

Applying Search Based Probabilistic Inference Algorithms to Probabilistic Conformant Planning: Preliminary Results

Junkyu Lee^{*}, Radu Marinescu^{**} and Rina Dechter^{*}

*University of California, Irvine **IBM Research, Ireland

ISAIM 2016

Overview

- Probabilistic Conformant Planning
 - Agent, Example, Problem, and Task
- Graphical Model and Probabilistic Inference
 - Probabilistic Conformant Planning as Marginal MAP Inference
 - AND/OR Search Algorithms for Marginal MAP Inference
- Compiling Graphical Models from Planning Problems
 - Example Domain: Blocks World
 - Compiling Probabilistic PDDL into 2 stage DBN
 - Compiling Finite Domain Representation (SAS+) into 2 stage DBN
- Experiment Results (Blocks World Domain)

UNIVERSITY of CALIFORNIA () IRVINE

Probabilistic Conformant Planning

- Agent

- No observation
- Uncertain environment
 - Uncertain initial states: Probability distribution over possible states
 - Uncertain action effects: Probability distribution over possible effects
- Find a sequence of actions that reach goal with desired criteria
 - given plan length, maximize the probability of reaching goal, etc

Probabilistic Conformant Planning

- Example
 - Spacecraft Recovery*
 - Complex systems could fail
 - Observation is sometimes limited
 - Diagnosis yields plausible states with scores (probability)
 - Generate a fail-safe recovery plan that can be applied to all plausible states.

*Fragment-based Conformant Planning, J. Kurien, P. Nayak, and D. Smith AIPS 2002

Probabilistic Conformant Planning - Problem and Task

- Probabilistic Conformant Planning Problem
 - P = <S, A, I, G, T>
 - S : a set of possible states
 - A : a set of actions
 - I : initial belief state (probability distribution over initial states)
 - G: a set of goal states
 - T: Markovian state transition function (T: S x A x S \rightarrow [0, 1])
 - Probabilistic Conformant Planning Task
 - <P, L>: Maximize probability of reaching goal given fixed plan length L
 - <P, θ >: A plan of arbitrary length reaching goal with a probability higher than θ

Graphical Models

A graphical model (**X**, **D**, **F**)

- $X = \{X_1, \dots, X_n\}$ variables
- $D=\{D_1, \dots, D_n\}$ domains
- $F = \{f_1, \dots, f_m\}$ functions
 - Constraints, CPTs, CNFs, ...
- **Operators**
 - Combination (product)
 - Elimination (max/sum)
- Tasks
 - Probability of Evidence (PR)

 $Pr(e) = \sum_{X_s} \prod_j f_j(X_s, e)$

- Most Probable Explanation (MPE) $\mathbf{x}_{MPE} = argmax_{\mathbf{x}} \prod_{j} f_{j}(\mathbf{x})$
- Marginal MAP (Maximum A Posteriori)

All these tasks are NP-hard Exploit problem structure (primal graph)

 $\mathbf{x}_{MMAP} = argmax_{\mathbf{x}_m \in X_M} \sum_{\mathbf{x}_s \in X_s} \prod_j f_j(\mathbf{x}_m, \mathbf{x}_s)$

IRVINE

Conformant Planning as Marginal MAP

- Finite Horizon Probabilistic Conformant Planning <S, A, I, G, T, L>
 - Random variables

$$S = \{\mathbf{s}^{0}, \mathbf{s}^{1}, \cdots, \mathbf{s}^{L}\} \quad \mathbf{s}^{t} = \{s_{0}^{t}, s_{1}^{t}, \cdots, s_{N}^{t}\}$$
$$A = \{\mathbf{a}^{0}, \mathbf{a}^{1}, \cdots, \mathbf{a}^{L}\} \quad \mathbf{a}^{t} = \{a_{0}^{t}, a_{1}^{t}, \cdots, a_{M}^{t}\}$$

