
Compiling Probabilistic Conformant Planning into Mixed Dynamic Bayesian Network June 5<sup>th</sup>

Junkyu Lee

#### Overview

- Goal
  - Solve Probabilistic Conformant Planning by the marginal MAP inference
- Contribution



#### Contents

- Introduction
- Compiling PCP into Mixed DBN
- Empirical Evaluation
- Conclusion

## Introduction

- What is Planning?
- What is Probabilistic Conformant Planning?
- How to formulate PCP as the Marginal MAP inference?
- Review the definition of Mixed Network

# Planning

- Planning
  - a process of selecting and organizing actions to achieve desried goal
  - <S, T, A>
    - S : set of world states
    - A : set of actions
    - T : state transition function
      - Deterministic Transition T: S X A  $\rightarrow$  S
      - Probabilistic Transition T: S X A X S  $\rightarrow$  [0,1]
  - Flat vs. Factored state/action representation
    - Single variable vs. Multiple variables

#### Probabilistic Conformant Planning

- Probabilistic Planning
  - the effect of an action is random
  - the initial state is uncertain
- State Observability
  - Fully Observable  $\rightarrow$  FOMDP
  - Partially Observable  $\rightarrow$  POMDP
  - Non Observable  $\rightarrow$  NOMDP

#### Probabilistic Conformant Planning

- $\mathbf{P} = \langle S, \mathbf{b_i}, \mathbf{s_G}, A, T \rangle$ 
  - S : a set of states,
  - $b_i$ : initial belief state,  $Pr(S_I)$
  - $S_G$ : a set of goal states
  - A : a set of actions
  - T:SXAXS → [0, 1]

$$S = \{\mathbf{s}^0, \mathbf{s}^1, \cdots, \mathbf{s}^L\} \qquad \mathbf{s}^t = \{s_0^t, \cdots, s_n^t\}$$

- $A = \{\mathbf{a}^0, \mathbf{a}^1, \cdots, \mathbf{a}^{\mathbf{L}-1}\} \quad \mathbf{a}^t = \{a_0^t, \cdots, a_m^t\}$  $T(\mathbf{s}^t, \mathbf{s}^{t+1}, \mathbf{a}^t) \quad Pr(\mathbf{s}^{t+1} | \mathbf{s}^t, \mathbf{a}^t)$
- Finite Horizon PCP <P, L>
  - L : time horizon
- PCP with threshold  $\langle P, \theta \rangle$ 
  - $\theta$  : thrshold for probability of success
- Optimal Probabilistic Conformant Plan
  - a plan that achieves the maximum probability of success given fixed time horizon

#### Probabilistic Conformant Planning

• The joint conditional prob. distribution over all states from time 0 to L time horizon is

$$\begin{aligned} Pr(\mathbf{s}^{0}..\mathbf{s}^{\mathbf{L}}|\mathbf{a}^{0}..\mathbf{a}^{\mathbf{L}-1}) &= \prod_{i=0..L} Pr(\mathbf{s}^{i}|\mathbf{s}^{0}..\mathbf{s}^{i-1}, \mathbf{a}^{0}..\mathbf{a}^{\mathbf{L}-1}) \\ &= \prod_{i=0..L} Pr(\mathbf{s}^{i}|\mathbf{s}^{i-1}, \mathbf{a}^{i-1}) \\ &= Pr(\mathbf{s}^{0})Pr(\mathbf{s}^{\mathbf{L}}|\mathbf{s}^{\mathbf{L}-1}, \mathbf{a}^{\mathbf{L}-1}) \prod_{i=1..L-1} Pr(\mathbf{s}^{i}|\mathbf{s}^{i-1}, \mathbf{a}^{i-1}) \end{aligned}$$

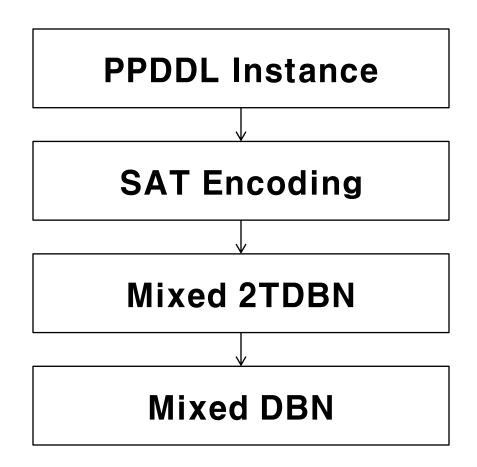
• Initial belief state and goal are given in advance,

$$\begin{aligned} ⪻(\mathbf{s}^{0}..\mathbf{s}^{\mathbf{L}}|\mathbf{s}^{0}=\mathbf{s}_{\mathbf{I}}, \mathbf{s}^{\mathbf{L}}=\mathbf{s}_{\mathbf{G}}, \mathbf{a}^{0}..\mathbf{a}^{\mathbf{L}-1}) \\ &= ⪻(\mathbf{s}^{0}=\mathbf{s}_{\mathbf{I}})Pr(\mathbf{s}^{\mathbf{L}}|\mathbf{s}^{\mathbf{L}}=\mathbf{s}_{\mathbf{G}}, \mathbf{s}^{\mathbf{L}-1}, \mathbf{a}^{\mathbf{L}-1}) \prod_{i=1..L-1} Pr(\mathbf{s}^{i}|\mathbf{s}^{i-1}, \mathbf{a}^{i-1}) \end{aligned}$$

