Weighted Best First Search for MAP

Natalia Flerova
University of California Irvine

Abstract

The paper considers Weighted Best First (WBF) search
schemes, popular for path-finding domain, as approxi-
mations and as anytime schemes for the MAP task. We
demonstrate empirically the ability of these schemes
to effectively provide approximations with guaranteed
suboptimality and also show that as anytime schemes
they can be competitive on some benchmarks with one
of the best state-of-the-art scheme, Depth-First Branch-
and-Bound.

Introduction

The most common search scheme for combinatorial opti-
mization tasks, such as MAP/MPE or Weighted CSP, is
Depth-First Branch-and-Bound. Its use for finding both ex-
act and approximate solutions was extensively studied in re-
cent years (Kask and Dechter 2001; Marinescu and Dechter
2009b; Otten and Dechter 2011; de Givry, Schiex, and
Verfaillie 2006). Meanwhile, best-first search algorithms,
though known to be more effective in bounding the search
space (Dechter and Pearl 1985), are seldom considered for
graphical models due to their inherently large memory re-
quirements and their inability to provide any solution before
termination. Furthermore, one of best-first’s most attrac-
tive features, avoiding the exploration of unbounded paths,
seems irrelevant since solutions are of equal depth (i.e., the
number of variables).

In contrast, in path-finding domains, where solution
length varies (e.g., planning), best-first search and especially
its popular variant A* (Hart, Nilsson, and Raphael 1968) is
clearly favored. However, A*’s exponential memory needs,
coupled with its inability to provide a solution any time be-
fore termination, lead to extension into more flexible any-
time schemes based on the Weighted A* (WA*) (Pohl 1970).
The idea is to inflate the heuristic function guiding the search
by a constant factor of w > 1, making the heuristic inadmis-
sible, while still guaranteeing a solution cost within a factor
of w from the optimal and typically yielding faster search.
If the (non-optimal) solution is found quickly, the search
for a better solution may resume. Several anytime weighted
best-first search schemes were proposed in the context of
path-finding in the past decade (Hansen and Zhou 2007,
Likhachev, Gordon, and Thrun 2003; van den Berg et al.
2011; Richter, Thayer, and Ruml 2010).

Radu Marinescu
IBM Research - Ireland

Rina Dechter

University of California Irvine

In our work we extended the above methods to graphical
models and investigated their potential empirically. We used
AND/OR Best First search (AOBF) (Marinescu and Dechter
2009b), a best-first algorithm developed for AND/OR search
spaces over graphical models, as a basis. AOBF explores
the context minimal AND/OR graph in a best-first man-
ner, guided by the admissible and consistent mini-bucket
heuristic (Dechter and Rish 2003; Kask and Dechter 2001,
Dechter and Mateescu 2007).

After exploring a variety of approaches and following ex-
tensive empirical analysis (including two non-parametric al-
gorithms that interleave depth- and best-first exploration),
the two schemes that emerged as most promising were those
running WA* iteratively while decreasing w. One (WAOBF)
starts from scratch at each iteration and the other (wR-
AOBF) reuses search efforts from previous iterations, ex-
tending ideas of Anytime Repairing A* (ARA¥*) (Likhachev,
Gordon, and Thrun 2003).

We report on a comprehensive empirical evaluation of
the two candidate algorithms (which ran multiple time with
multiple heuristics) on over 100 instances from 4 differ-
ent benchmarks, evaluating their performance both as ap-
proximation and anytime schemes. We compared against
Breadth-Rotating AND/OR Branch-and-Bound (BRAOBB)
(Otten and Dechter 2011), a state-of-the-art anytime Depth-
First Branch-and-Bound which won the 2011 Probabilistic
Inference Challenge' in all optimization categories.

Our empirical analysis revealed that best-first search
schemes can be used effectively for optimization over graph-
ical models. Specifically: 1. Weighted BFS provides an ef-
fective scheme for generating approximate solutions with
upfront guaranteed level of sub-optimality, 2. Weighted BFS
can be made into effective anytime schemes and on some
benchmarks even outperforms one of the best state of the art
scheme which is based on depth-first search.

Background

Best-first search (BFS): BFS maintains a graph of explored
paths and a frontier of OPEN nodes. It chooses from OPEN
a node n with lowest value of an evaluation function f(n),
expands it, and places its child nodes in OPEN. The most
popular variant, A*, uses f(n) = g(n) + h(n), where g(n)

"http://www.cs.huji.ac.il/project/PASCAL/realBoard.php

is the current minimal cost from the root to n, and h(n) is a
heuristic function that estimates the optimal cost to go from
n to a goal node. For a minimization task, h(n) is admissible
if Vn h(n) < h*(n).

Weighted A* search (WA*): WA* differs from A* only in
using the evaluation function: f(n) = g(n) + w - h(n),
where w > 1. Higher values of w typically yield greedier
behaviour, finding a solution earlier during search and with
less memory. WA* is guaranteed to terminate with a solu-
tion cost C' such that C' < w - C*, where C* is the optimal
solution’s cost (Pohl 1970).

