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Abstract Weighted heuristic search (best-first or depth-first) refers to search with a heuristic

function multiplied by a constant w [Pohl (1970)]. The paper shows for the first time that for

graphical models optimization queries weighted heuristic best-first and weighted heuristic

depth-first branch and bound search schemes are competitive energy-minimization anytime

optimization algorithms. Weighted heuristic best-first schemes were investigated for path-

finding tasks, however, their potential for graphical models was ignored, possibly because

of their memory costs and because the alternative depth-first branch and bound seemed

very appropriate for bounded depth. The weighted heuristic depth-first search has not been

studied for graphical models. We report on a significant empirical evaluation, demonstrating

the potential of both weighted heuristic best-first search and weighted depth-first branch and

bound algorithms as approximation anytime schemes (that have suboptimality bounds) and

compare against one of the best depth-first branch and bound solvers to date.

Keywords Graphical models · Heuristic search · Anytime weighted heuristic search ·
Combinatorial optimization ·Weighted CSP ·Most Probable Explanation

1 Introduction

The idea of weighing the heuristic evaluation function by a fixed (or varying) constant when

guiding search, is well known [Pohl (1970)]. It was revived in recent years in the context

of path-finding domains, where a variety of algorithms using this concept emerged. The

attractiveness of this scheme of weighted heuristic search is in transforming best-first search

into an anytime scheme, where the weight serves as a control parameter trading-off time,
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memory and accuracy. The common approach is to have multiple executions, gradually

reducing the weight along some schedule. A valuable by-product of these schemes is that

the weight offers a suboptimality bound on the generated cost.

In this paper we investigate the potential of weighted heuristic search for probabilistic

and deterministic graphical models queries. Because graphical models are characterized by

having many solutions which are all at the same depth, they are typically solved by depth-

first schemes. These schemes allow flexible use of memory and they are inherently anytime

(though require a modification for AND/OR spaces). Best-first search schemes, on the other

hand, do not offer a significant advantage over depth-first schemes for this domain, yet

they come with a significant memory cost and lack of anytime behaviour, and therefore are

rarely used. In this paper we show that weighted heuristics can facilitate an effective and

competitive best-first search scheme, useful for graphical models as well. The following

paragraphs elaborate.

In path-finding domain, where solution length varies (e.g., planning), best-first search

and especially its popular variant A* [Hart et al (1968)] is clearly favoured among the exact

schemes. However, A*’s exponential memory needs, coupled with its inability to provide a

solution any time before termination, lead to extension into more flexible anytime schemes

based on the Weighted A* (WA*) [Pohl (1970)]. Several anytime weighted heuristic best-first

search schemes were proposed in the context of path-finding problems in the past decade

[Hansen and Zhou (2007); Likhachev et al (2003); Van Den Berg et al (2011); Richter et al

(2010); Thayer and Ruml (2010); Richter et al (2010)].

Our contribution.

We extend and evaluate weighted heuristic search for graphical models. As a basis we

used AND/OR Best First search (AOBF,[Marinescu and Dechter (2009b)]) and AND/OR

Branch and Bound search (AOBB, [Marinescu and Dechter (2009a)]), both described in

Section 2.3. We compare against a variant called Breadth-Rotating AND/OR Branch and

Bound (BRAOBB [Otten and Dechter (2011)]). As already mentioned, BRAOBB (under

the name daoopt) was instrumental in winning the 2011 Probabilistic Inference Challenge1

in all optimization categories. This algorithm also won second place for 20 minutes and 1

hour time bounds in MAP category and first place for all time bounds in MMAP category

in UAI Inference Challenge 20142. We also compare our schemes against traditional depth-

first branch and bound (DFBB) and A* exploring OR search graph and against Stochastic

Local Search (SLS).

We explored a variety of weighted heuristic schemes. After an extensive preliminary em-

pirical evaluation, the two best-first schemes that emerged as most promising were wAOBF

and wR-AOBF. Both apply weighted heuristic best-first search iteratively while decreasing

w. wAOBF starts afresh at each iteration, while wR-AOBF reuses search efforts from previ-

ous iterations, extending ideas presented in Anytime Repairing A* (ARA*) [Likhachev et al

(2003)]. Our empirical analysis revealed that weighted heuristic search can be competitive

with BRAOBB on a significant number of instances from a variety of domains.

We also explored the benefit of weighting for depth-first search, resulting in wAOBB

and wBRAOBB schemes. The weights facilitate an alternative anytime approach and most

importantly equip those schemes with suboptimality guarantees. Our empirical evaluation

showed that for many instances our algorithms yielded best results.

To explain the behaviour of weighted heuristic search we introduce a notion of focused

search that yields a fast and memory efficient search. Moreover, we derive the optimal value

1 http://www.cs.huji.ac.il/project/PASCAL/realBoard.php
2 http://www.hlt.utdallas.edu/ vgogate/uai14-competition/leaders.html



Weighted Heuristic Search in Graphical Models 3

of the weight that a) yields a greedy search with least loss of accuracy; b) when computed

over an arbitrary solution path provides a guarantee on the solution accuracy.

Note that for the purpose of this work we intentionally focus primarily on the complete

schemes that guarantee optimal solutions if given enough time and space. Thus many ap-

proximate schemes developed for graphical models, e.g., [Hutter et al (2005); Neveu et al

(2004); Fontaine et al (2013); Sontag et al (2012); Wang and Daphne (2013)] remain beyond

the scope of our consideration, as do a number of exact methods, developed for weighted

CSP problems, e.g., [Lecoutre et al (2012); Delisle and Bacchus (2013)]. A relevant work

on generating both a lower bound and an upper-bound in an anytime fashion and provid-

ing a gap of optimality when terminating was done by [Cabon et al (1998)], though their

approach is orthogonal to our investigation of the power of weighted heuristic search in

generating anytime schemes with optimality guarantees.

The paper is organized as follows. In Section 2 we present relevant background infor-

mation on best-first search (2.1), graphical models (2.2) and AND/OR search spaces (2.3).

In Section 3 we consider the characteristics of the search space explored by the weighted

heuristic best-first search and reason about values of the weights that make this exploration

efficient. Section 4 presents our extension of anytime weighted heuristic Best-First schemes

to graphical models. Section 5 shows the empirical evaluation of the resulting algorithms.

It includes the overview of methodology used (5.1), shows the impact of the weight on run-

time and accuracy of solutions found by the weighted heuristic best-first (5.2), reports on

our evaluation of different weight policies (5.3) and compares the anytime performances

of our two anytime weighted heuristic best-first schemes against the previously developed

schemes (5.4). Section 6 introduces the two anytime weighted heuristic depth-first branch

and bound schemes (6.1) and presents their empirical evaluation (6.2). Section 7 summarizes

and concludes.

2 Background

2.1 Best-first search

Consider a search space defined implicitly by a set of states (the nodes in the graph), opera-

tors that map states to states having costs or weights (the directed weighted arcs), a starting

state n0 and a set of goal states. The task is to find the least cost solution path from n0 to

a goal [Nillson (1980)], where the cost of a solution path is the sum of the weights or the

product of the weights on its arcs.

Best-first search (BFS) maintains a graph of explored paths and a frontier of OPEN nodes.

It chooses from OPEN a node n with lowest value of an evaluation function f (n), expands it,

and places its child nodes in OPEN. The most popular variant, A*, uses f (n) = g(n)+h(n),
where g(n) is the current minimal cost from the root to n, and h(n) is a heuristic function

that estimates the optimal cost to go from n to a goal node h∗(n). For a minimization task,

h(n) is admissible if ∀n h(n) ≤ h∗(n).

Weighted A* Search (WA*) [Pohl (1970)] differs from A* only in using the evaluation

function: f (n) = g(n)+w · h(n), where w > 1. Higher values of w typically yield greedier

behaviour, finding a solution earlier during search and with less memory. WA* is guaranteed

to terminate with a solution cost C such that C ≤ w ·C∗, where C∗ is the optimal solution’s

cost. Such solution is called w-optimal.
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Formally, after [Pohl (1970)]:

Theorem 1 The cost C of the solution returned by Weighted A* is guaranteed to be within

a factor of w from the optimal cost C∗.

Proof Consider an optimal path to the goal t. If all nodes on the path were expanded by

WA*, the solution found is optimal and the theorem holds trivially. Otherwise, let n′ be the

deepest node on the optimal path, which is still on the OPEN list when WA* terminates.

It is known from the properties of A* search [Pearl (1984)] that the unweighted evaluation

function of n′ is bounded by the optimal cost: g(n′) + h(n′) ≤ C∗. Using some algebraic

manipulations: f (n′) = g(n′)+w ·h(n′), f (n′) ≤ w · (g(n′)+h(n′)). Consequently, f (n′) ≤
w ·C∗.

Let n be an arbitrary node expanded by WA*. Since it was expanded before n′, f (n) ≤
f (n′) and f (n)≤ w ·C∗. It holds true to all nodes expanded by WA*, including goal node t:

g(t)+w ·h(t)≤ w ·C∗. Since g(t) =C and h(t) = 0, C ≤ w ·C∗. ⊓⊔

2.2 Graphical models

A graphical model is a tuple M = 〈X,D,F,
⊗〉, where X = {X1, . . . ,Xn} is a set of variables

and D = {D1, . . . ,Dn} is the set of their finite domains of values. F = { f1(XS1
), . . . , fr(XSr

)}
is a set of non-negative real-valued functions defined on subsets of variables XSi

⊆X, called

scopes (i.e., ∀i fi : XSi
→ R

+). The set of function scopes implies a primal graph whose

vertices are the variables and which includes an edge connecting any two variables that

appear in the scope of the same function (e.g. Figure 1a). Given an ordering of the variables,

the induced graph is an ordered graph such that each node’s earlier neighbours are connected

from last to first, (e.g., Figure 1b) and has a certain induced width w∗ (not to be confused

with weight w). For more details see [Kask et al (2005)]. The combination operator
⊗ ∈

{∏,∑} defines the complete function represented by the graphical model M as C (X) =
⊗r

j=1 f j(XS j
).

The most common optimization task is known as the most probable explanation (MPE)

or maximum a posteriori (MAP), in which we would like to compute the optimal value C∗

and/or its optimizing configuration x∗:

C∗ =C(x∗) = max
X

r

∏
j=1

f j(XS j
) (1)

x∗ = argmaxX

r

∏
j=1

f j(XS j
) (2)

The MPE/MAP task is often converted into log-space and solved as an energy mini-

mization (min-sum) problem. This is also known as the Weighted CSP (WCSP) problem

[Marinescu and Dechter (2009a)] and is defined as follows:

C∗ =C(x∗) = min
X

r

∑
j=1

f j(XS j
) (3)
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(a) Primal graph. (b) Induced

graph.

(c) Pseudotree.

Fig. 1 Example problem with six variables, induced graph along ordering A,B,C,D,E,F , corresponding

pseudotree, and resulting AND/OR search graph with AOBB pruning example.

Bucket Elimination (BE) [Dechter (1999), Bertele and Brioschi (1972)] solves MPE/MAP

(WCSP) problems exactly by eliminating the variables in sequence. Given an elimination

order BE partitions the functions into buckets, each associated with a single variable. A

function is placed in the bucket of its argument that appears later in the ordering. BE pro-

cesses each bucket, from last to first, by multiplying (summing for WCSP) all functions in

the current bucket and eliminating the bucket’s variable by maximization (minimization for

WCSP), resulting in a new function which is placed in a lower bucket. The complexity of BE

is time and space exponential in the induced width corresponding to the elimination order.

Mini-Bucket Elimination (MBE) [Dechter and Rish (2003)] is an approximation algorithm

designed to avoid the space and time complexity of full bucket elimination by partitioning

large buckets into smaller subsets, called mini-buckets, each containing at most i (called

i-bound) distinct variables. The mini-buckets are processed separately. MBE generates an

upper bound on the optimal MPE/MAP value (lower bound on the optimal WCSP value).

The complexity of the algorithm, which is parametrized by the i-bound, is time and space

exponential in i only. When i is large enough (i.e., i ≥ w∗), MBE coincides with full BE.

Mini-bucket elimination is often used to generate heuristics for both best-first and depth-

first branch and bound search over graphical models [Kask and Dechter (1999a), Kask and

Dechter (1999b)].

2.3 AND/OR search spaces

The concept of AND/OR search spaces for graphical models has been introduced to better

capture the problem structure [Dechter and Mateescu (2007)]. A pseudo tree of the primal

graph defines the search space and captures problem decomposition (e.g., Figure 1c).
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Fig. 2 Context-minimal AND/OR search graph with AOBB pruning example.

Definition 1 A pseudo tree of an undirected graph G = (V,E) is a directed rooted tree

T = (V,E ′), such that every arc of G not included in E ′ is a back-arc in T , namely it

connects a node in T to an ancestor in T . The arcs in E ′ may not all be included in E.

Given a graphical model M = (X,D,F) with primal graph G and a pseudo tree T of G,

the AND/OR search tree ST based on T has alternating levels of OR and AND nodes. Its

structure is based on the underlying pseudo tree. The root node of ST is an OR node labelled

by the root of T . The children of an OR node 〈Xi〉 are AND nodes labelled with value

assignments 〈Xi,xi〉 (or simply 〈xi〉); the children of an AND node 〈Xi,xi〉 are OR nodes

labelled with the children of Xi in T , representing conditionally independent subproblems.

Identical subproblems, identified by their context (the partial instantiation that separates

the subproblem from the rest of the problem graph), can be merged, yielding an AND/OR

search graph [Dechter and Mateescu (2007)]. Merging all context-mergeable nodes yields

the context minimal AND/OR search graph, denoted by CT (e.g., Figure 2). The size of the

context minimal AND/OR graph is exponential in the induced width of G along a depth-first

traversal of T [Dechter and Mateescu (2007)].