• PCP as Marginal MAP

$$(\mathbf{a}^{\mathbf{0}}..\mathbf{a}^{\mathbf{L}-1}) = \arg\max_{(\mathbf{a}^{\mathbf{0}}..\mathbf{a}^{\mathbf{L}-1})} \sum_{\mathbf{s}^{\mathbf{i}} \in S} Pr(\mathbf{s}^{\mathbf{1}}..\mathbf{s}^{\mathbf{L}-1} | \mathbf{s}^{\mathbf{0}} = \mathbf{s}_{\mathbf{I}}, \mathbf{s}^{\mathbf{L}} = \mathbf{s}_{\mathbf{G}}, \mathbf{a}^{\mathbf{0}}..\mathbf{a}^{\mathbf{L}-1})$$

## Mixed Network


- Mixed network
  - Belief network + Constraint network
  - The joint probability distribution of Mixed network

$$Pr_{\mathcal{M}}(\bar{x}) = \begin{cases} Pr_{\mathcal{B}}(\bar{x}), & \text{if } \bar{x} \in \rho(X_{\mathcal{C}}) \\ 0, & \text{otherwise.} \end{cases}$$

## Compiling PCP into Mixed DBN

- Overview of Process
- What is PPDDL?
- SAT Encoding of PPDDL
- Converting SAT Encoding into Mixed DBN.
- Example

#### Compiling PCP into Mixed DBN



## Planning Formalisms

- Classical Propositional STRIPS  $\langle P, O, I, G \rangle$ 
  - P: a set of propositional atoms
  - O: a set of operators
  - I: a list of positive atoms at init.
  - G: a list of atoms that must be true at goal
  - operator o  $\langle pre(o), add(o), del(o) \rangle$ 
    - Precondition list
    - Add list
    - Delete list

#### - Closed world assumption

## Action Description Language

• ADL

- more expressive than STRIPS

|                      | STRIPS                           | ADL                                 |
|----------------------|----------------------------------|-------------------------------------|
| States               | Conjunction of positive literals | Conjunction of literals             |
| Goal state           | Only positive ground literals    | Allow quantified variables          |
| Goal expression      | Conjunction                      | Allow Conjunction and disjunction   |
| Operator expression  | Conjunction                      | Allow Conditional effects           |
| Unmentioned literals | Closed world assumption          | Open world assumption               |
| Equality predicates  | No equality                      | Allow equality predicates for terms |
| Types                | No types                         | Allow types for variables           |

#### Planning Domain Definition Language

| <actions><br/><action></action></actions> | ::=<br>::=<br>::=<br>::= | <predictes> <actions><br/>list of <predicate><br/>(<name> <list of="" variables="">*)<br/>list of <action><br/>(<name> <list of="" variables="">* <action body="">)<br/>[<precondition>] [<effect>]</effect></precondition></action></list></name></action></list></name></predicate></actions></predictes> |
|-------------------------------------------|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <precondition></precondition>             |                          |                                                                                                                                                                                                                                                                                                             |
| <ground expression=""></ground>           | ::=                      | <predicate> <list of="" variables="">*  <br/>equality on two predicates  <br/>negation of a precondition  <br/>existentially quantified precondition  <br/>universally quantified precondition  <br/>conjunction of preconditions  <br/>disjunction of preconditions  </list></predicate>                   |
| <effect></effect>                         | ::=                      | <simple effect="">  <br/><conditional effect="">  <br/>conjunction of effects</conditional></simple>                                                                                                                                                                                                        |
| <simple effect=""></simple>               | ::=                      | predicate literal                                                                                                                                                                                                                                                                                           |
| <conditional effect=""></conditional>     | ::=                      | when <precondition> <effect></effect></precondition>                                                                                                                                                                                                                                                        |
| <problem></problem>                       |                          | <pround terms=""> <init state=""> <goal></goal></init></pround>                                                                                                                                                                                                                                             |
| <ground terms=""></ground>                |                          | list of ground objects                                                                                                                                                                                                                                                                                      |
| <init state=""><br/><goal></goal></init>  |                          | conjunction of ground predicates<br><ground expression=""></ground>                                                                                                                                                                                                                                         |

## PPDDL

• Probabilistic Effect

| <effect></effect>         | ::= <simple effect="">  </simple>        |
|---------------------------|------------------------------------------|
|                           | <conditional effect="">  </conditional>  |
|                           | <prob. effect="">  </prob.>              |
|                           | conjunction of effects                   |
| <prob. effect=""></prob.> | ::= list of pairs (p, <effect>)</effect> |