UNIVERSITY of CALIFORNIA () IRVINE

State transition function

$$Pr(\mathbf{s^{t+1}}|\mathbf{s^t}, \mathbf{a^t}) = T(\mathbf{s^t}, \mathbf{a^t}, \mathbf{s^{t+1}})$$

- Joint probability distribution given a plan that satisfying the goal $\begin{array}{l}P(\mathbf{s^0}, \mathbf{s^1}, \cdots, \mathbf{s^L} | \mathbf{s^L} \in G, \mathbf{a^0}, \mathbf{a^1}, \cdots, \mathbf{a^{L-1}}) \\ &= P(\mathbf{s^0})[\prod_{t=0..L-1} P(\mathbf{s^{t+1}} | \mathbf{s^t}, \mathbf{a^t})]P(\mathbf{s^L} | \mathbf{s^L} \in G, \mathbf{s^{L-1}}, \mathbf{a^{L-1}})\end{array}$
- Optimal Plan as MMAP

 $argmax_{\{\mathbf{a^0},\mathbf{a^1},\cdots,\mathbf{a^{L-1}}\}}\sum_{\{\mathbf{s^0},\mathbf{s^1},\cdots,\mathbf{s^L}\}}P(\mathbf{s^0},\mathbf{s^1},\cdots,\mathbf{s^L}|\mathbf{s^L}\in G,\mathbf{a^0},\mathbf{a^1},\cdots,\mathbf{a^{L-1}})$

AND/OR Search Algorithm for MMAP

Example Domain: Blocks World

UNIVERSITY of CALIFORNIA O IRVINE

Example Domain: Blocks World

action: pick-up-from-table(b1)

Blocks World in PDDL (deterministic)

- Predicates for describing states
 - Clear(?b block), OnTable(?b block),
 - On(?b1, ?b2 block), Holding(?b block), EmptyHand
- Initial State
 - On(b2, b1) and OnTable(b1) and Clear(b2) and EmptyHand
- Goal State
 - On(b1, b2) and OnTable(b2) and Clear(b1) and EmptyHand
- Action Schema for describing actions
 - Pick-up-from-block (?b1 ?b2 block)
 - Pick-up-from-Table (?b block)
 - Put-on-block(?b1 ?b2 block)
 - Put-down-to-table(?b block)

Blocks World in PDDL (deterministic)

- Action schema for describing deterministic state transitions
 - Pick-up-from-block(?b1, ?b2 block)
 - Precondition: EmptyHand and Clear(?b1) and On(?b1, ?b2)
 - Effect: Holding(?b1) and Clear(?b2) and (Not EmptyHand) and (Not Clear(?b1)) and (Not On(?b1, ?b2))
 - Pick-up-from-table(?b block)
 - Precondition: EmptyHand and Clear(?b) and OnTable(?b)
 - Effect: Holding(?b) and (Not EmptyHand) and (Not OnTable(?b)) and (Not Clear(?b))

Compiling Graphical Models from Planning Domains

Blocks World in PPDDL (Probabilistic)

- Action schema for describing probabilistic state transitions
 - Pick-up-from-block(?b1, ?b2 block)
 - Precondition: EmptyHand and Clear(?b1) and On(?b1, ?b2)
 - Effect1: 0.75 Holding(?b1) and Clear(?b2) and (Not EmptyHand) and (Not Clear(?b1)) and (Not On(?b1, ?b2))
 - Effect2: 0.25 Clear(?b2) and OnTable(?b1) and (Not (On(?b1, ?b2))

- Pick-up-from-table(?b block)
 - Precondition: EmptyHand and Clear(?b) and OnTable(?b)
 - Effect1: **0.75** Holding(?b) and (Not EmptyHand) and (Not OnTable(?b)) and (Not Clear(?b))