A Graphical model is a tuple M = (X,D,F,[]), where F
is a set of real-valued local functions over subsets of discrete
variables X, called scopes, with finite domains D. The com-
mon optimization task is to find maxx Hi fi called MAP
or MPE, though the same algorithms can easily be used to
solve the Weighted CSP problem: minx), f;. The set of
function scopes defines a primal graph (see example in Fig-
ure la) and, given an ordering of the variables, yields an in-
duced graph (e.g., Figure 1b) with a certain induced width.
For detail see (e.g. (Kask et al. 2005)).

AND/OR search spaces allow capturing the depen-
dencies of the underlying graphical model during search
(Dechter and Mateescu 2007). The AND/OR search space is
defined using a pseudotree of the primal graph G = (X, E)
(e.g., Figure 1c), which captures problem decomposition. It
is a directed rooted tree 7 = (X, E’), such that every arc of
G not included in E’ is a back-arc in 7, namely it connects
anode in 7T to its ancestor. The associated AND/OR search
tree consists of alternating levels of OR and AND guided
by the pseudotree structure. The children of an OR node
(X;) are AND nodes labelled with assignments (X, z;),
and the children of an AND node (X, z;) are OR nodes
labelled with the children of X; in the pseudotree 7. They
root conditionally independent subproblems. The edges of
the AND/OR tree are annotated by values derived from the
input potentials and finding the optimal-cost solution subtree
solves the stated optimization task.

Given a pseudotree 7 of height A, the size of the
AND/OR search tree based on 7 is O(n - k"T), where
k bounds the variables’ domain size. The context-minimal
AND/OR search graph has size O(n- k") , where w is the in-
duced width of the problem graph along a depth-first traver-
sal of T (Dechter and Mateescu 2007).

Graph-based merging of identical subproblems yields the

context minimal AND/OR search graph (e.g. Figure 1d)
which has size O(NE™"), where w* is the induced width
of G along a depth first order of 7, N is the number of vari-
ables and & bounds the domain sizes.
AND/OR Best First search (AOBF): The state-of-the-art
version of A* that explores the AND/OR search spaces is
the AND/OR Best-First (AOBF) algorithm (Nilsson 1982)
that utilizes the mini-bucket heuristic which is admissible
and consistent (Dechter and Rish 2003). AOBF described by
Algorithm 1 is a variant of AO* (Nillson 1980). It maintains
the explicated part of the context minimal AND/OR search
graph. At the same time AOBF keeps track of the current
best partial solution tree 1.

Algorithm 1: AOBF(w, h)
Data: A graphical model M = (X, D, F), pseudo tree T rooted at X1;
weight w (default value 1), heuristic h;
Result: Optimal solution to M
1 Create root OR node s labelled by X andlet G = {s};
2 Initialize v(s) = w - h(s) and best partial solution tree T"* to G;

3 while true do

4 Select non-terminal tip node n in 7. If there is no such node then exit;
5 Expand node n: if n = X; is OR then for each z; € D(X;) add AND
childn’ = (X;,z;) to G;if n = (X, z;) is AND then for each
successor X ; of X; in 7 add OR child n’ = X; to G; Initialize

v(n’) = h(n') for all new nodes;

6 Update ancestors AND and OR nodes p of n in G, bottom-up as: if p is
OR then v(p) = Ming, csuce(p) (¢(p, M) + v(m)); else if p is AND
then v(p) = 3=, couce(p) V(M)

7 Mark best successor m of OR ancestors p, such that

M = arg min,, ¢ syce(p) (¢(p, M) 4 v(m)) maintaining marked
successor if still best;

8 Recompute T by following marked arcs from the root s;

9 return (v(s), T");

AOBF interleaves iteratively a top-down node expansion
step (lines 4-5), selecting a non-terminal tip node of T* and
generating its children in G, with a bottom-up cost revision
step (lines 6-7), updating the values of the internal nodes
based on the children’s values. The algorithm also marks the
arc to the best AND child of an OR node through which the
minimum is achieved (line 7). Following the backward step,
a new best partial solution tree 7™ is recomputed (line 8).
AOBEF terminates when there are no more nodes to expand
(all tip nodes in T™* are terminal). At this point T is the
optimal solution with cost v(s).

Anytime AND/OR Branch and Bound (BRAOBB):
Depth First AND/OR Branch-and-Bound (AOBB) (Mari-
nescu and Dechter 2009a) was shown to be a powerful
search scheme for graphical models. The algorithm, how-
ever, lacks a proper anytime behavior: at each AND node
all but one independent child subproblems have to be solved
completely, before the last one is even considered. Breadth-
Rotating AND/OR Branch-and-Bound (BRAOBB) (Otten
and Dechter 2011) remedies this deficiency, rotating through
different subproblems in a breadth-first manner. Empirically,
BRAOBB finds the first suboptimal solution significantly
faster than plain AOBB (Otten and Dechter 2011).

Adapting Anytime Best First Search for
Graphical Models

This section describes the anytime Best First algorithms that
we adapt to AND/OR search space over graphical models.

Iterative Weighted AOBF (wWAOBF): The fixed-weighted
version of the AOBF algorithm is obtained by inflating the
mini-bucket heuristic function with a weight w > 1 (i.e.,
substituting h(n) by w - h(n)). This scheme is basically
identical to WAO*, an algorithm introduced previously by
(Chakrabarti, Ghose, and De Sarkar 1987), but it is adapted
to the specifics of AOBF.

