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Abstract

Maximum Likelihood learning of graphical models is not possible in problems
where inference is intractable. In such settings it is common to use approximate
inference (e.g. Loopy BP) and maximize the so-called “surrogate” likelihood ob-
jective. We examine the effect of using different approximate inference methods
and, therefore, different surrogate likelihoods, on the accuracy of parameter esti-
mation. In particular, we consider methods that utilize a control parameter to trade
computation for accuracy. We demonstrate empirically that cheaper, but worse
quality approximate inference methods should be used in the small data setting as
they exhibit smaller variance and are more robust to model mis-specification.

1 Introduction
Graphical models offer a convenient and compact way to represent the joint distribution of many
random variables. In a graphical model, each random variable is associated with a vertex and the
joint distribution factorizes as a collection of potential functions defined over the cliques (complete
subgraphs) of the graph. Each potential function is a positive function defined over the subset of
variables within each clique. In the context of learning, these potentials are parameterized functions
and given some data one seeks to find a setting of the parameters that optimize some criterion.

In this paper we focus on Markov Random Fields (MRFs), a statistical model used in many areas
of computer science. An MRF is a probability distribution over a collection of discrete random
variables, y = {y1, ..., yM}, that can be written as:

p(y;θ) = exp
(∑

α
θα(yα)− logZ(θ)

)
= exp (θ · s(y)− logZ(θ)) (1)

where yα is a subset of y, θα(yα) is a real-valued potential function and Z(θ) =∑
y exp (

∑
α θα(yα)) is the partition function. MRFs can also be written in exponential family

form, by identifying the vector of sufficient statistics as s(y) = {δ(Yα = yα) | ∀α,yα} and letting
θα(yα) denote the component of the parameter vector θ corresponding to the indicator δ(Yα = yα).

Our goal is to learn the parameters θ given a data set of samples. We focus on finding a setting of
parameters that maximize the likelihood of the data under the model. Such a setting cannot be found
in practice because the likelihood and its gradients cannot be computed efficiently. The likelihood
and its gradients can be approximated, however, by using an approximate inference method, such as
loopy belief propagation (BP). In such cases, we can interpret the approximate inference method as
exactly optimizing a ’surrogate’ to the true likelihood function [1, 2].

In this paper, we examine the effect of using different approximate inference methods and, therefore,
different surrogate likelihood functions, on the accuracy of parameter estimation. In particular, we
consider approximate inference methods that utilize a control parameter - the ibound - to trade
computation for accuracy [3, 4]. In such methods, a smaller ibound requires less memory and time,
but typically provides a worse approximation and a worse surrogate to the true likelihood function.

The key findings of this empirical study are the following:

• Smaller ibound approximate inference methods should be used in the small data setting. Such meth-
ods have greater bias than larger ibounds methods, but exhibit smaller variance.
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• Smaller ibound methods are more robust to model mis-specification in the small data setting.

2 Maximum Likelihood Estimation

Given a data set DN = {y(n)}Nn=1 our goal is to find an estimate of θ. We focus on the maximum
likelihood estimate (MLE), which for data set DN is defined to be:

θML
N = arg maxθ `N (θ) (2)

`N (θ) =
1

N

∑
n

log p(y(n);θ) = µ̄N · θ − logZ(θ) (3)

where µ̄N is a vector of empirical marginals with components computed from DN as: µ̄N (Yα =

yα) = 1
N

∑
n δ
(
Y

(n)
α = yα

)
The likelihood function `N (θ) is a concave function of θ. Thus, its

optima can be found by standard numerical optimization methods if we can evaluate `N (θ) and its
gradients. Evaluating `N (θ) requires computing logZ(θ) and its derivatives are:

∂`N (θ)

∂θα(yα)
= µ̄N (yα)− µθ(yα) (4)

where µθ(yα) = p(yα;θ) is a marginal probability in the model p(y;θ). In general, computing
logZ(θ) and the marginals µθ are intractable. In the next section, we explore two different approx-
imations of the likelihood that arise from approximating logZ(θ).