A solution tree T of CT is a subtree such that: (1) it contains the root node of CT ; (2)

if an internal AND node n is in T then all its children are in T ; (3) if an internal OR node

n is in T then exactly one of its children is in T ; (4) every tip node in T (i.e., nodes with no

children) is a terminal node. The cost of a solution tree is the product (resp. sum for WCSP)

of the weights associated with its arcs.

Each node n in CT is associated with a value v(n) capturing the optimal solution cost

of the conditioned subproblem rooted at n. Assuming a MPE/MAP problem, it was shown

that v(n) can be computed recursively based on the values of n’s successors: OR nodes by

maximization, AND nodes by multiplication. For WCSPs, v(n) is updated by minimization

and summation, for OR and AND nodes, respectively [Dechter and Mateescu (2007)].

We next provide an overview the state-of-the-art best-first and depth-first branch and

bound search schemes that explore the AND/OR search space for graphical models. As

it is customary in the heuristic search literature, we assume without loss of generality a

minimization task (i.e., min-sum optimization problem). Note that in algorithm descriptions

throughout the paper we assume the mini-bucket heuristic hi, obtained with i-bound i to be
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an input parameter to the search scheme. The heuristic is static and its computation is treated

as a separate pre-processing step for clarity.

AND/OR Best First Search (AOBF). The state-of-the-art version of A* for the AND/OR

search space for graphical models is the AND/OR Best-First algorithm. AOBF is a variant

of AO* [Nillson (1980)] that explores the AND/OR context-minimal search graph. It was

developed by [Marinescu and Dechter (2009a)].

AOBF, described by Algorithm 1 for min-sum task, maintains the explicated part of the

context minimal AND/OR search graph G and also keeps track of the current best partial

solution tree T ∗. AOBF interleaves iteratively a top-down node expansion step (lines 4-16),

selecting a non-terminal tip node of T ∗ and generating its children in explored search graph

G , with a bottom-up cost revision step (lines 16-25), updating the values of the internal

nodes based on the children’s values. If a newly generated child node is terminal it is marked

solved (line 9). During bottom-up phase OR nodes that have at least one solved child and

AND nodes who have all children solved are also marked as solved. The algorithm also

marks the arc to the best AND child of an OR node through which the minimum is achieved

(line 19). Following the backward step, a new best partial solution tree T ∗ is recomputed

(line 25). AOBF terminates when the root node is marked solved. If the heuristic used is

admissible, at the point of termination T ∗ is the optimal solution with cost v(s), where s is

the root node of the search space.

Note that AOBF does not maintain explicit OPEN and CLOSED lists as traditional OR

search schemes do. Same is true for all AND/OR algorithms discussed in this paper.

Theorem 2 (Marinescu and Dechter (2009b)) The AND/OR Best-First search algorithm

with no caching (traversing an AND/OR search tree) has worst case time and space com-

plexity of O(n · kh), where n is the number of variables in the problem, h is the height of the

pseudo-tree and k bounds the domain size. AOBB with full caching traversing the context

minimal AND/OR graph has worst case time and space complexity of O(n · kw∗), where w∗

is the induced width of the pseudo tree.

AND/OR Branch and Bound (AOBB). The AND/OR Branch and Bound [Marinescu and

Dechter (2009a)] algorithm traverses the context minimal AND/OR graph in a Depth-First

rather than best-first manner while keeping track of the current upper bound on the mini-

mal solution cost. The algorithm (Algorithm 2, described here with no caching) interleaves

forward node expansion (lines 4-17) with a backward cost revision (or propagation) step

(lines 19-29) that updates node values (capturing the current best solution to the subprob-

lem rooted at each node), until search terminates and the optimal solution has been found.

A node n will be pruned (lines 12-13) if the current upper bound is higher than the node’s

heuristic lower bound, computed recursively using the procedure described in Algorithm 3.

Although branch and bound search is inherently anytime, AND/OR decomposition hinders

the anytime performance of AOBB, which has to solve completely at each AND node almost

all independent child subproblems (except for the last one), before obtaining any solution at

all.

We use notation AOBB(hi, w0, UB) to indicate that AOBB uses the mini-bucket heuris-

tic hi obtained with i-bound=i, which is multiplied by the weight w0 and initializes the upper

bound used for pruning to UB. The default values of the weight and upper bound for AOBB

traditionally are w0 = 1, corresponding to regular unweighted heuristic, and UB= ∞, indi-

cating that initially there is no pruning.
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Algorithm 1: AOBF(hi, w0) exploring AND/OR search tree (Marinescu and Dechter

(2009b))

Input: A graphical model M = 〈X,D,F,∑〉, weight w0 (default value 1), pseudo tree T rooted at

X1, heuristic hi calculated with i-bound i;

Output: Optimal solution to M

1 create root OR node s labelled by X1 and let G (explored search graph) = {s};
2 initialize v(s) = w0 ·hi(s) and best partial solution tree T ∗ to G ;

3 while s is not SOLVED do

4 select non-terminal tip node n in T ∗. If there is no such node then exit;

// expand node n

5 if n = Xi is OR then

6 forall the xi ∈ D(Xi) do

7 create AND child n′ = 〈Xi,xi〉;
8 if n’ is TERMINAL then

9 mark n′ SOLVED;

10 succ(n)← succ(n)∪n′;

11 else if n = 〈Xi,xi〉 is AND then

12 forall the successor X j of Xi in T do

13 create OR child n′ = X j ;

14 succ(n)← succ(n)∪n′;

15 initialize v(n′) = w0 ·hi(n
′) for all new nodes;

16 add new nodes to the explores search space graph G ← G ∪ succ(n);
// update n and its AND and OR ancestors in G , bottom-up

17 repeat

18 if n is OR node then

19 v(n) = mink∈succ(n)(c(n,k)+ v(k));

20 mark best successor k of OR node n, such that k = argmink∈succ(n)(c(n,k)+ v(k))

(maintaining previously marked successor if still best);

21 mark n as SOLVED if its best marked successor is solved;

22 else if n is AND node then

23 v(n) = ∑k∈succ(n) v(k);

24 mark all arcs to the successors;

25 mark n as SOLVED if all its children are SOLVED;

26 n← p; //p is a parent of n in G

27 until n is not root node s;

28 recompute T ∗ by following marked arcs from the root s;

29 return 〈v(s),T ∗〉;

Theorem 3 (Marinescu and Dechter (2009b)) The AND/OR Branch and Bound search

algorithm with no caching(traversing an AND/OR search tree has worst case time and space

complexity of O(n · kh), n is the number of variables in the problem, k bounds the domain

size and h is the height of the pseudo-tree. AOBB with full caching traversing the context

minimal AND/OR graph has worst case time and space complexity of O(n · kw∗), where w∗

is the induced width of the pseudo tree.

Breadth Rotating AND/OR Branch and Bound (BRAOBB). To remedy the relatively poor

anytime behaviour of AOBB, the Breadth-Rotating AND/OR Branch and Bound algorithm

has been introduced recently by [Otten and Dechter (2011)]. The basic idea is to rotate

through different subproblems in a breadth-first manner. Empirically, BRAOBB finds the

first suboptimal solution significantly faster than plain AOBB [Otten and Dechter (2011)].
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Algorithm 2: AOBB(hi, w0, UB = ∞) exploring AND/OR search tree Marinescu and

Dechter (2009b)

Input: A graphical model M = 〈X,D,F,∑〉, weight w0 (default value 1), pseudo tree T rooted at X1, heuristic hi;

Output: Optimal solution to M

1 create root OR node s labelled by X1 and let stack of created but not expanded nodes OPEN = {s};
2 initialize v(s) = ∞ and best partial solution tree rooted in s T ∗(s) = /0; UB = ∞;

3 while OPEN 6= /0 do

4 select top node n on OPEN.

//EXPAND

5 if n is OR node labelled Xi then

6 foreach xi ∈ D(Xi) do
//Expand node n:

7 add AND child n′ = 〈Xi,xi〉 to list of successors of n;

8 initialize v(n′) = 0, best partial solution tree rooted in n T ∗(n′) = /0;

9 if n is AND node labelled 〈Xi,xi〉 then

10 foreach OR ancestor k of n do

11 recursively evaluate the cost of the partial solution tree rooted in k, based on heuristic hi and weight

w0, assign its cost to f (k); // see evalPartialSolutionTree(T∗n , hi(n), w0) in Algorithm 3

12 if evaluated partial solution is not better than current upper bound at k (e.g. f (k)≥ v(k) for

minimization then

13 prune the subtree below the current tip node n;

14 else

15 foreach successor X j of Xi ∈T do

16 add OR child n′ = X j to list of successors of n;

17 initialize v(n′) = ∞, best partial solution tree rooted in n T ∗(n′) = /0;

18 add successors of n on top of OPEN;

//PROPAGATE

//Only propagate if all children are evaluated and the final v are determined

19 while list of successors of node n is empty do

20 if node n is the root node then

21 return solution: v(n),T ∗(n) ;

22 else
//update ancestors of n, AND and OR nodes p, bottom up:

23 if p is AND node then

24 v(p) = v(p)+ v(n), T ∗(p) = T ∗(p)∪T ∗(n);

25 else if p is OR node then

26 if the new value of better than the old one, e.g. v(p)> (c(p,n)+ v(n)) for minimization then

27 v(p) = c(p,n)+ v(n), T ∗(p) = T ∗(p)∪〈xi,Xi〉;

28 remove n from the list of successors of p;

29 move one level up: n← p;

3 Some properties of weighted heuristic search

In this section we explore the interplay between the weight w and heuristic function h and

their impact on the explored search space. It was observed early on that the search space

explored by WA* when w > 1 is often smaller than the one explored by A*. Intuitively

the increased weight of the heuristic h transforms best-first search into a greedy search.

Consequently, the number of nodes expanded tends to decrease as w increases, because a

solution may be encountered early on. In general, however, such behaviour is not guaranteed

[Wilt and Ruml (2012)]. For some domains greedy search can be less efficient than A*.

A search space is a directed graph having a root node. Its leaves are solution nodes or

dead-ends. A greedy depth-first search always explore the subtree rooted at the current node

representing a partial solution path. This leads us to the following definition.
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Algorithm 3: Recursive computation of the heuristic evaluation function Marinescu

and Dechter (2009b)

function evalPartialSolutionTree(T ′n , h(n), w)

Input: Partial solution subtree T ′n rooted at node n, heuristic function h(n);
Output: Heuristic evaluation function f (T ′n);

1 if succ(n) == /0 then

2 return h(n) ·w;

3 else

4 if n is an AND node then

5 let k1, . . . ,kl be the OR children of n;

6 return ∑
l
i=1 evalPartialSolutionTree(T ′ki

, h(ki), w);

7 else if n is an OR node then

8 let k be the AND child of n;

9 return w(n,k) + evalPartialSolutionTree(T ′k , h(k), w);

Definition 2 (focused search space) An explored search space is focused along a path π,

if for any node n ∈ π once n is expanded, the only nodes expanded afterwards belong to the

subtree rooted at n.

Having a focused explored search space is desirable because it would yield a fast and

memory efficient search. In the following paragraphs we will show that there exists a weight

wh that guarantees a focused search for WA*, and that its value depends on the costs of the

arcs on the solution paths and on the heuristic values along the path.

Proposition 1 Let π be a solution path in a rooted search space. Let arc (n,n′) be such that

f (n)> f (n′) . If n is expanded by A* guided by f , then a) any node n′′ expanded after n and

before n′ satisfies that f (n′′)≤ f (n′), b) n′′ belong to the subgraph rooted at n , and c) under

the weaker condition that f (n) ≥ f (n′), parts a) and b) still holds given that the algorithm

breaks ties in favour of deeper nodes.

Proof a). From the definition of best-first search, the nodes n′′ are chosen from OPEN

(which after expansion of n include all n’s children, and in particular n′). Since n′′ was

chosen before n′ it must be that f (n′′)≤ f (n′).
b) Consider the OPEN list at the time when n is chosen for expansion. Clearly, any

node q on OPEN satisfy that f (q) ≥ f (n). Since we assured f (n) > f (n′), it follows that

f (q) > f (n′) and node q will not be expanded before n′, and therefore any expanded node

is in the subtree rooted at n.

c) Assume f (n)≥ f (n′). Consider any node q in OPEN: it either has an evaluation func-

tion f (q) > f (n), and thus f (q) > f (n′), or f (q) = f (n) and thus f (q) ≥ f (n′). However,

node q has smaller depth than n, otherwise it would have been expanded before n (as they

have the same f value), and thus smaller depth than n′, which is not expanded yet and thus

is the descendant of n. Either way, node q will not be expanded before n′. ⊓⊔

In the following we assume that the algorithms we consider always break ties in favour

of deeper nodes.

Definition 3 ( f non-increasing solution path) Given a path π = {s, . . . ,n,n′ . . . , t} and a

heuristic evaluation function h≤ h∗, if f (n)≥ f (n′) for every n′ (a child of n along π), then

f is said to be monotonically non-increasing along π.
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From Proposition 1 it immediately follows:

Theorem 4 Given a solution path π along which evaluation function f is monotonically

non-increasing, then the search space is focused along path π.

We will next show that this focused search property can be achieved by WA* when w

passes a certain threshold. We denote by c(n,n′) the cost of the arc from node n to its child

n′.

Definition 4 (the h-weight of an arc) Restricting ourselves to problems where h(n)−
h(n′) 6= 0, we denote

wh(n,n
′) =

c(n,n′)
h(n)−h(n′)

Assumption 1. We will assume that for any arc (n,n′), wh(n,n
′)≥ 0 .

Assumption 1 is satisfied iff c(n,n′) and h(n)−h(n′) have the same sign, and if h(n)−
h(n′) 6= 0. Without loss of generality we will assume that for all (n,n′), c(n,n′) ≥ 0.

Definition 5 (The h-weight of a path) Consider a solution path π, s.t,

wh(π) = max
(n,n′)∈π

wh(n,n
′) = max

(n,n′)∈π

c(n,n′)
h(n)−h(n′)

(4)

Theorem 5 Given a solution π in a search graph and a heuristic function h such that wh(π)
is well defined, then, if w > wh(π), WA* using w yields a focused search along π.

