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Abstract

The paper explores the potential of look-ahead meth-
ods within the context of AND/OR search in graphical
models using the Mini-Bucket heuristic for combinato-
rial optimization tasks (e.g., weighted CSPS or MAP
inference). We study how these methods can be used to
compensate for the approximation error of the initially
generated Mini-Bucket heuristics, within the context of
anytime Branch-And-Bound search.

Introduction

This paper investigates the effect of look-ahead on the any-
time performance of search solving the combinatorial op-
timization task of MPE in graphical models when using
the mini-bucket heuristic (Dechter, Kask, and Lam 2015).
There, we introduced the approach and showed a relation-
ship between the residual of the mini-bucket heuristic and a
newly defined notion of bucket-error.

Contributions. Look-ahead can be carried out to varying
levels during a search process. When we have well behaved
monotone heuristics, a more aggressive look-ahead yields a
more accurate heuristic but requires more time. This paper
builds on our recent work on look-ahead in which we de-
veloped the notion of a bucket-error. We showed that it co-
incides with the residual and can therefore predict one-level
look-ahead when using the mini-bucket heuristic, facilitat-
ing an algorithm that computes look-ahead in this context ef-
ficiently. Here we provide preliminary empirical evaluation
exploring the potential of look-ahead for anytime branch and
bound search.

Background

A graphical model is M = (X, D, F), where X = {Xj :
i € V} is a set of variables indexed by a set V' and
D = {D; : i € D} is the set of finite domains of val-
ues for each X;. F = {f, : a € F} is a set of discrete
functions, where « C V and X, C X is the scope of
fa. The functions’ scopes imply a primal graph G where
each variable X; is a node and an edge (X;, X;) isin G
iff the pair of variables appears in the scope of any f,.
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We focus here on the min-sum problem, which is to com-
pute C* = minx )y fa(Xa), and the assignment that
achieves this minimum.

Bucket Elimination (BE (Dechter 1999)) solves the
min-sum problem by eliminating variables, one at a time, in
sequence. It works on a structure called pseudo-tree T also
known as a bucket-tree. The complexity of BE is time and
space exponential in induced (tree) width w* of the under-
lying primal graph of the problem (Dechter 1999). For more
information and on how BE works, see the reference.

Mini-Bucket Elimination M BE (%) is an approximation
of BE which solves a relaxation of the problem. The re-
laxed problem is created by duplicating certain variables so
that the functions generated during BE will be bounded by
a parameter ¢, or ¢-bound. The relaxed problem has a tree-
width of 2. BE differs from MBE in that, when processing
the functions defined on each variable (i.e., its bucket) the
mini-bucket partitions the bucket and processes each parti-
tion separately. The mini-bucket generates bounds (lower-
bounds for minimization) used as heuristics during search.

AND/OR search The search space of a graphical model
can be guided by the decomposition that is suggested by the
pseudo-tree, yielding an AND/OR search space.

In the rest of the paper we will use the following notation.

e By is the bucket of variable Y.

e )y - sum of all the original functions in By. 9§, - sum
of those in the 7*" mini-bucket M B}, of By-.

° Xl,,p - A path of variables from X to ,XP' Z1.p - An
assignment of values to the variables in X _,,.

MBE Look-ahead for Search

Since the AND/OR search space is guided by the pseudo-
tree many of the concepts of look-ahead can be viewed rel-
ative to the pseudo-tree as well. A d-level look-ahead com-
putation can be organized over variables of the pseudo-tree
T that are within distance d of the current variable X,.

DEFINITION 1 (d-level subtree T x, 4)) Given a pseudo-
tree T' and an integer d, T(x, q) is the set of variables in
the d-level subtree of T rooted at X,;

DEFINITION 2 (Look-ahead MBE-heuristic in AND/OR)
Given an AND/OR search space guided by a pseudo-tree
T and a corresponding MBE heuristic function h™"°, the
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Figure 1: Selected instances. The solution quality is plotted as a function of time per instance (in log scale).

d-level look-ahead heuristic of h™*¢ at X, is a function,

. N lh(d
whose scope is subsumed in X1, denoted hX,i )(sp),
Sp = jlup

lh mbe
o WO (s,) = hghe(s,)

Ih(d . lh(d—1
° th() )(SP) = ZH%}H(@Z’Y(SIM y) + hy( )(Spay))
Y echild(X,)

The d-level residual at X, is

Ih(d th(d mbe
o resie @ (s,) = W'D (s,) — Wit (s,)

Experiments

We ran AND/OR Branch and Bound (AOBB) (Marinescu
and Dechter 2009) using the state-of-the-art MBE-MM
heuristic (Thler et al. 2012) on 3 different benchmarks with
a time bound of 6 hours for each instance. To evaluate the
general impact of look-ahead across a range of depths d, we
collected the solutions reported by our solver at various time
snapshots and reported those in instance by instance anytime
graphs.

Figure 1 plots the time vs. solution quality for an instance
from each benchmark. Points that are higher and to the left
indicate superior anytime performance. If a line runs off the
right end of the plot, it indicates that the problem was not
solved within the time bound. Each row of the figure cor-
responds to an particular problem instance and the columns
correspond to different i-bounds. In this small sample of our
results, we see indeed that the look-ahead scheme has a pos-
itive impact on anytime performance at earlier times, espe-
cially when the i-bound is lower. However, as the search time
and/or i-bound increase, shallower look-ahead depths can

become more preferable. In results on exact search (Dechter,
Kask, and Lam 2015), a look-ahead depth of 2-3 often per-
formed the best even for the same set of lower i-bounds,
with deeper look-ahead yielding decreased performance due
to time overhead. Here, we see that deeper look-ahead can
give superior early anytime performance.

Conclusion

We performed a preliminary evaluation of the effect of look-
ahead on the anytime performance of solving MPE. Our re-
sults show that look-ahead can be a cost effective method of
achieving higher quality solutions sooner, especially when
the heuristic is weak. The search time is also a factor, sug-
gesting that it may also be beneficial to dynamically change
the look-ahead depth over time. Future work in estimating
the residual and its relative effect during search can guide us
towards more flexible look-ahead subtrees for this purpose.
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