
BPLS: Cutset-Driven Local Search For MPE and
Improved Bounds for Minimal Cutsets in Grids

A thesis submitted in partial satisfaction of the
requirements for the degree of Master of Science

by

Alon Milchgrub

Supervised by

Professor Rina Dechter and
Professor Amir Globerson

The School of Computer Science and Engineering
Hebrew University of Jerusalem, Israel

Winter 2014

BPLS: Cutset-Driven Local Search For MPE and Improved Bounds for
Minimal Cutsets in Grids

Copyright 2014
by

Alon Milchgrub

i

Abstract

BPLS: Cutset-Driven Local Search For MPE and Improved Bounds for Minimal Cutsets
in Grids

by

Alon Milchgrub
Master of Science in Computer Science

The problem of finding an optimum of a multivariate function described as a sum of poten-
tials over (small) subsets of variables is one of fundamental interest both in probabilistic
inference and other fields. In this thesis we present a cycle-cutset driven stochastic local
search algorithm which approximates the optimum of sums of unary and binary poten-
tials, called Belief Propagation Local Search or BPLS. We evaluate empirically the effects
of different components of BPLS on its performance and present the results of extensive
and comprehensive experiments conducted on several problem sets.

We further suggest several novel heuristics designed to improve the exploration of the
search space based on previous results and more detailed analysis of the energy function.
Some of the heuristics and observations made are general, and may be applied in other
local search algorithms and in other contexts. We present experimental results supporting
the contribution of these heuristics. Finally, we compare the performance of the leading
variants of BPLS to the state-of-the-art GLS+ and against a hybrid. We show that in gen-
eral the performance of BPLS is on-par with GLS+ and that it significantly outperforms
GLS+ on the CSP problem set. Our results are significant because for the past decade,
GLS+ is well established as the best stochastic local search for MPE. Moreover, BPLS
reaches strong local optima in the limit (conditionally optimal on every tree), and as such
provides an effective and convergent algorithm alternative to min-sum BP schemes.

In the second part of this thesis we explore the notion of tree inducing cycle-cutset
and present novel theoretical results. We prove that in grids of any size there exists a
minimal cycle-cutset whose complement induces a single connected tree. More generally,
any cycle-cutset in a grid can be transformed to a tree-inducing cycle-cutset, no bigger
than the original one in a series of steps from a given cutset to another. We use this result
to improve the known lower bounds on the size of a minimal cycle-cutset in certain cases
of grids, thus equating the lower bound to the known upper bound.

ii

Contents

List of Figures iv

List of Tables v

1 The Energy Minimization Problem 1
1.1 Introduction . 2
1.2 Problem Definition and Preliminaries . 3
1.3 Background . 4

1.3.1 Belief Propagation . 4
1.3.2 Cycle-Cutset Conditioning . 5
1.3.3 GLS and GLS+ . 6
1.3.4 Hopfield Model . 7
1.3.5 Graph Cuts . 8

1.4 BPLS: Belief Propagation-based Local Search 9
1.4.1 Properties of BPLS . 9
1.4.2 Initialization . 10
1.4.3 Tree Directing . 10
1.4.4 Cutset Selection . 11

1.5 BPLS for Panorama Stitching . 11
1.6 Experiments on BPLS . 13

1.6.0.1 Methodology . 13
1.6.0.2 Variants . 14
1.6.0.3 Results . 15

1.7 BPLS∗ . 16
1.7.1 Correlation Estimation Based Value Perturbation 16
1.7.2 Experience based value perturbation 17
1.7.3 Experience based cutset selection 19
1.7.4 Potential based cutset selection . 20

1.8 Experiments on BPLS∗ . 20
1.9 Comparison with GLS+ . 20
1.10 Discussion and Future Work . 23

iii

2 The Minimum Cycle-Cutset Problem in Grids 25
2.1 Introduction . 26
2.2 Preliminaries and Convention . 26
2.3 Connectivity of the induced graphs in grids 28
2.4 Improved lower bounds . 33
2.5 Conclusion . 40

Bibliography 41

A Result Plots 44

iv

List of Figures

1.1 Input images for the panorama stitching benchmark. 12
1.2 Several solutions obtained by BPLS for the problem grid20x20.f10. 16
1.3 Estimated correlation maps for the problem grid20x20.f10. 17
1.4 Value counts for the problem grid20x20.f10 at several time bounds. 19

2.1 Example of replacement of a cutset vertex of tree-degree 2. 28
2.2 Neighborhood of a vertex of degree 4. 29
2.3 Neighborhood of a bend in a path. 29
2.4 Topology of the induced graph in the neighborhood of a vertex equivalent

to a cutset vertex of tree-degree 3 in a planner graph. 30
2.5 Topology of the induced graph in the neighborhood of a vertex equivalent

to 2 vertices of tree-degree of 3. 31
2.6 Neighborhood of a an extremal cutset vertex. 32
2.7 The upper-left corner of a grid . 36
2.8 A possible frame of a 8× 8 grid with a cutset of size lb8,8. 39

A.1 Results on some problems from the Segmentation domain. 46
A.2 Results on 20× 20 and 40× 40 grids from the Grids domain. 47
A.3 Results on 80× 80 grids from from the Grids domain. 48
A.4 Results on the CSP domain. 49
A.5 Results on the problems from the Protein Folding domain. 50

v

List of Tables

1.1 Summary of results for the panorama stitching problem. 13
1.2 Problem sets statistics . 14
1.3 Experimental results of variants of BPLS. 15
1.4 Experimental results of BPLS∗. 21
1.5 Comparison with GLS+. 22

2.1 Significant functions of r and s . 35
2.2 Summery of known bounds on the size of a minimal cycle-cutset in big grids 40

vi

Acknowledgments

I would like to thank Rina Dechter for suggesting me the idea of BPLS for my project
in her class, and for embracing my original work and taking me under her wing, thus
growing the class project to a paper and eventually to this thesis.
I would like to thank Amir Globerson for encouraging me to explore the theoretical as-
pects of my work.
A special thanks should be given to Raanan Fattal, which as a result of our joint work and
his support I got to feel like a member of the HUJI CS department at least to some extent.

Finally, my thanks go to my beloved mother and Gal for their care, ongoing support
and contribution in submitting this thesis in my name in my absence.

1

Chapter 1

The Energy Minimization Problem

2

1.1 Introduction
The problem of optimizing discrete multivariate functions or energy functions de-

scribed as a sum of potentials on (small) subsets of variables is one of fundamental im-
portance and interest in a wide variety of fields. In the context of probabilistic graphical
models, instances of these problems can be found in the form of most probable explanation
(MPE) problems. By this paradigm uncertainty is modeled by using a finite set of discrete
random variables and a corresponding set of conditional probability tables (CPT) describ-
ing the probabilistic relations between them. The resulting energy function is related to
the probability of the random variables attaining a certain assignment. Finding a maxi-
mum of this energy function translates to finding an assignment of maximum probability
given some partial assignment as evidence.

In the context of image processing and computer vision these problems emerge in
many cases where each pixel in an image may attain one of a finite set of values. In these
cases, the local interaction of small groups - in many cases, pairs - of pixels is described
by potentials over the interacting pixels. An energy function composed of these potentials
is then formulated and optimized in order to enforce a global consistency constraint on
the entire image.

In light of the significance of this problem in many applications, it was extensively
studied although it is NP-hard to solve in general. In addition to a variety of complete
search algorithms[18, 5], other means of tackling the problem were suggested including
approximation algorithms[23, 11, 21] as well as algorithms designed to solve specific classes
of instances of this problem[4].
When solving an energy optimization problem, it is usually useful to represent the energy
function to be optimized by a graph called the primal graph, in which every variable is
represented by a vertex and two vertices are connected by an edge iff the two matching
variables appear in a single potential. The characteristics of the primal graph provide us
with much information about the nature of the problem and the problem’s complexity
is mainly governed by the structure of the graph. For example, energy functions whose
primal graph is acyclic can be efficiently and exactly optimized using a belief propagation
(BP) algorithm[22]. In case the graph contains cycles, the values of some variables can
be set, thus effectively eliminating their matching vertices from the graph until all cycles
are opened. At which point, BP can be run on the remainder of the variables, thus
finding an optimum of the function given the values of the set variables. This method of
generating acyclic graphs by instantiating a subset of the variables is known as cycle-cutset
conditioning[8].
In this work, we concentrate on the optimization of functions described as a sum of
unary and binary potentials only. The approach we suggest, stochastic tree-based local
search or BPLS, is based on iteratively improving the current assignment by generating
a different cycle-cutset in every iteration and finding the exact optimum on the rest of
the variables, given the values of the cutset variables using BP. This is sufficient in order
to produce a local search algorithm progressing in blocks of variables. However, in order

3

to accelerate the process, a subsidiary local search algorithm is run on the current cutset
variables, while the forest variables are optimized using BP. Remarkably, as we show,
BPLS is guaranteed to provide strong local optima at the limit, thus yielding an affective
alternatives to min-sum loopy BP schemes, that often do not converge.
We build on earlier work by [24], where the ideas of traversal from one cutset to another
and restriction of basic stochastic local search to cycle-cutsets variables were introduced.
These ideas were never evaluated empirically, except for a variant focusing on solving the
constraint satisfaction task [13] employing the idea of separately improving the assign-
ments of cutset variables and forest variables, but operating only with a constant cutset.
In this context our contribution is in identifying and empirically exploring a new such
stochastic scheme.

1.2 Problem Definition and Preliminaries
Definition 1 (Energy Minimization Problem). let X̄ = X1, . . . , XN be a set of variables
over a finite domain D of size k, let ϕi : D → R for i ∈ {1, . . . , N} be unary potentials,
and let ψi,j : D2 → R for a subset of pairs E ⊆ {{i, j} : 1 ≤ i < j ≤ N} be binary
potentials, then these potentials define an energy function of the following form

E
(
X̄
)

=
∑
i

ϕi (Xi) +
∑
{i,j}∈E

ψi,j (Xi, Xj)

and the energy minimization problem is finding

x̄∗ = arg min
x̄
E (x̄) = arg min

x̄

∑
i

ϕi (xi) +
∑
{i,j}∈E

ψi,j (xi, xj)

Clearly min-sum problems are equivalent to max-sum, (and to max-product and min-
product) and in our empirical evaluation we focus on benchmark requiring solving the
max-sum problem. In the context of max-sum, the “Energy” is also referred to as “Good-
ness” indicating that more is better.

Definition 2 (Primal Graph). Given an instance of the energy minimization problem,
the primal graph of the problem is a graph where every variable xi is assigned a vertex,
and two vertices xi and xj are connected if there exists a potential ψi,j.

Definition 3 (Cycle-Cutset). Let G = (V,E) be an undirected graph. A cycle-cutset in
G is a subset C of V , such that the graph induced on V ′ = V \C is acyclic, i.e. a forest.

Definition 4 (Parent, Children and Neighbors). Let G = (V,E) be a directed graph
such that the out-degree of every vertex v ∈ V is at most 1, and let v ∈ V be a vertex, if
vpoints to another vertex u we say that u is the parent of v and denote u = pa (v). All
vertices w1, . . . , wk point to v are called the children of v and are denoted as ch(v), that
is for every v ∈ V

ch (v) = {w : (w, v) ∈ E}

4

all vertices neighboring with v are called the neighbors of v and are denoted nb (v),
that is for every v ∈ V

nb (v) = {u : (u, v) ∈ E ∧ (v, u) ∈ E} = ch (v) ∪ {pa (v)}

1.3 Background

1.3.1 Belief Propagation
If the primal graph of an energy function to be minimized is acyclic, the problem can

be solved efficiently and exactly using an algorithm called belief propagation (BP) [22, 3].
The paradigm of belief propagation can be applied to many different problems and can
have numerous manifestations. One of its variants used to solve the energy minimization
problems operates as follows:

Given an energy function with an acyclic primal graph, i.e. a forest, a root is assigned
for every tree in the forest and all edges are directed toward it, thus defining for every
vertex v other than the root a parent pa (v) and defining for every vertex v a set of children
ch (v) which may be empty. Then, starting from the leaves and going upward along each
tree, every non-root vertex v calculates for every possible value xpa(v) of its parent the
functions ρv and µv, which are defined recursively as follows.

ρv
(
Xv, Xpa(v)

)
= ϕv (Xv) + ψv,pa(v)

(
Xv, Xpa(v)

)
+

∑
u∈ch(v)

µu (Xv) (1.1)

µv
(
Xpa(v)

)
= min

xv
ρv
(
xv, Xpa(v)

)
(1.2)

The function µv is then passed from v to its parent pa (v) as a “message” to continue
the calculation.

Let r be a root in the primal graph, then the definition of ρv can be naturally extended
to r as follows:

ρr (Xr) = ϕr (Xr) +
∑

u∈ch(r)
µu (Xr)

µr = min
xr

ρr (xr)

It obvious that for every vertex v the value of function µv
(
Xpa(v)

)
can be calculated

for a single value Xpa(v) = xpa(v) in time linear in the size k of the domain of Xv, given the
functions µu of all his children u ∈ ch (v). Therefore, since by assumption all variables
share the same domain D of size k, calculating the function µv can be done in time O (k2),
and calculating µv for all v ∈ V can be done in time O (Nk2) (where N is the number of
vertices\variables).

5

Let v be a vertex and let Ev be the energy function obtained from E when restricted
to only potentials whose variables are descendents of v in the directed primal graph in
addition to ψv,pa(v) if v is not a root. Then, the following two claims can be proven by
induction:
Claim 5. If v is not the root of a tree in the forest, then µv

(
xpa(v)

)
is the minimum of Ev

given that Xpa(v) = xpa(v). Otherwise, i.e. if vis the root of a tree, then µv is the minimum
of Ev.
Claim 6. If v is not a root of a tree, then the value of µv

(
xpa(v)

)
is attainable by an

assignment to Ev in which Xv = arg minxv
ρv (xv) and Xpa(v) = xpa(v).

Otherwise, the value of µv is attainable by an assignment to Ev in which Xv =
arg minxv

ρv (xv).
Once the function µu of every child u of a root is calculated (and passed to it), the mes-

sage passing is redirected downward going from the root to the leaves: The root assumes
a value as given by equation 1.3 and every other vertex v assumes a value depending on
the value of its parent as given by Equation 1.4.