Clearly, like WA* and WAO¥*, if h(n) is admissible,

OR

AND
OR

AND

ONNO
(&)

© ©®

(a) Primal graph.

OR

AND

OR

AND

(b) Induced
graph.

(c) Pseudotree.

(d) Context-minimal AND/OR search graph with AOBB pruning example.

Figure 1: Example problem with six variables, induced graph along ordering A, B, C, D, E, F, corresponding pseudotree, and

resulting AND/OR search graph with AOBB pruning example.

Algorithm 2: wAOBF(wy, h)

Algorithm 3: wR-AOBF(wy, h)

Data: A graphical model M =
weight wo
Result: Set of suboptimal solutions C
1 Initialize w = wo, weight update schedule S and let C < 0;
2 while w >=1do
3 L (Cw, Ty) < AOBF(w - h);

(X, D, F); heuristic h; initial

4 C+ CU{{w,Cu,Ty)};
5 Decrease weight w according to schedule S

6 return C;

the cost of the solution discovered by weighted version of
AOBEF is bounded by a factor of w from the optimal one.

Since the accuracy of Weighted AOBF is bounded by w, it
is natural to extend it to an anytime scheme, called wAOBF
(Algorithm 2), that executes Weighted AOBEF iteratively, de-
creasing the weight at each iteration. This approach, simi-
lar to the Restarting Weighted A* by (Richter, Thayer, and
Ruml 2010), results in a series of solutions, each with a sub-
optimality factor equal to w.

Anytime Repairing AOBF (WR-AOBF): Running each
search iteration from scratch is wasteful, since the same
search subspace might be explored multiple times. To rem-
edy this problem Anytime Repairing AOBF (WR-AOBF,
Algorithm 3) extends Anytime Repairing A* (ARA*) algo-
rithm (Likhachev, Gordon, and Thrun 2003) to AND/OR
search spaces over graphical models. The original ARA* al-
gorithm utilizes the results of previous steps by recomput-
ing the evaluation functions of the nodes with each weight
change, re-using inherited OPEN and CLOSED lists and by
keeping track of already expanded nodes whose evaluation
function changed between iterations and re-inserting them
back to OPEN list before starting a new iteration.

The extension of ARA* to AND/OR search space is
not straightforward, since AOBF does not maintain explicit
OPEN and CLOSED lists. Instead, at each iteration, wR-

Data: A graphical model M = (X, D, F); pseudo tree 7
rooted at X ; heuristic h; initial weight wo
Result: Set of suboptimal solutions C
1 Initialize w = wo, weight update schedule S and let C < {;
2 Create root OR node s labeled by X1 and let G = {s};
3 Initialize v(s) = w - h(s) and best partial solution tree 7™ to
g
4 while w >=1do
5 Expand and update nodes in G using AOBF search with
heuristic function w - h;

6 If T* has no more tip nodes then
C+ CU{{w,v(s), T")};
7 Decrease weight w according to schedule S

8 For all leaf nodes in n € G, update v(n) = w - h(n).
Update the values of all nodes in G using the values of
their successors. Mark best successor of each OR node.;
9 Recalculate T following the marked arcs;

10 returnC;

AOBF keeps track of the partially explored AND/OR graph
and, after decreasing w, it performs a bottom-up update of
all node values starting from the leaf nodes (whose h-values
are inflated with the new weight) and continuing upwards
towards the root node. Then, the search continues with the
newly identified best partial solution tree. Like ARA*, wR-
AOBF provides the same guarantees with respect to the
quality of the suboptimal solutions found.

Experiments

We compare the performance of wAOBF, wR-AOBF and
BRAOBB, exploring the same context minimal AND/OR
graph. The search space is determined by a common variable
ordering. All the algorithms use the mini-bucket heuristics
(Dechter and Rish 2003), whose strength is controlled by a
parameter i-bound (higher i-bounds typically yield more ac-
curate heuristics and take more time and space (exp(i)) to