Proof We will show that under the theorem’s conditions f is monotonically non-increasing

along π. Consider an arbitrary arc (n,n′) ∈ π. Since w≥ wh(π) , then

w≥ c(n,n′)
h(n)−h(n′)

or, equivalently,

c(n,n′) ≤ w ·h(n)−w ·h(n′)
adding gπ (n) to the both sides and some algebraic manipulations yield

gπ(n)+ c(n,n′)+w ·h(n′)≤ gπ (n)+w ·h(n)

which is equivalent to

gπ (n
′)+w ·h(n′)≤ gπ(n)+w ·h(n)

and therefore, for the weighted evaluation functions we have

f (n′)≤ f (n).

Namely, f is monotonically non-increasing. From Theorem 1 it follows that WA* is focused

along π with this w. ⊓⊔

Clearly therefore,

Corollary 1 If WA* uses w > wh(π) for each solution path π, then WA* performs a greedy

search, assuming ties are broken in favour of deeper nodes.
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w = 10

Fig. 3 WA* with the exact heuristic

Corollary 2 When h = h∗, then on an optimal path π,
c(n,n′)

h(n)−h(n′) = 1. Therefore, any value

w≥ 1 will yield a focused search relative to all optimal paths.

Clearly, when h is exact, the weight w = 1 should be preferred since it guarantees the

optimal solution. But if w > 1 and h = h∗, the solution found by the greedy search may not

be optimal.

Example 1 Consider the graph in Figure 3. Given w = 10, WA* will always find the incor-

rect path A-B-D instead of the exact solution path A-C-D.

Notice that, if the search is focused only along some solution paths, it can still be very

unfocused relative to the entire solution space. More significantly, as we consider smaller

weights, the search would be focused relative to a smaller set of paths, and therefore less

contained. Yet with smaller weights, upon termination, WA* yields a superior guarantee

on the solution quality. We next provide an explicit condition showing that under certain

conditions the weight on a path can provide a bound on the relative distance of the cost of

the path from the optimal cost.

Theorem 6 Given a search space, and given an admissible heuristic function h having

wh(π) function for each π. Let π be a solution path from s to t, satisfying:

1) for all arcs (n,n′) ∈ π, c(n,n′)≥ 0, and for one arc at least c(n,n′)> 0

2) for all arcs (n,n′) ∈ π, h(n)−h(n′)> 0,

then the cost of the path Cπ is within a factor of wh(π) from the optimal solution cost C∗.
Namely,

Cπ ≤ wh(π) ·C∗ (5)

Proof Denote by f (n) = fπ(n) the weighted evaluation function of node n using weight w =
wh(π): fπ(n) = g(n)+wh(π) ·h(n). Clearly, based on Theorem 2 we have that ∀(n,n′) ∈ π,

f (n)≥ f (n′). Namely, that search is focused relative to π.

Since for any arc (n,n′) on path π, starting with s and ending with t f is monotonically

non-increasing when using wh(π), we have

f (s)≥ f (t)

Since g(s) = 0, f (s) = wh(π) ·h(s) and since h(t) = 0, f (t) = g(t) =Cπ . We get that

wh(π) ·h(s)≥Cπ

Since h is admissible, h(s)≤ h∗(s) and h∗(s) =C∗, we have h(s)≤C∗ and

wh(π) ·h(s)≤ wh(π) ·h∗(s) = wh(π) ·C∗
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We get from the above 2 inequalities that

wh(π) ·C∗ ≥Cπ or
Cπ

C∗
≤ wh(π)

⊓⊔

In practice, conditions (1) and (2) hold for many problems formulated over graphical

models, in particular for many instances in our datasets (described in Section 5.1), when

MBE heuristic is used. However, in the presence of determinism the h-value is sometimes

not well-defined, since for certain arcs c(n,n′) = 0 and h(n)−h′(n) = 0.

In the extreme we can use wmax = maxπ wh(π) as the weight, which will yield a focused

search relative to all paths, but we only guarantee that the accuracy factor will be bounded

by wmax and in worse case the bound may be loose.

It is interesting to note that,

Proposition 2 If the heuristic evaluation function h(n) is consistent and if for all arcs

(n,n′) ∈ π, then h(n)−h(n′)> 0 and c(n,n′) > 0, then wh(π)≥ 1.

Proof From definition of consistency: h(n) ≤ c(n,n′)+h(n′). After some algebraic manip-

ulation it is easy to obtain: max(n,n′)∈Eπ

c(n,n′)
h(n)−h(n′) ≥ 1 and thus wh(π)≥ 1.

We conclude

Proposition 3 For every π, and under the conditions of Theorem 6

Cπ ≥C∗ ≥ Cπ

wh(π)
and there f ore, min

π
{Cπ} ≥C∗ ≥max

π
{ Cπ

wh(π)
}

⊓⊔

In summary, the above analysis provides some intuition as to why weighted heuristic

best-first search is likely to be more focused and therefore more time efficient for larger

weights and how it can provide a user-control parameter exploring the trade-off between

time and accuracy. There is clearly room for exploration of the potential of Proposition 3

that we leave for future work.

4 Tailoring weighted heuristic BFS to graphical models

After analysing a number of existing weighted search approaches we extended some of

the ideas to the AND/OR search space over graphical models. In this section, we describe

wAOBF and wR-AOBF - the two approaches that proved to be the most promising after our

initial empirical evaluation (not reported here).

4.1 Weighted AOBF

The fixed-weighted version of the AOBF algorithm is obtained by multiplying the mini-

bucket heuristic function by a weight w > 1 (i.e., substituting hi(n) by w ·hi(n), where hi(n)
is the heuristic obtained by mini-bucket elimination with i-bound equal to i). This scheme is

identical to WAO*, an algorithm introduced by [Chakrabarti et al (1987)], but it is adapted

to the specifics of AOBF. Clearly, if hi(n) is admissible, which is the case for mini-bucket
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Algorithm 4: wAOBF(w0, hi)

Input: A graphical model M = 〈X,D,F〉; heuristic hi calculated with i-bound i; initial weight w0,

weight update schedule S

Output: Set of suboptimal solutions C

1 Initialize w = w0 and let C ← /0;

2 while w >= 1 do

3 〈Cw,T
∗

w 〉 ← AOBF(w ·hi);

4 C ← C ∪{〈w,Cw ,T
∗

w 〉};
5 Decrease weight w according to schedule S;

6 return C ;

heuristics, the cost of the solution discovered by weighted AOBF is w-optimal, same as is

known for WA* [Pohl (1970)] and WAO* [Chakrabarti et al (1987)].

Consider an example problem with 4 binary variables in Figure 4 that we will use to il-

lustrate the work of our algorithms. Figure 4a shows the primal graph. We assume weighted

CSP problem, namely the functions are not normalized and the task is the min-sum one:

C∗ = minA,B,C,D

(

f (A,B) + f (B,C) + f (B) + f (A,D)
)

. Figure 4c presents the AND/OR

search graph of the problem, showing the heuristic functions and the weights derived from

functions defined in Figure 4b on the arcs. Since the problem is very easy, the MBE heuristic

is exact.

Figure 5 shows the part of the search space explored by AOBF (on the left) and weighted

AOBF with weight w = 10 (on the right). The numbers in boxes mark the order of nodes

expansions. For clarity the entire sequence of node values’ updates is not presented and only

the latest assigned values v are shown. We use notation vSN to indicate that the value was last

updated during step N, namely when expanding the Nth node. The reported solution subtree

is highlighted in bold. AOBF finds the exact solution with cost C∗ = 7 and assignment x∗ =
{A = 1,B = 0,C = 1,D = 1}. Weighted AOBF discovers a suboptimal solution with cost

C = 12 and assignment x = {A = 0,B = 1,C = 1,D = 0}. In this example both algorithms

expand 8 nodes.

4.2 Iterative Weighted AOBF (wAOBF)

Since Weighted heuristic AOBF yields w-optimal solutions, it can be extended to an anytime

scheme wAOBF (Algorithm 4), decreasing the weight from one iteration to the next. This

approach is identical to the Restarting Weighted A* by Richter et al (2010) applied to AOBF.

Theorem 7 Worst case time and space complexity of a single iteration of wAOBF with

caching is O(n · kw∗ ), where n is the number of variables, k is the largest domain size and

w∗ is the induced width of the problem.

Proof During each iteration wAOBF executes AOBF from scratch with no additional over-

head. The number of required iterations depends on the start weight value and weight de-

creasing policy. ⊓⊔

4.3 Anytime Repairing AOBF (wR-AOBF).

Running each search iteration from scratch seems redundant, so we introduce Anytime Re-

pairing AOBF (Algorithm 5), which we call wR-AOBF. It is an extension of the Anytime
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Fig. 4 Example problem with four variables, the functions defined over pair of variables and resulting

AND/OR search graph.

Repairing A* (ARA*) algorithm [Likhachev et al (2003)] to the AND/OR search spaces

over graphical models. The original ARA* algorithm utilizes the results of previous itera-

tions by recomputing the evaluation functions of the nodes with each weight change, and

thus re-using the inherited OPEN and CLOSED lists. The algorithm also keeps track of

the previously expanded nodes whose evaluation function changed between iterations and

re-inserts them back to OPEN before starting each iteration.

Extending this idea to the AND/OR search space is fairly straightforward. Since AOBF

does not maintain explicit OPEN and CLOSED lists, wR-AOBF keeps track of the partially
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which the nodes are expanded. vSN indicates that value v was last assigned during step N, i.e. while expanding

the Nth node.

Algorithm 5: wR-AOBF(hi, w0)

Input: A graphical model M = 〈X,D,F〉; pseudo tree T rooted at X1; heuristic hi for i-bound=i;

initial weight w0 , weight update schedule S

Output: Set of suboptimal solutions C

1 initialize w = w0 and let C ← /0;

2 create root OR node s labelled by X1 and let G = {s};
3 initialize v(s) = w ·hi(s) and best partial solution tree T ∗ to G ;

4 while w >= 1 do

5 expand and update nodes in G using AOBF(w,hi) search with heuristic function w ·hi;

6 if T ∗ has no more tip nodes then C ← C ∪{〈w,v(s),T ∗〉};
7 decrease weight w according to schedule S;

8 for all leaf nodes in n ∈ G , update v(n) = w ·hi(n). Update the values of all nodes in G using the

values of their successors. Mark best successor of each OR node.;

9 recalculate T ∗ following the marked arcs;

10 return C ;

explored AND/OR search graph, and after each weight update it performs a bottom-up up-

date of all the node values starting from the leaf nodes (whose h-values are multiplied by the

new weight) and continuing towards the root node (line 8). During this phase, the algorithm

also marks the best AND successor of each OR node in the search graph. These markings

are used to recompute the best partial solution tree T ′. Then, the search resumes in the usual

manner by expanding a tip node of T ′ (line 9).

Like ARA*, wR-AOBF is guaranteed to terminate with a solution cost C such that C ≤
w ·C∗, where C∗ is the optimal solutions cost.
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Theorem 8 Worst case space complexity of a single iteration of wR-AOBF with caching is

O(n · kw∗), where n is the number of variables, k is the largest domain size and w∗ is the

induced width of the problem. The worst case time complexity can be loosely bounded by

O(2 ·n · kw∗). Total number of iteration depends on chosen starting weight parameters.

Proof In worst case at each iteration wR-AOBF explores the entire search space of size

O(n · kw∗), having the same theoretical space complexity as AOBF and wAOBF. In practice

there exist an additional space overhead due to required book-keeping.

The time complexity comprises of time it takes to expand nodes and time overhead

due to updating node values during each iteration. Every time the weight is decreased, wR-

AOBF needs to update the values of all nodes in the partially explored AND/OR graph, at

most O(n · kw∗) of them. ⊓⊔

The updating of node values is a costly step because it involves all nodes the algorithm

has ever generated. Thus, though wR-AOBF expands less nodes that wAOBF, in practice it

is considerably slower, as we will see next in the experimental section.

5 Empirical evaluation of weighted heuristic BFS

Our empirical evaluation of weighted heuristic search schemes consists of two parts. In this

section we focus on the two weighted heuristic best-first algorithms described in Section 4:

wAOBF and wR-AOBF. In Section 6.2 we additionally compare these algorithms with the

two weighted heuristic depth-first branch and bound schemes that will be introduced in

Section 6.1.

5.1 Overview and methodology

In this section we evaluate the behaviour of wAOBF and wR-AOBF and contrast their per-

formance with a number of previously developed algorithms. The main point of reference for

our comparison is the depth-first branch and bound scheme, BRAOBB [Otten and Dechter

(2011)], which is known to be one of the most efficient anytime algorithms for graphi-

cal models 3,4. In a subset of experiments we also compare against A* search [Hart et al

(1968)] and depth-first branch and bound (DFBB) [Lawler and Wood (1966)], both explor-

ing an OR search tree, and against Stochastic Local Search (SLS) [Hutter et al (2005); Kask

and Dechter (1999c)]. We implemented our algorithms in C++ and ran all experiments on a

2.67GHz Intel Xeon X5650, running Linux, with 4 GB allocated for each job.

All schemes traverse the same context minimal AND/OR search graph, defined by a

common variable ordering, obtained using well-known MinFill ordering heuristic [Kjærulff

(1990)]. The algorithms return solutions at different time points until either the optimal

solution is found, until a time limit of 1 hour is reached or until the scheme runs out of

memory. No evidence was used.

All schemes use the Mini-Bucket Elimination heuristic, described in Section 2.3, with

10 i-bounds, ranging from 2 to 20. However, for some hard problems computing mini-bucket

heuristic with the larger i-bounds proved infeasible, so the actual range of i-bounds varies

among the benchmarks and among instances within a benchmark.

