Empowering Mini-Bucket in Anytime Heuristic Search with Look-ahead:
Preliminary Evaluation

William Lam, Kalev Kask, and Rina Dechter
University of California, Irvine
{willmlam, kkask,dechter}@ics.uci.edu

Abstract

The paper explores the potential of look-ahead meth-
ods within the context of AND/OR search in graphical
models using the Mini-Bucket heuristic for combinato-
rial optimization tasks (e.g., weighted CSPS or MAP
inference). We study how these methods can be used to
compensate for the approximation error of the initially
generated Mini-Bucket heuristics, within the context of
anytime Branch-And-Bound search.

Introduction

This paper investigates the effect of look-ahead on the any-
time performance of search solving the combinatorial op-
timization task of MPE in graphical models when using
the mini-bucket heuristic (Dechter, Kask, and Lam 2015).
There, we introduced the approach and showed a relation-
ship between the residual of the mini-bucket heuristic and a
newly defined notion of bucket-error.

Contributions. Look-ahead can be carried out to varying
levels during a search process. When we have well behaved
monotone heuristics, a more aggressive look-ahead yields a
more accurate heuristic but requires more time. This paper
builds on our recent work on look-ahead in which we de-
veloped the notion of a bucket-error. We showed that it co-
incides with the residual and can therefore predict one-level
look-ahead when using the mini-bucket heuristic, facilitat-
ing an algorithm that computes look-ahead in this context ef-
ficiently. Here we provide preliminary empirical evaluation
exploring the potential of look-ahead for anytime branch and
bound search.

Background

A graphical model is M = (X, D, F), where X = {Xj :
i € V} is a set of variables indexed by a set V' and
D = {D; : i € D} is the set of finite domains of val-
ues for each X;. F = {f, : a € F} is a set of discrete
functions, where « C V and X, C X is the scope of
fa. The functions’ scopes imply a primal graph G where
each variable X; is a node and an edge (X;, X;) isin G
iff the pair of variables appears in the scope of any f,.

Copyright (© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

We focus here on the min-sum problem, which is to com-
pute C* = minx)y fa(Xa), and the assignment that
achieves this minimum.

Bucket Elimination (BE (Dechter 1999)) solves the
min-sum problem by eliminating variables, one at a time, in
sequence. It works on a structure called pseudo-tree T also
known as a bucket-tree. The complexity of BE is time and
space exponential in induced (tree) width w* of the under-
lying primal graph of the problem (Dechter 1999). For more
information and on how BE works, see the reference.

Mini-Bucket Elimination M BE (%) is an approximation
of BE which solves a relaxation of the problem. The re-
laxed problem is created by duplicating certain variables so
that the functions generated during BE will be bounded by
a parameter ¢, or ¢-bound. The relaxed problem has a tree-
width of 2. BE differs from MBE in that, when processing
the functions defined on each variable (i.e., its bucket) the
mini-bucket partitions the bucket and processes each parti-
tion separately. The mini-bucket generates bounds (lower-
bounds for minimization) used as heuristics during search.

AND/OR search The search space of a graphical model
can be guided by the decomposition that is suggested by the
pseudo-tree, yielding an AND/OR search space.

In the rest of the paper we will use the following notation.

e By is the bucket of variable Y.

e)y - sum of all the original functions in By. 9§, - sum
of those in the 7*" mini-bucket M B}, of By-.

° Xl,,p - A path of variables from X to ,XP' Z1.p - An
assignment of values to the variables in X _,,.

MBE Look-ahead for Search

Since the AND/OR search space is guided by the pseudo-
tree many of the concepts of look-ahead can be viewed rel-
ative to the pseudo-tree as well. A d-level look-ahead com-
putation can be organized over variables of the pseudo-tree
T that are within distance d of the current variable X,.

DEFINITION 1 (d-level subtree T x, 4)) Given a pseudo-
tree T' and an integer d, T(x, q) is the set of variables in
the d-level subtree of T rooted at X,;

DEFINITION 2 (Look-ahead MBE-heuristic in AND/OR)
Given an AND/OR search space guided by a pseudo-tree
T and a corresponding MBE heuristic function h™"°, the

pedigree40 (n=1030 k=7 w=27 h=111)

pedigree40 (n=1030 k=7 w=27 h=111)

pedigree40 (n=1030 k=7 w=27 h=111)

(i-bound=10) (i-bound=15) (i-bound=18)

-130 -130 b D S O - N
S 132 s O(@ 5 -1305 :
g £ s & 2 P

134 y LA
2 8 ' i % —1310 !). A A m- LH(0)
g -136 g -140 “ i ; [ind oy LH(1)
B 138 ? e " ? 131s| o LH(2)
S S s g 3 w4 LH(4)

-140 g B A LH(6)

Search time in seconds

largeFam3-haplo_11_57 (n=2670 k=3 w=39 h=77)

Search time in seconds

largeFam3-haplo_11_57 (n=2670 k=3 w=39 h=77)

