
A Note on Bounding the Partition Function by

Search

Eyal Dechter and Rina Dechter, An ICS Technical report

Tuesday 1st March, 2016

Abstract

We develop basic best-first and depth-first search algorithms
for providing upper and lower bounds on the partition function
in an anytime manner. We also develop an ε-gurantee depth-
first search scheme for OR and AND/OR search trees that
corresponds to a given graphical model.

1 Introduction

We assume a weighted directed graph G, representing a global function (gen-
erated from a probabilistic graphical model) where the weights on the arcs are
numbers between zero and one. For an OR graph the cost of a solution path is
the product of the weights on the arcs. For an AND/OR graph it is the product
of the weights on a solution subtree (or graph). The task is to compute the sum
cost over all solutions (paths or trees, respectively), denoted Z.

Starting from OR graphs we seek an anytime algorithm that generates a
lower and upper bounds on Z, the partition function. We can associate with
every node a value V (n) which stands for the exact weighted count in the
subgraph that it roots. g(n) is the cost of the partial path to n. The conditional
weighted count of n denoted by F (n) is defined by F (n) = g(n) · V (n). A leaf
node is ”solved” if it corresponds to a full solution (a configuration of all the
variables). An internal node is solved if all its child nodes are solved.

We use search algorithms that expand the search graph starting at the root of
the graph. The search can be expanded depth first, breadth first or by any other
control strategy. The algorithm maintains an explicit search graph of expanded
nodes denoted G′, whose frontier leaf nodes, called OPEN, are associated with
g(n) and with an upper bound up(n) and a lower bound lo(n) on V (n). In the
uninformed case lo(n) = 0 and up(n) = 1.

Given a currently expanded graph G′ for OR search space, internal nodes
can have their lower and upper bounds propagated from the frontier nodes,
according to the following definition.

1



Definition 1 (bound propagation for OR nodes). Given the currently explored
graph G′, for any node n ∈ G′ its lower and upper bounds can be computed
recursively:

• If n is a non-solved leaf node U(n) = 1 and L(n) = 0

• If n is a solved leaf node U(n) = L(n) = 1

• If n is an internal node then

U(n) =
∑

s∈ch(n)

w(n, s) · U(s) (1)

and
L(n) =

∑
s∈ch(n)

w(n, s) · L(s)

labeleq1

We distinguish between static up(n) and lo(n) which are pre-compiled versus
dynamic L(n) and U(n) that are updated. At a fixed point when all its upper
and lower bounds were propagated from the leaves, the above equalities hold for
every node in G′.

Clearly, at a fixed point, the upper and lower bounds of the root node, s0,
is the answer provided by the current graph G′.

Computation over cutset. The upper and lower bounds of G′ can also be
obtained by summing across any full cutset nodes of G′ whenever G′ is at a
fixed point.

Definition 2 (cutset). Given a graph G′, a cutset C is any subset of nodes of
G′ s.t, 1. if we remove C from G′ there is no path from the root to any of the
(remaining) leaves of G′, and 2. C does not contain more than a single node
on any path in G′.

Clearly, the root is a cutset and also the set of leaves of G′ is a cutset. If
G′ in at a fixed point, and given any cutset C, then the total upper and lower
bounds of G′.

U(G′) =
∑
s∈C

g(s) · U(s) (2)

and
L(G′) =

∑
s∈C

g(s) · L(s)

2



Identifying the exact portion. Consider the set of ”solved” Leaf (SL) nodes
in G′ which correspond to full solutions.

When C = OPEN we get

L(s0) =
∑
t∈SL

g(t) +
∑

s∈OPEN\SL

g(s) · lo(s) (3)

U(s0) =
∑
t∈SL

g(t) +
∑

s∈OPEN\SL

g(s) · up(s)

The absolute gap between the upper and lower bound is

AbsGap(G′) = U(s0)− L(s0) =
∑

s∈OPEN\SL

g(s) · (up(s)− lo(s)) = (4)

AbsGap(G′) = U(s0)− L(s0) =
∑

s∈OPEN
g(s) · (up(s)− lo(s)) (5)

The ratio between the upper and lower bound is in general

RatioGap(G′) =
L(s0)