AOBF(w, h) weights AOBF(w, h) weights
Instance BRAOBB BRAOBB
(n. k. w*. hy) 2.828 1.139 1.033 1.00 2.828 1.139 1.033 1.00
time time time time time time time time time time
Cc* cost cost cost cost c* cost cost cost cost
Grids | I-bound=6 | I-bound=20
50-17-3 1335.44 0.06 35.99 9.42 0.02 0.04 0.05 0.09
(289, 2,23,77) -17.759 23496 | -17.759 — — -17.759 -17.829 | -17.829 | -17.759 | -17.759
30-18-3 0.04 197.12 14359 0.03 0.17 049 251
(324, 2,24, 84) — 25997 | -21.843 — — 21.843 2271 222167 | -22.025 | -21.843
75-16-3 7T 0.48 19.09 3796 | 20191 7.26 0.0T 0.02 0.03 0.07
(256,2,21,73) -8.064 9.514 -8.126 -8.064 | -8.064 -8.064 -8.064 -8.064 -8.064 | -8.064
75-183 390.72 T13 311 T77.19 | 705.69 1352 0.02 0.04 0.06 0.19
(324, 2,24, 85) -8.911 -10.931 -8.911 -8.911 | -8.911 -8.911 9.078 9.078 -8.911 -8.911
75-20-5 289 2252 0.06 126 10.24 39.07
(400, 2, 27, 99) — -16.282 — — — -12.72 -14.067 | -12.843 -12.72 | 1272
90-21-3 18775 284 7641 15823 | 412.06 T7.01 042 0.89 .7 5.02
(441, 2,28, 106) -7.658 -8.871 -7.658 -7.658 | -7.658 -7.658 9.476 -7.658 -7.658 | -7.658
Pedigrees I-bound=6 I-bound=16
pedigree9 2.1 1082.02 0.09 0.27 29.4
(935, 7,27, 100) — -137.178 — — — -122.904 || -133.063 | -124.597 | -122.904 —
pedigreel3 0.15 0.23
(888, 3,32, 102) — -88.563 — — — — -76.429 — — —
pedigree37 4.36 0.05 0.65 7.67 59.28 388.36 0.06 0.12 0.24 1.08
(726,5,20,72) | -144.882 || -163.325 | -145.784 |-145.082 | -144.882 || -144.882 || -155.259 | -145.737 | -145.341 | -144.882
pedigree38 204.0 0.79 1.34 26.85 | 327.07
(581, 5, 16, 52) -87.299 96213 | -88.741 | -87.299 | -87.299 — — — — —
pedigree39 0.13 3.53 434 0.08 0.15 0.29 3.14
(953, 5,20, 77) — 174304 | -158.743 — — -155.608 || -162.381 | -155.608 | -155.608 | -155.608
pedigreed! 3.95 475 1.48 3.04
(885, 5, 33, 100) — -131.831 | -122.558 — — — -122.234 | -121.731 — —
WCSP I-bound=2 I-bound=8
29.wesp 0.74 0.52 4.6 7.63 16.76 0.76 0.01 0.03 0.12 0.52
(82,4, 14, 23) -1.604 -1.804 -1.604 -1.604 | -1.604 -1.604 -1.804 -1.604 -1.604 | -1.604
404.wesp 0.4 0.33 16.39 29.64 66.3 1.63 0.0 0.08 3.94 19.96
(100, 4, 19, 59) 2.78 -2.878 -2.78 -2.78 2,78 278 -2.902 2,78 -2.78 -2.78
bwi3ac 247 244 T T.05 22.09 1746 0.47 116 165 314
(45,11, 16, 27) -0.561 -0.561 -0.561 -0.561 | -0.561 -0.561 -0.561 -0.561 -0.561 -0.561
driverlogDTac.wesp [0.06 0.02 0.11 0.2 0.5 0.04 0.0 0.01 0.01 0.02
(71,4,9,37) -0.777 -0.777 -0.777 0.777 | -0.777 -0.777 -0.777 -0.777 0.777 | -0.777
satelliteOTac.wesp | 39.24 101.88 201.28 | 267.65 | 464.84 || 5645.74 58.9 115.24 152.65 265.7
(79, 8, 19, 56) -0.076 -0.076 -0.076 -0.076 | -0.076 -0.076 -0.076 -0.076 -0.076 | -0.076
zenotravel02ac 779 7.59 26.59 4275 92.63
(116, 19, 18, 43) -0.099 -0.099 -0.099 -0.099 | -0.099 — — — — —
Type4 I-bound=6 I-bound=16
type4b_T00-T9 2.03 1.37 534
(3938, 5, 29, 354) — -1309.91 — — — — -1171.002 | -1124.091 — —
typedb_120_17 1.75 1.02 226 82.97
(4072, 5,24, 319) — -1483.588 — — — — -1362.607 | -1331.24 |-1327.776 —
type4b_14020 6.83 17.79 109.11
(4848, 5, 30, 524) — -1658.008 — — — — -1448.739 | -1388.239 — —
typedb_150_14 6.36 4.59 25.06
(5804, 5, 32, 522) — -2007.388 — — — — -1727.035 | -1622.851 — —
typedb-17023 4.16 600.0 236 5.08 27.23
(5590, 5, 21, 427) — -2191.859 | -1961.605 — — — -1978.588 | -1934.153 | -1925.883 —

Table 2: Runtime (sec) and cost obtained by AOBF(w,

h) for selected w, and by BRAOBB (that finds C* - optimal cost).

Instance parameters: n - number of variables, k£ - max domain size, w* - induced width, hr - pseudo tree height. In bold - cost
by AOBF equal to C*. 4 Gb memory limit, 1 hour time limit.

benchmark #inst n k w* hr

Pedigrees 11 581-1006 3-7 16-39 52-104
Grids 32 144-2500 2-2 15-90 48-283
WCSP 56 25-1057 2-100 5-287 11-337
Type4 10 3907-8186 5-5 21-32 319-625

Table 1: Benchmark parameters: # inst - number of in-
stances, n - number of variables, k& - domain size, w* - in-
duced width, hr - pseudotree height.

compute) and all are solving the maximization task (higher
costs are better). The algorithms output solutions at different
times until either the optimal solution is found or the time
limit of 1 hour is reached or the scheme runs out of memory
(4 Gb).