Xr = arg min
xr

ρr (xr) (1.3)

Xv = arg min
xv

ρv
(
xv, xpa(v)

)
(1.4)

Considering claims 5 and 6 it is easy to see that an assignment in which a root variable
Xr is set according to equation 1.3 can be extended to an assignment which achieves the
minimum of Er. In addition, it follows that the way to properly extend this assignment
is given by equation 1.4. That is, we get that the aforementioned procedure results in an
assignment that achieves the minimum energy on the sub-problem induced on a single
connected component of the primal graph. All in all, since sub-problems corresponding
to disjoint components of the primal graph are independent, we get that BP solves the
minimization problem exactly and in polynomial time.

1.3.2 Cycle-Cutset Conditioning
If the primal graph of an energy function contains cycles, a cycle-cutset can be found

and the optimal assignment to the remaining forest variables can be efficiently found given
an assignment to the cutset variables. It is easy to see that by exhaustively searching the
optimal assignment to the forest variables given all assignments to the cutset’s, one is
able to find the optimal assignment to the entire problem in a method known as “cutset-
conditioning”[23, 6]. It can also be easily seen that such a method is exponential in the
size of the cutset found. Since finding a cycle-cutset of minimum cardinality given a
graph was previously proven to be NP-complete for general graphs[12], and since such
a minimum cutset may be considerably big (for example in grids the minimum cutset is

6

of order of magnitude of a third of the graph, see [16, 17]) this method is not feasible in
many real-life problems of even moderate size.

1.3.3 GLS and GLS+

In light of the similarity of the energy minimization problem to MAX-SAT, [21] pre-
sented a reduction from energy minimization problems to MAX-SAT problems and sug-
gests adapting MAX-SAT approximation algorithms to approximating energy minimiza-
tion problems. The experimental results of [21] indicate a clear dominance of Guided
Local Search (GLS) [27, 20] over Discrete Lagrangian Multipliers (DLM) [28] and Greedy
+ Stochastic Simulation [14] in solving synthetic problems and significant superiority of
GLS on real-world problems over the competition. As the name implies GLS is a local
search algorithm, thus attempting find an optimal assignment by transitioning between
neighboring states in the search space, i.e. by iteratively improving the assignment by
making small modifications to it. However, in order to drive the search away from local
optima, the objective function is dynamically altered in GLS by adding to it penalties
associated with solution components. More specifically, for every potential φ over the
variables X̄φ every assignment x̄φ to X̄φ is considered a solution component and is as-
signed a penalty λφ (x̄φ) ≡ λφ (x̄). The evaluation function to be minimized in GLS is
g
(
X̄
)

= ∑
φ λφ

(
X̄
)
. Once a local optimum is reached some of the penalties are incre-

mented. The penalties incremented are those of partial assignments who apply in the
current assignment and who achieve the maximum of a utility function, which depends
on the value of the potential and the current value of the penalty. In addition, once in a
certain number of local optima reached, all the penalties are multiplied by a smoothing
factor ρ < 1 (in general ρ could be set equal to 1, but experiments have shown that doing
so impairs the results achieved by the algorithm [11]).

Though the results of GLS in [21] were favorable in respect to other local search
algorithms, they could still not surpass those of traditionally used systematic search al-
gorithms such as Branch and Bound (B&B) [19]. However, considering the promising
results [11] have taken several steps in order to improve the performance of GLS in an
algorithm named GLS+. First of all, the problem is reduced using a variable elimina-
tion [7] until a potential with more than a certain number of entries is produced. More
over, in contrast to GLS which is initialized randomly, GLS+ is initialized using a Mini-
Bucket variant named MB-w(105) [9]. Thirdly, in order to induce faster convergence to
the solution the potentials themselves (and not only the penalties) were logarithmically
incorporated in the evaluation function, making the evaluation function to bemaximized
g
(
X̄
)

= log
[
φ
(
X̄φ

)]
−w×∑φ λφ

(
X̄
)
, where w is a weighting factor. Furthermore, the

smoothing factor ρ was raised from 0.8 as in [21] to 0.999. Finally, GLS+ makes use of
two novel caching schemes: one which stores at every step the score achieved when flip-
ping any single variable to any of its values, and another one that stores all the variables
who flipping their value to any other value leads to improvement of the score. In the

7

experiments of [11] GLS+ was able to outperform the at-the-time state-of-the-art B&B
algorithms by reaching the optimal solution in an order of magnitude faster. This has
established GLS+ as the state-of-the-art in respect to solving general energy minimization
problems, and it has kept its status during countless experiments since.

1.3.4 Hopfield Model
A Hopfield network[10] is a form of an artificial neural network with binary neurons,

that is every neuron can attain one of two possible values (usually 1 and -1, or 1 and 0).
Hopfield networks are used in order to memorize certain assignments to the neurons by
encoding these assignments as minimums of an energy function based on weights assigned
to the interaction between pairs of neuron, i.e. the edges between them and thresholds
assigned to each neuron. More specifically, for a network with N neuron, the assignments
stored are minimums of the following energy function:

E (s̄) =
∑
i

ϑisi −
1
2
∑
i 6=,j

wijsisj

where si is the value of the i’th neuron, ϑi is the threshold of i’th neuron and the weight
wi,j of the edge between the i’th and the j’th neurons is symmetric, i.e. wi,j = wj,i.
Therefore, in order to recover a stored memory, one needs to solve an energy minimization
problem of the form we are interested in. In the Hopfield model a minimum of this energy
function is found using a local search algorithm based on a simple activation function:
When updated, the i’th neuron attains the value si based on the following rule:

si =

1 if
∑
j:j 6=iwijsj ≥ ϑi

0 otherwise

It should be noted that changing the value of the i’th neuron affects only terms associated
with it in the energy function, that is the threshold ϑi and the weights wi,j and wj,i for
j 6= i. Specifically, when the i’th neuron changes it’s value from si to s′i (and accordingly
the energy changes from E to E ′) the change in the energy is

∆E = E ′ − E = ϑi (s′i − si)−
1
2 (s′i − si)

∑
j:j 6=i

wijsj −
1
2 (s′i − si)

∑
j:j 6=i

wjisj

= (s′i − si)
ϑi − ∑

j:j 6=i
wijsj

where the last equality is based on the symmetry of the weights.

We see that if ∑j:j 6=iwijsj ≥ ϑi then ϑi −
∑
j:j 6=iwijsj ≤ 0 and therefore the maximal

decrease in the energy will be attained when the difference s′i − si is biggest, that is
if s′i = 1. In the other direction, if ∑j:j 6=iwijsj < ϑi then ϑi −

∑
j:j 6=iwijsj > 0 and

8

the maximal decrease in the energy is attained when s′i − si is the smallest, that is if
s′i = 0. Thus, in essence the activation function of the Hopfield model greedily improves
of the value based on its immediate neighborhood. This analysis also shows us that
the activation rule guarantees that the overall energy does not increase, and therefore
disregarding possible plateaus in the energy, the energy is guaranteed to converge at a
local minimum.

Bearing in mind that the activation rule of the Hopfield model performs greedy opti-
mization of a single variable based on its immediate environment, we can easily expand
it to our framework of general potentials by defining that a variable Xi attains a value
based on the following rule:

Xi = arg min
xi

ϕi (xi) +
∑
{i,j}∈E

ψi,j (xi, xj)

for energy minimization, and changing the min with max for energy maximization.

1.3.5 Graph Cuts
Graph cuts[4] is an energy minimization via local search algorithm specialized for

approximating energy functions represented as sums of binary potentials, like those that
we are looking at. However, in addition to this constraint on the structure of the energy
function the common variant of graph cuts, which improves the current assignment by
what is known as “α-expansion” steps, requires that the the potentials will be metrics, that
is that for every i and j and for every three values α, β and γ the following conditions
apply: ψi,j (α, β) = ψi,j (β, α) ≥ 0 (symmetry) , ψi,j (α, β) = 0 ⇔ α = β (positivity)
and that ψi,j (α, γ) ≤ ψi,j (α, β) + ψi,j (β, γ) (triangle inequality). Another variant of
graph cuts, which uses a step known as “α-β swap” eliminates the requirement that the
potentials will fulfill the triangle inequality at the cost of lesser performance. Given an
assingment X̄ and a value α, another assignment X̄ ′ is an α-expansion step away from
X̄ if for every i X ′i = Xi or X ′i = α. That is, every variable in the new assignment may
either keep its original value or change its value to α. A transition from X̄ to X̄ ′ is an
α-β swap if for every i, if Xi ∈ {α, β} then X ′i ∈ {α, β} and otherwise X ′i = Xi. That is
only variables which currently have a value of α or β may change their value, and they
may do so by switching from α to β or vice versa. For both variants of graph cuts the
main idea behind the algorithm is to iteratively improve the current assignment by finding
the optimal assignment given a value α (or values α and β for α-β swapping) under the
constraints defined by the step. As implied by the algorithm’s name, this is done by
reducing the problem to a graph flow problem and solving exactly. As a result, a main
feature of graph cut is that it produces exact solutions if the domains of the variables are
of size 2. Additionally, both variants are known to converge at a local minimum after a
limited number of iterations and an upper bound on the approximation ratio of graph
cuts with α-expansions has been proved[26]. For these reasons, graph cuts is widely used
in many computer vision applications in which potentials of this form arise naturally.

9

Algorithm 1.1 pseudo code of BPLS/BPLS∗.
BPLS and BPLS∗ differ in the restart and the cutset generation procerdures (see text).
is_stagnated is set to TRUE once no change has been made by both the BP and the
local search stages during a given number of iterations.
Input: Graph G = (V,E) annotated with potentials ϕi and ψi,j and time bound t.
Output: An assignment x̄ which achieves the minimum energy found in time t.

1 x̄← InitializeValues
2 while runtime < t do
3 C ← GenerateCutset(G)
4 F ← V \C;

// Alternate BP on forest variables and local search on cutset
variables until convergence

5 repeat
6 x̄|F ← BP_min_sum(G, x̄|C , F)
7 x̄|C ← SubsidiaryLocalSearch(G, x̄, C)
8 until no change in x̄;
9 if is_stagnated then

10 x̄← InitializeValues
11 is_stagnated← FALSE
12 end
13 end

1.4 BPLS: Belief Propagation-based Local Search
Since performing complete conditioning is not feasible, [24] suggested iteratively con-

ditioning on a different cutset and finding exact optimal solution on the rest variables as
a possible scheme for dealing with cycles in the graph. The algorithm can additionally
perform regular local search on the cutset variables. However, they did not go further to
establish the capabilities of this method, which we call BPLS - Belief Propagation-based
Local Search (or STLS - Stochastic Tree-based Local Search). The operation of of BPLS
is given in Algorithm 1.1.

1.4.1 Properties of BPLS
1. Convergence to strong optima. In every iteration an optimal assignment to

the forest variables is generated given the values of the cutset variables using BP
min-sum. Therefore, the energy of the system can not increase during the process
and the resulting algorithm is a local search algorithm finding the optimal solution
on all the forest variables in every iteration. For this reason, it is clear that BPLS
converges to a local optimum. However, due to the structure of BPLS, in which a
step is defined by (possibly) modifying the assignment to all variables in a forest

10

this “local optimum” is in fact a strong local optimum. Namely, it is conditionally
optimal relative to every cycle-cutset.

2. Complexity. Since the complexity of BP is O(Nk2) where N is the number of
variables and k is their domain size, the complexity of each iteration is O(nk2) where
n is the size of the forest F in addition to the complexity of the subsidiary local
search algorithm used on the cutset variables (if used). In practice the algorithm
attempts to find the optimal assignment in as many iterations as possible in the
given time bound.

1.4.2 Initialization
The two basic variants we consider for variable initialization are either at random

or by initializing all variables to a special undefined value. In the latter case the cycle-
cutest variables holding an undefined value are effectively ignored until their value is set
to valid one. When the initialization to undefined scheme is used, the variables keep their
undefined value until they are chosen to take part in the forest F and update their value as
part of the BP update stage. Additionally, if a subsidiary local search algorithm is used to
set the values of the cutset variables, a cutset variable may acquire a valid value if such a
value can be defined by the subsidiary local search algorithm (e.g. for Hopfield Model,
a cutset variable will set its value once all its neighbors’ values have been defined).

1.4.3 Tree Directing
Working only in the context of acyclic graphical models [24] presents a straightforward

distributed algorithm for asynchronously directing undirected graphs to produce directed
trees from the leaves to a root, assigned as a by-product of the procedure. In the context of
general graphs this algorithm becomes a subroutine used by the cutset selection procedure
(see Section 1.4.4) in order to “unravel” parts of the graph which are not part of any cycle
when removing the current cutset from the graph. For the sake of completeness we
present our adaptation of the tree directed algorithm used in BPLS. Initially, all vertices
are initialized so that they do not point to any of their neighbors. Given a vertex v not
already assigned a parent, if all but one of its neighbors u point to v as their parent,
then u is set as v’s parent. That is, if |{u ∈ nb (v) : v 6= pa (u)}| = 1 then pa(v) is set to
be the only element in that set. Then, since this assignment reduced by 1 the number
of neighbors of u pointing to it as their parent, the procedure is recursively called on u
to check if there remain only a single neighbor of u not pointing at u as its parent. If
there v has no neighbors not pointing to it as their parent, v is defined as the root of its
tree. Otherwise, that is if vhas more than 1 neighbor not pointing to it, the procedure
terminates without changing the graph. It can be easily seen that given an acyclic graph
calling this procedure on every vertex once (in any order) would result in directing all
edges from the leaves toward the single root of every connected component.

11

1.4.4 Cutset Selection
The cutset selection algorithm is based on the algorithm described in [2], where the

cutset is gradually built by adding one vertex at a time. In principle, the graph’s vertices
V are divided to three disjoint groups: The cutset vertices C, i.e. vertices already assigned
to the cutset; The forest vertices F , i.e. vertices who are not part of any cycle in V \C,
and the remainder vertices R. In every iteration a vertex from R which has a more than
2 neighbors in R is randomly chosen and added to the cutset vertices C with probability
proportional to its number neighbors in R. Once no variable in R has more than 2
neighbors in R, i.e. once the induced graph on R is a union of disjoint simple cycles,
each cycle is opened by randomly picking a variable from each with uniform probability.
After each new cutset vertex vis chosen the tree directing algorithm of [24] is run on its
neighbors in R, in order to check if the new cutset variable’s removal allowed moving
them to forest vertices F .

Motivated by the ideas presented in [24], in our implementation the probability a
variable is chosen is governed not only by its degree, but also by the number of iterations
in which it has not changed its value and by the number of iterations it was not a part
of the cycle-cutset. several linear combination of the aforementioned parameters were
tested, but no major difference was noted.