UNIVERSITY of CALIFORNIA 🔘 IRVINE

Compiling PPDDL into 2 stage DBN

Convert each ground action schema into 2TDBN

as shown in PPDDL 1.0 Specification

Compiling PPDDL into 2 stage DBN

- Introduce additional variables to bound scope
 - Precondition, Add effect, Del effect, Action

Compiling PPDDL into 2 stage DBN

- Combine all 2TDBNs into Single 2TDBN
 - If scope size needs to be bounded, introduce hidden variables

Compiling PPDDL into 2TDBN

□ Slippery Gripper Domain Example

Complexity of Translation from PPDDL

- Input PPDDL parameters
 - Number of ground objects = |Obj|
 - Number of action schemata = |AS|
 - Maximum number of object parameters = |P|
 - Maximum number of probabilistic effects = |Eff|
 - Number of predicates = |Pred|
- Number of Variables at each time
 - Number of action variables $\leq 2 \cdot |AS| |Obj|^{|P|}$
 - Number of state variables $= |Pred| \cdot |Obj|$
 - Number of effect variables $= |AS| \cdot |Obj|^{|P|}$
 - Number of Add/Del state variables $\leq 2 \cdot |Pred|$ $Obj|^{|P|}$ |Eff|
 - $O(3 \cdot |AS| \cdot |Obj|^{|P|} + (3 + |Eff|) \cdot |Pred| \cdot |Obj|^{|P|})$

Compiling Graphical Models from Planning Domains

Simplified Action Structure+ (Backstrom 1995)

- Multi-valued state variables
 - State variable is an aggregate of mutually exclusive ground predicates
- Operators (collection of changes of values in state variables)
 - Prevail condition: Value of a variable remains same
 - Pre-condition: Value of a variable before state transition
 - Post-condition: Value of a variable after state transition

Translate PDDL \rightarrow FDR (Helmert 2009)

- Generalize SAS+ with conditional effects and derived predicates
- Automated translator from PDDL 2.2 to SAS+

Multi-Valued State Variables

- 9 binary state variables
 - clear b1, OnTable b1, On b1, b2, Holdig b1, Emptyhand, clear b2, OnTable b2, Onb2 b1, Holding b2

translated as

- 5 multi-valued state variables
 - Var0 = {Clear(b1), Not Clear(b1)}
 - Var1 = {Clear(b2), Not Clear(b2)}
 - Var2 = {EmptyHand, Not EmptyHand}
 - Var3 = {Holding(b1), On(b1, b2), OnTable(b1)}
 - Var4 = {Holding(b2), On(b2, b1), OnTable(b2)}

- Operators for describing **deterministic** state transitions
 - Translate each ground action schema as a collection of transitions of state variables
 - Pick-up-from-block(?b1, ?b2 block)
 - Precondition: EmptyHand and Clear(?b1) and On(?b1, ?b2)
 - Effect: Holding(?b1) and Clear(?b2) and (Not EmptyHand) and (Not Clear(?b1)) and (Not On(?b1, ?b2))

translated as

- Pick-up-from-block(?b1, ?b2 block)
 - Var0: $0 \rightarrow 1$ (Clear(b1) \rightarrow Not Clear(b1))
 - Var1: * $\rightarrow 0$ (any value \rightarrow Not Clear(b2))
 - Var2: $0 \rightarrow 1$ (EmptyHand \rightarrow Not EmptyHand)
 - Var3: $1 \rightarrow 0$ (On(b1, b2) \rightarrow Holding(b1))

Operators for describing probabilistic state transitions

- Original FDR(SAS+) does not translate probabilistic actions
- Determinization of PPDDL action schema
 - FF-Replan (Yoon, Fern, and Giva 2007)
 - make each of the probabilistic effects as a single action schema and drop the probability value
- Translate determinized PPDDL as FDR(SAS+)
- Combine probabilistic effects

UNIVERSITY of CALIFORNIA () IRVINE

Compiling FDR(SAS+) into 2 stage DBN

Convert each ground action into 2TDBN

Compiling FDR(SAS+) into 2 stage DBN

Combine all 2TDBNs into Single 2TDBN

If scope size is too big, introduce hidden variables

Optimize translation (in progress)

