50/50 237 887 21 2 19 68 93451 291187
Promedas 68/68 196 201 2 3 4 33 625 1001
(832,843,2,3,37,79) 68/68 1911 1928 2 3 116 162 9856 11565
WCSP.Spot5 6/6 67 272 4 2 6 15 4291 2572
(132,648,4,3,14,39) 5/6 209 1395 4 3 26 87 88620 12390
WCSP.Easy 8/8 25 82 3 2 6 15 1357 730
(38,264,5,2,13,21) 8/8 71 686 11 2 21 30 168583 9479
WCSP.Hard 3/4 16 208 4 2 7 8 10585 3777
(72,1948,18,2,23,37) 3/4 179 7110 44 2 42 90 104103361 340305
Protein Folding 7/7 337 1360 81 2 22 58 297301 27094
(926,3710,81,2,30,111) 1/7 1364 5220 81 2 38 164 1030679 2699568
DBN 60/60 70 16167 2 2 29 29 12986347 34691
(70,16167,2,2,29,29) 0/60 70 16167 2 2 29 29 12986347 34691

Table 2: Benchmark domain statistics: The domain name with average number of variables, factors,
maximum domain sizes, maximum arities, induced widths, pseudotree heigths; The number of opti-
mally solved instances out of the total number of instances; the range of problem statistics based on
graphical models for DAOOPT; the range of constraint matrice dimension for GUROBI.

3 Benchmark Results

Runtime Comparison Per Instance In Figure 1, we show runtimes from selected instances from
benchmark domains. Both solvers often shows similar difficulty for instances in Grid(Bayes),
Pedigree, Grid(Markov), Segmentation or WCSP. For example, each of Grid.90-50-5, Pedigree19,
Grid.40x40.f10.wrap, 10-14-s.21, WCSP.bwt4ac was harder than that of Grid.90-30-5, Pedigree20,
Grid.40x40.f10, 10-14-s.bin, WCSP.Spot5.54.

Several challenging instances are reported separately in Table 5. For DAOOPT: pedigree40, 2650
seconds; Grid.90-46-5, 9336 seconds; All 80x80 Grid instances, where DAOOPT was 5400 seconds
time out (DAOOPT could find the optimal solution for Grid.80x80.f2 after 4677 seconds with pre-
computed variable order). For GUROBI: WCSP.Spot5.42, 2 day time out, which is the only time out
instance for GUROBI; WCSP.myciel5g-3, 1012 seconds; WCSP.myciel5g-4, 5281 seconds.

Mean Runtime Comparison Per Domain Optimal solutions from 330 instances are obtained, after
excluding indeterminate cases. Table 3 reports mean runtime on each benchmark domain, where
some domains further divided into subgroups based on the difficulty. Par is the input parameters,
the tuple (im, ī, iM) shows the range and average of i-bounds used, #daowin

#ins is the number of
DAOOPT wins over total instances, following four columns are the arithmetic and geometric mean
of runtimes, and the arithmetic mean of ratios of runtimes of GUROBI over DAOOPT, where a ratio
was calculated per instance at the last column.

3

Name Par (im ,̄i,iM) #daowin
#Ins

(
∑

Td)/N (
∑

Tg)/N (
∏

Td)1/N (
∏

Tg)1/N (
∑Tg

Td
)/N

Grid(Bayes) set1 (16,22.31,25) 0/32 382.8 2.7 51.01 1.35 0.038
Pedigree set2 (10,17.91,23) 0/22 232.4 27.3 181.41 9.66 0.096
Grid(Markov).20x20 set1 (20,20,20) 0/5 14.6 7.2 14.28 7.21 0.524
Grid(Markov).40x40 set2 (20,20,20) 0/8 212.1 84.1 212.10 78.22 0.396
Grid(Markov).80x80 set3 (18,18,18) 0/8 Tout(5400) 2125 Tout(5400) 1661 -
Segmentation.K2 set1 (15,17.14,19) 0/50 7.14 0.26 7.12 0.26 0.037
Segmentation.K21 set1 (4,4,4) 0/50 55.4 11.36 55.33 11.23 0.205
Promedas set1 (4,20.60,27) 0/68 143.71 0.2 40.57 0.16 0.006
WCSP.Spot5 set1 (6,12,19) 4/6 59.5 197.65 (5) 18.91 47.31 (5) 23.23
WCSP.Easy set1 (6,10,15) 8/8 43 620.33 19.88 94.99 14.83
WCSP.Hard set3 (3,7.5,11) 3/4 1208 (3) 5388 (2) 729 (3) 5386 (2) -
ProteinFolding.4G set3 (3,3,3) 6/7 3005 79 (1) 1004 79 (1) -
ProteinFolding.(No M Lim) - - - - 702 - 448 -
DBN set3 (28,28,28) 60/60 342.35 Mout(4GB) 342.35 Mout(4GB) -