#### **PPDDL** Example

```
(define (domain ext-slippery-gripper)
  (:requirements :negative-preconditions :conditional-effects
                 :probabilistic-effects)
  (:predicates (gripper-dry) (holding-block) (block-painted)
               (gripper-clean))
  (:action pickup
       :effect (and (when (gripper-dry)
                          (probabilistic 0.95 (holding-block)))
                    (when (not (gripper-dry))
                          (probabilistic 0.5 (holding-block)))))
  (:action dry
       :effect (probabilistic 0.8 (gripper-dry)))
  (:action paint
      :effect (and (block-painted)
                    (when (not (holding-block))
                          (probabilistic 0.1 (not (gripper-clean))))
                    (when (holding-block)
                          (not (gripper-clean))))))
(define (problem ext-slippery-gripper)
  (:domain ext-slippery-gripper)
  (:init (gripper-clean)
         (probabilistic 0.7 (gripper-dry)))
  (:goal (and (gripper-clean) (holding-block) (block-painted))))
```

## SAT Encoding for PPDDL

#### SAT Variables

- For each ground predicate/action, introduce a boolean state/action variable  $s_i/a_i$ .
- For each action a<sub>i</sub>, introduce a multi-valued effect variable e<sub>ai</sub> which has n+1 values if the effect had n outcomes. The first value of an effect variable e<sub>ai</sub> is no-op, which means that the result of the effect will be null effect, and the rest of the values refer to conditional effects c<sub>j</sub> defined earlier.
- For each state variable s<sub>i</sub>, we introduce two auxiliary boolean variables for state transition, +s<sub>i</sub> and -s<sub>i</sub>. The +s<sub>i</sub> is true if execution of any action could add the state variable s<sub>i</sub> at the next time stage. Similary the -s<sub>i</sub> is true if execution of any action could delete the state variable s<sub>i</sub> at the next time stage.

## SAT Encoding for PPDDL

SAT Clause for Qualifying Precondition

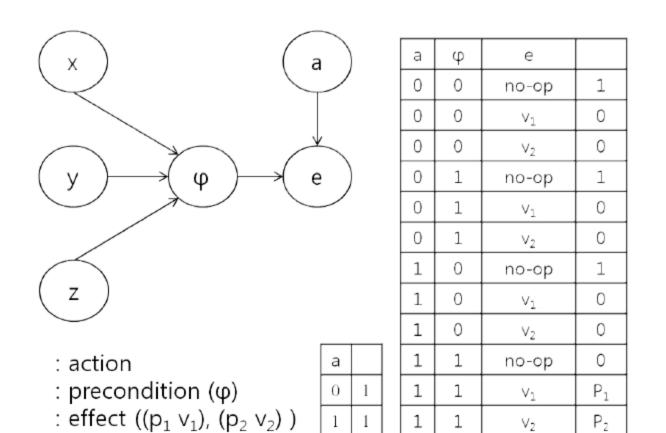
• For each ground action  $a_i$ , let  $\phi_i$  be a CNF clause for a action precondition, then

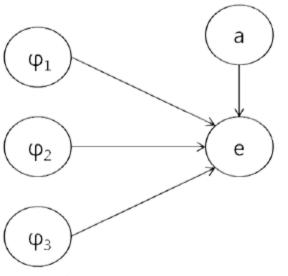
 $a_i \wedge \phi_i \Leftrightarrow (e_{a_i} \neq \text{no-op})$ , where the  $(e_{a_i} = v)$  is an equality predicate that is true if

the value of the multi-valued variable  $e_{a_i}$  equals v.

SAT Clause for State Transition the auxiliary value +s is TRUE iff one of the effect that contains positive literal s happens

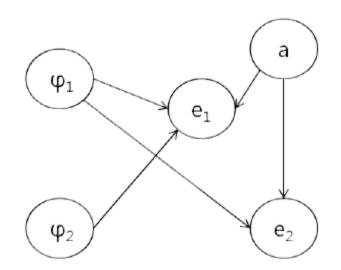
 $\lor (e_{a_i} = v) \Leftrightarrow +s_i, \text{ if } +s_i \in add(e_{a_i} = v)$ 


SAT Clause for mutual exclusivity


only 1 action per time stage, and only single effect can happen

 $\forall_j \lor a_j, \forall_{j \neq k} a_j \to \neg a_k \qquad \forall_{a_i, a_j} (e_{a_i} = v_i) \land (e_{a_j} = v_j) \to \neg + / -s_i$ 

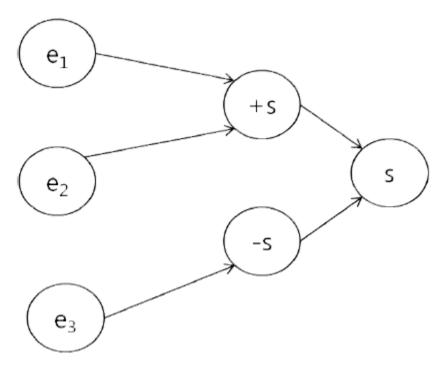
SAT Clause for the frame axiom


 $s_{i}^{'}, \neg + s_{i} \wedge - s_{i} \rightarrow (s_{i} \wedge s_{i}^{'}) \vee (\neg s_{i} \wedge \neg s_{i}^{'})$ 