In order to reduce the cutset’s size, a message is passed from the roots down to the
leaves after the forest is formed, notifying the variables what is the root of their tree,
and essentially defining explicitly the partition of the forest into trees. Then, each cutset
variable which is not a neighbor of two variables belonging to the same tree is move from
the cutset to the forest variables, as doing so necessarily will not form a cycle. Once
all the redundant cutset variables have been removed, the tree forming algorithm is run
again (only on the forest variables) in order to form a well directed forest.

In addition, a new variant on this algorithm was tested. In this variant, in order to
encourage the formation of highly connected forests, i.e. forests in which the number of
trees is (relatively) small and which are mainly composed from a single big tree, the first
stage of [2] is split to 2 stages. That is, at first the algorithm tries to add to the cutset
vertices (from R) which are not already a parent of another vertex as defined by the tree
directing algorithm of [24], since these are vertices acting as junctions connecting vertices
from F to vertices from R. Thus, adding such a vertex to the cutset will separate its
children (which are in F) from the trees to be formed in R, which will ultimately increase
the number of connected component. Only when no such vertices remain, vertices acting
as parents are added to the cutset in accordance to the original algorithm.

1.5 BPLS for Panorama Stitching
In the problem of panorama stitching several aligned images (presumably taken from

the same scene) are required to be merged together so that the seams between the various
images will not be visible. To do so, an energy function that expresses the discrepancy

12

Figure 1.1: Input images for the panorama stitching benchmark.

between each pair of neighboring pixels is generated and minimized. Specifically, for
every two neighboring pixels p and q a potential Vp,q of the following form is defined:

Vp,q (lp, lq) =
∣∣∣Slp (p)− Slq (p)

∣∣∣+ ∣∣∣Slp (q)− Slq (q)
∣∣∣

where lp is the label assigned to the pixel p, and Slp (p) is the color value of if the lp’th
image at the pixel p. Additionally, for every pixel p an unary potential dp (i) is defined
to be 0 if p is in the field of view of the image i and ∞ otherwise, in order to force that
every pixel will be assigned a value from a valid image. Thus the energy function to be
minimized is

E
(
l̄
)

=
∑
p

dp (lp) +
∑
p,q

Vp,q (lp, lq)

As metioned earlier, these kind of problems are generally by solved by graph cuts[4]
which is specifically designed to deal with potentials which are generated from a metric.

In order to assess the performance of BPLS compared to specialized algorithms such
as graph cuts, we have conducted experiments on a single instance from this domain taken
from [25, 1]1, which contains 7 images to be merged presented in Figure 1.1.

Table 1.1 presents a summary of the resulting energies for the BPLS with random
initialization and initialization to undefined with updating all forest variables in the BP
step (BPLS - basic) and updating only trees bigger than 10% of the graph (BPLS -
Big Trees) after several time periods. From the table it is evident that the randomly
initialized variant is completely outperformed by the other variants. In addition, the
results suggest that updating only big trees during the BP step is preferable to updating
all the variables in this domain. However, while this domain was used as a main testbed
and motivation for the heuristics devloped for BPLS∗, this benchmark was not further
investigated, since graph cuts with the expansion step achieves an energy of 151,261 within

1http://vision.middlebury.edu/MRF

13

Table 1.1: Summary of results for the panorama stitching problem. Presented are the
resulting energies in thousands after several time periods. BPLS - Basic is basic imple-
mentation of BPLS. BPLS - Big Tree differs from BPLS - Basic in that only trees whose
size is bigger than 10% of the graph are updated in the BP step. BPLS - Random differ
for BPLS - Basic in that the variables are initialized randomly.

Algorithm 1 min 3 sec 20 min
BPLS - Basic min 553 348 348

max 709 494 387
BPLS - min 338 286 286
Big Trees max 447 382 331

BPLS - Random min 7519 5066 -max

24 seconds, showing that BPLS cannot compete with such a specialized algorithm on this
benchmark.

1.6 Experiments on BPLS
1.6.0.1 Methodology

Several problems sets from the PASCAL2 Probabilistic Inference Challenge (PIC2011)2

were used as our main benchmarks for evaluating the performance of energy minimization
algorithms. Since BPLS was implemented only for binary potentials, we used domains
supporting this constraint: Grids, CSP, Protein Folding and Segmentation (see [15] for
a summary of the statistics of each of these benchmark sets). The Grids domain is
composed of graphical models structured as grids or as grids with wrap around (i.e the
leftmost variable in every row is connected to the rightmost variable at the same row
and the top variable at every column is connected to the bottom variable at the same
column). The sizes of the grids vary among the sizes of 20 × 20, 40 × 40 and 80 × 80
variables. The CSP problems are restatements of constraint satisfaction problems in the
form energy maximization problems. Table 1.2 provides statistics for a subset of the
instances from each benchmark . It summarizes the number of variables n, the number of
potentials f , the maximum domain size k and the approximated induced width w of the
main problems used. These are given in blocks corresponding to the different domains
(Grids, CSP, Protein Folding and Segmentation from top to bottom).
Each algorithm or variant was run on each problem instance 10 times for a bounded
period of time of of up to 3 minutes and the best assignments achieved after 0.1, 1, 10, 60,
120 and 180 seconds were registered. The Segmentation problems are relatively small and
converge faster, the algorithms were run on this domain for only one minute. It should

2http://www.cs.huji.ac.il/project/PASCAL/index.php

14

Table 1.2: Problem sets statistics: The number of variables n, number of potentials f ,
domain size k and approximated induced width w for the problem instances in the problem
sets.

Problem name n f k w

Grids
grid20x20 400 1161 2 24

grid20x20.XXX.wrap 400 1201 2 44

grid40x40 1600 4721 2 52

grid40x40.XXX.wrap 1600 4801 2 95

grid80x80 6400 19041 2 106

grid80x80.XXX.wrap 6400 19201 2 196

CSP
CELAR6-SUBX 14 - 22 ~300 44 10

DSJC125.1.4 125 737 4 65

GEOM30a_X 30 82 X 6

driverlog01ac 71 619 4 9

le450_5a_X 400 5715 X 315

myciel5g_X 47 237 X 21

queen5_5_X 25 161 X 18

Problem name n f k w

Protein Folding
pdb1d2e 1328 5220 81 22

pdb1iqc 1040 4042 81 26

pdb1kgn 1060 4715 81 38

pdb1kwh 424 1881 81 27

pdb1m3y 1364 5037 81 29

pdb1qks 926 3712 81 36

Segmentation
2_2_s.21 227 845 21 16

2_2_s.binary 227 845 2 16

3_16_s.21 229 852 21 18

3_16_s.binary 229 852 2 18

be noted that if by the time of the measurement the assignment was invalid, i.e. the
variables were initialized to undefined and not all of them acquired a valid value, then the
assignment was completed randomly only for the purpose of the measurement, without
affecting the operation of the algorithm.

1.6.0.2 Variants

We have experimented with four different variants of BPLS: In the Basic variant the
variables are initialized to the undefined value, all the the forest variables updated during
the BP step, and the cutset variables are updated using the Hopfield model activation
function (once all their neighbors have acquired a valid value) as the local search algorithm
mentioned in line 7 of Algorithm 1.1. The Random variant differs from Basic in that the
variables are initialized randomly. the No Hopfield variant differs from Basic in that it
does not perform an additional local search step, i.e. the assignment is improved solely
by the BP step. The final variant, Big Trees, differs from Basic in that in the BP step
only trees bigger than 10% of the entire graph are updated.

15

Table 1.3: Experimental results on different variants of BPLS. The values presented refer
to the average and maximal results over 10 runs obtained after 1 minute for the Segmenta-
tion set and 3 minutes for all other sets. Random is BPLS with random initialization, No
Hopfield is BPLS with only the BP stage, Big Trees is BPLS with where only trees of size
bigger than 0.1 of the graph size are updated in the BP stage (and cutset nodes updated
using Hopfield), and Basic is BPLS with all trees updated in the BP stage. Best is the
number of the instances for whom the algorithm achieved the best result (and second best
in parenthesis). Ratio is the average ratio of the result obtained by the algorithm to that
of BPLS with small trees update. For the basic variant of BPLS the average ratio of the
result to the best overall result is presented.

Set Random No Hopfield Big Trees Basic
(# instances) Best Ratio Best Ratio Best Ratio Best % of best

Grids mean 0 (0) 0.84 2 (7) 0.99 10 (7) 1 9 (7) 95%
(21) max 0 (1) 0.90 4 (4) 0.98 5 (10) 0.99 12 (6) 99%
CSP mean 26 (2) 1.01 17 (6) 1 12 (6) 0.98 14 (7) 85%
(29) max 28 (1) 1.01 20 (6) 1 19 (6) 1 22 (4) 86%
Protein. mean 3 (0) 1 2 (4) 1 0 (0) 0.98 4 (5) 100%
(9) max 6 (2) 1 8 (1) 1 1 (4) 0.99 8 (1) 100%
SGM. mean 65 (10) 1.03 56 (20) 1 0 (49) 0.85 58 (16) 94%
(90) max 90 (0) 1.05 70 (17) 1 53 (25) 0.97 69 (14) 97%

1.6.0.3 Results

As mentioned, each variant was run on every problem instance 10 times independently.
For each problem instance the mean of the results and best result over all runs were
calculated. It should be noted that the mean characterizes the behavior of a single run
and the best result characterizes the combined behavior of all 10 run. Since the resulting
energies are arbitrary and meaningless out of context, for each instance all the results over
all times and all algorithms in the comparison were linearly normalized to the interval
[0, 1], mapping the worst result to 0 and the best to 1. A summary of the results at
termination is displayed in Table 1.3. For every problem set the column Best indicates
the number of problems on which each algorithm achieved the best results. In order
to facilitate easy comparison of the different variants to the basic BPLS, the ratio of
the (normalized) result obtained by each algorithm to the result obtained by Basic was
calculated. The average ratio over all problems in a single problem set is presented in the
column Ratio. In order to describe the overall behavior of the algorithms, the column “%
of best” gives the average ratio of the result obtained by Basic to the best result obtained
by any of the compared variants. The best results for each of the 2 metrics is written in
bold font for every measurement.

As can be seen in the table, using Hopfield on the cutset variables does not have much
impact on the resulting energies as the results of No Hopfield are very similar to those of

16

Figure 1.2: Several solutions obtained by BPLS for the problem grid20x20.f10 from the
Grids benchmark. Each variable is denoted by a colored square. A value of 0 is denoted
in red and a value of 1 is denoted in green.

Basic. Similarly, updating only big trees does not significantly affects the performance of
BPLS on the Grids and CSP problem sets, but does impair its performance on the Protein
Folding and Segmentation benchmarks. The randomly initialized version exhibits the best
performance on the three less structured benchmarks with lower induced width, i.e. CSP,
Protein Folding and Segmentation, but fails considerably on the Grids benchmarks. For
this reason, and since the randomly initialized version does not significantly outperform
the Basic version on the other benchmarks, it appears that the Basic version displays the
best overall performance among these algorithms..

1.7 BPLS∗

A more complex version of BPLS, named BPLS∗, attempts to use additional heuristics
for the cutset selection and assignment perturbation, that is the so-called “restarts”. These
heuristics are based on the values of the potentials and on information accumulated by
the algorithm about assignments on which it has previously stagnated.

1.7.1 Correlation Estimation Based Value Perturbation
Closer inspection of the several approximated solutions to some of the Grids problems

(see Figure 1.2) indicates that the variables in certain regions of the graph are strongly
correlated to one another, i.e. given the value of one variable the values of neighboring
variables can be deduced. This implies that the variance in the energy function around
local optima is mainly governed by the interaction along the seams between these corre-
lated regions, while the regions themselves operate in tandem. This supposedly occurs
due to strong interactions inside the correlated regions and weaker interactions between
the regions, much like the seams in panorama stitching. The fact that the graph can
be partitioned to regions operating in unison implies that the problem can be naturally
reduced by focusing on the interactions between the regions, while maintaining the inner

17

Figure 1.3: Estimated correlation maps. Each uniformly colored region represents an
estimated correlated group in the problem grid20x20.f10 after 180 seconds. Note that
smaller regions in each image are obtained as refinements of larger regions in the other,
but the overall structure is consistent between the two partitions.

relations within each region. For this reason attempts to fathom the correlated regions on
the fly were made. Therefore, every time BPLS∗ stagnates on a local optimum the values
of each pair of neighboring variables were recorded. A node u was defined as correlated
to a node v if for every value xv of v, there exists a value xu of u, such that Xu = xu (xv)
in more than 90% of the cases where Xv = xv. The relation is then applied transitively
and symmetrically to assess entire correlated regions (see Figure 1.3).

The correlation estimations are aimed to be utilized during restarts such that the val-
ues of all variables in a group would be perturbed in concert, thus suitably keeping the
inner relations which were already estimated. Specifically, whenever BPLS∗ is declared
as stagnant and a restart is required, the values of all the variables in some of the es-
timated correlation groups were changed while keeping the values of all the variables in
every group appropriately matched to all other variables in the group. However, prelimi-
nary experimentation with this approach did not prove to be considerably fruitful, and a
different, simpler mechanism was suggest and is described in the next section.

1.7.2 Experience based value perturbation
Due to the underwhelming results of the previous approach a simpler mechanism

was suggested, in which instead of measuring the frequency in which each pair of values
appears for every two neighboring variables, only the appearance of each (single) value
of every variable is counted. That is, a counter is set for every possible value xv of every
variable v, which counts the number of times that v assumes the value x in an assignment
on which the BPLS∗ stagnates. Thus, instead of storing O (N2k2) entries, where N is the
number of variables and k is a bound on the size of the domain, only O (nk) entries are
stored.

In general, the restart procedure (see Algorithm 1.2) alternates between restarting
from a completely random assignment and setting only a part of the assignment of the

18

Algorithm 1.2 pseudo code of the BPLS∗ restart procedure. xv is the current value of
variable v. counter is initially set to 0 when BPLS∗ is run and it retains its value between
consecutive calls to restart during the same run.

// Register the values of the variables at stagnation.
14 foreach v ∈ V do
15 value_counter [v,xv] ← value_counter [v,xv]+1
16 end

/* In case the current assignment seems promising, only prune unrealiable
values and continue. Otherwise - restart normally. */

17 if new_best_assignment then
18 UndefineUncertainNodes(C)
19 else
20 if restart_counter modulo 2 = 1 then
21 setRandomAssignment(C)
22 else
23 UndefineUncertainNodes(C)

if restart_counter modulo 6 = 2 then
24 FortifyCertainNodes(C)
25 end
26 end
27 restart_counter ← restart_counter +1
28 end
29 new_best_assignment ← false

undefined value and attempting to better reassign them based on the values of the rest
of the variables.