3 http://www.cs.huji.ac.il/project/PASCAL/realBoard.php
4 http://www.hlt.utdallas.edu/ vgogate/uai14-competition/leaders.html
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Benchmark # inst n k w∗ hT

Pedigrees 11 581-1006 3-7 16-39 52-104

Grids 32 144-2500 2-2 15-90 48-283

WCSP 56 25-1057 2-100 5-287 11-337

Type4 10 3907-8186 5-5 21-32 319-625

Table 1 Benchmark parameters: # inst - number of instances, n - number of variables, k - domain size, w∗ -

induced width, hT - pseudotree height.

We evaluated the algorithms on 4 benchmarks: Weighted CSPs (WCSP), Binary grids,

Pedigree networks and Type4 genetic networks. The pedigrees instances (“pedigree*”)

arise from the domain of genetic linkage analysis and are associated with the task of haplo-

typing. The haplotype is the sequence of alleles at different loci inherited by an individual

from one parent, and the two haplotypes (maternal and paternal) of an individual constitute

this individual’s genotype. When genotypes are measured by standard procedures, the re-

sult is a list of unordered pairs of alleles, one pair for each locus. The maximum likelihood

haplotype problem consists of finding a joint haplotype configuration for all members of the

pedigree which maximizes the probability of data. It can be shown that given the pedigree

data the haplotyping problem is equivalent to computing the most probable explanation of

a Bayesian network that represents the pedigree [Fishelson and Geiger (2002)]. In binary

grid networks (“50-”, “75-*” and “90-*”)5 the nodes corresponding to binary variables are

arranged in an N by N square and the functions are defined over pairs of variables and are

generated uniformly randomly. The WCSP (“*.wcsp”) benchmark includes random binary

WCSPs, scheduling problems from the SPOT5 benchmark, and radio link frequency as-

signment problems, providing a large variety of problem parameters. Type4 instances come

from the domain of genetic linkage analysis, just as the Pedigree problems, but are known

to be significantly harder. Table 1 describes the benchmark parameters.

For each anytime solution by an algorithm we record its cost, CPU time in seconds and

the corresponding weight (for weighted heuristic schemes) at termination. For uniformity

we consider all problems as solving the max-product task, also known as Most Probable Ex-

planation problem (MPE). The computed anytime costs returned by the algorithms are lower

bounds on the optimal solutions. In our experiments we evaluate the impact of the weight

on the solution accuracy and runtime, analyse the choice of weight decreasing policy, and

study the anytime behaviour of the schemes and the interaction between heuristic strength

and the weight.

5.2 The impact of weights on the weighted AOBF performance

One of the most valuable qualities of weighted heuristic search is the ability to flexibly

control the trade-off between speed and accuracy of the search using the weight, which

provides a w-optimality bound on the solution.

In order to evaluate the impact of the weight on the solution accuracy and runtime we

run wAOBF and we consider iterations individually. Each iteration j is equivalent to a single

run of AOBF(w j,hi), namely the AND/OR Best First algorithm that uses MBE heuristic hi,

obtained with an i-bound equal to i, multiplied by weight w j.

Table 2 reports the results for selected weights (w=2.828, 1.033, 1.00), for several se-

lected instances representative of the behaviour prevalent over each benchmark. Following

5 http://graphmod.ics.uci.edu/repos/mpe/grids/
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Instance

(n, k, w∗, hT )

BRAOBB
AOBF(w,hi) weights

BRAOBB
AOBF(w,hi) weights

2.828 1.033 1.00 2.828 1.033 1.00

time

C∗
time

log(cost)
time

log(cost)
time

log(cost)

time

C∗
time

log(cost)
time

log(cost)
time

log(cost)

Grids I-bound=6 I-bound=20

50-16-5
(256, 2, 21, 79)

2601.46
-16.916

0.16
-21.095 — —

7.16
-16.916

7.01
-17.57

7.01
-16.916

7.02
-16.916

50-17-5

(289, 2, 23, 77)

1335.44

-17.759

0.05

-23.496 — —

9.42

-17.759

9.44

-17.829

9.44

-17.759

9.44

-17.759

75-18-5
(324, 2, 24, 85)

390.72
-8.911

0.42
-10.931

74.69
-8.911

88.53
-8.911

13.52
-8.911

13.95
-9.078

13.95
-8.911

13.96
-8.911

75-20-5
(400, 2, 27, 99) time out

1.78
-16.282 — —

22.52
-12.72

19.35

-14.067

24.96

-12.72
27.85
-12.72

90-21-5

(441, 2, 28, 106)
187.75
-7.658

1.13
-8.871

41.38
-7.658

42.48
-7.658

17.01
-7.658

17.32
-9.476

17.65
-7.658

17.74
-7.658

Pedigrees I-bound=6 I-bound=16

pedigree9

(935, 7, 27, 100) time out

0.83

-137.178 — —

1082.02

-122.904

6.24

-133.063

34.66

-122.904 —

pedigree13

(888, 3, 32, 102) time out

0.18

-88.563 — — time out

4.13

-76.429 — —

pedigree37

(726, 5, 20, 72)
4.36

-144.882
0.08

-163.325
4.42

-145.082

9.99

-144.882
388.36

-144.882

388.96

-155.259

389.02

-145.341

389.07

-144.882

pedigree39

(953, 5, 20, 77) time out
0.11

-174.304 — —
4.34

-155.608
4.3

-162.381
4.37

-155.608
4.83

-155.608

WCSP I-bound=2 I-bound=10

1502.wcsp

(209, 4, 5, 11) time out

0.0

-1.258

0.01

-1.258

0.0

-1.258 — — — —

42.wcsp

(190, 4, 26, 72) time out — — —
1563.44
-2.357

11.69

-2.418 — —

bwt3ac.wcsp

(45, 11, 16, 27)
2.47

-0.561

0.93

-0.561
1.84

-0.561
1.85

-0.561
54.34
-0.561

54.88
-0.561

54.92

-0.561

54.92

-0.561

capmo5.wcsp

(200, 100, 100, 100) time out

1.18

-0.262 — — time out

24.04

-0.262 — —

myciel5g 3.wcsp

(47, 3, 19, 24)

2661.91

-64.0 — — —

12.93

-64.0

2.5

-72.0 — —

Type4 I-bound=6 I-bound=16

type4b 100 19

(3938, 5, 29, 354) time out
5.02

-1309.91 — — time out
33.32

-1171.002 — —

type4b 120 17

(4072, 5, 24, 319) time out

4.16

-1483.588 — — time out

26.06

-1362.607

104.37

-1327.776 —

type4b 140 19

(5348, 5, 30, 366) time out

7.28

-1765.403 — — time out

44.94

-1541.883 — —

type4b 150 14

(5804, 5, 32, 522) time out
16.15

-2007.388 — — time out
38.22

-1727.035 — —

type4b 170 23

(5590, 5, 21, 427) time out

9.65

-2191.859 — — time out
18.62

-1978.588
38.4

-1925.883 —

Table 2 Runtime (sec) and cost (on logarithmic scale) obtained by AOBF(w,hi) for selected w, and by

BRAOBB (that finds C∗ - optimal cost). Instance parameters: n - number of variables, k - max domain size,

w∗ - induced width, hT - pseudo tree height. ”—” - running out of memory. 4 GB memory limit, 1 hour time

limit, MBE heuristic. The entries mentioned in the text are highlighted.
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the names and parameters of each instance, the table is vertically split into two blocks, corre-

sponding to two i-bounds. In the second column of each block we report the time in seconds

it took BRAOBB to find the optimal solution to the problem (the higher entry in each row)

and the solution cost on a logarithmic scale (the lower entry in each row). The symbol “—”

indicates that the corresponding algorithm ran out of memory. The next three columns show

the runtime in seconds and the cost on the log scale obtained by AOBF when using a spe-

cific weight value. The entries mentioned in this section are highlighted. Note that, since

calculation of the mini-bucket heuristics is time and space exponential in i-bound, for some

instances the heuristics can’t be obtained for large i-bounds (e.g. 1502.wcsp, i = 10).

Comparison between the exact results by AOBF obtained with weight w = 1 (columns

5 and 9) and by BRAOBB (columns 2 and 6) with any one of the other columns reveals

that abandoning optimality yields run time savings and allows to find approximate solutions

when exact ones cannot be obtained within an hour.

In more details, let us consider, for example, the columns of Table 2 where the costs gen-

erated are guaranteed to be a factor of 2.828 away from the optimal. We see orders of mag-

nitude time savings compared to BRAOBB, for both i-bounds. For example, for pedigree9,

i=16, for w = 2.828 weighted AOBF’s runtime is merely 6.24 seconds, while BRAOBB’s

is 1082.02 seconds. For WCSP networks, the algorithms’ runtimes are often quite similar.

For example, for bwt3ac.wcsp, i=10, BRAOBB takes 54.34 seconds and weighted AOBF

- 54.88. On some WCSP instances, such as myciel5g 3.wcsp, i=2, BRAOBB is clearly su-

perior, finding an optimal solution within the time limit, while weighted AOBF runs out of

memory and does not report any solution for w = 2.828.

Comparing columns 5 and 9, exhibiting full AOBF with w = 1 (when it did not run out

of memory) against w = 2.828 we see similar behaviour. For example, for grid 75-18-5, i=6,

we see that exact AOBF (w = 1) requires 88.53 seconds, which is about 200 times longer

than with weight w = 2.828 which requires 0.42 seconds.

More remarkable results can be noticed when considering the column of weight w =
1.033, especially for the higher i-bound (strong heuristics). These costs are just a factor

of 1.033 away from optimal, yet the time savings compared with BRAOBB are impressive.

For example, for pedigree9, i=16 weighted AOBF runtime for w= 1.033 is 34.66 seconds as

opposed to 1082.02 seconds by BRAOBB. Observe that often the actual results are far more

accurate than the bound suggests. In particular, in a few of the cases, the optimal solution

is obtained with w > 1. For example, see grid 75-18-5, i-bound=20, w = 1.003. Sometimes

exact AOBF with w = 1 is faster than BRAOBB.

Impact of heuristic strength. The i-bound parameter allows to flexibly control the strength

of mini-bucket heuristics. Clearly, more accurate heuristics yield better results for any heuris-

tic search and thus should be preferred. However, running the mini-buckets with sufficiently

high i-bound is not always feasible due to space limitations and has a considerable time

overhead, since the complexity of Mini-Bucket Elimination algorithm is exponential in the

i-bound. Thus we are interested to understand how the heuristic strength influences the be-

haviour of weighted heuristic best-first schemes when the value of the i-bound is consider-

ably smaller than the induced width of the problem.

Comparing the results Table 2 across i-bounds for the same algorithm and the same

weight, we observe a number of instances where more accurate heuristic comes at too high

a price. For example, for pedigree37 weighted AOBF finds a w-optimal solution with w =
2.828 in 0.08 seconds for i-bound=6, but takes 388.96 seconds for i=16. One of the examples

to the contrary, where the higher i-bound is beneficial, is grid 90-21-5, where weighted

AOBF takes 41.38 seconds to terminate for w = 1.033 when i-bound=6, but only 17.65

seconds, when the i-bound=20.
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Table 2 shows that weighted AOBF is less sensitive to the weak heuristics compared

with BRAOBB. For example, for grid 90-21-5 and for i-bound=20, BRAOBB terminates in

17.01 seconds. However, if the heuristic is weak (i-bound=6), it requires 187.75 seconds,

2 orders of magnitude more. On the other hand, for the same instance weighted AOBF

with weight w = 1.033 has much smaller difference in performance for the two i-bounds.

weighted AOBF terminates in 17.65 seconds for i = 20 and in 41.38 seconds for i = 6.

This may suggest that wAOBF could be preferable when the i-bound is small relative to the

problem’s induced width.

Overall, weighted AOBF solves some hard problems that are infeasible for the exact

scheme and often yields solutions with tight bounds considerably faster than the optimal

solutions obtained by BRAOBB or exact AOBF.

5.3 Exploring weight policies

How should we choose the starting weight value and weight decreasing policy? Previous

works on weighted heuristic search usually avoid disclosing the details of how the starting

weight is defined and how it is decreased at each iteration [e.g., Hansen and Zhou (2007),

Likhachev et al (2003). etc.]. To answer this we evaluated 5 different policies.

The first two policies we considered were substract, which decreases the weight by a

fixed quantity, and divide, which at each iteration divides the current weight by a constant.

These policies lay on the opposite ends of the strategies spectrum. The first method changes

the weight very gradually and consistently, leading to a slow improvement of the solution.

The second approach yields less smooth anytime behaviour, since the weight rapidly ap-

proaches 1.0 and much fewer intermediate solutions are found. This could potentially allow

the schemes to produce the exact solution fast, but on hard instances presents a danger of

leaping directly to a prohibitively small weight and thus failing prematurely due to memory

issues. The other policies we considered were constructed manually based on the intuition

that it is desirable to improve the solution rapidly by decreasing the weight fast initially and

then “fine-tune” the solution as much as the memory limit allows, by decreasing the weight

slowly as it approaches 1.0.

Overall, we evaluated the following five policies, each for several values of parameters.

We denote by w j the weight used at the jth iteration of the algorithm, the k and d denote

real-valued policy parameters, where appropriate. Given k and d, assuming w1 = w0 (start

weight), for j > 1:

– substract(k): w j = w j−1− k

– divide(k): w j = w j−1/k

– inverse: w j = w1/ j

– piecewise(k,d): if w j ≥ d then w j = w1/ j else w j = w j−1/k

– sqrt(k): w j =
√

w j−1/k

The initial weight value needs to be large enough a) to explore the schemes’ behaviour

on a large range of weights; b) to make the search focused enough initially to solve harder

instances, known to be infeasible for regular BF within the memory limit. After some pre-

liminary experiments (not included) we chose the starting weight w0 to be equal to 64. We

noticed that further increase of w0 typically did not yield better results. Namely, the instances

that were infeasible for wAOBF and wR-AOBF with w= 64 also did not fit in memory when

weight was larger. Such behaviour can be explained by many nodes having evaluation func-

tion values so similar, that even a very large weight did not yield much difference between

them, resulting in a memory-prohibitive search frontier.
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Fig. 6 The dependency of the weight value on iteration index according to considered weight policies, show-

ing first 50 iterations, starting weight w0= 64.