- Minimize number of
 - Precondition, pre/post transition variables
 - Hidden variables
- Minimization turns into finding maximal bi-cliques
 - action effects are expressed as conjunction of state value assignments (equality predicates)

Complexity of Translation from FDR(SAS+) Input PDDL/FDR parameters for action variables

- Number of ground objects = |Obj|
 - Number of action schemata = |AS|
 - Maximum number of object parameters = |P|
 - Maximum number of probabilistic effects = |Eff|
 - Number of multi-valued state variables =|S|Maximum domain size = k
- Number of Variables at each time stage
 - action variables $= |AS(\cdot |Obj||^{P})$
 - state variables = |S|
 - Pre-transition variables $= |S| \cdot k$
 - Post-transition variables $\leq 2 \cdot |S| \cdot k$
 - Pre-condition variables $\leq 2 \cdot |AS| \cdot |Obj|^{|P|} \cdot |Eff|$
 - **FDR** $O((1+2 \cdot |Eff|)(|AS| \cdot |Obj|^{|P|}) + (1+3k) \cdot |S|)$
 - **ppddl** $O(3 \cdot |AS| \cdot |Obj|^{|P|} + (3 + |Eff|) \cdot |Pred| \cdot |Obj|^{|P|})$

UNIVERSITY of CALIFORNIA () IRVINE

Experiment Results: Blocks World

Probabilistic Inference Algorithms

	BRAOBB-MMAP	BRAOBB-MAP + PR	GLS+ PR		
Optimality	Optimal	Suboptimal	Suboptimal		
Search Space	Marginal MAP/ Constrained	MAP / Unconstrained	MAP / Unconstrained		
Heuristic	WMB-MM(i)	MBE-MM(i)	-		

- Breath Rotate + AOBB [Otten, Dechter 2011] [Marinescue, Dechter 2005-2009]
 - Branch and Bound Search on AND/OR Graph with Sub-problem rotations
- WMB-MM(i) [Dechter, Rish 1997, 2003] [Liu, Ihler 2011] [flerova, Ihler 2011]
 - Weighted mini-bucket elimination with moment matching
- GLS+ [Hutter et al, 2005]
 - Stochastic local search algorithm for MAP inference
- PR
 - Perform summation in AND/OR search graph

AND/OR Search Algorithm for MMAP

Experiment Results: Blocks World

Blocks World Domains

- Taken from International Planning Competition '04
 - The original task was planning with full observation Easier problem (MAP inference)
 - Original domain has 7 action schemata (removed 3)
- Problem Instances
 - Reverse configuration
 Initially all blocks are stacked as a tower.Planning task is reversing the stack
 - Number of Blocks: 2, 3, 4 blocks
 - Length of Time: up to 20 time horizon