By alternating between the two restart methods, BPLS∗ attempts to balance exploring
new regions in the assignment space and trying further improve the current assignment,
which has already been proved as fair, being an assignment on which BPLS∗ stagnated.
The variables assigned to undefined in the latter scheme are those whose values in stag-
nation are most evenly distributed among their possible values, i.e. the variables for
which a prominent value has appeared to the least extent. This approach is based on
the assumption that variables with dominant values will hold that value also in a global
optimum, and that that global optimum can be deduced from their values. In addition,
occasionally, a certain number of variables for which a dominant “value in stagnation”
appears is set to that dominant value (if not already holding it). Thus, uncertain values
are pruned and certain values are fortified, allowing the algorithm to try to improve from
a hopefully preferable assignment (see Figure 1.4).

19

(a) 1 second (b) 60 second (c) 180 second

Figure 1.4: Value counts for the problem grid20x20.f10 at several time bounds. Each
variable in the 20-by-20 grid is represented by a square. The intensity of the square’s
color indicates its dominance in stagnation. Variables appearing with a gray tone will be
set to undefined upon stagnation. Variables appearing with a blue tone will keep their
current values. The rest of the variables present a dominant value and will be set to it.

1.7.3 Experience based cutset selection
The value counters are not used only for restarting, but play a role in the cutset

selection process as well. For every variable Xv a prominence index, which estimates the
the level of confidence in its assignment, is defined as follows: let ni for 1 ≤ i ≤ k be the
number of time stagnation was declared whenXv = i and let n be the total number of time
Xv had a valid number in stagnation (i.e. not undefined). Define m = arg max1≤i≤k ni to
be a value which Xv holds most often at stagnation and r = nm

n
the maximal frequency.

Then the prominence index is
Iv = rk − 1

k − 1
Where k is the domain size of Xv. Clearly, Iv is defined by a linear function which is 0
when Xv attains all possible values with equal frequency and Iv = 1 if Xv attains only a
single value.

In order to improve the assessment of variables for which no significant value appears,
a variable v may be added to the cutset with probability proportional to Iv, in addition
to selecting a variable with probability proportional to its number of neighbors in R as
discussed in 1.4.4. That is, variables whose value in an optimal solution is predicted with
a high estimated confidence are more likely to be added to the cutset than those whose
value is predicted with a low certainty. This heuristic is based on the conception that
the BP is the main engine for finding a good assignment for the variables, and therefore
variables whose prediction is uncertain are preferred to be handled as part of the BP step.

20

1.7.4 Potential based cutset selection
When reviewing the cutset selection procedure, it is apparent that the energy mini-

mization problem at hand affects the selected cutset only in a limited way by the structure
of the problem, while the values of the potentials themselves do not play a role. In an
attempt to prevent this and out of an assumption that BP produces more robust results,
we aim to handle variables with a significant effect on the energy function within the
frame of BP as much as possible. Therefore, for every variable an estimation of the extent
of its potential effect on the function is generated. When picking variables to the cutset,
a variable with a higher effect is less likely to be selected for the cutset. In particular,
the potential effect of a variable v is estimated as the maximum change to the function
brought by changing v’s value to any other value, while all the other variables retain their
current values. Once all the estimates have been calculated they are normalized such that
the maximum estimation is set to 1. In BPLS∗, a variable v with potential estimate pe
is selected to the cutset with probability proportional to 1− pe, independently from the
probability described in Section 1.4.4.

1.8 Experiments on BPLS∗

Due to the minor impact of removing the Hopfield step in BPLS and due to the
combined restart scheme of BPLS∗, which prevents initializing the variables randomly,
we have experimented with two variants of BPLS∗: BPLS∗ - basic in which all forest
variables are updated during the BP stage, and BPLS - Big Trees in which only trees of
size bigger than 0.1 of the graph size are updated. These variant are derived from their
BPLS counterparts by applying the aforementioned heuristics. Table 1.4 summarizes
the results of the experiments conducted according to the procedure described in section
1.6.0.1.

It can be seen in the Table 1.4 that in every benchmark the BPLS∗ variants outperform
their BPLS counterparts both in the number of instances for which they achieve the best
results among the compared algorithms and in the overall quality of the results (relatively
to those of BPLS - Random). This testifies on the contribution of the heuristics to
further improve the performance of BPLS. Furthermore, we can see that BPLS∗ - basic
outperforms all other variant on all benchmarks on both measures excluding the Best
measure for maximal value in the Segmentation benchmark, making it the definite leader
among these variants.

1.9 Comparison with GLS+

In order to receive a more educated evaluation of the performance of the BPLS variants,
we have compared it to GLS+ which is the fruit of extensive development and research and
holds the status the state-of-the-art for nearly a decade. For this purpose, GLS+ was run

21

Table 1.4: Evaluation of BPLS∗. The values presented refer to the average and maximal
results over 10 runs obtained after 1 minute for the Segmentation set and 3 minutes for
all other sets. Variants denoted as Basic are those in which all the forest variables are
updated as opposed to those denoted by Big Trees, in which only trees of size bigger than
0.1 of the graph size are updated in the BP stage. BPLS - Random is BPLS with random
initialization. Best is the number of the instances for whom the algorithm achieved the
best result (and second best in parenthesis). Ratio is the average ratio of the result
obtained by the algorithm to that of BPLS - Random. For the BPLS - Random the
average ratio of the result to the best overall result is presented.

Set BPLS∗ - Basic BPLS∗ - Big Trees BPLS - Basic BPLS - Big Trees BPLS - Random

(# instances) Best Ratio Best Ratio Best Ratio Best Ratio Best % of best

Grids mean 16 (2) 1.25 2 (16) 1.25 2 (2) 1.23 1 (1) 1.23 0 (0) 78%

(21) max 10 (9) 1.15 7 (8) 1.13 3 (2) 1.12 1 (2) 1.11 0 (0) 87%

CSP mean 20 (5) 1 14 (8) 0.99 14 (0) 0.99 12 (1) 0.98 19 (6) 85%

(29) max 24 (2) 1 24 (0) 1 21 (2) 0.99 19 (3) 0.99 24 (4) 86%

Protein. mean 6 (3) 1 0 (0) 0.99 2 (4) 1 0 (0) 0.99 1 (2) 100%

(9) max 9 (0) 1 2 (1) 0.99 8 (1) 1 1 (3) 0.99 6 (3) 100%

SGM. mean 63 (16) 1.05 1 (32) 0.95 57 (6) 1.03 0 (27) 0.92 58 (14) 95%

(90) max 82 (5) 1 59 (19) 0.98 68 (10) 0.97 53 (19) 0.95 84 (5) 100%

on all benchmarks as described in section 1.6.0.1 using both a random initial assignment
and a more sophisticated assignment generated using Mini-Buckets. In addition, we
experimented with a simple hybrid of BPLS and GLS+, in which GLS+ and BPLS - basic
are run alternately until each declares stagnation and then the other algorithm attempts
to further improve the best assignment currently found. In this case, both algorithms can
be seen both as initialization schemes for the other one and as mechanisms for extracting
each other from local optima.

Table 1.5 summarizes the results of the comparison to GLS+.
We can see in Table 1.5 that all algorithms performs similarly on the Protein Folding

benchmark. In the Segmentation benchmark, while the pure GLS+ variants outperform
the rest of the algorithms in the Best measure, we can see that the overall performance of
the GLS+ algorithms as portrayed by the ratios does significantly exceed that of the hybrid
and BPLS∗ and is equal to that of randomly initialized BPLS. Comparably, the hybrid
clearly presents the best performance in the Grids benchmark in regard to the Best mea-
sure, but the hybrid and BPLS∗ only sightly outperform GLS+with Mini-Buckets while
significantly outperforming the randomly initialized GLS+. Finally, while the algorithms
perform similarly on the Best measure in the CSP benchmark, we can see that the hybrid
and BPLS∗ significantly outperform the rest of the algorithm in the Ratio measure, im-
plying that while the algorithms operate alike on most problems, there are some problems
on which these two algorithms substantially outperform the rest. This can be explicitly

22

Table 1.5: Comparison with GLS+. The values presented refer to the average and maximal
results over 10 runs obtained after 1 minute for the Segmentation set and 3 minutes for
all other sets. GLS+ is GLS+ initialized using Mini-Buckets and GLS+ - Random is
GLS+ initialized randomly. Hybrid is the hybrid of BPLS and GLS+. Best is the number
of the instances for whom the algorithm achieved the best result (and second best in
parenthesis). Ratio is the average ratio of the result obtained by the algorithm to that
of BPLS - Random. For the BPLS - Random the average ratio of the result to the best
overall result is presented.

Set GLS+ GLS+ - Random Hybrid BPLS∗ - Basic BPLS - Random

(# instances) Best Ratio Best Ratio Best Ratio Best Ratio Best % of best

Grids mean 0 (14) 1 0 (0) 0.74 19 (1) 1.02 2 (6) 1.01 0 (0) 83%

(21) max 0 (6) 1 0 (0) 0.86 14 (6) 1.03 7 (8) 1.05 0 (1) 91%

CSP mean 19 (4) 1 18 (5) 1 13 (6) 1.14 17 (2) 1.16 15 (7) 85%

(29) max 17 (8) 1 16 (9) 1 17 (6) 1.15 21 (2) 1.17 21 (3) 86%

Protein. mean 6 (1) 1 5 (2) 1 2 (1) 1 2 (3) 1 0 (2) 100%

(9) max 4 (3) 1 4 (2) 1 5 (2) 1 7 (0) 1 5 (0) 100%

SGM. mean 55 (34) 1 51 (36) 1 44 (36) 0.98 36 (21) 0.95 27 (21) 92%

(90) max 49 (37) 1 51 (39) 1 49 (41) 0.99 46 (34) 0.98 45 (33) 98%

seen in figure A.4 in the appendix, where it is apparent that the GLS+ fail considerably
compare to the BPLS algorithms on the CLEAR6 problems. All in all it should be noted
that the pure GLS+ variants never outperform both BPLS variants simultaneously in the
Ratio measure, meaning that the overall performance of BPLS is at least comparable to
that GLS+on these benchmarks, and it is even superior to performance GLS+as exhibited
by the CSP benchmark.

In addition, as shown by the detailed figures in the appendix, due to the complex
initialization scheme of the standard version of GLS+, it requires considerably more time
in order to produce even an initial result, while the simple initialization schemes of BPLS
allow it to produce results very quickly. In many cases these results are reasonably close
to the end result found at the experiment’s termination. This is most apparent in the
80 × 80 grids, where it takes GLS+ more than 10 seconds to produce the first result for
many of the problems, while the BPLS variants produce results which are about 90% of
the maximal results in about 1 second (and even the results after merely 0.1 second are
fairly reasonable).

Finally, it is should be noted that the performance the hybrid algorithm is similar
to that of the best of GLS+ and BPLS. That is, by joining both algorithms one can
gain the benefits of both, meaning that they indeed operate as mechanism for extracting
each-other from local optima and that the time spent in each is well spent.

23

1.10 Discussion and Future Work
In this chapter we presented BPLS, a stochastic local search algorithm for energy

minimization, which combines the notion of cycle-cutset with the well known Belief Prop-
agation algorithm to achieve an approximate optimum of a sum of unary and binary
potentials. This is done by the previously unimplemented concept of traversal from
one cutset to another and updating the induced forest, thus creating a local search al-
gorithm, whose update phase spans over many variables (the forest variables). We have
presented experiments comparing the performance of different variant of BPLS and eval-
uating different aspects of the algorithm. The panorama stitching benchmark suggests
that in extremely problems it is preferable to update only sizable trees. However, BPLS
is clearly outperform in this domain by the specialized Graph Cuts. This superiority of
updating only big trees was not observed in other benchmarks, leaving the basic imple-
mentation initialized either randomly or using the special undefined value as the leading
variants of the simple BPLS.

Furthermore, We suggested several heuristics aimed at learning the structure of the
input problem, reusing information collected in previous iterations and using the problem
structure in a more educated manner in the cutset selection and the value perturbation
steps. We have presented empiric results indicating the contribution of these heuristics in
structured problems such as grids while achieving results at least comparable to the other
BPLS variants on other problem sets. Thus, making BPLS∗ - Basic the definite leader
among all BPLS variants.

Finally, we have presented experiments indicating that this algorithm beats GLS+,
the consistent state-of-the-art, in the Grids and the CSP domains, especially in shorter
times, while using only a basic form of initialization. Additionally, we have shown that in
other case the strongest BPLS variants are at most only slightly outperformed by GLS+

on energy function described as a sum of unary and binary potentials. Moreover, we have
seen that the two algorithms can be effectively combined to produce an algorithm that
improves GLS+ and BPLS on many problems, both in time and in quality.

In future work, BPLS should be extended to handle potentials of higher arity than
2. One possible way to achieve this is to find cycle-cutset in the primal graphs resulting
from these problems, in which 2 variables are neighbors if they appear in the scope of a
single potential. Another possibility is applying the BPLS paradigm directly to the hyper-
graph induced by these problems. Another way in which this work can be expanded is to
convert the notion improving the current assignment by finding an exact solution to the
complementary of a forest, that is the complementary of a sub-graph of treewidth 1, to
finding an exact solution to a sub-graph of arbitrary treewidth. This will hopefully create
an adjustable tradeoff between the complexity of the improvement steps and the quality
of the results. On the technical side, BPLS can be further improved by implementing
it using parallelism (perhaps even on a GPU). We expect that this would be a fairly
straightforward modification, since the original algorithm suggested by [24] was designed
to operate in a distributed system.

24

Additionally, the algorithm should be further investigated in order to understand more
fully the parameters governing its behavior, in an attempt to stabilize the results produced
by the algorithm on the better side. Importantly, BPLS yields strong local optima, and
therefore, in the limit it is as good as max-sum/min-sum belief propagation in quality,
while it can be more effective computationally (i.e., guaranteed convergence). Comparing
with specific loopy belief propagation scheme is left for future work as well.