Figure 6 illustrates the weight changes during the first 50 iterations according to the con-

sidered policies. We use the parameter values that proved to be more effective in the prelim-

inary evaluation: substract(k = 0.1), divide(k = 2), inverse(), piecewise(k = 1.05,d = 8),
sqrt(k = 1.0).

Figures 7 and 8 show the anytime performance of wAOBF and wR-AOBF with various

weight scheduling schemes, namely how the solution cost changes as a function of time in

seconds. We plot the solution cost on a logarithmic scale. Figure 7 displays the results for

wAOBF using each of our 5 weight policy. We display results for an i-bound from mid-

range, on two instances from each of the benchmarks: Grids, Pedigrees, WCSPs and Type4.

Figure 8 shows analogous results for wR-AOBF, on the same instances.

Comparing the anytime performances of two schemes, we consider as better the one

that finds the initial solutions faster and whose solutions are more accurate (i.e. have higher

costs). Graphically, the curves closer to the left top corner of the plot are better.

Several values of numerical parameters for each policies were tried, only the ones that

yielded the best performance are presented. The starting weight is 64 and w! denotes the

weight at the time of algorithms termination. The behaviour depicted here was quite typical

across instances and i-bounds. In this set of experiments the memory limit was 2 GB, with

time limit of 1 hour and MBE heuristic was used.

We observe in Figure 7 that for most Pedigrees, Grids and Type4 problems wAOBF

finds the initial solution the fastest using the sqrt policy (the reader is advised to consult

the coloured graph online). This can be seen, for example, on grid instance 75-23-5 and on

type4b 120 17. The sqrt policy typically facilitates the fastest improvement of the initial

solutions. For most of the WCSP instances, however, there is no clear dominance between

the weight policies. On some instances (not shown) the sqrt policy is again superior. On

others, such as instance 505, the difference in negligible.

Figure 8 depicts the same information for wR-AOBF. The variance between the results

yielded by different weight policies is often very small. On many instances, such as pedi-

gree31 or instance 505, it is almost impossible to tell which policy is superior. The domi-

nance of sqrt policy is less obvious for wR-AOBF, than is was for wAOBF. On a number of

problems piecewise and inverse policies are superior, often yielding almost identical results,

see for example, pedigree7 or WCSP 404. However, there are still many instances, for which

sqrt policy performs well, for example, pedigree7.
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Fig. 7 wAOBF: solution cost (on logarithmic scale) vs time (sec) for different weight policies, starting weight

= 64. Instance parameters are in format (n,k,w∗,hT ), where n - number of variables, k - max. domain size, w∗

- induced width, hT - pseudo-tree height. Time limit - 1 hour, memory limit - 2 GB, MBE heuristic.
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Fig. 8 wR-AOBF: solution cost (on logarithmic scale) vs time (sec) for different weight policies, starting

weight = 64. Instance parameters are in format (n,k,w∗,hT ), where n - number of variables, k - max. domain

size, w∗ - induced width, hT - pseudo-tree height. Time limit - 1 hour, memory limit - 2 GB, MBE heuristic.
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Overall, we chose to use the sqrt weight policy in our subsequent experiments, as it is

superior on more instances for wAOBF than other policies, and is often either best or close

second best for wR-AOBF.

Instance Algorithm

Time bounds

10 30 60 600 3600

log(cost) log(cost) log(cost) log(cost) log(cost)

weight weight weight weight weight

Grids, i=10

75-16-5 (256,2,21,73)

-8.1262 -8.0642 -8.0642 -8.0642 -8.0642

wAOBF 1.0671 1.0082 1.0 1.0 1.0

8.0642 -8.0642 -8.0642 -8.0642 -8.0642

wR-AOBF 1.0 1.0 1.0 1.0 1.0

75-26-5 (676,2,36,129)

-24.5951 -23.0522 -23.0522 -23.0522 -23.0522

wAOBF 2.8284 1.6818 1.6818 1.6818 1.6818

-25.2884 -25.2884 -25.2884 -25.2884 -25.2884

wR-AOBF 1.6818 1.6818 1.6818 1.6818 1.6818

Pedigrees, i=10

pedigree7 (867,4,32,90)

-114.4256 -114.4256 -113.8887 -113.8887 -113.8887

wAOBF 1.2968 1.2968 1.1388 1.1388 1.1388

-118.8305 -118.8305 -114.5481 -114.5481 -114.5481

wR-AOBF 1.2968 1.2968 1.1388 1.1388 1.1388

pedigree41 (885,5,33,100)

-123.6391 -121.3366 -121.3366 -121.3366 -121.3366

wAOBF 1.2968 1.1388 1.1388 1.1388 1.1388

-124.656 -121.3366 -121.3366 -121.3366 -121.3366

wR-AOBF 1.2968 1.1388 1.1388 1.1388 1.1388

WCSPs, i=10

408.wcsp (200,4,34,87)

-2.6798 -2.6798 -2.6798 -2.6798 -2.6798

wAOBF 1.2968 1.2968 1.2968 1.2968 1.2968

-2.6811 -2.6811 -2.6811 -2.6811 -2.6811

wR-AOBF 1.2968 1.2968 1.2968 1.2968 1.2968

capmo5.wcsp (200,100,100,100)

-0.2622 -0.2622 -0.2622 -0.2622

wAOBF — 2.8284 2.8284 2.8284 2.8284

-0.2622 -0.2622 -0.2622 -0.2622

wR-AOBF — 2.8284 2.8284 2.8284 2.8284

Type4, i=10

type4b 150 14 (5804,5,32,522)

-1698.1897 -1652.7112 -1652.7112 -1652.7112

wAOBF — 1.6818 1.2968 1.2968 1.2968

-1763.7714 -1763.7714 -1763.7714 -1763.7714

wR-AOBF — 1.2968 1.2968 1.2968 1.2968

type4b 190 20 (8186,5,29,625)

-2605.3849 -2605.3849 -2605.3849

wAOBF — — 1.2968 1.2968 1.2968

-2803.4548 -2603.6145 -2603.6145

wR-AOBF — — 1.2968 1.1388 1.1388

Table 3 Solution cost (on logarithmic scale) and corresponding weight for a fixed time bound for wAOBF

and wR-AOBF. ”—” denotes no solution found by the time bound. 4 GB memory, 1 hour time limit, MBE

heuristic. The entries mentioned in the text are highlighted.

5.4 Anytime behaviour of weighted heuristic best-first search

We now turn to our main focus of evaluating the anytime performance of our two itera-

tive weighted heuristic best-first schemes wAOBF and wR-AOBF and comparing against

BRAOBB, A*, depth-first branch and bound of OR search tree (DFBB) and Stochastic Lo-

cal Search (SLS). We ran each scheme on all instances from the same 4 benchmarks with

MBE heuristic using the i-bound ranging from 2 to 20. We recorded the solutions at different

time points, up until either the optimal solution was found or until the algorithm ran out of
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Fig. 9 Ratio of the cost obtained by some time point (10, 60, 600 and 3600 sec) and max cost (optimal, if

known, otherwise - best cost found for the problem by any of the schemes). Corresponding weight - above

the bars. ’***’ indicated proven solution optimality. Instance parameters are in format (n,k,w∗ ,hT ), where n -

number of variables, k - max. domain size, w∗ - induced width, hT - pseudo-tree height. Memory limit 4 GB,

time limit 1 hour. Grids and Pedigrees benchmarks, MBE heuristic.

4 GB of memory or the time cut off of 3600 seconds was reached. When comparing two

anytime algorithms, we consider one to be superior to another if: 1) it discovers the initial

solution faster and also 2) for a fixed time it returns a more accurate solution. We rarely

encounter conflict on these two measures.

We first illustrate the results using a selected set of individual instances in the Table 3

and in bar charts in Figures 9 and 10. Then we provide summaries over all instances using

bar charts in Figures 11-14 and scatterplots in Figure 15.

5.4.1 wAOBF vs wR-AOBF

Table 3 shows solution cost and corresponding weight by wAOBF and wR-AOBF for 2

selected instances from each benchmark, for medium i-bound, for several time bounds. We

observe that for these instances (that are quite representative), the simpler scheme wAOBF

provides more accurate solutions than wR-AOBF, (e.g., pedigree7, for 10-30 seconds). Still,

on some instances the solution costs are equal for the same time bound (e.g. capmo05.wcsp,

time between 30 and 3600 seconds), and there are examples, where wR-AOBF manages to

find a more accurate solution in a comparable time, such as type4b 190 20, for 600 or 3600

seconds.
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Fig. 10 Ratio of the cost obtained by some time point (10, 60, 600 and 3600 sec) and max cost (optimal, if

known, otherwise - best cost found for the problem by any of the schemes). Corresponding weight - above

the bars. ’***’ indicated proven solution optimality. Instance parameters are in format (n,k,w∗ ,hT ), where n -

number of variables, k - max. domain size, w∗ - induced width, hT - pseudo-tree height. Memory limit 4 GB,

time limit 1 hour. WCSPs and Type4 benchmarks, MBE heuristic.

Figures 9 and 10 present the anytime performance of wAOBF, wR-AOBF, BRAOBB,

A*, DFBB and SLS for representative instances using bar charts. Figure 9 shows results for

Grids and Pedigrees, Figure 10 - for WCSPs and Type4. Each two rows display two prob-

lems from the same benchmark for two i-bounds, smaller i-bounds on the left and larger on

the right. The height of each bar is proportional to the ratio between the solution cost gener-

ated by an algorithm at a time point (at 10, 60, 600 and 3600 seconds) and the optimal cost

(if known) or overall maximal cost. The closer the ratio is to 1, the better. For readability we

display the ratios greater than 0.7. Above each bar we also show the weight corresponding

to the returned solution, where w = 1 is shown in red. The symbol ’***’ above bars indicate

proven solution optimality.

In these figures we again observe that wR-AOBF has worse anytime behaviour than

wAOBF. For example, in Figure 9 for pedigree9 and pedigree13, i=6, wAOBF finds more

accurate solutions for the same time bounds. These observations, based on the selected

instances displayed in the table and in the figures, are quite representative, as we will see

shortly in the summary section 5.4.3.

The overall superiority of wAOBF may be explained by the large overhead of wR-AOBF

at each iteration, due to the need to keep track of already expanded nodes and to update their
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evaluation function as the weight changes. As a result, wR-AOBF explores the search space

slower and discovers new improved solutions less frequently than wAOBF.

5.4.2 Comparing against state of the art

Figures 9 and 10 provide a different perspective of the strength of weighted schemes com-

pared against several state of the art anytime algorithms. We observe that the domineering

scheme varies from benchmark to benchmark. In Figure 9 we see that wAOBF is superior on

the Grid instances when the heuristic is weak. For example, for grid 75-20-5, i = 6 wAOBF

is the only scheme that finds a solution within 10 seconds, aside from SLS. Note that SLS

does not provide any guarantees, while wAOBF and wR-AOBF report for time bounds of 60

seconds or more solutions that are guaranteed to be within a factor of 1.68 from the optimal.

A* and DFBB are always inferior to all other schemes. The former managed to find any so-

lution for a small number of instances and only for highly accurate heuristics, e.g. 90-20-5,

i=18. The latter often reports solutions of such low accuracy that they are not seen on the

plots, which only show solutions of relative accuracy greater than 0.7.

On Pedigrees BRAOBB seems to be superior among the complete schemes for weak

heuristics, e.g. pedigree9, i=6. SLS reports optimal costs quite fast, usually under 10 sec-

onds. When the heuristics are stronger, the performance is less varied, except for both OR

schemes on Grids and many of the Pedigrees. A* and DFBB are usually inferior even when

the i-bound is high, e.g. pedigree13, i=16.

Figure 10 shows that the weighted heuristic best-first schemes are superior to all other

schemes for Type4 instances shown, for all levels of heuristic strengths. Interestingly, on

most of Type4 problems even SLS did not report solutions with relative accuracy greater

than 0.7 and thus its results are not shown on our plots, while wAOBF often quickly finds

solutions close to optimal.

Notice that the weighted schemes provide tight w-optimality guarantees in many cases.

For example, on the two Type4 instances presented in Figure 10 wAOBF and wR-AOBF

guarantee that the costs reported at 60 seconds are 1.14-optimal. This is in contrast to com-

peting schemes (e.g. BRAOBB) that do not prove optimality within the time limit. On WC-

SPs, however, wAOBF and wR-AOBF are less effective. For example, both are inferior

to BRAOBB and SLS on 42.wcsp instance, for both i-bounds. For stronger heuristic even

DFBB, which in general is not particularly successful, is superior to the weighted heuristic

BF schemes.

As expected, A* and DFBB, both exploring an OR search tree, are clearly inferior to

AND/OR schemes, in particular to BRAOBB (see, for example, Marinescu and Dechter

(2005, 2007) for more comparisons between AND/OR and OR search). Additionally, A* is

not an inherently anytime. Stochastic Local Search, though often finds accurate solutions

fast, is not a complete algorithm and thus is outside state of the art schemes we systemati-

cally compared with. It also does not provide any bound on its solution.

5.4.3 Summarizing performance of wAOBF and wR-AOBF against BROABB

We now show data summarizing the results from all the instances. Figures 11-14 provide

summaries of our experimental results in the form of bar charts. Note that the summaries

include also a weighted depth-first branch and bound algorithm wAOBB that will be intro-

duced in Section 6. We defer the comparison with wAOBB till Section 6.2.2.
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The figures compare each of the three algorithms (wAOBF, wR-AOBF and wAOBB)

with BRAOBB. There are two columns of bar charts in each figure. The left one summa-

rizes the percentage of instances in which an algorithm is more accurate compared with

BRAOBB, and the right one provides the percentages on instances where an algorithm

yields the same costs as BRAOBB. Therefore, the heights of the bars in Figures 11-14 are

proportional to these percentages. The ratio at the top of each bar is the actual number of

instances where an algorithm is better (left column) or equal (right column), divided by the

total number of instances solved by the algorithm. The results in a table form, that include

an additional time bound, can be found in Appendix B.