2.1 Surrogate Likelihood Estimation

Variational inference methods replace the log partition function in Equation 3 with a tractable ap-
proximation. This gives rise to the following ’surrogate’ likelihood function [2, 5]:

˜̀
N (θ) = µ̄N · θ − log Z̃(θ) (5)

In this paper, we consider approximations that utilize a control parameter - the iBound - to trade
computation for accuracy. Let log Z̃(θ, i) denote an approximation to logZ(θ) with an iBound of
size i. We briefly review two approximate inference methods that utilize the iBound.

Weighted Mini-Bucket Elimination (WMB) [3] is an approximate inference method based on the
Bucket Elimination (BE) algorithm [6]. BE is an exact inference algorithm that organizes its com-
putations along a particular variable elimination order. A bucket is associated with each variable to
be eliminated and each bucket is assigned a collection of (potential) functions defined over subsets
of variables. Buckets are processed sequentially along the elimination order by combining the set of
assigned functions and marginalizing out the bucket variable from the resultant combined function.

Mini-Bucket Elimination (MBE) [6] is an approximate method that partitions the set of functions
assigned to a bucket so that at most i variables appear in any combined function. WMB extends
MBE by using a weighted elimination (summation) operator. WMB provides the following upper
bound:

logZ(θ) ≤ log Z̃WMB(θ, i)

Generalized Belief Propagation (GBP) [4, 7] can utilize the iBound parameter just like MBE to limit
the size of the largest combined function. However, rather than providing a bound on the log partition
function GBP provides an approximation resulting from the following free energy optimization:

logZ(θ) ≈ log Z̃GBP (θ, i) = max
µ∈ML

µ · θ + H̃(µ, i) (6)

where H̃(µ, i) is an approximate entropy of the following form:

H̃(µ, i) = −
∑

R∈R
κR
∑

yR

µ(yR) logµ(yR) (7)

and where R is a collection of regions on subsets of at most i variables (|yR| ≤ i) and κR are
over-counting numbers. Equation 6 optimizes the vector of pseudo-marginals, µ, subject to: µ ∈
ML = {µ ≥ 0|

∑
yR\yR′ µ(yR) = µ(yR′) ∀yR′ ⊂ yR R,R′ ∈ R,

∑
yR
µ(yR) = 1 ∀yR}.

As noted in [8, 9], the GBP surrogate likelihood is a concave function of θ. However, it is non-
smooth which means that utilizing numerical optimization methods (e.g. L-BFGS) to optimize it
are unprincipled and cause great practical difficulties. As a result, in the experiments section we
consider a form of GBP in [10] that ignores any terms in H̃(µ, i) with negative counting numbers.
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3 Surrogate Likelihood Error Decomposition

Assume our data samples y(n) are drawn iid from p(y;θ?), where θ? ∈ Θ is a member of some
parametric family of distributions. Further, assume that our model is statistically identifiable so that
if µθ(yα) = p(yα;θ?) for all components α,yα we have that θ = θ? [11].

Let θML = arg maxθ∈Θ Eθ? [log p(y;θ)] be the idealistic MLE. Note that because the model is
assumed to be identifiable we have that θML = θ?. By idealistic, we simply mean that this MLE
is unattainable for the following three practical reasons. First, we are often interested in learning
models for which the true class Θ is unknown. As a result, we restrict attention to an easy-to-
specify family of models Θ ⊂ Θ, such as pairwise MRFs. Let θ? = arg maxθ∈Θ Eθ? [log p(y;θ)]
be the best parameter estimate in this restricted family of models. Second, note that Eθ? [·] is the
expectation over the true and unknown distribution p(y;θ?). In practice, we don’t have access to the
marginals of p(y;θ?) and instead use our samples to compute an empirical approximation to Eθ? .
Let θN = arg maxθ∈Θ

1
N

∑
n

[
log p(y(n);θ)

]
= arg maxθ∈Θ `N (θ) be the empirical optimum in

the restricted family of models. Finally, it is often infeasible to optimize the true likelihood `N (θ),
so we instead optimize a surrogate to it ˜̀

N (θ). Let θ̃N = arg maxθ∈Θ
˜̀
N (θ) be the empirical

optimum found by our approximate inference method.

The total error in our estimate E can then be written as [12]:

E = E
[
Eθ? [log p(y;θ?)]− Eθ?

[
log p(y; θ̃N )

]]
= EModel + EEstimation + EOptimization (8)

where the outer expectation is taken with respect to the random choice of data set and
• EModel = E [Eθ? [log p(y;θ?)]− Eθ? [log p(y;θ?)]] is the model error that measures how well

models in Θ can model the optimal solution θ? ∈ Θ.