U(s0)
=

∑
s∈SL g(s) +

∑
s∈OPEN\SL g(s) · lo(s)

(
∑
s∈SL g(s) +

∑
s∈OPEN\SL g(s) · up(s)

(6)

We will use ”gap” for ”AbsGap”. For AND/OR search graph the explicit
graph G′ is an AND/OR graph. U(s0) and L(s0) are computed by propagating
those bounds from leaves to root. For OR nodes the computation is as in
equation 2. If n is an AND nodes then

Definition 3 (Bound propagation for AND nodes). Given the currently ex-
plored graph G′, for any node n ∈ G′ its lower and upper bounds can be computed
recursively:

• If n is a non-solved leaf node then U(n) = L(n) = 0 (inconsistent problem)

• If n is an internal node then

U(n) =
∏

s∈ch(n)

U(s) (7)

and
L(n) =

∏
s∈ch(n)

L(s)

2 Bounded Weighted Counting by Search

Since we are interested in computing upper and lower bounds having a bounded
gap that should diminish as more of the search space is explored, we can convert
the problem into an optimization one.

3



Definition 4. Given a weighted graph G, and given ε, find the smallest sub-

graph G′ of G for which L(s0)
U(s0)

≥ 1− ε. Or, alternatively, U(s0)− L(s0) ≤ ε.

We can view the problem as finding the shortest path in a meta search space
graph as follows.

Definition 5 (Approximated counting as shortest path). Given a weighted
AND/OR graph G, its root s0 and a threshold ε we define a (meta) search graph
G̃ as follows

• The initial state G0 is the graph containing only s0, which is the root node
in G.

• The states of G̃ are explicit partial AND/OR subgraphs G′ that include
the root s0.

• if G′ is a state in G̃, each leaf n ∈ G′,either an AND node or an OR node,
yields a child graph G′n in which G′ is augmented with ch(n), having the
corresponding arc weights.

• Each G′ is associated with a lower bound LG′(s0) and an upper bound
UG′(s0) which are the backup values propagated from the leaves.

• A state G′ satisfies the goal conditions if its gap (absolute or ratio) is
bounded below ε.

• The task is to find the shortest solution path in G̃. Alternatively, we seek
the smallest G′ satisfying the goal conditions.

Since we are interested in an anytime algorithms we can justify the following
greedy scheme: given an explicit graph G′, extend it in the direction that min-
imize the gap function the most. We define the notion of gain as the reduction
in the gap due to expanding a node n in G′.

Definition 6 (Gain). The gain obtained moving from G′ to G′n is defined by:

gainG′(n) = gap(G′)− gap(G′n) (8)

It can also be defined by

gainG′(n) = gapG′(s0)− gapG′n(s0)

Proposition 1. If G′ is an OR graph we have

gainG′(n) = g(n) · {up(n)− lo(n)−
∑

m∈ch(n)

w(n,m)(up(m)− lo(m))} (9)

Thus the gain can be computed locally and efficiently for OR graphs. If we
have AND/OR graphs however the computation may not be as local. In the
worst-case, we will have to propagate the impact of expanding a node n to the
root and compute its corresponding gap and the corresponding gain. But if we
keep the updated backup value at each node in G′, the gain computation will
impact only nodes along the path from n to the root.

4



Proposition 2. Given an AND/OR graph G′ and an expansion of a node n,
computing the gainG′(n) is linear in the depth of n (the depth of the associated
variable) in the pseudo-tree.

When the heuristic function yielding lo(n) and up(n) is accurate the gain
will be zero for many nodes. In that case we need to break ties in favor of
another measure. We choose gain2

gain2G′(n) = up(n)− lo(n)

We can also define the relative gain.

Definition 7 (Relative Gain). Given the relative cost of G′ defined by

RatioGap(G′) =
L(G′)

U(G′)

Once we expand node n in G′ we get

RatioGap(G′n) =
L(G′n)

U(G′n)
=
L(G′) + LO(n)

U(G′) + UP (n)

where
LO(n) = (

∑
m∈child(n)

w(n,m) · lo(m))− g(n) · lo(n)

and
UP (n) = (

∑
m∈child(n)

w(n,m) · up(m))− g(n) · up(n)

Then

RationGain(n) =
L(G′)

U(G′)
−

L(G′) +
∑
m∈child(n) w(n,m) · lo(m)− g(n)lo(n)

U(G′) +
∑
m∈child(n) w(n,m) · up(m)− g(n)up(n)

3 Algorithms

3.1 Greedy best first

Since the path in our meta search space will be shorter if the gains associated
with its nodes are largest it seems that a greedy algorithm that expand a node
having a largest gain should be appropriate. Algorithm ”greedy-Best-First-
Search” or GBFS is defined in Algorithm 1. It assumes absolute gap.