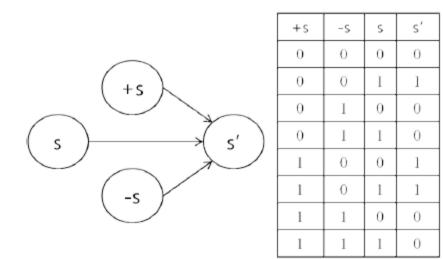




- : action
- : precondition ( $\varphi_1$ )
- : effect (p<sub>1</sub>  $\varphi_2 \triangleright v_1$ ), (p<sub>2</sub>  $\varphi_3 \triangleright v_2$ ) : effect ( $\varphi_2 \triangleright v$ )  $\land$  ((p<sub>1</sub>  $v_1$ ), (p<sub>2</sub>  $v_2$ ))

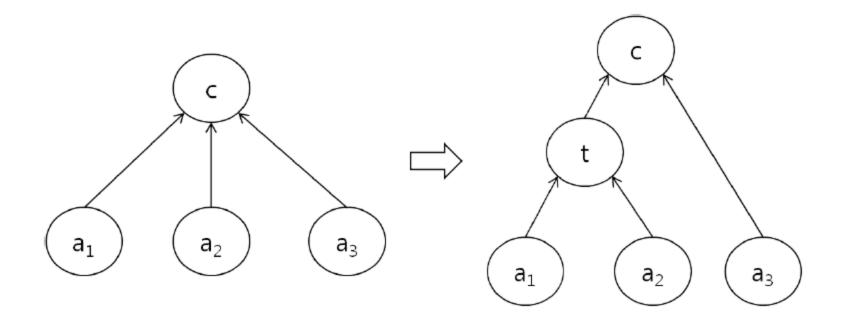

(a) conditional effects inside probabilistic effect




: action

- : precondition ( $\phi_1$ )

(b) conjunciton of conditional effect and probabilistic effect

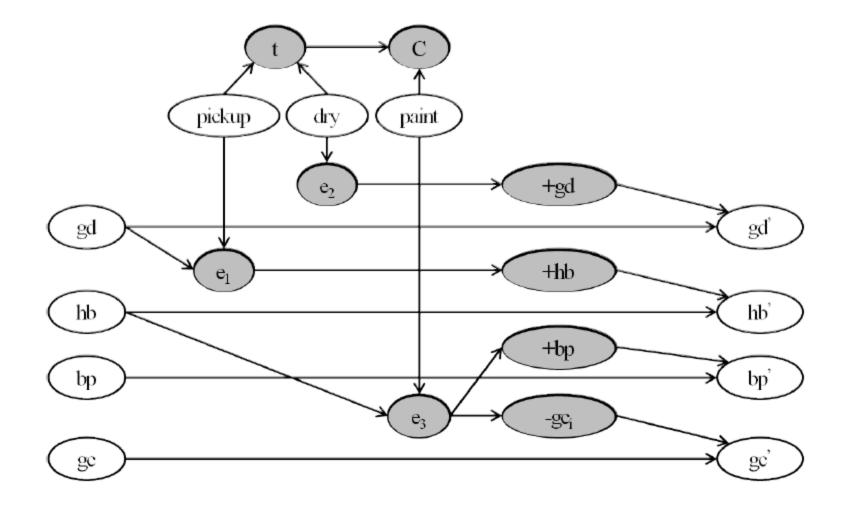



| e1                               | e <sub>2</sub> | + S |   |
|----------------------------------|----------------|-----|---|
| no-op                            | no-op          | 0   | 1 |
| no-op                            | no-op          | 1   | 0 |
| no-op                            | $(s \land y)$  | 0   | 0 |
| no-op                            | $(s \land y)$  | 1   | 1 |
| $(\mathbf{s} \wedge \mathbf{x})$ | no-op          | 0   | 0 |
| $(\mathbf{s} \wedge \mathbf{x})$ | no-op          | 1   | 1 |
| $(\mathbf{s} \wedge \mathbf{x})$ | $(s \land y)$  | 0   | 0 |
| $(\mathbf{s} \wedge \mathbf{x})$ | $(s \land y)$  | 1   | 0 |



c $a_1$   $a_2$   $a_3$ 

(a) Auxiliary network for the frame axiaom (b) Auxiliary network for the mutual exclusivity constraint




## Complexity of Translation

#### • Number of Variables per time

- n\_actions = ground actions, |A|
- n\_states = ground states, |S|
- n\_effects = n\_action
- n\_hidden <= 2n\_states\* |E|</p>
  - E : maximum number of effects that affecting a single state; depends on the problem
- n\_constraint = n\_actions (including hidden variables)
- $O(|A| + |S| + |A| + 2|S| + |A| + |S|^*|E|) = O(3|A| + (3 + |E|)|S|)$
- |A|
  - number of action schema \* K<sup>p</sup>
    - K : maximum number of constant objects
    - p: maximum number of parameters for action schema
- |S
  - number of predicates \* K<sup>q</sup>