25

Chapter 2

The Minimum Cycle-Cutset
Problem in Grids

26

2.1 Introduction
Definition 7 (The n×m Grid Graph). Letm,n be positive integers. The n×m grid graph
Mn,m is an undirected graph whose vertex set is V (Mn,m) = {vi,j : 1 ≤ i ≤ n, 1 ≤ j ≤ m}
and the edge set E (Mn,m) is defined by

E (Mn,m) = {(vi,j, vi+1,j) : 1 ≤ i < n, 1 ≤ j ≤ m}
∪ {(vi,j, vi,j+1) : 1 ≤ i ≤ n, 1 ≤ j < m}

Definition 8 (The Minimum Cycle-Cutset Problem). Let G = (V,E) be an undirected
graph. The minimum cycle-cutset optimization problem is finding the minimum size of a
subset of vertices C ⊆ V such that C is a cycle-cutset of G.

As mentioned earlier, the minimum cycle-cutset problem was proven to be NP-
complete for general graphs[12]. Nevertheless, it has been extensively studied, due to
its importance in a wide variety of applications, including distributed computing and ar-
tificial intelligence in the context of Bayesian inference and constraint satisfaction. Some
of the findings include polynomial algorithms finding a minimum cycle-cutset for some
specific graph classes and lower and upper-bounds on the size of the minimum cycle-cutset
of others. In particular, [16] has previously presented lower and upper bounds on the size
of the minimum cycle-cutset of grids. They have shown that the minimum cycle-cutset
of the n×m grid Mn,m is of size at least

(m− 1) (n− 1) + 1
3

and at most
mn

3 + m+ n

6 + o (m,n)

The upper bound of [16] was later significantly improved by [17], who have shown an
upper bound matching the lower bound of [16] in many cases and differing from it by at
most 2 in other cases excluding when m = 5 and n ≥ 5. In the following we will show
that in grids there always a minimum cycle-cutset, whose complement induces a single
tree. This will allow us to improve to the lower bound of [16] by one in some cases, thus
closing the gap with the upper bound of [17].

2.2 Preliminaries and Convention
Remark 9. In this chapter we follow a convention by which in all the grid diagrams cutset
vertices are denoted by dotted circles, forest variables, i.e. vertices not it the cutset, are
denoted by a solid circles, and vertices whose status is unknown or irrelevant are denoted
by dashed circles. Accordingly, edges not in the graph induced by the complement of the
cutset are drawn with a dotted line, edges in the induced graph are drawn with a solid
line and edges whose status is unknown or irrelevant are drawn with a dashed line.

27

Definition 10 (Partition to trees). Let G = (V,E) be an undirected graph, and C ⊆ V
a cycle-cutset in G, that is the graph F induced by V ′ = V \C on G is a forest. We define
the partition T of F to trees as

T = {t = (Vt, Et) : t is a connected component of F}

i.e. T is a set of (connected) trees, and V ′ can be written as V ′ = ⊎
t∈T

Vt.

Definition 11 (Tree-degree). Let c ∈ C be a vertex in a cycle-cutset C of G and t ∈ T
a tree induced by C, and denote by nb (c) the neighbors of c in the graph induced by
V ′ ∪{c} on G. We define the tree-degree of c in t under C to be d, if |nb (c) ∩ Vt| = d and
for every other tree t 6= t′ ∈ T it holds that |N (c) ∩ Vt′ | ≤ 1. In general, we say that the
tree-degree of c is d if the condition above holds for some t, and that the tree-degree is
undefined otherwise. If d ≥ 2 we call nb (c) ∩ Vt the in-tree neighbors of c.

Definition 12 (Equivalent cutset vertices). Let c ∈ C be a cutset vertex and let c′ ∈ V
be a vertex of the graph G. We say that c′ is equivalent to c (under C), if C\ {c} is not
a cutset, but (C\ {c}) ∪ {c′} is a cutset.

Definition 13 (Induced degree). Let c ∈ C be a cutset vertex. The induced degree of c
under C is the degree of c in the graph induced by V ′ ∪ {c}.

It should be noted that for every vertex c ∈ C the induced degree of c is greater or
equal to its tree-degree.

It can be shown that the following observations hold:

Lemma 14. a. If c is cutset vertex of tree-degree 2, then every vertex along the path
between its two in-tree neighbors is of equivalent to c.

b. If c is a cutset vertex of tree-degree 3, then there exists a unique vertex c′ which is
equivalent to c.

c. A cutset induces a single tree iff the tree-degree of every cutset vertex is equal to
its induced degree.

Definition 15 (Boundary of a tree). Let t ∈ T be a tree, we define the boundary of t to
be all the cutset vertices touching t and some other tree, and denote it B(t), i.e

B(t) = {c∈C : nb(c) ∩ Vt 6= ∅, ∃t 6= t′ ∈ T, s.t. N(c) ∩ Vt′ 6= ∅}

It should be noted that if c ∈ B (t), then necessarily its tree-degree is strictly smaller than
its induced degree.

28

t1 t2 c3 s4

t5 c6 s7 s8

t9 t10 c11 s12

(a) Original (disconnected)

t1 t2 t3 t4

t5 c6 c7 t8

t9 t10 c11 t12

(b) Result (connected)

Figure 2.1: Example of replacement of a cutset vertex of tree-degree 2.

2.3 Connectivity of the induced graphs in grids
Theorem 16. Let G be a grid graph and let C be a cutset such that the induced forest
F is disconnected, i.e. |T | ≥ 2, then there exists a a series of replacement moves, such
that the resulting cutset C ′ has no more elements than C, and the forest induced by C ′
contains a single tree, i.e. |C ′| ≤ |C| and the graph induced by V \C ′ is connected.

Corollary 17. In particular, it follow from Theorem 16 that there exists a minimal cutset
whose complement induces a single tree.

We will prove this theorem using the following Lemmas 18 and 20.

Lemma 18. Let G be a grid graph and let C be a cutset of G, that the induces a discon-
nected forest F , i.e. |T | ≥ 2. Let t ∈ T be a connected component of F . If there exists a
vertex c ∈ B (t) in the boundary of t with a tree-degree of 2, then c can be replaced with
a vertex c′, that has a degree of 2 in the graph induced by V ′ ∪ {c, c′}, thus reducing the
number of connected components in the induced forest.

Example 19. Figure 2.1a presents a 3× 4 grid with a cutset {c3,c6, c11} of size 3 which
induces 2 trees - t and s. Under the presented cutset both c3 and c11 have a tree-degree
of 2 (in s), as c3 touches both s4 and s7 and c11 touches both s12 and s7. However, they
both have an induced degree of 3: c3 since it touches t2 as well and c11 since it touches
t10. We see in figure 2.1b that for example c3 can be replaced with c7, which has both a
tree-degree of 2 as it touches t3 and t8 and an induced degree of 2, since it doesn’t touch
any other forest vertices. In addition, we see that as a result the number of connected
component in the induced forest is reduced by 1 from 2 and thus the resulting forest is
only a single connected tree.

Proof of Lemma 18. As observed before, c can be replaced with any of the vertices
along the path from its two in-tree neighbors. If there exists such a vertex c′ with induced-
degree 2, then replacing c with c′ would reduce the number of connected components in

29

n2 x n1

m2 w m1

Figure 2.2: Neighborhood of a vertex of
degree 4.

p1 s

p2 y z

r x

Figure 2.3: Neighborhood of a bend in a
path.

the induced graph. To be exact, if the induced-degree of c is p, then the number of
connected components would decrease by p− 2.

We will show that there exists such a vertex c′ equivalent to c of induced degree 2.
Let u, v be the two in-tree neighbors of c, and assume to contrary that the degrees of all
vertices along the path from u to v in the graph induced by V ′ ∪ {c} are equal or greater
than 3.

Assume that there exists a vertex w along the path of induced degree 4. (refer to
Figure 2.2, showing only the neighborhood of w, not necessarily including neither u nor
v). One promptly notes that it follows that the following vertex along the path, denoted
by x (or the previous one, in case w = v) must be of degree 2, in contradiction to the
negated assumption. Otherwise, x is of degree at least 3 and either n1 or n2 must be in
V ′. Assume w.l.o.g. that n1 ∈ V ′, then the graph induced by V ′ contains the cycle w, x,
n1, m1, in contradiction to the assumption that C is a cutset.

Therefore, assume that all vertices along the path have an degree of 3 in the graph
induced by V ′ ∪ {c}. One notes that the path must not bend, i.e. all the path’s vertices
must lie on a straight line (in contradiction to the assumption that they form a path from
u to v). Assume to contrary that the path bends at vertex y, namely assume w.l.o.g. that
the previous vertex x lies below y and that the following vertex z lies to right of y (see
Figure 2.3). It follows that x’s additional neighbor r (not on the path) must lie to its left
(or it will form a cycle r, x, y, z), and similarly z’s additional neighbor s must lie above
it. therefore, the introduction of y’s additional neighbor at each of the possible positions
p1 and p2 would result in a cycle either with x and r, or with z and s - a contradiction.

It follows that if the boundary of t contains a vertex c of tree-degree of 2, then c can
be replaced by an equivalent vertex while reducing the number of connected components
in the induced graph.

Lemma 20. Let G be a grid graph and let C be a cutset of G, that induces a disconnected

30

v zoo C

x

OO

y

__

B

A

c

p2

__
p1

jj

p3

TT

Figure 2.4: Topology of the induced graph in the neighborhood of a vertex equivalent to
a cutset vertex of tree-degree 3 in a planner graph.

forest F , i.e. |T | ≥ 2. If there does not exist a tree t ∈ T and a vertex c ∈ B (t) with
tree-degree (defined and) equal or less than 2, then:

a. for every tree t ∈ T , there exist at least 2 vertices in the boundary of t of tree-degree
(excatly) 3.

b. There exists a series of replacement moves, such that the forest induced by the final
cutset C ′ is composed of less connected components than the original forest.

Note that the conditions of Lemma 20 are the complementary of the conditions of
Lemma 18 (ignoring cutset vertices of tree-degree less than 2, which can be trivially
removed).
To prove this lemma we will first show that a vertex in a grid can be equivalent to at most
2 cutset vertices, and that in which case the topology in the neighborhood of the vertex
must be of a specific form. To do so, we first set to prove the following general claim.

Lemma 21. Let G = (V,E) be a planar graph, v ∈ V ′ a vertex equivalent to cutset
vertices c1, . . . , ck ∈ C of tree-degree 3, and let d be the degree of v in the graph induced
by V ′ ∪ {ci}ki=1, then d ≥ k + 2.

Proof of Lemma 21. Let c ∈ C be a cutset vertex of tree-degree 3 and let v ∈ V ′ be its
(unique) equivalent vertex. Consider Figure 2.4 and note that the three paths p1, p2, p3
from c to v in the graph induced by V ′ ∪ {c} partition the plane to three parts, denoted
as A, B and C in Figure 2.4(where a solid lines denote a single edge, and a squiggly lines
denote a path of arbitrary length):

Assume that there exists another cutset vertex c′ ∈ C of tree-degree 3, such that its
equivalent vertex is v as well, and assume w.l.o.g that v lies in section A. In addition,
assume to the contrary of the lemma’s claim that d < 4 (for the d defined in the lemma
statement). Then, x, y and z are the only neighbors of v in the graph induced by
V ′∪{c, c′}. Since v is equivalent to c′, there must be three paths from c′ to v in the graph
H induced by V ′ ∪ c′. We note that any two of these three paths intersect only at c′ and
v, as otherwise, there is a path between two in-tree neighbors of c′ which does not pass
through v, in contradiction to the assumption that v is equivalent to c′.

31

c

��

!!

��
y

ssv

x

33

c′

TT

bb

YY

Figure 2.5: Topology of the induced graph in the neighborhood of a vertex equivalent to
2 vertices of tree-degree of 3.

As x, y and z are the only neighbors of v it follows that there must be a path from c′

to v in H passing through z, but since G is a planar graph, every path from c′ to z in H
not passing through v first must intersect with either p2 or p3. Assume w.l.o.g that the
path from c′ to v through z intersects with p2 at vertex t, then there exist two paths from
t to v - one passing through z and the other passing through y, thus forming a cycle in
the graph induced by V ′, in contradiction to the assumption that it is a forest. Therefore,
there is no path from c′ to z in H not passing through v. As there must be three paths
from c′ to v, it follows that v must have (at least) one other neighbor in H, through which
a third path from c′ to v must pass in contradiction to the assumption.

The general claim follows by induction on d.

In the context of grids, one may use the fact that the maximal degree of a vertex
in a grid is 4 along with the previous lemma, and conclude that every vertex v ∈ V ′ is
equivalent to at most 2 cutset vertices of tree-degree 3. A closer inspection of the previous
proof shows that in case a vertex v ∈ V ′ is indeed equivalent to 2 cutset vertices c and c′
of tree-degree 3, then the induced graph must be of the following general cycle topology
(focused on the relevant vertices):

Equipped with the previous observations we are now ready to prove Lemma 20

Proof of Lemma 20. a. Let t ∈ T be a tree and let c ∈ B (t) be a cutset vertex on the
boundary of t, such that there does not exist a vertex c′ ∈ B (t), which is higher than c
(i.e. with a higher y-coordinate value). Since c is on the boundary of t it touches at least
2 trees, and from the assumption on the tree-degree of the cutset vertices in the graph, it
follows that it touches exactly 2 trees, as otherwise it would have tree-degree equal or less
than 2. Let s ∈ T be the second tree touching c. In addition, it should be noted that c
does not lie on the edges of the grid, as vertices there have a degree equal or less than 3,
and therefore must have an tree-degree of 2 or less if they are boundary vertices. Denote
by nb (c) the neighbors of c in G, then for a similar reason it holds that C ∩ nb (c) = ∅,

32

u e v

f c g

w h x

Figure 2.6: Neighborhood of a an extremal cutset vertex.

i.e. no neighbor of c is a cutset node. (refer to diagram 2.6). Assume that vertex f to
the left of c belongs to t, then e must belong to t too. This is shown by the following
argument: if u is not a cutset vertex then e is connected to f which is in t and thus e
is in t. Otherwise, u is a cutset vertex, and assume to the contrary that e ∈ s, then u
is a cutset vertex in the boundary of t, which is higher than c, in contradiction to the
assumption. It can be shown similarly that if e ∈ t then g ∈ t, and that if g ∈ t then
f ∈ t. All in all we get that if either one of e, f or g belongs to t than all three belong
to t. This implies that if h ∈ t then f, g, h /∈ t, since as shown before, if either on of e, f
or g belongs to t, then all of them belong to t and along with the assumption that h ∈ t
we get that e, f, g, h ∈ t in contradiction to the assumption that c is a boundary vertex.
It follows that either |nb (c) ∩ Vt| = 1 and |nb (c) ∩ Vs| = 3, or the other way around. In
both cases, it follows that c has an tree-degree of 3 (either in s in the former case or in t
in the latter). Similarly, it can be shown that any vertex c2 ∈ B (t), such that there does
not exist a boundary vertex c′ ∈ B (t) which is lower than c2, has an tree-degree of 3.