We experimented with benchmarks from UAI 2008 com-
petition®. The benchmark parameters are presented in Ta-

*http://graphmod.ics.uci.edu/group/Repository

ble 1. Each problem was solved with 11 values of i-bound,
ranging from 2 to 22. After considering 5 different weight
policies, described in the full paper, we settled on the the
following: w; = ,/w;_1, w; is the weight at iteration 7. The
starting weight value wy = 64 was chosen: a) to explore the
schemes behaviour on a large range of weights; b) to make
the search greedy enough initially to solve harder instances,
known to be infeasible for regular BF within the memory
limit.

Effectiveness of BF Schemes as Approximations

In this section we report the bounds output by wAOBF and
wR-AOBF and talk about the impact of the weight.

Fixing the weight for wAOBF and wR-AOBF provides a
suboptimality guarantee for the cost (which is bounded by
w - C*), while managing the runtime and required space.

In Table 2 we report runtime (sec) and solution cost for
AOBEF that uses weighted heuristic with selected values of
weight (w=2.828, 2.239, 1.033, 1.00), for 3 selected in-
stances from each benchmark and for 2 values of i-bound
for 4 Gb. We also report the run time and the optimal cost
found by BRAOBB, where available. We defer discussing
BRAOBB as an anytime scheme in the next section.

Note, since calculation of mini-bucket heuristics is time
and space O(exp(i)), for some instances the heuristics can’t
be obtained for large i-bounds (e.g. pedigree38, : = 16).

We can interpret the results in Table 2 by comparing
across pairs of columns. We immediately see the expected
behaviour across all instances: as the weight decreases to-
wards 1, time and accuracy both increase, or at least do not
decrease.

Quality of solutions. We observe that often the actual re-
sults are far better and closer to optimal than the bound sug-
gests. In particular, in a few of the cases, the actual optimal
solution is obtained for aw > 1. These cases are highlighted
by boldface in Table 2.

Time saving for w-bounded suboptimality. It is most in-
formative to compare the exact results by BRAOBB (column
2) and by AOBF (columns 6 and 11, when w = 1) with any
one of the other columns. Each weighted column represents
a particular level of guaranteed suboptimality.

Let’s consider, for example, the columns associated with
the weight w = 2.828, where the costs generated are guar-
anteed to be a factor of 2.828 away from the optimal. We
see orders of magnitude time savings compared to BRAOBB
(column 2) both when the i-bound is small (e.g., pedigree38,
=6, 0.79 vs 204.0 seconds) and when it is large (e.g., 0.99 vs
1082.02 sec for pedigree9, i=16), except for WCSPs, where
the times are not so different. Notice however, that for WC-
SPs the actual costs found by wAOBF are often optimal
(though the guarantee is still of a factor 2.828). Comparing
columns 6 and 11, exhibiting full AOBF with w = 1 (when
it did not run out of memory) against w = 2.828 we see
similar behaviour in terms of time savings.

More significantly, consider the column of weight w =
1.033, especially for the higher i-bound (strong heuristics).
These results are just a factor of 1.033 away from optimal,
yet the time savings compared with BRAOBB are significant
(e.g., 29.4 vs 1082.02 sec for pedigree9, i=16). We observe

Geometric mean time (sec)

% wAOBF weight / # inst
BRAOBB
2.828 1139 | 1033 | 1.001 1.00
Grids

6 || 121.75/12 {1 0.99/25 | 20.81/13 | 30.38/8 | 121.98/8 | 116.04 /8
16 || 7.11/23 |{0.19/26| 0.62/22 | 2.4/20 | 998/19 | 9.34/29
20 18.4/25 |/ 0.19/26| 045/22 | 1.48/21| 4.67/20 | 4.17/20

Pedigrees
6 18.8/2 1.45/9 | 3.64/4 |1511/2]121.79/2|14598/2
14| 12.76/2 033/9 | 227/6 | 1.19/2 | 11.95/2 | 14.68/2
16 || 122.18/3 0.6/9 069/5 | 1.27/3 | 1.57/2 1.84/2
WCSPs
2 9.63/14 0.6/15 | 2.67/12 |4.13/12| 7.69/12 | 8.28/12
5.09/14 00/13 | 045/7 | 0.83/7 | 1.96/7 0.0/7
6.52/14 0.0/60 0.0/7 055/7 | 1.29/7 0.0/7

Typed
6 — 551/10 | 58.81/1 — —_ _
16 — 3.49/10 | 13.53/9 |47.53/2 — —

20 || 44.67/1 1.53/74 3.4/4 445/2 | 11.68/1 | 12.66/1

Table 3: Geometric mean runtime (sec) and # instances, for
which averaging is done, wAOBF for selected weights and
BRAOBB. 4 Gb memory, 1 hour time limit.

two Type4 instances that BRAOBB and pure AOBF were
unable to solve (within 3600 sec), for which the time with
w = 1.033 was just 82.97 and 27.33 sec, respectively.

Table 3 provides summaries over all instances from each
benchmark. For each benchmark and for several i-bounds
we provide a geometric mean of runtime (sec) for the same
set of weights as before. Also shown are the number of in-
stances averaged over (for some w’s wWAOBF sometimes
runs out of memory) and the results for BRAOBB. We
observe that the mean runtime of AOBF increases as w
decreases towards 1. More accurate heuristics (higher i-
bounds) typically allow solving more instances, e.g. for
grids w = 1 AOBF solves 8 problems for ¢ = 6 vs 20 for
i = 20. However, there are exceptions, since heuristic cal-
culation may become infeasible for larger i-bound, see, for
example, WCSPs, w = 1.