From these figures we see that on two out of four our benchmarks the weighted heuristic

schemes dominated, finding costs of better accuracy within the time limits. This superior

behaviour on Grids and Type4 benchmarks was mostly consistent across time bounds and

heuristics of various strengths and can be observed in Figures 11 and 13. Specifically, for

certain i-bounds and time bounds wAOBF returned more accurate costs than BRAOBB

on up to 68% of the Grid instances and on 90-100% of the Type4 instances. Interestingly,

for Type4 benchmark the weighted schemes almost never found the same solution costs as

BRAOBB, as is indicated by the zeros in the plots on the right side of Figure 13.

The comparative strength of wAOBF is more pronounced for short time intervals and for

weak heuristics. The dependence of wR-AOBF’s performance on time is less predictable.

We observe here that for most i-bounds and for most time limits wAOBF performs better

than wR-AOBF. This is especially obvious on Type4 benchmark and for small i-bound, e.g.

for i=6, 3600 seconds wR-AOBF is superior to BRAOBB only on 50% of the instances,

while wAOBF dominates on 90%.

Figure 15 uses scatter diagrams to compare between the more successful of the two

weighted heuristic best-first schemes, wAOBF, and BRAOBB. Each plot corresponds to a

specific time point. The x-axis coordinate gives the relative accuracy of the solution ob-

tained by wAOBF, the y-axis coordinate - the relative accuracy of BRAOBB. As for the bar

charts, the accuracy is defined relative to the optimal cost, if known, or the maximum cost

available. Values closer to 1.0 indicate better results. In each row we show two time bounds

for a particular benchmark. In parenthesis we show the number of instances, for which at

least one of the displayed algorithms found a solution, and the total number of instances in

benchmark. Each marker represents an instance. The markers under the red diagonal corre-

spond to problems where wAOBF is superior. We do not account in these plots for the MBE

heuristic calculation time, which is the same for all schemes.

We show results with weak heuristic because it yields greater diversity in solution ac-

curacy by wAOBF and BRAOBB. Typically, for strong heuristics the algorithms yields so-

lutions having similar costs. Appendix B includes additional scatter diagrams showing re-

sults for 3 i-bounds and 3 time bounds per benchmark, along with scatter plots comparing

wAOBF and wR-AOBF.

Figure 15 confirms our previous conclusions of superiority of wAOBF over BRAOBB

on Grids benchmark and its lack of success on WCSPs. On Type4 for small time limits

BRAOBB and wAOBF are on average equally successful (e.g. for 10 sec), but when given

more time, wAOBF produces more accurate solutions (e.g. for 600 seconds). For Pedigrees

there is no clear dominance.
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Fig. 11 Grids: percentage of instances for which each algorithm found solutions of more accurate cost than

BRAOBB at a specific time bound (left), percentage of instances for which algorithm is tied with BRAOBB,

i.e. found solution of equal cost (right). Above bars - number of instances where algorithm is better than

BRAOBB (tied with BRAOBB) and number of instances solved by the algorithm. Parameters: # inst - total

number of instances in benchmark, n - number of variables, k - maximum domain size, w∗ - induced width,

hT - pseudo-tree height. 4 GB memory, 1 hour time limit.

6 Weighted heuristic depth-first branch and bound for graphical models

The primary reason for using weighted heuristics in the context of best-first search is to

convert it into memory effective anytime scheme and to get a solution with some bounded

guarantee. Since depth-first branch and bound schemes are already inherently anytime, the

idea of using weighted heuristic search may seem irrelevant. However, branch and bound

schemes do not provide any guarantees when terminating early. So a desire to have bene-

ficial w-optimality bounds on solutions and to possibly improve the anytime performance

intrigued us into exploring the principle of weighted heuristic search for depth-first search

schemes as well. Specifically, weighted heuristic may guide the traversal of the search space

in a richer manner and may lead to larger and more effective pruning of the space.
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Fig. 12 Pedigrees: percentage of instances for which each algorithm found solutions of more accurate cost

than BRAOBB at a specific time bound (left), percentage of instances for which algorithm is tied with

BRAOBB, i.e. found solution of equal cost (right). Above bars - number of instances where algorithm is

better than BRAOBB (tied with BRAOBB) and number of instances solved by the algorithm. Parameters:

# inst - total number of instances in benchmark, n - number of variables, k - maximum domain size, w∗ -

induced width, hT - pseudo-tree height. 4 GB memory, 1 hour time limit.

Therefore, in this section we extend the depth-first branch and bound algorithms AOBB

and BRAOBB to weighted anytime schemes, yielding wAOBB and wBRAOBB, and eval-

uate their performance in much the same way we did for the weighted heuristic best-first

search algorithms.

6.1 Introducing the weighted branch and bound schemes

The extension of AOBB to weighted heuristic search is straightforward. Just multiply the

heuristic value by the weight w> 1 and conduct AOBB as usual. We denote by AOBB(hi,w0,UB)

a weighted version of AOBB that uses the mini-bucket heuristic hi having i-bound=i, multi-
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Fig. 13 Type4: percentage of instances for which each algorithm found solutions of more accurate cost than

BRAOBB at a specific time bound (left), percentage of instances for which algorithm is tied with BRAOBB,

i.e. found solution of equal cost (right). Above bars - number of instances where algorithm is better than

BRAOBB (tied with BRAOBB) and number of instances solved by the algorithm. Parameters: # inst - total

number of instances in benchmark, n - number of variables, k - maximum domain size, w∗ - induced width,

hT - pseudo-tree height. 4 GB memory, 1 hour time limit.

plied by the weight w0, and an initial upper bound equal to UB, as shown in Algorithm 2. It

is easy to show that:

Theorem 9 Algorithm AOBB(hi,w0 > 1,UB= ∞) (and similarly BRAOBB) terminates with

a solution π, whose cost Cπ is a factor w0 away from the optimal cost C∗. Namely, Cπ ≤
w0 ·C∗.

Proof By definition, due to pruning, AOBB generates solutions in order of decreasing costs:

C1 ≥ ·· · ≥ Ci · · · ≥ Cπ , where Cπ is the returned solution. If π is not optimal (otherwise

the claim is trivially proved), there exists an optimal solution π∗ which must have been

pruned by the algorithm. Let n be the last node on π∗ that was generated and which was

pruned. Since the heuristic h is admissible, the un-weighted evaluation function of f along
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Fig. 14 WCSP: percentage of instances for which each algorithm found solutions of more accurate cost than

BRAOBB at a specific time bound (left), percentage of instances for which algorithm is tied with BRAOBB,

i.e. found solution of equal cost (right). Above bars - number of instances where algorithm is better than

BRAOBB (tied with BRAOBB) and number of instances solved by the algorithm. Parameters: # inst - total

number of instances in benchmark, n - number of variables, k - maximum domain size, w∗ - induced width,

hT - pseudo-tree height. 4 GB memory, 1 hour time limit.

π∗ satisfies that

fπ∗(n) = g(n)+h(n) ≤ g(n)+h∗(n) =C∗ (6)

Let Ci be the solution cost used to prune n (namely it pruned relative to the weighted evalu-

ation function). Therefore,

Ci ≤ g(n)+w ·h(n)
Therefore (as w≥ 1) and from Equation 6

Ci ≤ w · (g(n)+h(n))≤ w ·C∗

and since Cπ ≤Ci, we get

Cπ ≤ w ·C∗.
⊓⊔
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Fig. 15 wAOBF vs BRAOBB: comparison of relative accuracy at times 10, 3600 sec. Each row - a single

time bound. Each marker represents a single instance. Memory limit 4 GB, time limit 1 hour. In parenthesis

(X/Y): X - # instances, for which at least one algorithm found a solution, Y - total # instances, MBE heuristic.
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We present two iterative weighted heuristic branch and bound schemes denoted wAOBB

and wBRAOBB. Similar to wAOBF, these algorithms iteratively execute the correspond-

ing base algorithm with the weighted heuristic, AOBB(hi,w0,UB) and BRAOBB(hi,w0,UB).

However, there are some inherent differences between these two schemes and wAOBF, ex-

plained next.

Iterative Weighted AOBB (wAOBB). At the first iteration (Algorithm 6) wAOBB executes

AOBB(hi,w0,UB = ∞), namely AOBB with heuristic hi ·w0 and with default upper bound

of infinity. The algorithm does no pruning until it discovers its first solution. Then the upper

bound is set to the current best cost. At termination of the first iteration, the algorithm re-

turns the final solution and its cost C1 with the corresponding weight w1 = w0. During each

subsequent iteration j ≥ 2 wAOBB executes AOBB(hi,w j,UB j) to completion. The weight

w j is decreased according to the weight policy. The input upper bound UB j is the cost of

the solution returned in iteration j− 1, i.e. UB j = C j−1. We denote by C′j the costs of the

intermediate solutions wAOBB generates during iteration j, until it terminates with the final

solution, having cost C j.

Proposition 4 At each iteration j > 0 the cost of the solution of AOBB(hi,w j,UB j) C j is

guaranteed to be within the factor w j from the optimal cost C∗. Moreover, for iterations

j ≥ 1 all the intermediate solutions generated by AOBB(hi,w j,UB j) are guaranteed to have

costs within the factor of w j−1 from the optimal.

Proof The solution cost C j with which AOBB(hi,w j,UB j) terminates at iteration j is bounded:

Cw j
≤ w j ·C∗. The upper bound used for pruning at iteration j > 1 is equal to the cost of

the solution on the previous iteration (UB j = C j−1). No intermediate solutions worse than

this upper bound are ever explored. Thus the costs C′j of all solutions generated at iteration

j prior to its termination are bounded by the upper bound C′j ≤C j−1. Since C j−1 is bounded

by a factor of w j−1 from the optimal, it follows C′j ≤ w j ·C∗. ⊓⊔

Figure 16 shows the search space explored by AOBB (on the left) and by the first it-

eration of wAOBB with weight w = 10 (on the right), when solving the problem from

Figure 4. In this example AOBB explores 15 nodes in order to find an optimal solution.

wAOBB explores 12 nodes, discovering a suboptimal solution with cost C = 8 and assign-

ment x = {A = 0,B = 0,C = 1,D = 0}.

Iterative Weighted BRAOBB (wBRAOBB): extends BRAOBB(hi,w0,UB) to a weighted it-

erative scheme in the same manner. Clearly, for both schemes the sequence of the solution

costs is non-increasing.

Theorem 10 Worst case time and space complexity of each iteration of wAOBB and wBRAOBB

that uses caching is bounded by O(n ·kw∗). Number of iterations varies based on weight pol-

icy and start value w0.

Proof At each iteration wAOBB and wBRAOBB execute AOBB and BRAOBB respec-

tively, exploring at most the entire context-minimal AND/OR search graph. The precise

number of expanded nodes depends on the pruning and is hard to characterize in general, as

is always the case for branch and bound search. ⊓⊔
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Fig. 16 Search graphs explored by (a) AOBB, (b) First iteration of wAOBB, w=10. Boxed numbers indicate

the order in which the nodes are expanded. vSN indicates that value v was last assigned during step N, i.e.

while expanding the Nth node.

Algorithm 6: wAOBB(w0, hi)

Input: A graphical model M = 〈X,D,F〉; heuristic hi obtained with i-bound i; initial weight w0

Output: C - a set of suboptimal solutions Cw, each with a bound w

1 Initialize j = 1, UB j = ∞, w j = w0, weight update schedule S and let C ← /0;

2 while w j >= 1 do

3 while AOBB(hi,w j , UB j) not terminated do

4 run AOBB(hi ,w j , UB j)

5 if AOBB found an intermediate solution C′j then

6 output the solution bounded by the weight of previous iteration: C ← C ∪{〈w j−1,C
′
j〉}

7 output the solution with which AOBB terminated, bounded by the current weight:

C ← C ∪{〈w j ,C j〉}
8 Decrease weight w according to schedule S;

9 UB←C j

10 return C

6.2 Empirical evaluation of weighted heuristic BB

We carry out an empirical evaluation of the two weighted heuristic depth-first branch and

bound schemes: wAOBB and wBRAOBB, described above. The algorithms were imple-

mented in C++ and the experiments were conducted in the same setting as before.