Table 3: Mean runtime (sec) comparison per benchmark domain. The input parameters for DAOOPT
(par) the minimum, average, and maximum i-bounds, the number of instances DAOOPT won out of
total. The arithmetic and geometric mean of runtimes from DAOOPT and GUROBI, and the arith-
metic mean of ratios of each instance runtime. A number in parentheis is the number of instances
averaged to exclude time or memory out cases.

Figure 1: Runtime comparison per selected instances. Instance names in each domain are at the
horizontal axis. GUBORI was memory out for all in DBN, and all except pdb1i24 in Protein Folding.
The last subplot visualizes geometric mean of runtimes.

DAOOPT found 319 optimal solutions except 8 instances in Grid(Markov).80x80, and myciel5g-5
in WCSP.Hard due to the time limit; GUROBI found 259 except spot5.42 in WCSP.Easy, bwt4ac
and CELAR6-SUB0 in WCSP.Hard, 6 instances in Protein Folding, and 60 instances in DBN due to
the memory limit. The geometric mean of runtimes shows that GUROBI was superior to DAOOPT
in GRID(Bayes), Pedigree, Grid(Markov), Segmentation, and Promedas; DAOOPT was favorable
in WCSP, Protein Folding, and DBN. Note that GUROBI was beaten by DAOOPT in Protein Fold-
ing and DBN because of the memory limit; releasing memory limit in Protein Folding resulted in
returning 7 optimal solutions equipped with 2 new optimal solutions in 447.61 sec on average.

Log Summary Table 4 has two parts and each part summarizes log data produced by DAOOPT and
GUROBI. Tsls is the amount of time spent for SLS, E[Gapsls−opt] and E[Gapsls−ub] are the average gap
from SLS solutions to optimal solutions, |OptimalSolution−SLSSolution

OptimalSolution |, and from SLS solutions
to heuristic upperbounds in similar manner. #sls hit opt and #sls hit ub are the number of SLS

4

solutions met optimal solutions and heuristic upper bounds. The fifth column is the average number
of AND/OR nodes explored during search.

GUROBI log statistics are presented in the second part. E[node] is the average number of nodes
branched, and #solve at root counts cases where GUROBI found optimal solution at the root node.
The last two columns are the average number of simplex iterations (iter), gomory cuts (gomory),
zero half cuts (zerohalf), and clique cuts (clique).

DAOOPT GUROBI
Name Par E[Gapsls−opt] E[Gapsls−ub] E[OR] E[node] E[iter] E[zerohalf]