## Slippery Gripper Problem



## **Empirical Evaluation**

• Benchmark Sets

- AOBB-JG vs. BBBTi vs. Yuan's algorithm
- AOBB-JG vs. Probabilistic-FF

## **Benchmark Sets**

• 3 Benchmark Problems

| PPDDL Domain     | Source | Instance | Init. State      | State Transition | Goal         |
|------------------|--------|----------|------------------|------------------|--------------|
| Slippery Gripper | IPC 04 | sg       | Probabilistic    | Probabilistic    | Single state |
|                  | IPC 06 | 1        | Nondeterministic |                  | Single state |
| Blocks World     | IPC 06 | bw224    | Deterministic    | Probabilistic    | Single state |

- 3 Marginal MAP algorithms
  - AOBB-JG : (i, c, j)

AND/OR branch and bound search algorithm using weighted mini bucket heuristic with join graph cost shifting scheme

– BBTi : (i, c)

Branch and bound search algorithm using incremental mini cluster tree elimination heuristics

– Yuan's :

Depth first branch and bound search algorithm using incremental joint tree upper bound with unconstrained variable orderings

## Slippery Gripper

| _ |         |         |          |             |           |    |      |      |       |       |          |            |          |          |
|---|---------|---------|----------|-------------|-----------|----|------|------|-------|-------|----------|------------|----------|----------|
|   | w*, uw* | h, uh   | sat vars | sat clauses | Algorithm | L  | i-bd | c-bd | OR    | AND   | pre time | total time | Solution | Bound    |
|   | 6, 4    | 13, 43  | 93       | 245         | AOBB-JG   | 2  | 28   | 28   | 0     | 0     | 0.01     | 0.01       | 0.7335   | 0.7335   |
|   | 10, 5   | 18, 62  | 135      | 370         |           | 3  | 28   | 28   | 0     | 0     | 0.02     | 0.02       | 0.830925 | 0.830925 |
|   | 14, 6   | 22, 81  | 177      | 495         |           | 4  | 28   | 28   | 0     | 0     | 0.14     | 0.14       | 0.884385 | 0.884385 |
|   | 17,6    | 27,100  | 219      | 620         |           | 5  | 30   | 30   | 0     | 0     | 0.97     | 0.97       | 0.895077 | 0.895077 |
|   | 20, 6   | 30, 119 | 261      | 745         |           | 6  | 28   | 28   | 0     | 0     | 8.33     | 8.33       | 0.898539 | 0.898539 |
|   | 23, 6   | 34, 138 | 303      | 870         |           | 7  | 30   | 30   | 0     | 0     | 66.23    | 66.23      | 0.899618 | 0.899618 |
|   | 27,6    | 38, 157 | 345      | 995         |           | 8  | 20   | 20   | 14080 | 17119 | 3.38     | 4.16       | 0.899859 | 1.93198  |
|   | 29,7    | 43, 176 | 387      | 1120        |           | 9  | 22   | 22   | 15188 | 19312 | 4.27     | 5.19       | 0.899967 | 1.43451  |
|   | 32,7    | 45, 195 | 429      | 1245        |           | 10 | 28   | 28   | 29025 | 38468 | 46.94    | 49.29      | 0.899989 | 1.52619  |
|   |         |         |          |             | BBBTi     | 2  | 28   | 28   | 47    | 49    | 0        | 0          | 0.7335   | 0.7335   |
|   |         |         |          |             |           | 3  | 28   | 28   | 128   | 138   | 0        | 0.01       | 0.830925 | 2.26485  |
|   |         |         |          |             |           | 4  | 28   | 28   | 119   | 127   | 0        | 0.01       | 0.884385 | 7.31411  |
|   |         |         |          |             |           | 5  | 28   | 28   | 196   | 214   | 0.01     | 0.03       | 0.895077 | 11.6908  |
|   |         |         |          |             |           | 6  | 28   | 28   | 330   | 367   | 0.02     | 0.08       | 0.898539 | 24.5902  |
|   |         |         |          |             |           | 7  | 30   | 30   | 453   | 519   | 0.02     | 0.15       | 0.899618 | 71.3144  |
|   |         |         |          |             |           | 8  | 28   | 28   | 405   | 451   | 0.02     | 0.29       | 0.899859 | 90.8221  |
|   |         |         |          |             |           | 9  | 20   | 20   | 445   | 497   | 0.03     | 0.8        | 0.899967 | 138.556  |
|   |         |         |          |             |           | 10 | 26   | 26   | 737   | 840   | 0.03     | 1.96       | 0.899989 | 371.314  |
|   |         |         |          |             | Yuan      | 2  | -    | -    | 7     | -     | 0        | 0          | 0.7335   | 0.7335   |
|   |         |         |          |             |           | 3  | -    |      | 12    | -     | 0        | 0          | 0.830925 | 1.66162  |
|   |         |         |          |             |           | 4  | -    | -    | 49    | -     | 0.01     | 0.01       | 0.884385 | 7.60698  |
|   |         |         |          |             |           | 5  | -    | -    | 146   | -     | 0.01     | 0.01       | 0.895077 | 11.6908  |
|   |         |         |          |             |           | 6  | -    | -    | 381   | -     | 0.01     | 0.03       | 0.898539 | 34.2711  |
|   | S       |         |          |             |           | 7  | -    | -    | 1043  | -     | 0.02     | 0.06       | 0.899618 | 71.55    |
|   | -       |         |          |             |           | 8  | -    | -    | 2210  | -     | 0.02     | 0.11       | 0.899859 | 90.8221  |
| / | ars     |         |          |             |           | 9  | -    | -    | 5190  | -     | 0.03     | 0.26       | 0.899967 | 194.283  |
|   |         |         |          |             |           | 10 | -    | -    | 15030 | -     | 0.03     | 0.65       | 0.899989 | 521.865  |
|   |         |         |          |             | L         |    |      |      |       |       |          |            |          |          |