We compared the two weighted heuristic branch and bound schemes against each other

and against wAOBF, the superior of the weighted heuristic best-first schemes. We also com-
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Instance

BRAOBB

Weights

2.8284 1.2968 1.0330 1.000

wAOBF wAOBF wAOBF wAOBF

wAOBB wAOBB wAOBB wAOBB

wBRAOBB wBRAOBB wBRAOBB wBRAOBB

time / cost time / cost time / cost time / cost time / cost

Grids, I-bound=18

75-22-5
(484, 2, 30, 107)

115.45 / -15.605

5.92 / -15.72 6.66 / -15.72 59.81 / -15.61 423.76 / -15.61

5.87 / -19.08 6.1 / -17.55 52.46 / -15.65 — / —

5.91 / -19.08 6.22 / -17.55 79.91 / -15.7 — / —

75-25-5
(625, 2, 34, 122)

3582.08 / -20.836

8.0 / -23.38 9.77 / -21.7 — / — — / —

8.08 / -31.0 8.34 / -22.55 — / — — / —

8.14 / -31.0 8.56 / -22.84 — / — — / —

Pedigrees, I-bound=18

pedigree9

(935, 7, 27, 100)
220.34 / -122.904

26.75 / -129.55 26.96 / -123.06 33.56 / -122.9 — / —

12.44 / -129.76 12.47 / -128.56 13.63 / -123.2 — / —

12.59 / -129.76 12.61 / -128.56 13.74 / -123.2 — / —

pedigree51

(871, 5, 39, 98)
3600 / -111.55

120.94 / -119.16 — / — — / — — / —

29.01 / -121.77 31.15 / -121.77 — / — — / —

26.41 / -121.77 28.36 / -121.77 3035.48 / -109.83 — / —

WCSP, I-bound=6

capmo2.wcsp

(200, 100, 100, 100)
3600 / -0.28

26.81 / -0.31 — / — — / — — / —

22.43 / -0.31 — / — — / — — / —

22.47 / -0.31 — / — — / — — / —

myciel5g 3.wcsp

(47, 3, 19, 24)
12.93 / -64.0

2.52 / -72.0 50.47 / -64.0 — / — — / —

0.96 / -72.0 7.8 / -64.0 37.63 / -64.0 — / —

0.9 / -72.0 7.37 / -64.0 35.63 / -64.0 — / —

Type4, I-bound=18

type4b 120 17

(4072, 5, 24, 319)
3600 / -1332.18

80.49 / -1354.93 81.24 / -1329.59 84.98 / -1327.6 — / —

49.79 / -1353.83 49.97 / -1337.37 50.25 / -1334.85 — / —

54.91 / -1353.83 55.12 / -1337.37 55.44 / -1334.85 — / —

type4b 130 21

(4874, 5, 29, 416)
3600 / -1383.74

86.21 / -1438.24 88.89 / -1386.34 — / — — / —

58.12 / -1414.3 97.66 / -1489.57 — / — — / —

96.61 / -1512.32 96.93 / -1489.57 — / — — / —

Table 4 Runtime (sec) and cost (on logarithmic scale) obtained by wAOBF, wAOBB and wBRAOBB for

selected w, and by BRAOBB (that finds C∗ - optimal cost). Instance parameters: n - number of variables,

k - max domain size, w∗ - induced width, hT - pseudo tree height. ”time out” - running out of time, ”—” -

running our of memory. 4 GB memory limit, 1 hour time limit, MBE heuristic.

pared against the state-of-the-art anytime BRAOBB. All algorithms use the same MBE

heuristic. We use the same sqrt(1.0) policy and starting weight equal to 64 as we did for the

weighted heuristic best-first schemes in Section 5.

6.2.1 Weighted heuristic BB as approximation

In Table 4 we report the entire runtime required to find a first solution for a particular

weight level (e.g. w = 2.8284) for each algorithm. In this sense these tables are different

from Table 2, where we only reported the time it took the scheme to find the w-optimal
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Fig. 17 Ratio of the cost obtained by some time point (10, 60, 600 and 1800 sec) and max cost. Max. cost =

optimal, if known, otherwise = best cost found for the problem. Corresponding weight - above the bars. The

cases where BRAOBB proved solution optimality is indicated by ’***’ above bars. In red - optimal solutions.

Instance parameters are in format (n,k,w∗ ,hT ), where n - number of variables, k - max. domain size, w∗ -

induced width, hT - pseudo-tree height. Grids and Pedigrees. Memory limit 4 GB, time limit 1 hour, MBE

heuristic.

solution starting from a particular weight, e.g. w = 2.8284, not starting with initial weight

w0 = 64. The difference is due to the fact that wAOBB and wBRAOBB use the results of

previous iterations as upper bounds and their iterations are not completely independent runs

of AOBB(hi,w j,UB j) and BRAOBB(hi,w j,UB j), respectively.

We also report the runtime and the cost by BRAOBB at termination. The time equal to

3600 seconds for BRAOBB signifies that it failed to report the optimal solution within the

time bound and we then report the best solution found.

Comparing with weighted heuristic best-first search. Based on Table 4 we see that time-

wise none of the schemes dominates for a given weight. For example, for grid 75-22-5 for

weight w= 1.033 wAOBB reports the solution the fastest, while for type4b 130 21 wAOBF

reaches a 1.2968-optimal solution almost ten seconds before either wAOBB or wBRAOBB.

Time saving for w-bounded suboptimality. Comparing pairs of columns, in particular column

2 (exact results for BRAOBB) and columns 4-5 (1.2968- and 1.0330-optimal solutions) in

Table 4, we observe remarkable time savings of the weighted heuristic schemes compared

with BRAOBB.

Overall, based on these instances, which are quite representative, we see as before that

the weighted heuristic schemes can often provide good approximate solutions with tight

suboptimality bounds, yielding significant time savings compared to finding optimal solu-

tions by competing BRAOBB. The weighted branch and bound schemes are more memory
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Fig. 18 Ratio of the cost obtained by some time point (10, 60, 600 and 1800 sec) and max cost. Max. cost =

optimal, if known, otherwise = best cost found for the problem. Corresponding weight - above the bars. The

cases where BRAOBB proved solution optimality is indicated by ’***’ above bars. In red - optimal solutions.

Instance parameters are in format (n,k,w∗ ,hT ), where n - number of variables, k - max. domain size, w∗ -

induced width, hT - pseudo-tree height. Type4 and WCSPs. Memory limit 4 GB, time limit 1 hour, MBE

heuristic.

efficient than wAOBF. However, on the instances feasible for all three weighted heuristic

schemes there is no clear winner.

6.2.2 Anytime performance comparison

Figures 17 and 18 display the anytime behaviour of the schemes for typical instances from

each benchmark using bar charts that show the ratio between the cost available at a particular

time point (at 10, 60, 600 and 1800 sec) and the optimal (if known) or best cost found

(similarly to Figures 9 and 10 in the previous section). Figure 17 shows the results for Grids

and Pedigrees, while Figure 18 presents WCSPs and Type4 instances.

Grids (Figure 17): we observe that the weighted heuristic branch and bound schemes are

typically inferior to wAOBF, finding solutions slower and of lower accuracy. For example,

wAOBF is the only scheme to return a solution within 10 seconds on grid 75-23-5, i=6.

However, there are exceptions (e.g., grid 50-16-5, i=6).

Pedigrees: both weighted heuristic branch and bound schemes are often the best (e.g. pedi-

gree13, i=6). For some problems they even provide solutions with accuracy approaching 1.0

while the other schemes fail to find any solution, e.g., pedigree7, i=6.
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WCSPs (Figure 18): The wAOBB and wBRAOBB perform better than BRAOBB and

wAOBF on such instances (e.g., capmo2.wcsp for all i-bounds), except for a number of

problems (not explicitly shown), for which BRAOBB is the only scheme to return solutions.

Type4: wAOBF mostly dominates over the branch and bound schemes, included the weighted

heuristic ones. However, for larger i-bounds on Type4 weighted heuristic branch and bound

schemes can find good solutions, sometimes even providing tighter suboptimality guaran-

tees than wAOBF. For example, for type4b 140 20, i=12, for 1800 sec the bound by wAOBF

is w = 1.3 while for wAOBB it is w = 1.14. BRAOBB is inferior for this benchmark.

We turn now to Figures 11-14 in order to summarize the performance of weighted

heuristic depth-first branch and bound search algorithms, concentrating on wAOBB as a

slightly better of the two. From these bar charts we see that wAOBB is more successful

than BRAOBB when the heuristics are weak. For example, for Grids, 60 second, for i=10,

wAOBB finds solutions of higher accuracy than BRAOBB on 23.1% of instances, while for

i=18, superiority is 16.7%. The two schemes are tied on 82.1% of instances for Grids, i=18,

3600 seconds, and in general, when the i-bound is high, the difference between the solution

costs reported by various algorithms diminishes.

We conclude from these figures that the wAOBB can definitely be superior to wAOBF

on 2 out of 4 benchmarks (Pedigrees and WCSPs) for many problems, and can find solution

of better accuracy than BRAOBB on a number of instances from all four benchmarks.

7 Summary and concluding remarks

The paper provides the first study of weighted heuristic best-first and weighted heuristic

depth-first branch and bound search for graphical models. These algorithms are distin-

guished by their ability to provide a w-optimality guarantee (namely they can guarantee

solutions that are at most a w factor away from the optimal cost, for a given w). Alter-

natively, when run in anytime fashion, whenever stopped they generate the best solution

encountered thus far and a weight w bounding its suboptimality.

The idea of weighted heuristic best-first search is widespread in the path-finding and

planning communities. In this paper we extended this idea to graphical models optimiza-

tion tasks, specifically, to AND/OR best-first search scheme AOBF and AND/OR depth-

first branch and bound scheme AOBB (see [Marinescu and Dechter (2009b)]). This re-

sulted in two anytime weighted heuristic best-first schemes, wAOBF and wR-AOBF, and

two weighted depth-first, wAOBB and wBRAOBB. We evaluated these algorithms against

each other and against several competing schemes, and especially against the state of the art

BRAOBB [Otten and Dechter (2011)], on a large variety of instances from 4 benchmarks.

We evaluated the algorithms for varying heuristic strength and for different time bounds.

The heuristic functions were generated by the mini-bucket elimination scheme [Dechter and

Rish (2003)], whose strength is controlled by an i-bound parameter.

Our experiments revealed the following primary trends:

– On the anytime performance of weighted heuristic schemes: First and foremost we

showed that the weighted schemes can perform better than BRAOBB in many cases.

In addition the schemes provide the useful w-optimality guarantee. We saw that overall

wAOBF had a better anytime behaviour than wR-AOBF and produced more accurate

solutions in a comparable time on many instances (see Figures 11-15).

– Performance varied per benchmark: On two out of four benchmarks wAOBF and

wR-AOBF dominated over BRAOBB, more often finding costs of better accuracy within
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the time limit. This good behaviour on Grids and Type4 benchmarks was mostly consis-

tent across heuristic strengths and time bounds. The weighted heuristic DFS branch and

bound schemes wAOBB and wBRAOBB were better than wAOBF and BRAOBB on

Pedigrees and, especially, WCSPs. This dominance often corresponded to cases where

wAOBF ran out of memory, since branch and bound schemes are more memory efficient.

Therefore, together the weighted schemes had an effective performance on instances

across all benchmarks.

– On the impact of the heuristic strength: the weighted heuristic schemes were more

powerful compared with BRAOBB for weak heuristics. Namely, when the i-bound char-

acterizing the heuristic strength was far smaller than the problem’s induced width. One

explanation is that the weight may make the weak admissible heuristic more accurate

(a weak lower bound becomes stronger lower bound, closer to the actual optimal cost,

when multiplied by a constant).

– On w-optimality in practice: In quite a few cases the weighted schemes (e.g., wAOBF,

wR-AOBF, wAOBB and wBRAOBB) reported solutions orders of magnitude faster,

even for small w, than the time required to generate an exact solution by the un-weighted

schemes BRAOBB or AOBF. Moreover, in some cases the weighted heuristic schemes

generated w-optimal solutions for a small w even for some hard instances that were

infeasible (within the time limit) for the baseline algorithms.

Selection and combination of algorithms. Clearly, however, due to the fact that no algo-

rithm is always superior, the question of algorithm selection requires further investigation.

We aim to identify problem features that could be used to predict which scheme is best

suited for solving a particular instance, and to combine the algorithms within a portfolio

framework, known to be successful for such solvers as SATzilla [Xu et al (2008)] and PBP

[Gerevini et al (2009)].

In that context, however it is important to note that the weighted heuristic schemes can

be valuable anyway by supplying any approximation with w-optimality guarantees. For ex-

ample, it can be used alongside incomplete approximate schemes, such as Stochastic Local

Search. If the solution by SLS has a cost better or equal to that of the generated w-optimal

solution, it yields a w-optimal bound on the SLS solution.

The potential impact of weights on various heuristics. While we evaluated the weighted

schemes relative to the mini-bucket heuristics only, these ideas are orthogonal to the heuris-

tic type and they are likely to similarly boost the anytime behaviour with any other heuristics.

We have recently provided some initial empirical evaluation of the impact of the weighted

schemes for cost-shifting relaxation schemes that augment the mini-bucket scheme, intro-

duced in [Ihler et al (2012)]. Our initial findings are presented in [Sharma et al (2014)].
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Fig. 19 wAOBF vs wR-AOBF, all benchmarks: comparison of relative accuracy at 600 sec. Each marker

represents a single instance. Memory limit 4 GB, time limit 1 hour. In parenthesis (X/Y): X - # instances, for

which at least one algorithm found a solution, Y - total # instances, MBE heuristic.

A Weighted heuristic BF: summaries by scatter diagrams

In this section we include additional scatter plots, showing in Figure 19 the comparison between wAOBF and

wR-AOBF for two time bound and two levels of heuristic strength and in Figures 20-20 the comparison be-

tween wAOBF and BRAOBB for 3 values of i-bounds and 3 time bounds for each instance. For completeness

we include also some of the plots previously presented in Section 5.4.3.

B Comparing weighted heuristic search schemes against BRAOBB

Tables 5 and 6 present the summary of the results for wAOBF, wR-AOBF and wAOBB compared against

BRAOBB. For each benchmark for 5 time bounds and for 4 i-bounds we show the percentages of the instances

for which a particular weighted algorithm found a more accurate solution than BRAOBB (%X), and for which

the algorithm found the solution of the same cost as BRAOBB (%Y ). We also show the number of instances

solved by each algorithm (N).

References

Bertele U, Brioschi F (1972) Nonserial dynamic programming. Academic Press, Inc.