(n̄,f̄ ,k̄,s̄,̄i,w̄,h̄) Tsls #sls hit opt #sls hit ub E[AND] #solved at root E[gomory] E[clique]
Grid(Bayes) set1 0.40% 0.95% 29779829.13 0.5 4804.16 71.69
(649,650, 2, 3,22,35,121) 4 14/28 8/28 32069771.13 24/32 5.59 68.66
Pedigree set2 0.01% 0.76% 14040647 210.32 41678.45 240.64
(736,918,5,4,18,24,99) 60 15/22 4/22 17328814.82 1/22 5.95 14.32
Grid(Markov).20x20 set1 1.28% 1.39% 1326.2 0 4259.8 336.4
(400,1185, 2, 2,20,38,70) 4 0/5 0/5 1379.2 5/5 10.4 7.2
Grid(Markov).40x40 set2 1.86% 1.90% 24042.38 1.13 16378.25 994.88
(1600,4761, 2, 2,20,74,147) 60 0/8 0/8 24835.75 7/8 16.25 26
Grid(Markov).80x80 set3 2.46% 2.59% Tout(5400) 176.88 101722.5 3828.5
(6400,19121, 2, 2,18,152,310) 200 0/8 0/8 Tout(5400) 4/8 42.75 513.13
Segmentation.K2 set1 0.00% 0.00% 133.34 0 1225 0
(229,852, 2, 2,17,17,55) 4 50/50 50/50 134.34 50/50 0 0
Segmentation.K21 set1 0.00% 0.00% 96.08 0 4080.6 0
(229,852, 21, 2,4,17,55) 4 50/50 50/50 97.08 50/50 0 0
Promedas set1 0.64% 14.37% 9011410.53 0 1351.79 0.09
(832,843, 2, 3,21,37,79) 4 64/68 23/68 9673994.4 68/68 0.03 0
WCSP.Spot5 set1 0.00% 1.73% 2110421.67 982.8 112844 407
(132,648, 4,3,12,14,39) 4 6/6 5/6 2737228.5 1/5 14.6 741.8
WCSP.Easy set1 0.00% 16.72% 1724404.38 27037.5 514113 1.75
(38,264,5, 2,10,13,21) 4 8/8 5/8 2890242.25 2/8 0 0
WCSP.Hard set3 0.00% 82.22% 52348330.33 100192.5 3742815.5 206.5
(72,1948,18, 2,8,23,37) 200 4/4 0/4 88802002 0/2 0 0
Protein Folding set3 0.00% 0.26% 20609318.71 0 9487 0
(926,3710, 81, 2,3,30,111) 200 7/7 1/7 22866496.29 1/1 0 0
DBN set3 0.00% 3.12% 2456.73 Mout(4GB) Mout(4GB) Mout(4GB)
(70,16167,2,2,3,29,29) 200 60/60 1/60 3096.98 0/0 Mout(4GB) Mout(4GB)

Table 4: Log summary. DAOOPT log statistics: the average gap from SLS solutions to optimal
solutions, the number of optimal SLS solutions, the average gap from SLS solutions to heuristic
upper bounds, and the number of exact heuristic upper bounds. GUROBI log statistics: the average
number of nodes branched, the number of instances terminated at the root node, the average number
of simplex iterations, gomory cuts, zero half cuts, clique cuts.

DAOOPT : Quality of Initial Lower Bounds from SLS and Static Heuristic Upper Bounds The
comparison between the inital solution and the optimal solution shows that for all DAOOPT winning
instances except WCSP.bwt4ac instances, SLS found the optimal solution; search often used to prove
its optimality. If a good initial solution is combined with an exact heuristic upper bound, the runtime
of DAOOPT improves significantly. In Table 4, it is shown that SLS solution was the same as
the heuristic upper bound in Segmentation, so search terminated only after exploring 134.34 and
97.08 AND nodes on average. Similary, 10 instances out of 18 WCSP instances also terminated
immediately after preprocessing step.

GUROBI : Number of nodes branched and Cutting Planes GUROBI showed its superior perfor-
mance over DAOOPT in Grid(Bayes), Pedigree, Grid(Markov), Segmentation, and Promedas. For
209 instances among 243 instances GUROBI terminated at the root node. Thus, GUROBI was able
to find optimal solution before branching by cutting plane and heuristic algorithms.

Detailed Benchmark Results from Selected Instances Table 5 reports individual results from se-
lected instances. The tuple (n, f, k, s, w, h) is the problem statistics for each instance as previously
defined. The first part of the table corresponds to DAOOPT: i is the i-bound used, MBytes is the
amount of memory used to compile the Mini-Bucket Heuristics with the i-bound, Sol is the optimal
solution found, Gapsls−opt is the gap between SLS solution and the optimal solution, MBE-UB is the
Mini-Bucket heuristic upper bound, Gapsls−ub is the gap between SLS solution and the MBE-UB,
Tpre is preprocessing time, and Td is total elapsed time. The following three columns are results

5

from GUROBI: Tg is total elapsed time, Tg/Td is the ratio of elapsed times, iter is the number of
simplex iterations, and nodes is the number of nodes explored. DAOOPT found the optimal SLS
solution, and the exact heuristic upper bound in many cases: pedigree1, 15-3-s.21, pdb1d2e, and etc.
GUROBI solved instances extremely fast when it could find the optimal solution and prove its op-
timality at the root node. For example, 90-30-5, pedigree1, 15-3-s.21, pdb1i24, and etc. DAOOPT
explores the AND/OR search space efficiently when the initial solution was close to the optimal
though the static heuristic upper bound was not converged to the optimal. For myciel5g-4, DAOOPT
terminated in 2,890 seconds after exploring 156,881,144 OR nodes and 265,874,839 AND nodes,
while GUROBI had to branch 85,887 nodes and found optimal solutions after 5,281 seconds.