b. Let c ∈ B (t) be a vertex touching trees t and s (t, s ∈ T) with tree-degree
3 in s, then it can be replaced by an equivalent node v ∈ V ′. if v is of degree 3 in
the graph induced by V ′ ∪ {c}, then this replacement reduces (by 1) the number of
connected components of F . Otherwise, the number of connected components after the
replacement remains the same as before. Denote by T ′ the partition of the forest induced
by (V ′ ∪ {c}) \ {v} to trees. If there exist a tree t′ ∈ T ′ and a vertex c′ ∈ B (t′) of tree-
degree equal or less than 2, then we return to the previous situation. Otherwise, denote
by nb (v) the neighbors of v in the graph induced by V ′ ∪ {c, v}, and let t′ ∈ T ′ be the
tree such that |nb (v) ∩ Vt′ | = 1, then from the preceding claims it follows that there must
exist another cutset vertex v 6= u ∈ B (t′) with tree-degree 3 in the graph induced by
(V ′ ∪ {c}) \ {v}. As before, u can be replaced with a unique vertex w ∈ (V ′ ∪ {c}) \ {v},
and this process continues as long as there does not exist a boundary vertex of tree-degree
less than 3. Since the graph is finite and each vertex of tree-degree 3 can be replaced by a
unique vertex, this process ought to stop or a vertex x that was previously removed from
the cutset will be added to it again. Since at each step the vertex removed is different from
the one added in the previous step, the latter condition can only occur if x is equivalent

33

to 2 cutset vertices q and p. In this case, x may be added to the cutset instead of q,
after being previously replaced by p. Let C be the cutset before x was added instead of
q, then as can be seen from the diagram in figure 2.5, two of q, p and x must be cutset
vertices, and in two of these configurations one of the cutset vertices is of tree-degree 2,
we will denote this vertex by y. In figure 2.5, in each of the configurations where v is a
cutset vertex, the other cutset vertex has an tree-degree of 2. As seen before, since y has
an tree-degree of 2, it is guaranteed that it can be replaced with a vertex with induced
degree of 2, thus reducing number of connected components in the induced forest.

Proof of Theorem 16. Using Lemmas 18 and 20 the main theorem follows immedi-
ately: Let G be a grid graph and let C be a cutset such that the induced forest F is
disconnected. Assume w.l.o.g. that C does not contain vertices of tree-degree less than
2. If there exists a tree t ∈ T and a boundary vertex c ∈ B (t) of tree-degree 2, then
Lemma 18 shows that it can be replaced with another vertex while reducing the number
of connected components. Otherwise, there does not exist a tree t ∈ T and a boundary
vertex c ∈ B (t) of tree-degree 2, and therefore Lemma 20 shows that there exists a finite
series of replacement moves, such that the forest induced by the resulting cutset contains
less connected components than the original forest.

All in all, we see that for every cutset that induces a forest with more than one
connected component a series of replacement moves can be made, which reduces the
number of connected components in the induced forest while not adding cutset nodes. As
this can be done as long as the induced forest is disconnected, we see by induction that
given a cutset C, there exists a cutset C ′, such that |C ′| ≤ |C| and the forest induced
by C ′ contains only one connected component, i.e. the induced forest is a single tree. In
particular, if the initial cutset C is minimal, then the resulting cutset C ′ is minimal as
well.

2.4 Improved lower bounds
We will use the results of section 2.3 in order to improve the known lower bound on

the size of the minimal cutset of Mn,m. In particular, we will show that our lower bound
is equal to the upper bound in these certain cases. In the following we denote by olbn,m
the old lower bound of [16], i.e.

olbn,m =
⌈

(m− 1) (n− 1) + 1
3

⌉

and by nlbn,m the new lower bound obtained by us.

Lemma 22. Let G := Mn,m = (V,E) be the n×m grid graph, and C ⊆ V a cycle-cutset,
such that the graph T = (VT , ET) induced by V ′ = V \C is a single tree. Denote by α the

34

number of cutset vertices which lie along the perimeter of the grid but not in its corners,
i.e.

α = C ∩ ({(1, j) , (n, j) : 1 < j < m} ∪ {(i, 1) , (i,m) : 1 < i < n})

and by β the number of cutset vertices which lie in the corner of the grid, i.e. β =
|C ∩ {(1, 1) , (1,m) , (n, 1) , (n,m)}|. Denote by nC the cardinality of C, and by p the
number of connected components of the graph induced by C (not by V \C). Then it holds
that

(n− 1) (m− 1) + α + 2β ≤ 2nC + p (2.1)

with equality holding iff the graph induced by the cutset C (and not V \C) does not
contain cycles.

Proof of Lemma 22. Denote nT = |VT |. If every vertex of T is of degree 4 in G, then it
can be easily shown that the number of edges incident to T from a vertex in C is 2nT + 2.
Since there are 2 (n− 2) + 2 (m− 2) − α vertices of T which lie along the boundaries of
G, each of which reducing the number of incident edges by 1 (as each of these vertices is
only of degree 3 in G), and 4−β vertices of T which lie in the corners of G, each of which
reducing the number of incident edge by 2, we get that the number of edges A incident
to T from C is

A : = 2nT + 2− [2 (n− 2) + 2 (m− 2)− α]− 2 (4− β)
= 2nT − 2n− 2m+ α + 2β + 2

It can be shown similarly, that if all the connected components of C are trees, then the
number of edges B incident to C from T is

B := 2nC + 2p− α− 2β

and that if not all the connected components of C are trees, then the number of edges
incident to C from T is bound from above by B.1

Using the facts that nT + nC = n ·m and that A ≤ B one receives

2n ·m− 2nC − 2n− 2m+ α + 2β + 2 ≤ 2nC + 2p− α− 2β

which after reorganizing gives us the requested inequality:

(n− 1) (m− 1) + α + 2β ≤ 2nC + p

Where the equality hold if all the connected components of C are trees.
1It should be mentioned that using the results of the previous section, it can be shown that there always

exists a cutset, whose connected components are indeed trees (along with all the other aformentioned
desired properties).

35

Table 2.1: Significant functions of r and s
r s (r − 1) (s− 1) + 1 (∗)
0 0 2 2
0 1 1 3
0 2 0 1
1 1 1 3
1 2 1 3
2 2 2 2

We note that using the trivial facts that the number p of connected components of C
is smaller than |C| = nC , and that α+ 2β ≥ 1, as there must be at least one cutset vertex
along the perimeter of the grid, one receives from Lemma 22 that it holds that

(n− 1) (m− 1) + 1 ≤ 3nC

which is a restatement of the lower bound of [16].
Assume that n ≡ r mod 3 and that m ≡ s mod 3 (0 ≤ r, s ≤ 2), i.e. n = 3q + r and

m = 3p + s, and assume w.l.o.g that r ≤ s. Additionally, assume that nC = olbn,m, then
by algebraic manipulations it can be shown that

nC = olbn,m =
⌈

(m− 1) (n− 1) + 1
3

⌉

=
⌈9pq + 3pr + 3qs+ rs− 3p− s− 3q − r + 2

3

⌉
= 3pq + p (r − 1) + q (s− 1) +

⌈
(r − 1) (s− 1) + 1

3

⌉

Referring to table 2.1 we see that the value of the fraction is either 1
3 and 2

3 , unless r = 0
and s = 2, and therefore we get that

nC = 3pq + p (r − 1) + q (s− 1) + 1 [r 6= 0 ∨ s 6= 2] (2.2)

Plugging equation 2.2 in inequality 2.1 we get

p ≥ (m− 1) (n− 1)− 2nC + α + 2β
= 3pq + q (s− 1) + p (r − 1) + (r − 1) (s− 1)− 2 · 1 [r 6= 0 ∨ s 6= 2] + α + 2β
= nC + (r − 1) (s− 1)− 3 · 1 [r 6= 0 ∨ s 6= 2] + α + 2β

Rearranging the expression we get the following inequalities

0 ≤ nC − p ≤ 3 · 1 [r 6= 0 ∨ s 6= 2]− (r − 1)︸ ︷︷ ︸
(∗)

−α− 2β (2.3)

36

1, 1 1, 2 1, 3

2, 1 2, 2 2, 3

3, 1 3, 2 3, 3

4, 1 4, 2 4, 3

Figure 2.7: The upper-left corner of a grid

α + 2β ≤ 3 · 1 [r 6= 0 ∨ s 6= 2]− (r − 1)︸ ︷︷ ︸
(∗)

(2.4)

These inequalities are at the core of proving the improvements to the lower bounds of
[16].

Theorem 23. Let m,n ≥ 4, such that n ≡ 0 mod 3 and m = 2 mod 3, and assume
that at least one of n and m is even, then the size of the minimal cutset of the n×m grid
Mn,m (or the m× n grid Mm.n) is at least olbn,m + 1, i.e. nlbn,m = olbn,m + 1.

Proof of Theorem 23 . As stated by inequality 2.4 and table 2.1, we can see that α+2β ≤
1, which implies that α = 1 and β = 0, i.e. there exists a single cutset vertex along the
boundaries of the grid, not including the corners. Assume w.l.o.g that it is located along
the right boundary of the grid. Focusing on the 2 × 2 sub-grids containing each of the
four corners of the grid, we note that since m,n ≥ 4 all four sub-grids are disjoint, and
since there exists only a single cutset vertex along the boundaries, in at least three of
the four 2× 2 sub-grids three of the vertices cannot be cutset vertices, and therefore the
forth - inner - vertex must be a cutset vertex, in order to open the cycle formed by the
2 × 2 sub-grid (refer to Figure 2.7, depicting the upper-left corner of the grid). Assume
w.l.o.g that v2,2, v2,m−1, vn−1,2 are cutset vertices, and assume that w.l.o.g that n is even.
Following from inequality 2.3 we see that the number of connected components of the
cutset is equal to the number of cutset vertices, that is C is an independent set. Since v2,2
is a cutset vertex, it follows that v4,2 must be a cutset vertex too, in order to break the
cycle formed by v3,1, v3,2, v4,2 and v4,1. For a similar reason, v6,2 must be in the cutset,
and so on and so forth: for every even number i, vi,2 must be a cutset vertex. Since n
is even by assumption, we get that n − 2 is even and therefore vn−2,2 is a cutset vertex.
Remembering that vn−1,2 is a cutset vertex we get a contradiction to the fact that C is
an independent set.

Let m,n be two integers at least one of which is even. Assume w.l.o.g. that m is even
and that m ≥ 6. Using the upper bounds ubn,m of [17], we get that nlbn,m = ubn,m, if

37

n ≥ 9 and n ≡ 0 mod 3 or if n ≥ 11 and n ≡ 2 mod 3, i.e. in every case in which [17]
have shown an upper bound applicable in the conditions of Theorem 23, the upper bound
is equal to the lower bound.

Theorem 24. Let m,n ≥ 4, such that both n ≡ 0 mod 3 and m = 0 mod 3 or both
n ≡ 2 mod 3 and m = 2 mod 3, and assume that both n and m are even, then the size
of the minimal cutset of the n×m grid Mn,m (or the m× n grid Mm.n) is at least of size
olbn,m + 1, i.e. nlbn,m = olbn,m + 1.

Before proving this theorem we would need to introduce some additional definitions
and lemmas which will be used in the proof.

Definition 25. Let vi,j be a vertex in the grid graph Mn,m, we say that it is an even
vertex if i+ j is even, and that it is an odd vertex if i+ j is odd. Let Ve be the set of all
even vertices in Mn,m, and define Ee = {(vi,j, vk,l) ∈ V 2

e : |i− k| = 1, |j − l| = 1}. We call
the graph Ge = (Ve, Ee) the even semi-grid, and call adjacent vertices in the semi-grid
semi-neighbors. The odd semi-grid Go = (Vo, Eo) is defined similarly over the set of odd
vertices Vo.

Lemma 26. Let G = (V,E) be a grid graph, and A ⊆ V an independent set in G, and
let S be a connected component of the graph induced by A∩ Ve (A∩ Vo) in the even (odd)
semi-grid, then:

a. if no vertex in S lies on the boundaries of G, then there exists a cycle in the graph
induced by V \A in G.

b. if there exists a cycle in S (with edges in Ee (Eo)), then S separates G to (at
least) two connected components, i.e. the graph induced by V \S in G contains at least
two connected components.

c. if there exist two vertices in S on the boundaries of G, then S separates G to (at
least) two connected components.

Proof. a. The proof of the lemma is by induction on the number of vertices in S.
b. The proof follows from the fact that a cycle in Go separates the plane to two

(non-empty) regions.
c. The proof follows by connecting the two vertices on the boundaries of S by a new

edge in Go (Ee) and using previous claim.

Definition 27 (stem). Let G = (V,E) be a grid graph, and A ⊆ V an independet set,
and let S be a connected component of the graph induced by A∩ Ve (A∩ Vo) in the even
(odd) semi-grid, we call the vertices of S along the boundaries of the grid the stems of S.

Definition 28 (even/odd semi-tree). Let G = (V,E) be a grid graph, and A ⊆ V an
independent set, and let S be a connected component of the graph induced by A ∩ Ve
(A ∩ Vo) in the even (odd) semi-grid. If S does not contain a cycle, then we call S an
even (odd) semi-tree.

38

Corollary 29. Let G be a grid, and C an independent set, such that the graph induced
by V \C on G is a tree. Then, following from lemma 26 is that C can be partitioned to a
set of disjoint single-stemmed semi-trees.

Proof of Corollary 29. Let S be a connected component of the graph induced by A ∩ Ve
on the even semi-rind. By lemma 26a, the fact that the graph induced by V \C on G
is acyclic implies that there exists a vertex in S that lies on the boundaries of the grid.
By lemma 26c, the fact that graph induced by V \C is connected implies that the there
exists exactly one vertex in S which lies on the boundary of G, and there for S is single
stemmed. Finally, by lemma b, the fact that graph induced by V \C is connected implies
that there are no cycles in S and therefore it is a semi-tree.