Cabon B, De Givry S, Verfaillie G (1998) Anytime lower bounds for constraint violation minimization prob-

lems. In: Principles and Practice of Constraint ProgrammingCP98, Springer, pp 117–131

Chakrabarti P, Ghose S, De Sarkar S (1987) Admissibility of AO* when heuristics overestimate. Artificial

Intelligence 34(1):97–113

Dechter R (1999) Bucket elimination: A unifying framework for reasoning. Artificial Intelligence 113(1):41–

85

Dechter R, Mateescu R (2007) AND/OR search spaces for graphical models. Artificial Intelligence 171(2-

3):73–106



Weighted Heuristic Search in Graphical Models 43

0.0 0.2 0.4 0.6 0.8 1.0
wAOBF, relative accuracy

0.0

0.2

0.4

0.6

0.8

1.0

BR
AO

BB
, r
el
at
iv
e 
ac
cu
ra
cy

Grids, i=4, 10 sec, (16/32)

0.0 0.2 0.4 0.6 0.8 1.0
wAOBF, relative accuracy

0.0

0.2

0.4

0.6

0.8

1.0

BR
AO

BB
, r
el
at
iv
e 
ac
cu
ra
cy

Grids, i=4, 600 sec, (21/32)

0.0 0.2 0.4 0.6 0.8 1.0
wAOBF, relative accuracy

0.0

0.2

0.4

0.6

0.8

1.0

BR
AO

BB
, r
el
at
iv
e 
ac
cu
ra
cy

Grids, i=4, 3600 sec, (21/32)

0.0 0.2 0.4 0.6 0.8 1.0
wAOBF, relative accuracy

0.0

0.2

0.4

0.6

0.8

1.0

BR
AO

BB
, r
el
at
iv
e 
ac
cu
ra
cy

Grids, i=10, 10 sec, (21/31)

0.0 0.2 0.4 0.6 0.8 1.0
wAOBF, relative accuracy

0.0

0.2

0.4

0.6

0.8

1.0

BR
AO

BB
, r
el
at
iv
e 
ac
cu
ra
cy

Grids, i=10, 600 sec, (23/31)

0.0 0.2 0.4 0.6 0.8 1.0
wAOBF, relative accuracy

0.0

0.2

0.4

0.6

0.8

1.0

BR
AO

BB
, r
el
at
iv
e 
ac
cu
ra
cy

Grids, i=10, 3600 sec, (23/31)

0.0 0.2 0.4 0.6 0.8 1.0
wAOBF, relative accuracy

0.0

0.2

0.4

0.6

0.8

1.0

BR
AO

BB
, r
el
at
iv
e 
ac
cu
ra
cy

Grids, i=20, 10 sec, (24/32)

0.0 0.2 0.4 0.6 0.8 1.0
wAOBF, relative accuracy

0.0

0.2

0.4

0.6

0.8

1.0

BR
AO
BB
, r
el
at
iv
e 
ac
cu
ra
cy

Grids, i=20, 600 sec, (25/32)

0.0 0.2 0.4 0.6 0.8 1.0
wAOBF, relative accuracy

0.0

0.2

0.4

0.6

0.8

1.0

BR
AO
BB
, r
el
at
iv
e 
ac
cu
ra
cy

Grids, i=20, 3600 sec, (25/32)

Fig. 20 wAOBF vs BRAOBB on Grids: comparison of relative accuracy at times 10, 600 and 3600 sec. Each

row - a single time bound. Each marker represents a single instance. Memory limit 4 GB, time limit 1 hour.
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Fig. 21 wAOBF vs BRAOBB on Pedigrees. comparison of relative accuracy at times 10, 600 and 3600 sec.

Each row - a single time bound. Each marker represents a single instance. Memory limit 4 GB, time limit

1 hour. In parenthesis (X/Y): X - # instances, for which at least one algorithm found a solution, Y - total #

instances, MBE heuristic.
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Fig. 22 wAOBF vs BRAOBB on WCSPs: comparison of relative accuracy at times 10, 600 and 3600 sec.

Each row - a single time bound. Each marker is a single instance. Memory limit 4 GB, time limit 1 hour. In

parenthesis (X/Y): X - # instances, for which at least one algorithm found a solution, Y - total # instances,

MBE heuristic.
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Fig. 23 wAOBF vs BRAOBB on Type4: comparison of relative accuracy at times 10, 600 and 3600 sec.

Each row - a single time bound. Each marker is a single instance. Memory limit 4 GB, time limit 1 hour. In

parenthesis (X/Y): X - # instances, for which at least one algorithm found a solution, Y - total # instances,

MBE heuristic.
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I-bound Algorithm
Time bounds

10 30 60 600 3600

X% / Y% / N X% / Y% / N X% / Y% / N X% / Y% / N X% / Y% / N

Grids (# inst=32, n=144-2500, k=2, w∗=15-90, hT =48-283)

i=6

wAOBF 66.7 / 12.5 / 24 64.0 / 16.0 / 25 68.0 / 20.0 / 25 40.0 / 40.0 / 25 16.0 / 44.0 / 25

wR-AOBF 29.2 / 12.5 / 24 45.8 / 16.7 / 24 40.0 / 20.0 / 25 32.0 / 40.0 / 25 12.0 / 44.0 / 25

wAOBB 33.3 / 12.5 / 24 40.0 / 12.0 / 25 44.0 / 12.0 / 25 32.0 / 32.0 / 25 28.0 / 44.0 / 25

i=10

wAOBF 58.3 / 20.8 / 24 56.0 / 32.0 / 25 46.2 / 42.3 / 26 22.2 / 55.6 / 27 14.8 / 55.6 / 27

wR-AOBF 21.7 / 30.4 / 23 37.5 / 33.3 / 24 28.0 / 44.0 / 25 12.0 / 60.0 / 25 7.7 / 57.7 / 26

wAOBB 54.2 / 20.8 / 24 44.0 / 24.0 / 25 23.1 / 30.8 / 26 11.1 / 44.4 / 27 18.5 / 55.6 / 27

i=14

wAOBF 42.3 / 42.3 / 26 38.5 / 46.2 / 26 30.8 / 61.5 / 26 14.8 / 74.1 / 27 3.4 / 69.0 / 29

wR-AOBF 19.2 / 42.3 / 26 19.2 / 50.0 / 26 15.4 / 65.4 / 26 7.4 / 70.4 / 27 3.7 / 70.4 / 27

wAOBB 19.2 / 42.3 / 26 19.2 / 46.2 / 26 7.7 / 57.7 / 26 11.1 / 66.7 / 27 10.3 / 75.9 / 29

i=18

wAOBF 14.3 / 57.1 / 21 16.7 / 66.7 / 24 16.7 / 66.7 / 24 3.7 / 77.8 / 27 0.0 / 75.0 / 28

wR-AOBF 14.3 / 61.9 / 21 12.5 / 75.0 / 24 12.5 / 75.0 / 24 3.8 / 80.8 / 26 0.0 / 75.0 / 28

wAOBB 4.8 / 61.9 / 21 8.3 / 58.3 / 24 16.7 / 62.5 / 24 7.4 / 77.8 / 27 3.6 / 82.1 / 28

Pedigrees (# inst=11, n=581-1006, k=3-7, w∗=16-39, hT =52-104)

i=6

wAOBF 11.1 / 0.0 / 9 11.1 / 11.1 / 9 30.0 / 30.0 / 10 10.0 / 30.0 / 10 10.0 / 20.0 / 10

wR-AOBF 11.1 / 11.1 / 9 11.1 / 22.2 / 9 22.2 / 22.2 / 9 11.1 / 22.2 / 9 11.1 / 22.2 / 9

wAOBB 55.6 / 11.1 / 9 22.2 / 11.1 / 9 30.0 / 10.0 / 10 40.0 / 10.0 / 10 60.0 / 20.0 / 10

i=10

wAOBF 44.4 / 11.1 / 9 50.0 / 30.0 / 10 50.0 / 30.0 / 10 40.0 / 40.0 / 10 30.0 / 40.0 / 10

wR-AOBF 25.0 / 12.5 / 8 44.4 / 22.2 / 9 40.0 / 30.0 / 10 45.5 / 27.3 / 11 27.3 / 27.3 / 11

wAOBB 66.7 / 22.2 / 9 60.0 / 20.0 / 10 60.0 / 30.0 / 10 50.0 / 30.0 / 10 30.0 / 40.0 / 10

i=14

wAOBF 14.3 / 0.0 / 7 28.6 / 14.3 / 7 33.3 / 22.2 / 9 33.3 / 33.3 / 9 22.2 / 44.4 / 9

wR-AOBF 14.3 / 0.0 / 7 14.3 / 14.3 / 7 22.2 / 22.2 / 9 10.0 / 30.0 / 10 10.0 / 30.0 / 10

wAOBB 28.6 / 14.3 / 7 42.9 / 14.3 / 7 44.4 / 22.2 / 9 33.3 / 44.4 / 9 22.2 / 44.4 / 9

i=20

wAOBF 0 / 0 / 0 0 / 0 / 0 0.0 / 50.0 / 2 20.0 / 20.0 / 5 0.0 / 40.0 / 5

wR-AOBF 0 / 0 / 0 0 / 0 / 0 0.0 / 0.0 / 2 0.0 / 20.0 / 5 0.0 / 20.0 / 5

wAOBB 0 / 0 / 0 0 / 0 / 0 50.0 / 0.0 / 2 20.0 / 80.0 / 5 0.0 / 80.0 / 5

Table 5 X% - percentage of instances for which each algorithm is the better than BRAOBB at a specific time

bound, Y% - percentage of instances for which algorithm ties with BRAOBB, N - number of instances for

which at least one of algorithms found a solution. # inst - total number of instances in benchmark, n - number

of variables, k - maximum domain size, w∗ - induced width, hT - pseudo-tree height. 4 GB memory, 1 hour

time limit, MBE heuristic.

.
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I-bound Algorithm
Time bounds

10 30 60 600 3600

X% / Y% / N X% / Y% / N X% / Y% / N X% / Y% / N X% / Y% / N

WCSP (# inst=56, n=25-1057, k=2-100, w∗=5-287, hT =11-337)

i=6

wAOBF 6.1 / 15.2 / 33 3.0 / 18.2 / 33 2.9 / 20.0 / 35 0.0 / 22.0 / 41 0.0 / 20.9 / 43

wR-AOBF 6.1 / 15.2 / 33 3.0 / 18.2 / 33 2.9 / 20.0 / 35 0.0 / 20.0 / 40 0.0 / 19.0 / 42

wAOBB 15.2 / 27.3 / 33 15.2 / 27.3 / 33 17.1 / 25.7 / 35 14.6 / 36.6 / 41 14.0 / 34.9 / 43

i=10

wAOBF 0.0 / 57.1 / 7 7.1 / 28.6 / 14 6.3 / 37.5 / 16 0.0 / 25.0 / 24 0.0 / 25.0 / 24

wR-AOBF 0.0 / 57.1 / 7 7.1 / 28.6 / 14 6.3 / 37.5 / 16 0.0 / 25.0 / 24 0.0 / 25.0 / 24

wAOBB 0.0 / 85.7 / 7 28.6 / 50.0 / 14 25.0 / 50.0 / 16 16.7 / 41.7 / 24 20.8 / 41.7 / 24

i=14

wAOBF 0.0 / 100.0 / 1 0.0 / 50.0 / 2 0.0 / 66.7 / 3 0.0 / 42.9 / 7 0.0 / 50.0 / 8

wR-AOBF 0.0 / 100.0 / 1 0.0 / 50.0 / 2 0.0 / 66.7 / 3 0.0 / 42.9 / 7 0.0 / 50.0 / 8

wAOBB 0.0 / 100.0 / 1 0.0 / 50.0 / 2 0.0 / 66.7 / 3 42.9 / 42.9 / 7 37.5 / 50.0 / 8

i=18

wAOBF 0 / 0 / 0 0.0 / 100.0 / 1 0.0 / 100.0 / 1 0.0 / 50.0 / 2 0.0 / 50.0 / 2

wR-AOBF 0 / 0 / 0 0.0 / 100.0 / 1 0.0 / 100.0 / 1 0.0 / 50.0 / 2 0.0 / 50.0 / 2

wAOBB 0 / 0 / 0 0.0 / 100.0 / 1 0.0 / 100.0 / 1 0.0 / 50.0 / 2 0.0 / 50.0 / 2

Type4 (# inst=10, n=3907-8186, k=5, w∗=21-32, hT =319-625)

i=6

wAOBF 16.7 / 0.0 / 6 44.4 / 0.0 / 9 80.0 / 0.0 / 10 90.0 / 0.0 / 10 90.0 / 0.0 / 10

wR-AOBF 16.7 / 0.0 / 6 33.3 / 0.0 / 9 30.0 / 0.0 / 10 50.0 / 0.0 / 10 50.0 / 0.0 / 10

wAOBB 16.7 / 0.0 / 6 11.1 / 0.0 / 9 20.0 / 0.0 / 10 50.0 / 0.0 / 10 50.0 / 0.0 / 10

i=10

wAOBF 33.3 / 0.0 / 6 100.0 / 0.0 / 9 100.0 / 0.0 / 10 100.0 / 0.0 / 10 100.0 / 0.0 / 10

wR-AOBF 0.0 / 0.0 / 6 44.4 / 0.0 / 9 50.0 / 0.0 / 10 60.0 / 0.0 / 10 60.0 / 0.0 / 10

wAOBB 33.3 / 0.0 / 6 44.4 / 0.0 / 9 60.0 / 0.0 / 10 80.0 / 0.0 / 10 100.0 / 0.0 / 10

i=14

wAOBF 0 / 0 / 0 71.4 / 0.0 / 7 90.0 / 0.0 / 10 100.0 / 0.0 / 10 100.0 / 0.0 / 10

wR-AOBF 0 / 0 / 0 57.1 / 0.0 / 7 60.0 / 0.0 / 10 80.0 / 0.0 / 10 60.0 / 0.0 / 10

wAOBB 0 / 0 / 0 71.4 / 0.0 / 7 80.0 / 0.0 / 10 90.0 / 0.0 / 10 100.0 / 0.0 / 10

i=18

wAOBF 0 / 0 / 0 0 / 0 / 0 100.0 / 0.0 / 1 100.0 / 0.0 / 9 88.9 / 11.1 / 9

wR-AOBF 0 / 0 / 0 0 / 0 / 0 100.0 / 0.0 / 1 55.6 / 0.0 / 9 44.4 / 11.1 / 9

wAOBB 0 / 0 / 0 0 / 0 / 0 100.0 / 0.0 / 1 88.9 / 0.0 / 9 88.9 / 0.0 / 9

Table 6 X% - percentage of instances for which each algorithm is the better than BRAOBB at a specific time

bound, Y% - percentage of instances for which algorithm ties with BRAOBB, N - number of instances for

which at least one of algorithms found a solution. # inst - total number of instances in benchmark, n - number

of variables, k - maximum domain size, w∗ - induced width, hT - pseudo-tree height. 4 GB memory, 1 hour

time limit, MBE heuristic.

.