4 Conclusion

Running the PASCAL benchmarks extended our knowledge of its problem sets and equips it with
optimal solutions that can be useful for additional testing by other solvers. High quality SLS solu-
tions often lead DAOOPT to terminate early because it could prune huge portion of the AND/OR
search space. DAOOPT was favorable in benchmark domains like WCSP where SLS almost picked
optimal solutions, along with being able to use mini-bucket heuristics with a i-bound close to the
induced width, where the heuristic upper bound becomes more accurate or even converged to the
optimal solution. GUROBI showed fast performance when it could apply cutting planes and find
solutions within the desired gap from the best bound before branching. In future work, DAOOPT
could consider the advantage of dynamic heuristic evaluation schemes, but the overhead of mini-
bucket compilation time needs to be overcome. GUROBI may improve its performance further by
incorporating stronger heuristic algorithms similar to SLS.

DAOOPT GUROBI
Name i-bound sol sls sol mbe-ub or Tpre Tg sol iter

(n,f,k,s,w,h) mbytes Par Gapsls−opt Gapsls−ub and Td Tg/Td status nodes

Grid(Bayes)
75-20-5 25 -12.72 -12.82 -12.64 426 60 0.99 -12.72 2809

(400,401,2,3,28,95) 3666.53 Set 1 0.01 0.01 428 60 0.02 opt 1
90-46-5 19 -28.374 log(0) -26.18 816759831 59 13.54 -28.374 18021

(2116,2117,2,3,74,240) 2618.6 Set 1 - - 869534974 9336 0.0014 opt 1
90-30-5 21 -13.12 -13.33 -12.8 3691 55 3.61 -13.12 6529

(900,901,2,3,45,160) 2557.86 Set 1 0.02 0.04 3757 55 0.07 opt 0
Pedigree

pedigree1 15 -45.58 -45.58 -45.58 0 81 0.7 -45.58 2759
(298,335,4,5,15,60) 46.38 Set 2 0 0 1 81 0.01 opt 0

pedigree19 16 -97.09 -97.19 -94.96 3365767 183 173.66 -97.09 286437
(693,794,5,5,23,143) 2796.57 Set 2 0 0.02 4133870 207 0.84 opt 1326

pedigree40 14 -130.345 -130.345 -126.951 269860028 165 221.15 -130.345 318223
(842,1031,7,5,28,160) 1829.93 Set 2 0.000774867 0.02603859 337356564 2796 0.079095136 opt 1666

pedigree41 18 -120.74 -120.74 -118.72 958379 167 24.5 -120.74 48112
(885,1063,5,5,30,120) 2089.86 Set 2 0 0.02 1117709 173 0.14 opt 503

Grid(Markov)
grid20x20.f10.wrap 20 1324.3 1302.01 1326.05 2954 17 6.52 1324.3 4052
(400,1201,2,2,46,73) 505.19 Set 1 0.02 0.02 3113 17 0.38 opt 0

grid40x40.f10 20 5504.38 5413.87 5505.01 7815 209 97.88 5504.38 15820
(1600,4721,2,2,53,149) 1659.18 Set 2 0.02 0.02 8081 209 0.47 opt 0

grid40x40.f10.wrap 20 5674.43 5551.37 5676.88 11312 215 112.82 5674.43 19740
(1600,4801,2,2,95,144) 2065.05 Set 2 0.02 0.02 11724 215 0.52 opt 0

grid80x80.f2 18 4677.73 4601.17 4681.23 - 541 577.2 4677.73 53907
(6400,19042,2,2,107,307) 2784.87 Set 3 0.016368 0.017102343 - Tout(5400) - opt 0

Segmenation
15-3-s.21 4 -138.71 -138.71 -138.71 231 55 12.91 -138.71 6602

(231,859,21,2,17,53) 351.15 Set 1 0 0 232 55 0.23 opt 0
15-3-s.binary 17 -30.17 -30.17 -30.17 231 6 0.27 -30.17 1298

(231,859,2,2,17,53) 10.03 Set 1 0 0 232 6 0.05 opt 0
Promedas

or-chain-10.fg 18 -9.3 -9.3 -9.3 0 6 0.08 -9.3 774
(453,462,2,3,18,50) 10.09 Set 1 0 0 1 6 0.01 opt 0

or-chain-172.fg 22 -7.5 -7.5 -4.2 38700 52 0.17 -7.5 1170
(739,751,2,3,36,84) 2378.99 Set 1 0 0.44 41410 52 0 opt 0