Proof of Theorm 24. We see from Inequality 2.4 and Table 2.1 that in both these cases
α + 2β ≤ 2, which may result in several scenarios:

1. If α = 0 and β = 1, then we get from Inequality 2.3 that the cutset is an independent
set and therefore using a claim similar to that of Theorem 23 we receive a contradiction.

2. If α = 1 and β = 0, then we get from Inequality 2.3 that all the connected compo-
nents of the cutset are singletons apart from one which contains two vertices. Following
the lines of the proof for Theorem 23, we note that at least in three of 2× 2 grids located
the corners of the Mn,m the inner vertex must be a cutset vertex. Assume w.l.o.g that
the cutset vertex lies along the bottom edge of the grid, and that in all 2 × 2 grids in
the corners except maybe that in the lower-right one the inner vertex is a cutset vertex.
As before, every second vertex along the second row and along the second column of the
graph must be cutset vertices, giving us two pairs of adjacent cutset vertices - in the
upper-right corner and in the lower-left corner, in contradiction to the fact that only one
such pair should exist.

3. If α = 2 and β = 0, then again we get that the cutset is an independent set. If at
least one of the cutset vertices along the boundaries of the grid does not lie in a 2×2 grid
in a corner of the graph, then there are at least three 2× 2 grids in the corners, in which
the inner vertex is a cutset vertex. Since there are two pairs of 2 × 2 corner sub-grids
sharing along the same boundary such that their inner vertex is a cutset vertex and only
a single vertex that is on a boundary of the grid, we get that there exists a boundary such
that in both its corners the inner vertex of the 2 × 2 grid is a cutset vertex, and there
is no cutset vertex along it. Consequently, it follows as before, that every second vertex
along the edge is a cutset vertex. Therefore, we get that there are two adjacent cutset
vertices, in contradiction to the fact the the cutset is an independent set.

Therefore, assume that both cutset along the boundaries of the grid, lie in the 2 × 2
grid of adjacent corners A and B, then in the 2 × 2 grid of the two remaining corners
C and D, the inner vertex is a cutset vertex. Since there is no cutset vertex along the
boundary between C and D, we get that there exist two adjacent cutset vertices, similarly
to before - a contradiction.

Finally, assume that the cutset vertices along the boundaries of the grid lie in the 2×2
grid of opposite corners. Assume w.l.o.g that they lie in the 2 × 2 grids of the upper-

39

#

#

#

#

#

#

#

#

Figure 2.8: A possible frame of a 8× 8 grid with a cutset of size lb8,8. Cutset vertices are
marked with a black circle and tree vertices are marked with white circle. Other notation
as before.

left and lower-right corners (refer to Figure 2.8. Note that in this case both boundary
vertices are necessarily odd. As they are the only possible stems for the cutset, it follows
from corollary 29 that all cutset vertices in the graph are odd as well. Additionally, as
before we get that vi,2, v2,i, vj,m−1, vn−1,j ∈ C for every odd i and even j. Note that the
frame of the grid is separated to two parts by the cutset vertices. Since the the graph
induced by V \C is a connected tree by assumption, we get that there must be a path
from one part to the other though the inner part of the grid. Assume w.l.o.g that the
path begins at v1,j for a (necessarily) even j (4 ≤ j ≤ m − 2) and goes though v2,j to
v3,j. Since v3,j−1, v2,j+1, v3,j /∈ C since they are even, we get that v4,j−1, v4,j+1 ∈ C (as
otherwise two cycles would form). Since all four semi-neighbors of v3,j are cutset vertices,
we get that the path must continue 2 steps at a time in any direction, because the cutset
is an independent set. In general, assume the path reaches vertex vk,l such that k ≡ 1
mod 2 and l ≡ j mod 2 ≡ 0 mod 2, then since vk−1,l, vk,l−1, vk+1,l, vk,l+1 are all even
and therefore not cutset vertices, we get that all four semi-neighbors of vk,l must be cutset
vertices, and the path must continue 2 steps in any direction. As a result, we get that the
path must be connected to the other part of the grid’s frame though a vertex of either the
form vk,2 with k ≡ 1 mod 2, i.e. an odd k, or the form vn−1,l with l ≡ 0 mod 2, i.e. an
even l. However, as seen before, all vertices of such forms are necessarily cutset vertices,
and therefore the path could not pass though them - a contradiction.

Let m,n be two even integers, and assume that m ≥ 6. If n ≥ 9 and n ≡ 0 mod 3,
then again case (iii) in [17] shows that the upper bound on the size of the minimal cutset

40

Table 2.2: Summery of known bounds on the size of a minimal cycle-cutset in big grids

n (mod 3) m (mod 3) m/n even known upper bound
1 - - olbn,m

0 0 at most one olbn,m + 1
2 neither olbn,m + 2

2 2 at most one olbn,m + 2

0 0 both olbn,m + 1 = nlbn,m
2 at least one olbn,m + 1 = nlbn,m

2 2 both olbn,m + 1 = nlbn,m

is ubn,m = olbn,m + 1 = nlbn,m. If n ≥ 11 and n ≡ 2 mod 3, in case (iv) in [17] shows
that ubn,m = olbn,m + 1 = nlbn,m. To conclude, in every case in which [17] have shown an
upper bound applicable in the conditions of Theorem 24, the upper bound is equal to the
lower bound.

Let m,n be two even integers, and assume that m ≥ 6. Using the upper bounds ubn,m
of [17], we get that nlbn,m = ubn,m, if n ≥ 9 and n ≡ 0 mod 3 or if n ≥ 11 and n ≡ 2
mod 3, i.e. in every case in which [17] have shown an upper bound applicable under the
conditions of Theorem 24, the upper bound is equal to the lower bound.

2.5 Conclusion
We have established the basis to the notion of tree-inducing cycle-cutsets and the

transformation of a general cutset to such a cutset. We have shown that in grids one can
always transform a cycle-cutset to a tree-inducing cutset with no more vertices than the
original one. These results lay the foundation to a more elaborate method of analyzing
and bounding the size of minimal cutsets, thus allowing us to improve its lower bound in
some cases. In other cases, a gap between the lower and the upper bounds remains, and
more meticulous analysis should be undertaken in order to characterize better the classes
in which the lower bound can be raised.

We summarize the relation between the previously known upper bounds on the size
of a minimal cycle-cutset and the lower bound in grids Mn,m where n,m ≥ 11 along with
our new results in table 2.2, which clearly displays the current gaps between the lower
and the upper bound.

41

Bibliography

[1] Aseem Agarwala, Mira Dontcheva, Maneesh Agrawala, et al. Interactive Digital
Photomontage. ACM Trans. Graph., 23(3):294–302, August 2004.

[2] Ann Becker, Reuven Bar-Yehuda, and Dan Geiger. Randomized Algorithms for the
Loop Cutset Problem. J. Artif. Int. Res., 12(1):219–234, May 2000.

[3] Umberto Bertele and Francesco Brioschi. Nonserial Dynamic Programming. Aca-
demic Press, Inc., Orlando, FL, USA, 1972.

[4] Yuri Boykov, Olga Veksler, and Ramin Zabih. Fast Approximate Energy Minimiza-
tion via Graph Cuts. IEEE Trans. Pattern Anal. Mach. Intell., 23(11):1222–1239,
November 2001.

[5] Simon de Givry, Javier Larrosa, Pedro Meseguer, and Thomas Schiex. Solving Max-
SAT as Weighted CSP. In Francesca Rossi, editor, Principles and Practice of Con-
straint Programming, volume 2833 of Lecture Notes in Computer Science, pages 363–
376. Springer Berlin Heidelberg, 2003.

[6] Rina Dechter. Enhancement Schemes for Constraint Processing: Backjumping,
Learning, and Cutset Decomposition. Artif. Intell., 41(3):273–312, January 1990.

[7] Rina Dechter. Bucket elimination: A unifying framework for reasoning. Artificial
Intelligence, 113(12):41 – 85, 1999.

[8] Rina Dechter. Reasoning with Probabilistic and Deterministic Graphical Models:
Exact Algorithms. Synthesis Lectures on Artificial Intelligence and Machine Learning.
Morgan & Claypool Publishers, 2013.

[9] Rina Dechter and Irina Rish. Mini-buckets: A General Scheme for Bounded Inference.
J. ACM, 50(2):107–153, March 2003.

[10] J. J. Hopfield. Neural networks and physical systems with emergent collective com-
putational abilities. Proceedings of the National Academy of Sciences of the United
States of America, 79(8):2554–2558, April 1982.

42

[11] Frank Hutter, Holger H. Hoos, and Thomas Stützle. Efficient Stochastic Local Search
for MPE Solving. In Proceedings of the 19th International Joint Conference on Arti-
ficial Intelligence, IJCAI’05, pages 169–174, San Francisco, CA, USA, 2005. Morgan
Kaufmann Publishers Inc.

[12] Richard M. Karp. Reducibility among Combinatorial Problems. In Raymond E.
Miller, James W. Thatcher, and Jean D. Bohlinger, editors, Complexity of Computer
Computations, The IBM Research Symposia Series, pages 85–103. Springer US, 1972.

[13] Kalev Kask and Rina Dechter. A Graph-based Method for Improving GSAT. In
Proceedings of the Thirteenth National Conference on Artificial Intelligence - Volume
1, AAAI’96, pages 350–355. AAAI Press, 1996.

[14] Kalev Kask and Rina Dechter. Stochastic local search for bayesian networks. In In
Workshop on AI and Statistics, pages 113–122, 1999.

[15] Junkyu Lee, William Lam, and Rina Dechter. Benchmark on DAOOPT and
GUROBI with the PASCAL2 Inference Challenge Problems. In DISCML, 2013.

[16] Flaminia L. Luccio. Almost Exact Minimum Feedback Vertex Set in Meshes and
Butterflies. Inf. Process. Lett., 66(2):59–64, April 1998.

[17] Florent R. Madelaine and Iain A. Stewart. Improved upper and lower bounds on the
feedback vertex numbers of grids and butterflies. Discrete Mathematics, 308(18):4144
– 4164, 2008.

[18] Radu Marinescu and Rina Dechter. AND/OR Branch-and-Bound Search for Com-
binatorial Optimization in Graphical Models. Artif. Intell., 173(16-17):1457–1491,
November 2009.

[19] Radu Marinescu, Kalev Kask, and Rina Dechter. Systematic vs. Non-systematic
Algorithms for Solving the MPE Task. In UAI-03, 2003.

[20] Patrick Mills and Edward Tsang. Guided local search for solving SAT and weighted
MAX-SAT problems. In Journal of Automated Reasoning, pages 89–106. IOS Press,
2000.

[21] James D. Park. Using Weighted MAX-SAT Engines to Solve MPE. In Eighteenth
National Conference on Artificial Intelligence, pages 682–687, Menlo Park, CA, USA,
2002. American Association for Artificial Intelligence.

[22] Judea Pearl. Reverend Bayes on inference engines: a distributed hierarchical ap-
proach. In in Proceedings of the National Conference on Artificial Intelligence, pages
133–136, 1982.

43

[23] Judea Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1988.

[24] Gadi Pinkas and Rina Dechter. Improving Connectionist Energy Minimization. J.
Artif. Int. Res., 3(1):223–248, October 1995.

[25] Richard Szeliski, Ramin Zabih, Daniel Scharstein, et al. A comparative study of
energy minimization methods for Markov random fields. In In ECCV, pages 16–29,
2006.

[26] Olga Veksler. Efficient Graph-Based Energy Minimization Methods In Computer
Vision. PhD thesis, 1999.

[27] Christos Voudouris. Guided local search for combinatorial optimisation problems.
PhD thesis, Department of Computer Science, University of Essex, 1997.

[28] Benjamin W. Wah and Yi Shang. Discrete Lagrangian-Based Search for Solving
MAX-SAT Problems. In IJCAI (1), pages 378–383, 1997.

44

Appendix A

Result Plots

45

Following are more detailed graphs presenting the evolution of the algorithms com-
pared in Section 1.9 over time on specific problems. Each figure presents the behavior
of the algorithms on a specific problem set and each plot presents the results obtained
after a certain time limit specified in the plots title. For every problem instance a marker
denotes the average normalized result (over 10 independent runs) obtained by each of
the algorithms after the specified time bound. Bars above and below the marker denote
the minimum and the maximum normalized results (over the 10 runs) obtained by each
algorithm. Markers beneath 0 indicate that the corresponding algorithm has failed to
return any value within 1.5 of the matching time bound due to long initialization. If the
markers of all algorithms are below 0 (in some CSP problems), than no improvement was
observed during the entire experiment, i.e. the optimal solution was found within less
than 0.1 seconds.

46

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 G
oo

dn
es

s

Normalized Goodness after 0.1 seconds

10_14_s.21

10_14_s.binary

10_16_s.21

10_16_s.binary

11_17_s.21

11_17_s.binary

11_3_s.21

11_3_s.binary

11_4_s.21

11_4_s.binary

12_15_s.21

12_15_s.binary

12_20_s.21

12_20_s.binary

12_4_s.21

STLS − Small Trees
STLS* − Small Trees
STLS−GLS+ Hybrid
Random GLS+
GLS+

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 G
oo

dn
es

s

Normalized Goodness after 1 seconds

10_14_s.21

10_14_s.binary

10_16_s.21

10_16_s.binary

11_17_s.21

11_17_s.binary

11_3_s.21

11_3_s.binary

11_4_s.21

11_4_s.binary

12_15_s.21

12_15_s.binary

12_20_s.21

12_20_s.binary

12_4_s.21

STLS − Small Trees
STLS* − Small Trees
STLS−GLS+ Hybrid
Random GLS+
GLS+

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 G
oo

dn
es

s

Normalized Goodness after 10 seconds

10_14_s.21

10_14_s.binary

10_16_s.21

10_16_s.binary

11_17_s.21

11_17_s.binary

11_3_s.21

11_3_s.binary

11_4_s.21

11_4_s.binary

12_15_s.21

12_15_s.binary

12_20_s.21

12_20_s.binary

12_4_s.21

STLS − Small Trees
STLS* − Small Trees
STLS−GLS+ Hybrid
Random GLS+
GLS+

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 G
oo

dn
es

s

Normalized Goodness after 60 seconds

10_14_s.21

10_14_s.binary

10_16_s.21

10_16_s.binary

11_17_s.21

11_17_s.binary

11_3_s.21

11_3_s.binary

11_4_s.21

11_4_s.binary

12_15_s.21

12_15_s.binary

12_20_s.21

12_20_s.binary

12_4_s.21

STLS − Small Trees
STLS* − Small Trees
STLS−GLS+ Hybrid
Random GLS+
GLS+

Figure A.1: Results on some problems from the Segmentation domain. For each problem
the resulting energies were linearly normalized such that the highest energy obtained
by some algorithm at some time bound corresponds to 1 and the lowest corresponds to
0. Markers beneath 0 indicate that the corresponding algorithm has failed to return
any value within 1.5 of the matching time bound due to long initialization. The average
normalized energy obtained by each of the algorithms is denoted by a marker according to
the algorithm, and the minimal and maximal normalized energies are depicted as vertical
lines. “STLS - Small Trees” is the basic version of BPLS (named “BPLS - Basic” in
chapter 1), “STLS∗ - Small Trees” is the basic version of BPLS∗, i.e. BPLS - Basic with
the heuristics presented in section 1.7, STLS-GLS+ Hybrid” is the hybrid of BPLS - Basic
and GLS+ initialized with the mini-bucket heuristic, “Random GLS+” is GLS+ initialized
randomly and “GLS+” is GLS+ initialized with the mini-bucket heuristic. Note that the
figure displays the results at different time bounds.