If we order the nodes in a breadth-first manner GBFS is similar to the next
algorithm, called BFS (Algorithm 2, which addresses explicitly the notion of G
being a graph rather than a tree(steps 7-11) and assumes no initial lower and
upper-bounds.

5



Algorithm 1 Greedy BFS

Input: a weighted state space graph G over set of variables X = {X1, ..., Xn},
defined implicitly. A root s0 of G. w(s, s′) is the cost of the arc (s, s′), ε.

1: initialize: G′ ← {s0}. initialize up(s0) and lo(so). Evaluate the gain in s0.
2: initialize: cost(G′)← up(s0)− lo(s0). Q holds the leaf nodes of G′ ordered

by their gain (EQ. 8).
3: for until G′ satisfies U(G′)− L(G′) ≤ ε do
4: n← dequeue(Q).
5: Expand n generating its child(n).
6: for each m ∈ child(n) do
7: compute gain(m) and gain2(m) and insert (m, gain(m)) into Q.
8: If gain is zero use (m, gain2(m)).
9: end for

10: newcost← cost(G′)− gain(n)
11: G′ ← G′ ∪ child(n).
12: Cost(G′)← newcost
13: end for

return G′, cost(G′).

3.2 A depth first summation algorithm with bounded er-
ror

Theorem 1. Let T be an OR tree with arcs with nodes N and non-negative arc
weights w(n,m) for parent node n and child node m, such that for all nodes n,∑
m∈children(n) w(n,m) ≤ 1. We recursively define the partition function Z(n)

of a node n to be equal to 1 if n is a leaf node and
∑
m∈children(n) w(n,m)Z(m)

otherwise. Then the function defined above Zε(n, ε) computes upper and lower
bounds lo(n) and hi(n) such that

Z(n)(1− ε) ≤ lo(n) ≤ Z(n) ≤ hi(n) ≤ Z(n)

1− ε
(10)

Lemma 1. If a ≤ b ≤ c and a
c ≥ (1− ε) then b(1− ε) ≤ a ≤ b ≤ c ≤ a

1−ε

Proof of theorem 1. The proof is by induction on the tree. If n is a leaf node
then lo(n) = hi(n) = Z(n) = 1, which satisfies the claim. For the inductive case,
n is a node whose children m satisfy the theorem. The algorithm maintains the
invariant that lo(n) and hi(n) are upper and lower bounds on Z(n) at all times.
To see this note that at the initialization of lo(n) and hi(n) this is trivially true.
For each child of n, if we change lo(n) then we are are adding a term that, by
the inductive assumption, is a lower bound on the corresponding term in Z(n).
Similarly, for hi(n), if in the loop we replace a term w(n,m) with w(n,m)∗hi(m)
then we are replacing an upper bound of the corresponding term in Z(n) with
another (potentially tighter) upper bound.

There are two cases to consider: 1) if the loop is broken because lo(n)/hi(n) ≥
1 − ε then by the invariant just described above and the lemma, we are done.

6



Algorithm 2 Breadth-First Search (BFS) for probabilistic weighted counting

Input: a weighted state space graph S = (X,D,G) over set of variables X =
{X1, ..., Xn}, defined implicitly. A root s0 of S. c(s, s′) is the cost of the
arc (s, s′).

Output: for each node, the weight of all partial paths merge into it from the
root.

1: initialize OPEN ← s0. q(s0) = 1. q(s) is the weight count for s
2: while OPEN is not empty do
3: < s, q >← first in OPEN where ordering is breadth-first. Remove it

from OPEN and put it in CLOSED.
4: expand s, generating all its child nodes with pointers back to s.
5: for each child s′ of s do
6: r(s′)← q(s) · c(s, s′).
7: if s′ appears neither in OPEN nor in CLOSED, add it to OPEN.