UNIVERSITY of CALIFORNIA

PPDDL vs. FDR(SAS+) translation

	Translation From PPDDL				Translation From FDR(SAS+)				
instance	ppddl to dbn	braobb-mmap		sas+ to dbn	braobb-mmap				
blocks, horizon	n, a, w_c , h_c	i_{best}	time (sec)	pr(G)	n, a, w_c , h_c	i_{best}	time (sec)	pr(G)	
2,5	299, 40, 48, 76	10	1.56	0.703125	406, 5, 22, 64	2	1.65	0.703125	
2, 8	473, 64, 72, 112	10	2990.73	0.91626	646, 8, 24, 76	14	1857.33	0.91626	
2, 11	647, 88, 96, 149	16	oot	0.966007	886, 11, 24, 86	6	oot	0.943176	
2, 14	821, 112, 120, 169	2	oot	0.91626	1126, 14, 28, 109	8	oot	0.91626	
2, 17	995, 136, 144, 199	10	oot	0.91626	1366, 17, 28, 108	10	oot	0.91626	
2, 20	1169, 160 <mark>, 163, 237</mark>	2	oot	0.870117	1606, 20, 26, 103	2	oot	0.870117	
3, 5	741, 90, 132, 182	6	2.53	0.079102	833, 5, 44, 85	4	0.96	0.079102	
3, 8	1176, 144 <mark>, 159, 251</mark>	6	5767.69	0.494385	1328, 8, 45, 125	4	4382.65	0.494385	
3, 11	1611, 198 <mark>,</mark> 213, 328	10	oot	0.494385	1823, 11, 45, 132	2	oot	0.494385	
3, 14	2046, 252, 267, 401	10	oot	0.454834	2318, 14, 45, 145	2	oot	0.494385	
3, 17	2481, 306 <mark>,</mark> 326, 474	2	oot	0.395508	2813, 17, 44, 183	4	oot	0.494385	
3, 20	2916, 360, 380, 545	2	oot	0.395508	3308, 20, 44, 178	6	oot	0.494385	
4,8	2185, 256, 379, 477	10	108.7	0.177979	2266, 8, 67, 164	6	55.04	0.177979	
4,9	2455, 288, 415, 520	12	5717.1	0.222473	2548, 9, 68, 188	2	2291.27	0.222473	
4, 10	2725, 320, 397, 556	2	oot	0.222473	2830, 10, 68, 179	2	oot	0.222473	
4,11	2995, 352 <mark>,</mark> 491, 624	2	oot	0.222473	3112, 11, 68, 214	2	oot	0.222473	
4, 13	3535, 416, 541, 716	2	oot	0.222473	3676, 13, 68, 222	2	oot	0.222473	
4, 15	4075, 480, 672, 841	10	oot	0.222473	4240, 15, 82, 263	2	oot	0.222473	

- Translation from FDR(SAS+)
 - 1.3 ~ 2.6 times speed up
 - constrained induced width of problem is much less

IRVINE

MMAP vs. MAP + PR Inference

instance	ppddl to dbn	BRAOBB-MMAP		BRAOI	BB-MAP	GLS+	
blocks, horizon	$\mathbf{n}, \mathbf{a}, w_c, h_c, w_u, h_u$	time (sec)	pr(G)	time (sec)	pr(G)	time (sec)	pr(G)
2, 5	299, 40, 48, 76, 17, 56	1.56	0.703125	4.34	0.5625	0.33	0.5625
2, 8	473, 64, 72, 112, 17, 88	2990.73	0.91626	6.63	0.5625	1.82	0.5625
2, 12	647, 88, 96, 149, 17, 111	oot	0.966007	9.71	0.5625	3.63	0.74707
2, 14	821, 112, 120, 169, 17, 163	oot	0.91626	15.54	0.5625	25.45	0.823975
2, 17	995, 136, 144, 199, 17, 241	oot	0.91626	29.29	0.316406	84.71	0.922302
2, 20	1169, 160, 168, 237, 17, 292	oot	0.870117	35.92	0.624023	25.2	0.886399
3, 5	741, 90, 132, 182, 34, 129	2.53	0.0791016	9.49	0.079102	4.85	0.079102
3, 8	1176, 144, 159, 251, 34, 157	5767.69	0.494385	53.77	0.316406	26.64	0.316406
3, 11	1611, 198, 213, 328, 34, 317	oot	0.494385	128.28	0.316406	69.57	0.454834
3, 14	2046, 252, 267, 401, 34, 382	oot	0.454834	4.95.64	0.316406	671.34	0.415283
3, 18	2481, 306, 326, 474, 36, 350	oot	0.395508	oct	na	1743.19	0.395508
3, 20	2916, 360, 380, 545, 34, 518	oot	0.395508	oot	na	126.36	0.237305
4, 8	2185, 256, 370, 477, 60, 347	108.7	0.177979	106.88	0.177979	257.99	0.177979
4, 9	2455, 288, 415, 520, 61, 321	5717.1	0.222473	556	0.177979	146.52	0.222473
4, 10	2725, 320, 397, 556, 61, 382	oot	0.222473	418.75	0.0444946	413.68	0.222473
4, 11	2995, 352, 491, 624, 61, 497	oot	0.222473	552.66	0.177979	2003.72	0.222473
4, 13	3535, 416, 541, 716, 62, 598	oot	0.222473	oct	na	186.66	0.125141
4, 15	4075, 480, 672, 841, 62, 533	oot	0.222473	oot	na	720.01	0.044495