2TDBN

n, m

42.6

61.9

80.12

99.15

137, 21

175, 27

194.30

8 156, 24 156

2

3

4

5

6 118.18

9

f.

42

61

80

99

118

137

175

194

k

3

3

3

3

3

3

3

3

3

8

3

3

3

3

3

3

3

3

3.

- 4 state vars
- 3 action vars
- 23 vars

# Slippery Gripper

- Run time results
   Yuan < BBTI < AOBB-JG</li>
- Heuristic Upper bounds

   WBM-JG provided the tightest bound
   AOBB-JG solved up to 7 horizon w/o search
- Induced width:
  - unconstrainted induced width 6
  - constrained induced width increases with L

#### Comm

| Stats             | L                | n, m                  | f                     | k                                       | S                                       | w*                                    | h                                      | sat var                     | sat clauses                                              |
|-------------------|------------------|-----------------------|-----------------------|-----------------------------------------|-----------------------------------------|---------------------------------------|----------------------------------------|-----------------------------|----------------------------------------------------------|
|                   | 2                | 653,94                | 653                   | 2                                       | - 5                                     | 103                                   | 140                                    | 1307                        | 3671                                                     |
|                   | 3                | 957, 141              | 957                   | 2                                       | - 5                                     | 155                                   | 198                                    | 1915                        | 5826                                                     |
|                   | 4                | 1261, 188             | 1261                  | 2                                       | -5                                      | 207                                   | 270                                    | 2523                        | 7981                                                     |
|                   | 5                | 1565, 235             | 1565                  | 2                                       | 5                                       | 259                                   | 324                                    | 3131                        | 10136                                                    |
|                   | 6                | 1869, 282             | 1869                  | 2                                       | 5                                       | 311                                   | 375                                    | 3739                        | 12291                                                    |
|                   | 7                | 2173, 329             | 2173                  | 2                                       | 5                                       | 363                                   | 436                                    | 4347                        | 14446                                                    |
|                   | 8                | 2477, 376             | 2477                  | 2                                       | 5                                       | 415                                   | 488                                    | 4955                        | 16601                                                    |
|                   | 9                | 2781,423              | 2781                  | 2                                       | 5                                       | 467                                   | 540                                    | 5563                        | 18756                                                    |
|                   |                  |                       |                       |                                         |                                         | -                                     |                                        |                             |                                                          |
| Algorithm         | L                | i-bd                  | c-bd                  | OR                                      | AND                                     | pre time                              | total time                             | Solution                    | Bound                                                    |
| Algorithm<br>AOBB | L<br>2           | i-bd<br>2             | c-bd<br>2             | OR<br>0                                 | AND<br>0                                | pre time<br>1.18                      | total time<br>1.18                     | Solution<br>0               | Bound<br>0.00E+00                                        |
| L.                | L<br>2<br>3      |                       |                       |                                         |                                         | 1                                     |                                        |                             |                                                          |
| AOBB              |                  | 2                     | 2                     | 0                                       | 0                                       | 1.18                                  | 1.18                                   | 0                           | 0.00E+00                                                 |
| AOBB              | 3                | 2<br>4<br>4<br>6      | 2                     | 0                                       | 0                                       | 1.18<br>3.07                          | 1.18<br>3.07                           | 0<br>0<br>0                 | 0.00E+00<br>0.00E+00                                     |
| AOBB              | 3                | 2<br>4<br>4           | 2<br>4<br>4           | 0                                       | 0                                       | 1.18<br>3.07<br>7.13                  | 1.18<br>3.07<br>7.13                   | 0                           | 0.00E+00<br>0.00E+00<br>4.50E+47                         |
| AOBB              | 3 4 5            | 2<br>4<br>4<br>6      | 2<br>4<br>4<br>6      | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 1.18<br>3.07<br>7.13<br>11.09         | 1.18<br>3.07<br>7.13<br>11.09          | 0<br>0<br>0<br>0.25         | 0.00E+00<br>0.00E+00<br>4.50E+47<br>0.00E+00             |
| AOBB              | 3<br>4<br>5<br>6 | 2<br>4<br>4<br>6<br>2 | 2<br>4<br>4<br>6<br>2 | 0<br>0<br>0<br>2208                     | 0<br>0<br>0<br>2234                     | 1.18<br>3.07<br>7.13<br>11.09<br>17.8 | 1.18<br>3.07<br>7.13<br>11.09<br>19.06 | 0<br>0<br>0<br>0.25<br>0.25 | 0.00E+00<br>0.00E+00<br>4.50E+47<br>0.00E+00<br>1.09E+98 |