Effectiveness of Weighted BF as Anytime Schemes

This section focuses on the anytime performance of wAOBF
and wR-AOBF and on their comparison with the BRAOBB.

Figure 2 displays the anytime behaviour of the three
schemes for typical instances from each benchmark for 2
values of i-bound. For each instance we show the ratio be-
tween the cost available at a particular time point (at 5, 10,
60 and 600 seconds) and the optimal (if known) or overall
maximal cost. The closer the ratio is to 1, the better. The
four leftmost bars correspond to wAOBF, the central ones
- to wR-AOBF and the four rightmost - to BRAOBB. For
wAOBF and wR-AOBF we additionaly display the weight
at the time bound above the respective bar, w = 1 shown in
red.

WCSP instances are hard for BF schemes (e.g. capmo2),
except for the easiest ones, solved equally fast by all algo-
rithms (e.g. bwt3ac). Figure 2 demonstrates the superiority

=6

C/C*, Grids, i

WAOBF wR-AOBF BRAOBB WAOBF wR-AOBF BRAOBB

wWR-AOBF BRAOBB

600 sec
WAOBF wR-AOBF BRAOBB

75-18-5 90-20-5 75-16-5 50-16-5
1¥oo000 0000 ©000 00009 ©000 00009 ©000 00009
L I I) L B B B] o - L I B I] L I I) L B N I] L I] L B I]

=20

C/C*, Grids, i

wAOBF wR-AOBF BRAOBB wAOBF wR-AOBF BRAOBB wR-AOBF BRAOBB wAOBF wR-AOBF BRAOBB
pedigree9 pedigreel3 pedigree37 pedigree39
© 88c9 §eoo 55
] AFAA Jedd]

C/C*, Pedigrees, i

WAOBF wR-AOBF BOB

wWAOBF wR-AOBF BRAOBB wWAOBF wR-AOBF BRAOBB wR-AOBF BRAOBB
pedigreel3 pedigree37 pedigree39
3 QQeQ eQee QQeQ eQee
I L B e B B B B B | L B e B B B B B |

C/C*, Pedigrees, i

wAOBF wR-AOBF BRAOBB wAOBF wR-AOBF BRAOBB wAOBF wR-AOBF BRAOBB wAOBF wR-AOBF BRAOBB
404.wcsp bwt3ac.wcsp driverlog0lac.wcsp capmo2.wcsp
1Bmmoo cooo mSoo ocooo ©000 o000
B AAAEA AdAA ArdAdd dArdd ArdAA Ardd
=
wn 0.
(@]
=
-
Q
o
e
wAOBF wR-AOBF BRAOBB wAOBF wR-AOBF BRAOBB wAOBF wR-AOBF BRAOBB wAOBF wR-AOBF BRAOBB
404.wcsp bwt3ac.wcsp driverlog0lac.wcsp capmo2.wcsp
158309 9000 2999 9999 2999 99909
© L B B B I B L I T B B B B B | L B T B B B B B |

C/C*, WCSP, i

WAOBF wR-AOBF BRAOBB WAOBF wR-AOBF BRAOBB WAOBF
typedb_120_17

typedb_140_20

WR-AOBF BRAOBB

WAOBF wR-AOBF BRAOBB
typedb_150_14

‘ ‘ 1 [8 8 [8 8 /=5 séc
© - - [10 sec
n 1 r I 60 sec

~ Il 600 sec
<

v]

Q
& 1
)
= ;M mm]
© -

wAOBF wR-AOBF BRAOBB wAOBF wR-AOBF BRAOBB wAOBF wR-AOBF BRAOBB

typedb_120_17

typed4b_170_23

=16

C/C*, Typed4, i

wWAOBF wR-AOBF BRAOBB WAOBF wR-AOBF BRAOBB WAOBF

wR-AOBF BRAOBB

WAOBF wR-AOBF BRAOBB

Figure 2: Ratio of the cost obtained by some time point (5, 10, 60, 600 sec) and max cost. Max. cost = optimal, if known,
otherwise = best cost found for the problem. Corresponding weight - above the bars. Memory limit 4 Gb, time limit 1 hour.

wAOBF wAOBF wAOBF wAOBF

wR-AOBF wR-AOBF wR-AOBF wR-AOBF
BRAOBB BRAOBB BRAOBB BRAOBB
meanac/w/# | meanac/w/# | meanac/w/# | meanac/w/#
i Time bound (sec)
10 60 | 600 3600
Grids]

0.88/2.43/23 | 092/4.19/24 | 0.95/1.48/24 | 095/1.48/24

6| 085/1.79/23 | 0.88/1.81/24 | 092/1.43/24 | 092/1.43/24
0.93/15 0.93/18 0.95/21 0.97/23

093/1.78/22 | 095/3.88/24 | 0.98/1.23/24 | 0.98/1.23/24

10| 0.94/129/22 | 095/1.23/24 | 0.96/1.2/24 0.96/1.2/24
0.94/17 0.97/21 0.99/22 0.99/24

0.99/1.19/24 1.0/1.05/24 1.0/1.03/24 1.0/1.03/24

16| 0.99/1.08/24 1.0/1.03/24 1.0/1.03/24 1.0/1.03/24
0.99/21 0.99/22 1.0/23 1.0/24

