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Abstract

In this paper we present a cycle-cutset driven stochastic local
search algorithm which approximates the optimum of sums
of unary and binary potentials, called Stochastic Tree Local
Search or STLS. We study empirically two pure variants of
STLS against the state-of-the art GLS™ scheme and against
a hybrid.

Introduction

The problem of optimizing discrete multivariate functions
or "energy functions" described as sums of potentials on
(small) subsets of variables is one of fundamental impor-
tance and interest in a wide variety of fields, such as com-
puter vision and graphical models. In the context of the lat-
ter, conditional probability tables (CPT) are used to describe
the relations between the variables of a model. Instances of
this problem arise in the form of Most Probable Explanation
(MPE) problems, where finding a maximum of such an en-
ergy functions composed of the CPTs, translates to finding
an assignment of maximum probability given some partial
assignment as evidence.

Background

Definition 1 (Energy Minimization Problem). let * =
T1,...,xN be aset of variables over a finite domain D, let
w; : D — Rfori € {1,..., N} be unary potentials, and
let ¢; ; : D? — R for a subset of pairs E C {{i,j} : 1 <
i < j < N} be binary potentials, then the problem of energy
minimization is finding

" = argming Z wi (x;) + Z i (zi,25)

i {i.j}eE

Definition 2 (Cycle-Cutset). Let G = (V, E) be an undi-
rected graph. A cycle-cutset in G is a subset C' of V, such
that the graph induced on V' = V\C' is acyclic.

Given an instance of the energy minimization problem,
a primal graph can be built, where every variable z; is as-
signed a vertex, and two vertices x; and x; are connected
if there exists a potential v; ;. If the resulting graph is
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Algorithm 1 pseudo code of STLS/STLS*.
STLS and STLS* differ in the restart and the cutset genera-
tion procerdures.

Input: Graph G = (V, F) annotated with potentials (; and
Vi 5.
Output: An assignment  which achieves the minimum en-
ergy found in time ¢.
// Identify nodes not part of any cycle
and set aside

T + FindTreeVariables (G)
V'« V\T
T 4+ InitializeValues
while runtime < t do
C ¢+ GenerateCutset (V', F)
T+ V\C;F+<TUT
// Alternate BP on forest variables
and local search on cutset variables
repeat
jprev —
Tp < BeliefPropagation (G,Z, F)
Tc ¢ SubsidiaryLocalSearch (G, %, C)
until z,,,.c, = ;
if stagnated then
| T4 InitializeValues
end
end

acyclic, the problem can be solved efficiently using Be-
lief Propagation (BP) (Pearl 1982; Bertele and Brioschi
1972). If the graph is not acyclic, a cycle cutset can be
generated and an optimal assignment to the forest variables
given the assignment to the cutset variables can be found
in a method known as “cutset-conditioning”(Pearl 1988;
Dechter 1990).

STLS: Stochastic Tree-based Local Search

(Pinkas and Dechter 1995) suggested iteratively condition-
ing on a different cutset and finding exact optimal solution
on the rest variables as a possible scheme for dealing with
cycles in the graph. However, they did not go further to es-
tablish the capabilities of this method. The algorithm can
additionally perform regular local search on the cutset vari-
ables. The operation of of STLS is given in Algorithm 1. In
every iteration an optimal assignment to the forest variables



Set STLS STLS* Hybrid GLST Random GLST
(# inst.) Best Ratio Best Ratio Best Ratio Best Ratio Best Zoe(s)tf
Grids mean 2 (0) 0.99 1(1) 0.99 18 (1) 1.02 0(0) 0.75 0(16) 95%
21) max 3(1) 1.04 1(7) 1.03 16 (1) 1.03 0(0) 0.86 0(10)
CSP mean 14 (4) 1.19 13 (4) 1.17 13 (5) 1.17 18 (7) 1 19 (6) 7%
29) max 18 (2) 1.19 18 (3) 1.19 16 (12) | 1.18 21 (4) 1 20 (4)
Protein. | mean 1(4) 1 0(0) 0.99 4 (1) 1 3(3) 1 5(1) 100%
) max 5012 1 0(D) 0.99 50Q2) 1 3(2) 1 4(1)
SGM. | mean || 32(29) | 0.94 0(5 0.85 37(40) | 0.99 || 53 (33) 1 57 (32) 100%
(90) max 37(32) | 096 || 30(23) | 096 || 4243) | 0.99 || 55(35) 1 52 (35)

Table 1: Statistics for average and maximal results over 10 runs on sets from PIC2011. Best is the number of the instances for
whom the algorithm achieved the best (second best) result. Ratio is the average ratio of the result obtained by the algorithm to
that of regular GLS™. For GLS the average ratio of the result to the best overall result is presented.

is generated given the values of the cutset variables. There-
fore, the energy of the system can not increase from iteration
to iteration and the resulting algorithm is a local search algo-
rithm finding the optimal solution on all the forest variables
in every iteration.

Experiments

Three different versions of STLS - STLS, STLS* and a
STLS-GLS™ hybrid - were test and compared to GLS™
(Hutter, Hoos, and Stiitzle 2005), another local search al-
gorithm and considered for many years to be the state-of-
the-art. All algorithms were run 10 times on problems from
the Grids, CSP, ProteinFolding and Segmentation problem
sets of the PASCAL2 Probabilistic Inference Challenge
(PIC2011)! (see (Lee, Lam, and Dechter 2013) for a sum-
mary of the statistics of these benchmark sets). The resulting
energies were sampled after 0.1 seconds and after 3 minutes
(1 minute for Segmentation problems), and all the results
of a given instance were linearly normalized to the inter-
val [0, 1], mapping the worst result to 0 and the best to 1.
In STLS and STLS* the variables were initialized to an
undefined value, thus ignored until obtaining a valid value.
GLS™ was initialized either randomly or customarily us-
ing the Mini-Bucket heuristic. The cutset variables were up-
dated using the Hopfield Model activation function as the
local search algorithm mentioned in line 10 of Algorithm 1.
As can be seen in Table 1, although the GLS™ variants do
manage to produce the best results more often, especially in
the Segmentation benchmark, the average ratios of the aver-
age and maximal results obtained by the various algorithms
to those of the classic GLS™ range from slight superior-
ity for GLS™ on the Segmentation benchmark to significant
dominance of the ST LS algorithms on the CSP benchmark.
This implies that while GLS™ manages to produce the best
results in many case, it does not significantly outperforms
STLS and considerably struggles on some instances.

Conclusion

We presented an algorithm which combines the notion of
cycle-cutset with the well known Belief Propagation algo-

"http://www.cs.huji.ac.il/project/PASCAL/index.php

rithm to achieve an approximate optimum of a sum of unary
and binary potentials. This is done by the previously unex-
plored concept of traversal from one cutset to another and
updating the induced forest, thus creating a local search al-
gorithm, whose update phase spans over many variables (the
forest variables). We presented experiments suggesting this
algorithm is on-par with the state-of-the-art in general and
significantly outperforms it on some benchmarks.

In future work, the algorithm should be extended to han-
dle potentials of higher arity than 2. Importantly, ST LS
yields strong local optima, and therefore, in the limit it is
as good as max-sum/min-sum belief propagation in quality,
while it can be more effective computationally (i.e., guar-
anteed convergence). Comparing with specific loopy belief
propagation scheme is left for future work as well.
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