WCSP
Spot5.404 19 -2.78 -2.78 -2.78 100 14 310.58 -2.78 213579

(100,711,4,3,19,45) 204.17 Set 1 0 0 101 14 22.18 opt 3563
Spot5.503 9 -2.2 -2.2 -2.2 0 7 622.49 -2.2 288714

(143,636,4,3,9,44) 1.37 Set 1 0 0 1 7 88.93 opt 1134
GEOM30a-3 6 -44 -44 -44 48 6 42.42 -44 101117

(30,82,3,2,6,15) 0.02 Set 1 0 0 61 6 7.07 opt 11735
myciel5g-3 14 -64 -64 -24.96 2498486 33 1012.8 -64 907835

(47,237,3,2,21,24) 981.14 Set 1 0 0.61 3834486 54 18.76 opt 31991
queen5-5-4 12 -48 -48 -20.6 10857881 69 977.24 -48 913025

(25,161,4,2,18,20) 1804.73 Set 3 0 0.57 18721553 183 5.34 opt 26154
myciel5g-4 11 -16 -16 0 156881144 319 5281.76 -16 4933083

(47,237,4,2,21,24) 1296 Set 3 0 1 265874839 2890 1.83 opt 85887
bwt4ac 7 -0.21237 -0.21 -0.13 11120 397 - - -

(179,7110,18,2,42,90) 1332.35 Set3 0 0.37 12974 400 - Mout -
Protein Folding

pdb1d2e 3 -754.99 -754.99 -753.57 26321 554 - - -
(1328,5220,81,2,22,136) 433.64 Set 3 0 0 29818 557 - Mout -

pdb1i24 3 -190.83 -190.83 -190.83 0 361 78.54 -190.83 9487
(337,1360,81,2,33,58) 60.15 Set 3 0 0 1 361 0.22 opt 0

Table 5: Detailed benchmark results for selected instances from Figure 1 and hard domains.

6

Acknowledgement

This work was supported by NSF grant IIS-1065618.

References
[1] L. Otten, A. Ihler, K. Kask, and R. Dechter. Winning the pascal 2011 map challenge with enhanced and/or

branch-and-bound. In NIPS Workshop DISCML, 2012.

[2] Z. Gu, E. Rothberg, and R. Bixby. Gurobi optimizer v5.5. http://www.gurobi.com.

[3] The 2011 PASCAL2 Probabilistic Inference Challenge. http://www.cs.huji.ac.il/project/
PASCAL/.

[4] R. Marinescu. AND/OR Search Strategies for Combinatorial Optimization in Graphical Models. PhD
thesis, University of California, Irvine, 2008.

[5] L. Otten. Extending the Reach of AND/OR Search for Optimization in Graphical Models. PhD thesis,
University of California, Irvine, 2013.

[6] A. Globerson and T. S. Jaakkola. Fixing max-product: Convergent message passing algorithms for map
lp-relaxations. In NIPS, pages 553–560, 2007.

[7] R. Dechter A. Ihler, N. Flerova and L. Otten. Join-graph based cost-shifting schemes. 2012.

[8] R. Dechter N. Flerova, A. Ihler and L. Otten. Mini-bucket elimination with moment matching. In NIPS
Workshop DISCML, 2011.

[9] Rina Dechter and Irina Rish. Mini-buckets: A general scheme for bounded inference. Journal of the ACM
(JACM), 50(2):107–153, 2003.

[10] L. Otten K. Kask, A. Gelfand and R. Dechter. Pushing the power of stochastic greedy ordering schemes
for inference in graphical models. In AAAI, 2011.

[11] Frank Hutter. SLS4MPE. http://www.cs.ubc.ca/labs/beta/Projects/SLS4MPE/.

[12] D. Koller and N. Friedman. Probabilistic Graphical Models: Principles and Techniques, pages 577–579.
The MIT Press, 2009.

7

http://www.gurobi.com
http://www.cs.huji.ac.il/project/PASCAL/
http://www.cs.huji.ac.il/project/PASCAL/
http://www.cs.ubc.ca/labs/beta/Projects/SLS4MPE/

	Introduction
	Benchmark Setup
	Benchmark Results
	Conclusion