1.0/1.07/22 1.0/1.01/22 1.0/1.01/22 1.0/1.01/22

20 1.0/1.03/22 1.0/1.01/22 1.0/1.01/22 1.0/1.01/22
0.99/20 1.0/22 1.0/22 1.0/22

Pedigrees

0.90/9.19/9 0.95/1.28/9 0.95/1.27719 0.95/1.27/9

6 0.90/1.31/9 0.93/1.23/9 0.93/1.23/9 0.93/1.23/9
0.94/9 0.95/9 0.96/9 0.96/9

0.94/839/10 | 097/1.42/11 0.98/1.28/11 0.98/1.28/11
10{| 095/1.23/10 | 0.96/1.16/11 096/1.16/11 096/1.16/11

0.95/8 0.96/10 0.97/11 1.02/11
0.98/1.41/9 0.99/1.25/9 0.99/1.24/9 0.99/1.24/9
14| 097/1.14/9 097/1.13/9 0.98/1.11/9 0.98/1.11/9
0.98/10 0.98/10 0.99/10 0.99/10
0.98/1.46/8 0.97/2.12/9 0.98/1.36/9 0.98/1.36/9
16| 0.98/1.09/8 097/1.1/9 097/1.1/9 097/1.1/9
0.98/8 0.99/8 0.99/9 0.99/9
WCSPs

0.0004 /7.44/11| 0.0004/1.8/11 |0.0004/1.64/11|0.0004/1.64/11
2 || 0.0004/7.36/11 | 0.0004/1.64/11|0.0004/1.64/11{0.0004/1.64/11
0.0006 /18 0.0006 /18 0.0006 /18 0.0006 /18
0.50/1.73/11 0.50/1.65/11 | 0.50/1.64/11 | 0.50/1.64/11
4 0.50/1.7/11 0.50/1.64/11 0.50/1.64/11 0.50/1.64/11

0.0006/ 18 0.0006 /18 0.0006 /18 0.0006/ 18
0.51/15.21/9 0.52/2.63/9 0.52/2.63/9 0.52/2.63/9
6 0.51/152/9 0.52/2.63/9 0.52/2.63/9 0.52/2.63/9
0.0004 /13 0.0004 / 14 0.0004 / 14 0.0004 / 14
047/2.76/9 0.52/1.93/9 0.52/1.93/9 0.52/1.93/9
8 0.47/2.76/9 0.52/1.93/9 0.52/1.93/9 0.52/1.93/9
0.0004 /13 0.0004 / 14 0.0004 / 14 0.0004 / 14
Type4
0.89/1.68/2 093/1.3/2 093/13/2 0.93/122/2
6 0.80/1.49/2 0.80/1.49/2 0.88/13/2 0.88/1.3/2
0.81/2 0.82/2 0.83/2 0.83/2
093/13/2 0.94/1.14/2 0.94/1.14/2 094/1.1/2
10]| 090/1.22/2 093/1.14/2 093/1.14/2 093/1.14/2
0.90/2 091/2 091/2 091/2
0.94/1.07/2 0.94/1.05/2 0.94/1.03/2 0.94/1.02/2
16| 0.94/1.03/2 0.94/1.03/2 0.94/1.03/2 0.94/1.02/2
0.94/2 094/2 1.06/2 0.94/2
0.95/1.01/2 095/1.0/2 095/1.0/2 095/1.0/2
20 0.94/1.0/2 095/1.0/2 095/1.0/2 095/1.0/2
0.94/2 0.94/2 0.94/2 0.94/2

Table 4: The average relative accuracy (mean ac) C/C* and
average weight (mean w) for fixed time bounds. # - number
of instances, over which averaging is done. ¢ - i-bound. C -
current solution, C* - optimal solution. 4 Gb, 1 hour limits.

of the BF schemes, especially wAOBEF, on grids, pedigrees
and type4 instances for weaker heuristics. For example, for
grid 75-16-5, ¢ = 6 wAOBF finds a considerably more accu-
rate solution within 5 seconds, than the other two schemes.
When the heuristics are stronger, there is little difference be-
tween the algorithms’ performance on grids and pedigrees,
while wAOBF is superior on type4 instances.

The weights corresponding to particular time points show
several trends. For many instances wAOBF and wR-AOBF
reach weight 1.0, i.e. find provably optimal solutions, very
fast (e.g. 90-20-5, i=20, within 5 seconds). Often wR-AOBF
reaches w = 1 faster than wAOBF (e.g. 75-16-5, i=6;
bwt3ac, i=2), though when w > 1, wAOBF usually finds
a better solution for the same time bound and same w (e.g.
compare for 75-18-5, i=6, w=1.14, time=10 sec). Moreover,
we again see that in many cases BF schemes find solutions
of optimal costs for w > 1 (e.g. pedigree9, i=16).