10° 10° 10° 10*

Search time in seconds

largeFam3-haplo_11_57 (n=2670 k=3 w=39 h=77)

(i-bound=10) (i-bound=15) (i-bound=19)

—2801..m- LH(0) A _ e . I B S P A
= g1 ¥ LH(1) poe’ B 0&“ AT = ‘"“‘. 4
27 e)| & Z -2 g
3 -282|.4. o -282 a
3 Z tmg; 3 —283 = LH(0) K m LH(0)
g 283 g wowe LH(1) g v LH(1)
T 284 T e LH(2) E] we LH(2)
S LR S -285 wgo LH(4) S w4 LH(4)

—285 = _286 A LH(6) A LH(B)

10° 10 10% 10° 10* 10" 10°

Search time in seconds

or_chain_43.fg (n=1692 k=2 w=80 h=127)

Search time in seconds

or_chain_43.fg (n=1692 k=2 w=80 h=127)

10° 10* 10°
Search time in seconds

or_chain_43.fg (n=1692 k=2 w=80 h=127)

(i-bound=15) (i-bound=20) (i-bound=23)

-26 o B | Ll g -
= T — mm.s?a"' Aé = = " ! §
B syE—x 5 % —

3 5 S 3 3 oni®™%
s Gmegvs 4 = LH(0) K T 2 o o = LH(0)
g v LH(D) g € ol 8 v LH(1)
= e LH(2) 5 5™ e LH(2)
S 4 LH(4) S S 3 w4 LH(4)
A LH(6) s A LH(6)
10? 10° 10° 10* 10* 10° 10*

Search time in seconds

Search time in seconds

Search time in seconds

Figure 1: Selected instances. The solution quality is plotted as a function of time per instance (in log scale).

d-level look-ahead heuristic of h™*¢ at X, is a function,

. N lh(d
whose scope is subsumed in X1, denoted hX,i)(sp),
Sp = jlup

lh mbe
o WO (s,) = hghe(s,)

Ih(d . lh(d—1
° th())(SP) = ZH%}H(@Z’Y(SIM y) + hy()(Spay))
Y echild(X,)

The d-level residual at X, is

Ih(d th(d mbe
o resie @ (s,) = W'D (s,) — Wit (s,)

Experiments

We ran AND/OR Branch and Bound (AOBB) (Marinescu
and Dechter 2009) using the state-of-the-art MBE-MM
heuristic (Thler et al. 2012) on 3 different benchmarks with
a time bound of 6 hours for each instance. To evaluate the
general impact of look-ahead across a range of depths d, we
collected the solutions reported by our solver at various time
snapshots and reported those in instance by instance anytime
graphs.

Figure 1 plots the time vs. solution quality for an instance
from each benchmark. Points that are higher and to the left
indicate superior anytime performance. If a line runs off the
right end of the plot, it indicates that the problem was not
solved within the time bound. Each row of the figure cor-
responds to an particular problem instance and the columns
correspond to different i-bounds. In this small sample of our
results, we see indeed that the look-ahead scheme has a pos-
itive impact on anytime performance at earlier times, espe-
cially when the i-bound is lower. However, as the search time
and/or i-bound increase, shallower look-ahead depths can

become more preferable. In results on exact search (Dechter,
Kask, and Lam 2015), a look-ahead depth of 2-3 often per-
formed the best even for the same set of lower i-bounds,
with deeper look-ahead yielding decreased performance due
to time overhead. Here, we see that deeper look-ahead can
give superior early anytime performance.

Conclusion

We performed a preliminary evaluation of the effect of look-
ahead on the anytime performance of solving MPE. Our re-
sults show that look-ahead can be a cost effective method of
achieving higher quality solutions sooner, especially when
the heuristic is weak. The search time is also a factor, sug-
gesting that it may also be beneficial to dynamically change
the look-ahead depth over time. Future work in estimating
the residual and its relative effect during search can guide us
towards more flexible look-ahead subtrees for this purpose.

Acknowledgements

This work was supported in part by NSF grants IIS-1065618
and IIS-1254071, and by the US Air Force under Contract
No. FA8750-14-C-0011 under the DARPA PPAML pro-
gram.

References

Dechter, R.; Kask, K.; and Lam, W. 2015. Some properties of look-
ahead with mini-bucket heuristics. Technical report, Unpublished,
UC Irvine, ICS.

Dechter, R. 1999. Bucket elimination: A unifying framework for
reasoning. Artificial Intelligence 113:41-85.

Ihler, A.; Flerova, N.; Dechter, R.; and Otten, L. 2012. Join-graph
based cost-shifting schemes. In Uncertainty in Artificial Intelli-
gence (UAI). Corvallis, Oregon: AUAI Press. 397—406.
Marinescu, R., and Dechter, R. 2009. And/or branch-and-bound
search for combinatorial optimization in graphical models. Artif.
Intell. 173(16-17):1457-1491.