Attach a pointer from s′ to s. then
8: Assign the newly computed q(s′) = r(s′) to s′.
9: else

10: update q(s′)← q(s′) + r(s′).
11: if s′ is in CLOSED move it back to OPEN.
12: end if
13: end for
14: end whilereturn the sum of q’s of all leaf nodes.

2) On the other hand, if the loop finishes, then we need to show that it must be
the case that lo(n)/hi(n) ≥ 1− ε. If the loop finishes then we have that lo(n) =∑
m∈children(n)(w(n,m)lo(m)) and hi(n) =

∑
m∈children(n)(w(n,m)hi(m)). But

by the inductive hypothesis, each of the children m satisfies lo(m)
hi(m) ≥ 1 − ε.

Substituting these inequalities into the parent lower bound expression:

lo(n) =
∑

m∈children(n)

w(n,m)lo(m) (11)

≥
∑

m∈children(n)

w(n,m)(1− ε)hi(m) (12)

= (1− ε)
∑

m∈children(n)

w(n,m)hi(m) (13)

= (1− ε)hi(n). (14)

It follows that lo(n)
hi(n) ≥ 1 − ε. Thus, again by the lemma and invariant, the

theorem holds.

7



Algorithm 3 Zε
Input: State-space node n
ε > 0

Output: lo and hi, lower and upper bounds on the partition function of n
function Zε(n, ε)

if n is a leaf node then
return (1,1)

else
lo(n)← 0
hi(n)←

∑
m∈children(n)(w(n,m))

end if
for all m ∈ children(n) do

if lo(n)
hi(n) ≥ 1− ε then
break

else
lo(m), hi(m)← Zε(m, ε)
lo(n)← lo(n) + w(n,m)lo(m)
hi(n)← hi(n)− w(n,m) + w(n,m)h(m)

end if
end for
return (lo, hi)

end function

3.3 For AND/OR graphs

In the case of AND/OR graphs we need to multiply the lower and upper bounds
at each AND node. But this will cause the bound guarantees to drop off expo-
nentially with the number of OR children of an AND node. So to preserve the
bound we can iterate sequentially through the OR children and update the ε as
we go.

Let ε be the input to the algorithm, and let ε1, . . . , εK be the K OR children
n1, . . . , nK . Then we can adjust the εk as follows:

ε1 ← ε (15)

εi ← 1− (1− εi−1)
hi(ni−1)

lo(ni−1)
for i > 1 (16)

where (lo(ni−1), hi(ni−1))← Zε(ni−1, εi−1) (17)

Proof. We need to show that if we do this then∏
i

lo(ni)

hi(ni)
≥ (1− ε) (18)

This equality holds for just the first term in the above product. Suppose

8



this inequality holds after multiplying together the first k − 1 terms. Then the
inequality after multiplying the kth term is:

(
k−1∏
i=1

lo(ni)

hi(ni)

)
lo(nk)

hi(nk)
≥ (1− ε)(1− εk) by the inductive hypothesis (19)

= (1− ε)
(

1−
(

1− (1− εk−1)
hi(nk−1)

lo(nk−1)

))
(20)

= (1− ε)(1− εk−1)
hi(nk−1)

lo(nk−1)
(21)

≥ (1− ε). (22)

(22) follows because by construction (lo(nk−1), hi(nk−1)) ← Zε(nk−1, εk−1).

Thus by the inductive hypothesis, lo(nk−1)
hi(nk−1)

≥ 1 − εk−1, which implies that
hi(nk−1)
lo(nk−1)

≥ 1
1−εk−1

.

4 A RBFS style approximation algorithm

See algorithm 5. An approximate partition function algorithm in the style of
recursive best first search. Suppose we want to compute the probability mass
in the subtree rooted at node n. We maintain for each child m of n an upper
bound hi(m) and lower bound lo(m). Our goal is to minimize

hi(n)− lo(n) =
∑

m∈children(n)

w(n,m)(hi(m)− lo(m)). (23)

Our algorithm explores each child m of n so long as m is the child which con-
tributes most to this sum. We implement this as a recursive function call; the
call to the function on a child is passed the bound ∆ which corresponds to the
value of the next largest term in the sum.