Table 4 provides summaries of the anytime performance,

presenting for each algorithm the mean time and mean rela-
tive accuracy (C/C*) achieved at a fixed time point for se-
lected values of i-bounds. The closer mean accuracy is to
1, the better. We also show the number of instances, over
which we average. Note that for type4 relative accuracy is
only computed for 2 instances, since for the rest the optimal
solutions are unavailable.
wAOBF vs wR-AOBF. Both schemes solve the same num-
ber of instances for all time bounds, but wAOBF often
has better accuracy, especially for low i-bound (e.g. type4,
i = 6, all times). wAOBF mostly has larger mean weight
than wR-AOBF for the same time bound (e.g. pedigrees,
t = 6, time=10 sec: 9.19 vs 1.31), implying that wAOBF
spends more time at each iteration, but achieves better accu-
racy, similar to what we saw in Figure 2.
BF vs BRAOBB. On WCSPs BF schemes found solutions
for considerably less instances than BRAOBB (e.g. ¢ = 6
and ¢ = 8, time=60 to 3600 sec, 9 instances vs 14 by
BRAOBB). At a first glance wAOBF and wR-AOBF seem
to have considerably better mean accuracy, but that is due to
only solving the easiest WCSP problems. On grids and pedi-
grees WAOBF and wR-AOBEF tend to find solutions for more
instances than BRAOBB for most time bounds (e.g. grids,
time=10 sec, ¢ = 6, 23 problems vs 15), while providing
comparable mean accuracy. On type4 instances BF schemes
mostly achieve slightly better accuracy than BRAOBB.

Impact of heuristic strength. Unsurprisingly, all three
schemes find more accurate solutions faster as heuristic
strength increases, e.g. on grids for time=10 sec wAOBF has
mean accuracy of 0.93 for ¢ = 10 and 1.0 for ¢ = 20, while
solving the same number of instances. However, as i-bound
increases, so does time and memory required for computing
heuristics, thus sometimes larger ¢ yields fewer solved in-
stances for the same time bounds, e.g. WCSPs, for time=60
sec BRAOBB finds solutions for 18 instances when ¢ = 2,
but only for 14 when ¢ = 8.

Conclusion

In this paper we extended advanced best-first scheme for
graphical models into a weighted scheme and evaluated

its performance in comparison with a highly competitive
Branch and Bound scheme. Our empirical results show that
weighted best-first is valuable in providing relatively fast
solutions together with suboptimality bounds. We demon-
strated that weighted best-first search schemes should defi-
nitely be included in the set of good optimization schemes
for solving MPE/MAP tasks. The weight mechanism can
mitigate the memory/time trade off in a useful way that can
be harnessed into an anytime scheme that not only improves
with time, but can also guarantee its level of suboptimality.

Acknowledgment
This work was supported by NSF grant IIS-1065618.

References

Chakrabarti, P.; Ghose, S.; and De Sarkar, S. 1987. Ad-
missibility of AO* when heuristics overestimate. Artificial
Intelligence 34(1):97-113.

de Givry, S.; Schiex, T.; and Verfaillie, G. 2006. Exploiting
tree decomposition and soft local consistency in weighted
csp. In AAAI 22-27.

Dechter, R., and Mateescu, R. 2007. AND/OR search spaces
for graphical models. Artificial Intelligence 171(2-3):73—
106.

Dechter, R., and Pearl, J. 1985. Generalized best-first search
strategies and the optimality of A*. Journal of the ACM
32:506-536.

Dechter, R., and Rish, I. 2003. Mini-buckets: A gen-
eral scheme for bounded inference. Journal of the ACM
50(2):107-153.

Hansen, E., and Zhou, R. 2007. Anytime heuristic search.
Journal of Artificial Intelligence Research 28(1):267-297.

Hart, P.; Nilsson, N.; and Raphael, B. 1968. A formal basis
for the heuristic determination of minimum cost paths. /[EEE
Trans on Systems Science and Cybernetics 4(2):100-107.

Kask, K., and Dechter, R. 2001. A general scheme for au-
tomatic search heuristics from specification dependencies.
Artificial Intelligence 91-131.

Kask, K.; Dechter, R.; Larrosa, J.; and Dechter, A. 2005.
Unifying cluster-tree decompositions for automated reason-
ing. Artificial Intelligence Journal.

Likhachev, M.; Gordon, G.; and Thrun, S. 2003. ARA*:
Anytime A* with provable bounds on sub-optimality. NIPS
16.

Marinescu, R., and Dechter, R. 2009a. AND/OR Branch-
and-Bound search for combinatorial optimization in graphi-
cal models. Artificial Intelligence 173(16-17):1457-1491.
Marinescu, R., and Dechter, R. 2009b. Memory intensive
AND/OR search for combinatorial optimization in graphical
models. Artificial Intelligence 173(16-17):1492—-1524.
Nillson, N. J. 1980. Principles of Artificial Intelligence.
Tioga, Palo Alto, CA.

Nilsson, N. 1982. Principles of artificial intelligence.
Springer Verlag.

Otten, L., and Dechter, R. 2011. Anytime AND/OR depth
first search for combinatorial optimization. In SOCS.

Pohl, I. 1970. Heuristic search viewed as path finding in a
graph. Artif. Intell. 1(3-4):193-204.

Richter, S.; Thayer, J.; and Ruml, W. 2010. The joy of
forgetting: Faster anytime search via restarting. In ICAPS,
137-144.

van den Berg, J.; Shah, R.; Huang, A.; and Goldberg, K.
2011. Anytime nonparametric A*. In AAAL