47

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 G
oo

dn
es

s

Normalized Goodness after 0.1 seconds

grid20x20.f10

grid20x20.f10.wrap

grid20x20.f15

grid20x20.f15.wrap

grid20x20.f5.wrap

grid40x40.f10

grid40x40.f10.wrap

grid40x40.f15

grid40x40.f15.wrap

grid40x40.f2

grid40x40.f2.wrap

grid40x40.f5

grid40x40.f5.wrap

STLS − Small Trees
STLS* − Small Trees
STLS−GLS+ Hybrid
Random GLS+
GLS+

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 G
oo

dn
es

s

Normalized Goodness after 1 seconds

grid20x20.f10

grid20x20.f10.wrap

grid20x20.f15

grid20x20.f15.wrap

grid20x20.f5.wrap

grid40x40.f10

grid40x40.f10.wrap

grid40x40.f15

grid40x40.f15.wrap

grid40x40.f2

grid40x40.f2.wrap

grid40x40.f5

grid40x40.f5.wrap

STLS − Small Trees
STLS* − Small Trees
STLS−GLS+ Hybrid
Random GLS+
GLS+

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 G
oo

dn
es

s

Normalized Goodness after 10 seconds

grid20x20.f10

grid20x20.f10.wrap

grid20x20.f15

grid20x20.f15.wrap

grid20x20.f5.wrap

grid40x40.f10

grid40x40.f10.wrap

grid40x40.f15

grid40x40.f15.wrap

grid40x40.f2

grid40x40.f2.wrap

grid40x40.f5

grid40x40.f5.wrap

STLS − Small Trees
STLS* − Small Trees
STLS−GLS+ Hybrid
Random GLS+
GLS+

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 G
oo

dn
es

s

Normalized Goodness after 60 seconds

grid20x20.f10

grid20x20.f10.wrap

grid20x20.f15

grid20x20.f15.wrap

grid20x20.f5.wrap

grid40x40.f10

grid40x40.f10.wrap

grid40x40.f15

grid40x40.f15.wrap

grid40x40.f2

grid40x40.f2.wrap

grid40x40.f5

grid40x40.f5.wrap

STLS − Small Trees
STLS* − Small Trees
STLS−GLS+ Hybrid
Random GLS+
GLS+

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 G
oo

dn
es

s

Normalized Goodness after 120 seconds

grid20x20.f10

grid20x20.f10.wrap

grid20x20.f15

grid20x20.f15.wrap

grid20x20.f5.wrap

grid40x40.f10

grid40x40.f10.wrap

grid40x40.f15

grid40x40.f15.wrap

grid40x40.f2

grid40x40.f2.wrap

grid40x40.f5

grid40x40.f5.wrap

STLS − Small Trees
STLS* − Small Trees
STLS−GLS+ Hybrid
Random GLS+
GLS+

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 G
oo

dn
es

s

Normalized Goodness after 180 seconds

grid20x20.f10

grid20x20.f10.wrap

grid20x20.f15

grid20x20.f15.wrap

grid20x20.f5.wrap

grid40x40.f10

grid40x40.f10.wrap

grid40x40.f15

grid40x40.f15.wrap

grid40x40.f2

grid40x40.f2.wrap

grid40x40.f5

grid40x40.f5.wrap

STLS − Small Trees
STLS* − Small Trees
STLS−GLS+ Hybrid
Random GLS+
GLS+

Figure A.2: Results on 20× 20 and 40× 40 grids from the Grids domain. See Figure A.1
for details.

48

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 G
oo

dn
es

s

Normalized Goodness after 0.1 seconds

grid80x80.f10

grid80x80.f10.wrap

grid80x80.f15

grid80x80.f15.wrap

grid80x80.f2

grid80x80.f2.wrap

grid80x80.f5

grid80x80.f5.wrap

STLS − Small Trees
STLS* − Small Trees
STLS−GLS+ Hybrid
Random GLS+
GLS+

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 G
oo

dn
es

s

Normalized Goodness after 1 seconds

grid80x80.f10

grid80x80.f10.wrap

grid80x80.f15

grid80x80.f15.wrap

grid80x80.f2

grid80x80.f2.wrap

grid80x80.f5

grid80x80.f5.wrap

STLS − Small Trees
STLS* − Small Trees
STLS−GLS+ Hybrid
Random GLS+
GLS+

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 G
oo

dn
es

s

Normalized Goodness after 10 seconds

grid80x80.f10

grid80x80.f10.wrap

grid80x80.f15

grid80x80.f15.wrap

grid80x80.f2

grid80x80.f2.wrap

grid80x80.f5

grid80x80.f5.wrap

STLS − Small Trees
STLS* − Small Trees
STLS−GLS+ Hybrid
Random GLS+
GLS+

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 G
oo

dn
es

s

Normalized Goodness after 60 seconds

grid80x80.f10

grid80x80.f10.wrap

grid80x80.f15

grid80x80.f15.wrap

grid80x80.f2

grid80x80.f2.wrap

grid80x80.f5

grid80x80.f5.wrap

STLS − Small Trees
STLS* − Small Trees
STLS−GLS+ Hybrid
Random GLS+
GLS+

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 G
oo

dn
es

s

Normalized Goodness after 120 seconds

grid80x80.f10

grid80x80.f10.wrap

grid80x80.f15

grid80x80.f15.wrap

grid80x80.f2

grid80x80.f2.wrap

grid80x80.f5

grid80x80.f5.wrap

STLS − Small Trees
STLS* − Small Trees
STLS−GLS+ Hybrid
Random GLS+
GLS+

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 G
oo

dn
es

s

Normalized Goodness after 300 seconds

grid80x80.f10

grid80x80.f10.wrap

grid80x80.f15

grid80x80.f15.wrap

grid80x80.f2

grid80x80.f2.wrap

grid80x80.f5

grid80x80.f5.wrap

STLS − Small Trees
STLS* − Small Trees
STLS−GLS+ Hybrid
Random GLS+
GLS+

Figure A.3: Results on 80 × 80 grids from from the Grids domain. See Figure A.1 for
details.

49

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 G
oo

dn
es

s

Normalized Goodness after 0.1 seconds

29.wcsp
CELAR6−SUB0.wcsp

CELAR6−SUB1.wcsp

CELAR6−SUB2.wcsp

CELAR6−SUB3.wcsp

CELAR6−SUB4.wcsp

DSJC125.1.4.wcsp

GEOM30a_3.wcsp

GEOM30a_4.wcsp

GEOM30a_5.wcsp

bwt3ac.wcsp

bwt4ac.wcsp

bwt5ac.wcsp

driverlog01ac.wcsp

driverlog02ac.wcsp

STLS − Small Trees
STLS* − Small Trees
STLS−GLS+ Hybrid
Random GLS+
GLS+

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 G
oo

dn
es

s

Normalized Goodness after 1 seconds

29.wcsp
CELAR6−SUB0.wcsp

CELAR6−SUB1.wcsp

CELAR6−SUB2.wcsp

CELAR6−SUB3.wcsp

CELAR6−SUB4.wcsp

DSJC125.1.4.wcsp

GEOM30a_3.wcsp

GEOM30a_4.wcsp

GEOM30a_5.wcsp

bwt3ac.wcsp

bwt4ac.wcsp

bwt5ac.wcsp

driverlog01ac.wcsp

driverlog02ac.wcsp

STLS − Small Trees
STLS* − Small Trees
STLS−GLS+ Hybrid
Random GLS+
GLS+

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 G
oo

dn
es

s

Normalized Goodness after 10 seconds

29.wcsp
CELAR6−SUB0.wcsp

CELAR6−SUB1.wcsp

CELAR6−SUB2.wcsp

CELAR6−SUB3.wcsp

CELAR6−SUB4.wcsp

DSJC125.1.4.wcsp

GEOM30a_3.wcsp

GEOM30a_4.wcsp

GEOM30a_5.wcsp

bwt3ac.wcsp

bwt4ac.wcsp

bwt5ac.wcsp

driverlog01ac.wcsp

driverlog02ac.wcsp

STLS − Small Trees
STLS* − Small Trees
STLS−GLS+ Hybrid
Random GLS+
GLS+

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 G
oo

dn
es

s

Normalized Goodness after 60 seconds

29.wcsp
CELAR6−SUB0.wcsp

CELAR6−SUB1.wcsp

CELAR6−SUB2.wcsp

CELAR6−SUB3.wcsp

CELAR6−SUB4.wcsp

DSJC125.1.4.wcsp

GEOM30a_3.wcsp

GEOM30a_4.wcsp

GEOM30a_5.wcsp

bwt3ac.wcsp

bwt4ac.wcsp

bwt5ac.wcsp

driverlog01ac.wcsp

driverlog02ac.wcsp

STLS − Small Trees
STLS* − Small Trees
STLS−GLS+ Hybrid
Random GLS+
GLS+

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 G
oo

dn
es

s

Normalized Goodness after 120 seconds

29.wcsp
CELAR6−SUB0.wcsp

CELAR6−SUB1.wcsp

CELAR6−SUB2.wcsp

CELAR6−SUB3.wcsp

CELAR6−SUB4.wcsp

DSJC125.1.4.wcsp

GEOM30a_3.wcsp

GEOM30a_4.wcsp

GEOM30a_5.wcsp

bwt3ac.wcsp

bwt4ac.wcsp

bwt5ac.wcsp

driverlog01ac.wcsp

driverlog02ac.wcsp

STLS − Small Trees
STLS* − Small Trees
STLS−GLS+ Hybrid
Random GLS+
GLS+

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 G
oo

dn
es

s

Normalized Goodness after 180 seconds

29.wcsp
CELAR6−SUB0.wcsp

CELAR6−SUB1.wcsp

CELAR6−SUB2.wcsp

CELAR6−SUB3.wcsp

CELAR6−SUB4.wcsp

DSJC125.1.4.wcsp

GEOM30a_3.wcsp

GEOM30a_4.wcsp

GEOM30a_5.wcsp

bwt3ac.wcsp

bwt4ac.wcsp

bwt5ac.wcsp

driverlog01ac.wcsp

driverlog02ac.wcsp

STLS − Small Trees
STLS* − Small Trees
STLS−GLS+ Hybrid
Random GLS+
GLS+

Figure A.4: Results on the CSP domain. See Figure A.1 for details.

50

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 G
oo

dn
es

s

Normalized Goodness after 0.1 seconds

pdb1d2e
pdb1iqc

pdb1kgn
pdb1kwh

pdb1m3y

pdb1qks
pdb1fmj

pdb1i24
pdb1jmx

STLS − Small Trees
STLS* − Small Trees
STLS−GLS+ Hybrid
Random GLS+
GLS+

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 G
oo

dn
es

s

Normalized Goodness after 1 seconds

pdb1d2e
pdb1iqc

pdb1kgn
pdb1kwh

pdb1m3y

pdb1qks
pdb1fmj

pdb1i24
pdb1jmx

STLS − Small Trees
STLS* − Small Trees
STLS−GLS+ Hybrid
Random GLS+
GLS+

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 G
oo

dn
es

s

Normalized Goodness after 10 seconds

pdb1d2e
pdb1iqc

pdb1kgn
pdb1kwh

pdb1m3y

pdb1qks
pdb1fmj

pdb1i24
pdb1jmx

STLS − Small Trees
STLS* − Small Trees
STLS−GLS+ Hybrid
Random GLS+
GLS+

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 G
oo

dn
es

s

Normalized Goodness after 60 seconds

pdb1d2e
pdb1iqc

pdb1kgn
pdb1kwh

pdb1m3y

pdb1qks
pdb1fmj

pdb1i24
pdb1jmx

STLS − Small Trees
STLS* − Small Trees
STLS−GLS+ Hybrid
Random GLS+
GLS+

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 G
oo

dn
es

s

Normalized Goodness after 120 seconds

pdb1d2e
pdb1iqc

pdb1kgn
pdb1kwh

pdb1m3y

pdb1qks
pdb1fmj

pdb1i24
pdb1jmx

STLS − Small Trees
STLS* − Small Trees
STLS−GLS+ Hybrid
Random GLS+
GLS+

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 G
oo

dn
es

s

Normalized Goodness after 180 seconds

pdb1d2e
pdb1iqc

pdb1kgn
pdb1kwh

pdb1m3y

pdb1qks
pdb1fmj

pdb1i24
pdb1jmx

STLS − Small Trees
STLS* − Small Trees
STLS−GLS+ Hybrid
Random GLS+
GLS+

Figure A.5: Results on the problems from the Protein Folding domain. See Figure A.1
for details.

	List of Figures
	List of Tables
	The Energy Minimization Problem
	Introduction
	Problem Definition and Preliminaries
	Background
	Belief Propagation
	Cycle-Cutset Conditioning
	GLS and GLS+
	Hopfield Model
	Graph Cuts

	BPLS: Belief Propagation-based Local Search
	Properties of BPLS
	Initialization
	Tree Directing
	Cutset Selection

	BPLS for Panorama Stitching
	Experiments on BPLS
	Methodology
	Variants
	Results

	BPLS*
	Correlation Estimation Based Value Perturbation
	Experience based value perturbation
	Experience based cutset selection
	Potential based cutset selection

	Experiments on BPLS*
	Comparison with GLS+
	Discussion and Future Work

	The Minimum Cycle-Cutset Problem in Grids
	Introduction
	Preliminaries and Convention
	Connectivity of the induced graphs in grids
	Improved lower bounds
	Conclusion

	Bibliography
	Result Plots