Claim: at any point (lo, hi) ← RecZ-AO(n) are lower and upper bounds
on Z(n).

Proof. By construction, lo and hi are initially lower and upper bounds. RecZ-
AO computes Z(n) exactly for leaf nodes. For non-leaf OR nodes, RecZ-AO,
if each hi(m) is an upper bound then

hi(n) =
∑

m∈children(n)

w(n,m)hi(m) (24)

≥
∑

m∈children(n)

w(n,m)Z(m) (25)

= Z(n). (26)

Very similarly, we can show hi(n) and lo(n) are upper and lower bounds for
AND and OR nodes if the same holds for their children.

9



Algorithm 4 RecZ

function RecZ(n) . top-level procedure
Initialize lo(n) and hi(n)
repeat

∆← hi(n)− lo(n)
(lo(n), hi(n))← RecZ(n,∆)
yield (lo(n), hi(n)) . Yield bounds to return stream for anytime

retrieval
until hi(n) = lo(n)

end function

function RecZ(n, ∆)
. n is a node. We explore this subtree until hi(m)− lo(m) is less than ∆.
if n is a leaf node then

return (1,1)
end if

for all m ∈ children(n) do . Initialize F value for each child node
lo(m)← 0 . Or any precomputed lower bound
hi(m)← 1 . Or any precomputed upper bound
F (m)← w(n,m)(hi(m)− lo(m))

end for

Q← pqueue({(m,F (m))|m ∈ children(n)}) . Create priority queue Q
while hi(n)− lo(n) > ∆ do

(m,F (m))← pop(Q) . Pop child with largest F(m) from priority
queue

NextBest← peek(Q) . Get the F value of the next largest child in
the queue

∆m ← NextBest/w(n,m)
(lo(m), hi(m))← RecZ(m,∆m) . Recursive call
hi(n)←

∑
m∈children(n) w(n,m)hi(m) . Recompute node bounds

lo(n)←
∑
m∈children(n) w(n,m)lo(m)

F ′(m)← w(n,m)(hi(m)− lo(m)) . Insert child node back into queue
with new F value

Q← insert((m,F ′(m)), Q)
end while
return (lo, hi)

end function

10



Algorithm 5 RecZ-AO: Recursive partition function algorithm for AND/OR
trees
function RecZ-AO(n) . top-level procedure

Initialize lo(n) and hi(n)
repeat

∆← hi(n)− lo(n)
(lo(n), hi(n))← RecZ-AO(n, ∆)
yield (lo(n), hi(n)) . Yield bounds to return stream for anytime

retrieval
until hi(n) = lo(n)

end function

function RecZ-AO(n, ∆)
. We explore this subtree until hi(n)− lo(n) is less than ∆.

if n is a consistent leaf node then
return (1,1)

else if n is an inconsistent leaf node then
return (0,0)

end if

for all m ∈ children(n) do . Initialize F value for each child node
lo(m)← 0 . Or any precomputed lower bound
hi(m)← 1 . Or any precomputed upper bound
F (m)← w(n,m)(hi(m)− lo(m))

end for

Q← pqueue({(m,F (m))|m ∈ children(n)}) . Create priority queue Q
while hi(n)− lo(n) > ∆ do

(m,F (m))← pop(Q) . Pop child with largest F(m) from priority
queue

NextBest← peek(Q) . Get the F value of the next largest child in
the queue

∆m ← NextBest/w(n,m)
(lo(m), hi(m))← RecZ-AO(m, ∆m) . Recursive call
if n is an OR node then . Recompute node bounds

hi(n)←
∑
m∈children(n) w(n,m)hi(m)

lo(n)←
∑
m∈children(n) w(n,m)lo(m)

else if n is an AND node then
hi(n)←

∏
m∈children(n) w(n,m)hi(m)

lo(n)←
∏
m∈children(n) w(n,m)lo(m)

end if
F ′(m)← w(n,m)(hi(m)− lo(m)) . Insert child node back into queue

with new F value
Q← insert((m,F ′(m)), Q)

end while
return (lo, hi)

end function

11



Claim: RecZ-AO eventually terminates with an lo = hi = Z(n).

Proof. TBD

12