• EEstimation = E [Eθ? [log p(y;θ?)]− Eθ? [log p(y;θN )]] is the estimation error that measures the
error due to optimizing an empirical likelihood using N samples.

• EOptimization = E
[
Eθ? [log p(y;θN )]− Eθ?

[
log p(y; θ̃N )

]]
is the optimization error that measures

the error introduced by approximate inference.

We utilize this decomposition in the experiments section to systematically study the optimization er-
ror introduced by different approximate inference methods and assess the robustness of the different
inference methods to varying levels of model and estimation error.

4 Experimental Results

We conducted a variety of experiments to study how the choice of approximate inference method
affects the accuracy of the learned parameters. For simplicity, we focused on pairwise MRFs on a
d× d grid with the standard 4-neighbor connectivity. Each variable in the model is k-ary - i.e. yi ∈
{1, ..,K}. Each vertex in the grid has an associated unary potential, sampled as θi(yi) ∼ N (0, σ2

i ),
and each edge has a pairwise potential, sampled as θij(yi, yj) ∼ N (0, σ2

ij). To ensure that the
model is identifiable, we force the pairwise potentials to be symmetric θij(yi, yj) = θij(yj , yi) and
set θi(yi = 1) = 0 and θij(yi = 1, yj) = 0 for yj ∈ {1, ..,K}[13]. A set of N samples is generated
from each such identifiable model and from this set of samples we find a parameter estimate using
different inference-based likelihood surrogates.

We begin with an experiment for which Θ = Θ so there is no model error. Figure 1 shows the
estimation accuracy for the WMB method with iBound {2, 4, 8} and for GBP with iBound {2, 4}.
Note that GBP with iBound 2 is a convexified loopy BP and for GBP with iBound 4 we choose
the set of regions R to be comprised of the faces and all interior edges and vertices of the planar
grid [14]. The reported errors are averaged across 8 random models generated with σi = 0.2 and
σij = 0.4. Notice in the left plot that the error of all approximate inference methods decreases as the
sample size N increases. Interestingly, we see that higher iBound methods have greater error when
N is small. For example, WMB with iBound 2 (WMB2) lies below WMB8 for N < 1000. The
right-hand plot shows the optimization error for the different methods, computed by substituting the
true marginals µθ? for µ̄N in Equation 5. Notice that the optimization error for the higher iBound
methods is smaller than the lower iBound methods. This is expected behavior as higher iBound
methods will, in general, produce more accurate marginals and log partition function estimates.
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Figure 1: Left: Estimation Error, |θ? − θ|1, for different approximate inference methods as a func-
tion of sample size N . Right: Optimization Error for the different inference methods.

4.1 Bias-Variance Comparison

The previous experiment suggested that lower iBound methods are on average more accurate
than higher iBound methods in the small data setting. To better understand this behavior,
we conducted a simple experiment to analyze the bias and variance of the different approxi-
mate inference-based estimators. In particular, we generated one random model θ? with σi
and σij set as before. Then we generated 50 different data sets from p(y;θ?) for each N ∈
{100, 250, 500, 1000, 2000, 3000, 4000, 5000}. Figure 2 shows the bias and variance for exact infer-
ence and WMB and GBP with iBounds of {2, 4}. Note that the estimator using WMB2 has much
smaller variance than WMB4 and exact inference for small N . This helps to explain why the error
for WMB2 was below WMB8 for N < 1000 in the previous experiment.
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Figure 2: Bias (Left) and Variance (Right) for a 5× 5 grid with K = 3.

4.2 Robustness to Model Mis-specification

Last, we consider an experiment in which Θ ⊂ Θ. In particular, we generate our data from a
pairwise grid with 8-neighbor connectivity, but learn a model with only 4-neighbor connectivity.
The pairwise potentials on the new diagonal edges are drawn from N (0, σ2

ik) and we increase σik
from 0 to 1 to increase the level of model error. Figure 3 plots the estimation error of the different
inference methods as a function of mis-specification, σik, for N = 100 and N = 10000. Notice
that WMB2 is more robust to model error than any other method when N = 100. However, for
N = 10000 the situation flips and it is least robust.
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