• 2TDBN : 45 state vars, 46 action vars, 349 vars

## Comm

- AOBB-JG was the only algorithm that solved up to 9 time horizon.
- The induced width of the constrained ordering is 103 for the length 2 plan problem and 467 for the length 9 plan problem
- The only probabilistic tables in the problem are two state variables at the initial state.
- AOBB-JG could solve he problem efficently by detecting the zero probability subplans early by constraint processing
- The large induced width of the problem not only makes the heuristic inaccurate but also consumes huge amount of memory.
- i-bound was limited by 2 up to 9 time horizon and solver was terminated due to out of memory from 10 time horizon.

#### Blocks World

f

649

80

n. m

24

k

3

333

3

|   | 8 | w*. uw* | h, uh    | sat var | clauses | algorithms | T  | i  | с  | OR       | AND      | nre time | total time | Solution | Bound    |
|---|---|---------|----------|---------|---------|------------|----|----|----|----------|----------|----------|------------|----------|----------|
| _ | - | ,       | .,       |         |         | -          |    | 10 |    |          |          | *        |            |          |          |
|   | 5 | 32, 17  | 54, 202  | 421     | 1719    | AOBB       | 3  | 10 | 10 | 201      | 202      | 0.56     | 0.57       | 0.140625 | 1.410625 |
|   | 5 | 40, 17  | 66, 266  | 555     | 2353    | JG         | 4  | 10 | 10 | 2264     | 2294     |          |            | 0.5625   | 1.51E+09 |
|   | 5 | 48, 17  | 78, 330  | 689     | 2987    |            | 5  | 10 | 10 | 33601    | 34166    |          | 4.99       | 0.703125 | 1.16E+08 |
|   | 5 | 57, 17  | 90, 394  | 823     | 3621    |            | 6  | 12 | 12 | 441711   | 450030   | 3.62     |            | 0.808594 | 7.68E+16 |
|   | 5 | 67, 17  | 99, 458  | 957     | 4255    |            | 7  | 16 | 16 | 4767559  | 4872884  |          | 879.03     | 0.870117 | 1.45E+18 |
|   | 5 | 73, 17  | 111, 522 | 1091    | 4889    |            | 8  | 18 | 18 | 46897433 | 48117132 | 224.61   | 9390.6     | 0.91626  | 3.04E+15 |
|   | 5 | 85, 17  | 129, 586 | 1225    | 5523    |            | 9  | 10 | 10 | 80960476 | 81880618 | 2.57     | out        | nan      | 8.72E+19 |
|   | 5 | 88, 17  | 132, 650 | 1359    | 6157    |            | 10 | 10 | 10 | 70629254 | 71552310 | 2.82     | out        | nan      | 1.09E+21 |
|   |   |         |          |         |         | BBBTi      | 3  | 12 | 12 | 177      | 178      | 0.24     | 0.35       | 0.140625 | 5.13E+06 |
|   |   |         |          |         |         |            | 4  | 12 | 12 | 846      | 875      | 0.38     | 1.95       | 0.28125  | 3.79E+10 |
|   |   |         |          |         |         |            | 5  | 10 | 10 | 5181     | 5660     | 0.32     | 8.93       | 0.28125  | 1.46E+13 |
|   |   |         |          |         |         |            | 6  | 12 | 12 | 80184    | 87724    | 0.64     | 242.19     | 0.808594 | 2.49E+17 |
|   |   |         |          |         |         |            | 7  | 26 | 26 | 947040   | 1036077  | 1.86     | 18231.2    | 0.870117 | 1.83E+02 |
|   |   |         |          |         |         |            | 9  | 22 | 22 | 4074     | 4169     | 29.95    | out        | 0.943176 | 2.02E+03 |
|   |   |         |          |         |         |            | 10 | 28 | 28 | 2024     | 2068     | 31.67    | out        | 0.990327 | 1.80E+04 |
|   |   |         |          |         |         | Yuan       | 3  | -  | -  | 25       | -        | 5.51     | 7.53       | 0.140625 | 0.140625 |
|   |   |         |          |         |         |            | 4  | -  | -  | 62       | -        | 7.55     | 10.81      | 0.5625   | 1.47656  |
|   |   |         |          |         |         |            | 5  | -  | -  | 1148     | -        | 12.1     | 92.88      | 0.703125 | 8.96484  |
|   |   |         |          |         |         |            | 6  | -  | -  | 11982    | -        | 13.46    | 1029.82    | 0.808594 | 49.533   |
|   |   |         |          |         |         |            | 7  | -  | -  | 209726   | -        | 17.55    | 18809.1    | 0.870117 | 296.851  |
|   |   |         |          |         |         |            | 8  | -  | -  | 247596   | -        | 21.31    | out        | 0.870117 | 702.582  |
|   |   |         |          |         |         |            | 9  | -  | -  | 380441   | -        | 23.08    | out        | 0.885498 | 2691.55  |
|   |   |         |          |         |         |            | 10 | -  | -  | 245637   | -        | 27.55    | out        | 0.931504 | 20239.9  |