- MMAP finds optimal solution if it could
- MAP finds suboptimal plan faster than MMAP
- GLS+ can reach longer horizon than MMAP and MAP

IRVINE

] IRVINE

MMAP vs. Probabilistic-Fast Forward

BW2	heta	0.1	0.15	0.2	0.35	0.4	0.5	0.7	0.8	0.85
	PFF	9.96 (4)	0.94 (4)	0.05 (4)	0.05 (4)	0.06 (4)	0.05 (4)	err	err	err
	BRAOBB-MMAP	1.55(5)	1.55(5)	1.55(5)	1.55(5)	1.55(5)	1.55(5)	1.55(5)	25.07 (6)	247.08(7)
	BRAOBB-MAP	4.12 (3)	4.22 (4)	4.22 (4)	4.22 (4)	4.22 (4)	4.22 (4)	8.31 (10)	65.21 (30)	65.26 (30)
	GLS+	0.12 (3)	0.22 (4)	0.22 (4)	0.22 (4)	0.22 (4)	0.22 (4)	0.71 (7)	5.25 (14)	18.26 (17)
BW3	θ	0.1	0.15	0.2	0.35	0.4	0.5	0.7	0.8	0.85
	PFF	9.97 (<i>€</i>)	9.96 (6)	0.09 (6)	0.12 (7)	err	err	err	err	err
	BRAOBB-MMAP	65.79 (6)	65.79 (6)	65.79 (6)	212.01 (7)	5647.65 (8)	oot	oot	oot	oot
	BRAOBB-MAP	14.47 (6)	14.47 (6)	14.47 (6)	2069.56 (15)	oot	oot	oot	oot	oot
	GLS+	18.88 (10)	18.88 (10)	18.88 (10)	18.88 (10)	(19.57 (1 1)	oot	oot	oot	oot
BW4	θ	0.1	0.15	0.2	0.35	6.4	0.5	0.7	0.8	0.85
	PFF	0.15 (8)	9.14 (8)	err	err	ent	err	err	err	err
	BRAOBB-MMAP	90.32 (8)	90.32 (8)	6489.2 (9)	oot	oot	oot	oot	oot	oot
	BRAOBB-MAP	106.83 (8)	106.88 (8)	oot	oot	oot	oot	oot	oot	oot
	GLS+	146.52 (9)	146.52 (9)	146.52 (9)	oot	oot	oot	oot	oot	oot

- Finding any plan that exceeds threshold
 - Probabilistic-FF [Domshlak and Hoffmann. 2007] produces plan quickly when threshold is small
 - Search based inference algorithms finds plan at higher threshold

Conclusion

Applied probabilistic inference to conformant planning

- MMAP produces optimal plan
- Specialized solver (PFF) performed well on low probability of success regime but it fails on high probability regime
- MAP inference algorithm could produce suboptimal plans in a shorter time bounds

Conclusion

Limitations of grounding & translation

- Translation from FDR produced better results
- Size of translation matters!
 - Exponential (|objects | |params|)
 - Duplicate the structure over L time horizons
- Typical size of problems
 - POMDP |A| ~ 10
 - Conformant Planning (uncertainty in initial states)
- State-of-the-art
 - (Taig and Brafman 2015)
 - (Domshlak and Hoffman 2007)