• 2TDBN: 9 state vars, 8 action vars, 73 vars

## Comaprison with COMPLAN

- COMPLAN
  - Depth First Branch & Bound Search using approxiamte marignal MAP qeury to DNNF (compiled diagram).
    - similar to Yuan's algorithm
  - Compiles problems as SAT with chance variables  $\rightarrow$  compile CNF as DNNF
- Running time comparison?

-NA

#### Comaprison with Probabilistic-FF

- Probabilistic-FF
  - Sub-optimal planner, returns any plan that acheives a threshold
  - Heuristic Forward Search in a Belief State Space
  - Built on
    - Fast Forward Classical Planner
    - Conformant-FF
  - Internally represent blief states by DBN, and compile it into weighted CNFs → weighted model counting

#### Comparison with Probabilistic-FF

|          |          |          | slippery gr    | ipper    |          |          |
|----------|----------|----------|----------------|----------|----------|----------|
| pff      | $\theta$ | 0.7335   | 0.830925       | 0.884385 | 0.895077 | 0.898539 |
| (h1, w0) | time     | 0.04     | 0.03           | 0.04     | 0.05     | 0.04     |
|          | length   | 3        | 4              | 5        | 6        | 8        |
|          | $\theta$ | 0.899618 | 0.899859       | 0.899967 | 0.899989 | 0.899999 |
|          | time     | 0.05     | 0.04           | 0.07     | 0.11     | out      |
|          | length   | 10       | 11             | 13       | 15       | -        |
| pff      | $\theta$ | 0.7335   | 0.830925       | 0.884385 | 0.895077 | 0.898539 |
| (h2, w1) | time     | 0.03     | 0.19           | 0.42     | 1.22     | 1.27     |
|          | length   | 2        | 4              | 5        | 6        | 6        |
|          | θ        | 0.899618 | 0.899859       | 0.899967 | 0.899989 | 0.899999 |
|          | time     | 3.05     | 6.29           | 13.89    | 31.56    | 156.86   |
|          | length   | 7        | 8              | 9        | 10       | 12       |
| AOBB     | $\theta$ | 0.7335   | 0.830925       | 0.884385 | 0.895077 | 0.898539 |
| JG       | time     | 0.01     | 0.02           | 0.13     | 0.98     | 8.33     |
|          | length   | 2        | 3              | 4        | 5        | 6        |
|          | $\theta$ | 0.899618 | 0.899859       | 0.899967 | 0.899989 | 0.899999 |
|          | time     | 66.23    | 4.13           | 5.19     | 49.29    | 37.23    |
|          | length   | 7        | 8              | 9        | 10       | 12       |
|          |          |          | blocks world - | - bw224  |          |          |
| pff      | $\theta$ | 0.14065  | 0.5625         | 0.703125 | 0.808594 | 0.870117 |
| (h1, w0) | time     | 0.04     | 0.05           | oom      | oom      | oom      |
|          | length   | 4        | 4              | -        | -        | -        |
| AOBB     | θ        | 0.14065  | 0.5625         | 0.703125 | 0.808594 | 0.870117 |
| JG       | time     | 0.57     | 1.06           | 5        | 67       | 879      |
|          | length   | 3        | 4              | 5        | 6        | 7        |

## Conclusion

- Converted PPDDL Format to UAI Format
- Empirical Evaluation
  - 3 Problems (Slippery Gripper, Comm, Blocks world)
  - AOBB-JG Performed Best in overall
    - AOBB-JG equipped with constraint processing
    - w/o zero probability detection,
      - Slippery Gripper : Yuan < BBBTi < AOBB-JG
      - Blocks World : AOBB-JG < BBBTi < Yuan
  - AOBB-JG vs. Probabilistic FF
    - Probabilistic-FF generates suboptimal plans really fast
    - For optimal length plan, AOBB-JG was faster
    - In blocks world, Probabilistic FF couldn't find solution if threshold was >= 0.6

## Conclusion

- Downsides of Current Compilation
  - The number of variables is exponential in the number of ground objects
    - comm domain had 46 actions in 1 step.
    - cannot solve blocks world problem having 4 blocks
  - Large scope sized deterministic constraints
    - Mutually exclusive action constriant
    - The state transition constraint
  - All tables have huge redundancy
    - Decision diagrams

#### Future Work

- Compact Translation (semi-lifted model)
  - Formulate Problems in SAS+ formalism
    - Actions will be splitted
    - Reduce the coupling between state variables
- Compressed Representation
  - Contraints, CNFs
  - Decision Diagrams
- Lifted Inference
  - Incorported lifted inference algorithms on the relational representation
- Extend the Problem Formulation to
  - Probabilistic Planning with Rewards
  - POMDP