

Anytime Best+Depth-First Search for Bounding Marginal MAP

Radu Marinescu IBM Research - Ireland Junkyu Lee, Alex Ihler and Rina Dechter University of California, Irvine

AAAI 2017 Technical Session: RU: Reasoning under Uncertainty Feb. 8th. 2017 10:00 am – 11:00 am Oral Presentation Paper 2066

Motivation and Contribution

- Marginal MAP Inference
 - Probabilistic inference query
 - Optimal partial configuration after marginalizing hidden/latent variables in a probability distribution
 - Complexity: NPpp complete
 - Often it is the right task on various applications
 - Probabilistic conformant planning [Lee, Marinescu, Dechter, 2015]
 - Natural language processing task [Bird, Klein, Loper, 2009]
 - Image completion task [Xue, Li, Ermon, Gomes, Selman, 2016]
- Contributions
 - Anytime hybrid (best+depth-first) search for MMAP
 - Improvement of anytime performance for finding upper and lower bounds
 - Upper-bound: estimate of optimal solution from a partial solution
 - Lower-bound: sub-optimal solution

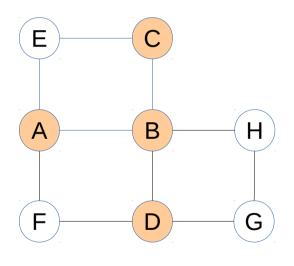
Outline

- Background
 - Graphical model
 - AND/OR search space & WMB heuristic
 - Previous MMAP search algorithms

- Best+Depth-First search for MMAP
 - LAOBF (Best-First AND/OR Search with Depth-First Lookaheads)
 - AAOBF (Alternating Best-First and Depth-First AND/OR search)
 - LnDFS (Learning Depth-First AND/OR search)
- Experiments
- Conclusion

Background – graphical model

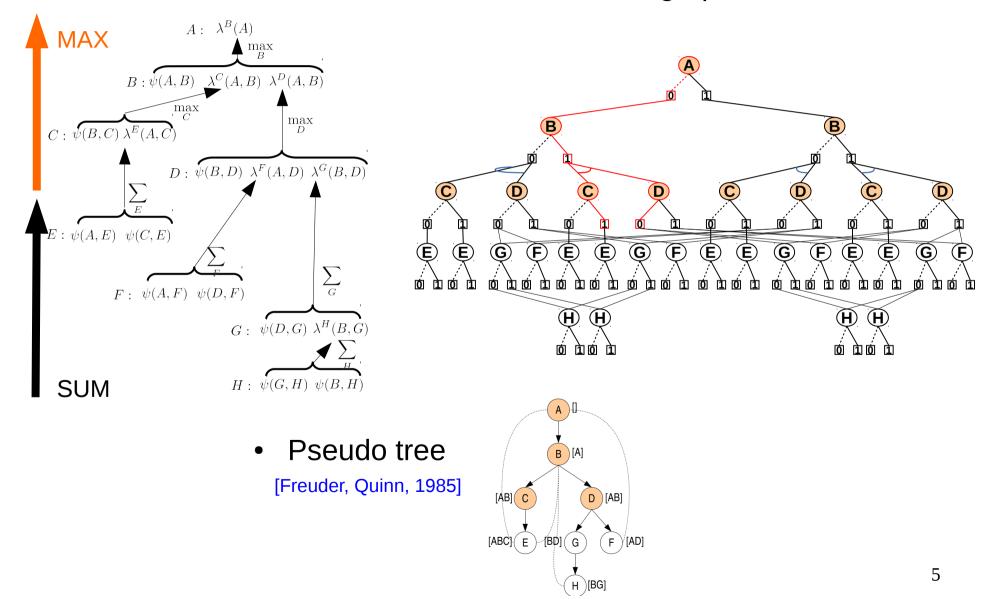
- Graphical model $\mathcal{M} = \langle \mathbf{X}, \mathbf{D}, \mathbf{F} \rangle$
 - variables $\mathbf{X} = \{X_1, \dots, X_n\}$
 - domains $\mathbf{D} = \{D_1, \dots, D_n\}$
 - functions $\mathbf{F} = \{\psi_1, \dots, \psi_r\}$


$$P(\mathbf{x}) = \frac{1}{Z} \prod_{\alpha \in F} \psi_{\alpha}(\mathbf{x}_{\alpha})$$

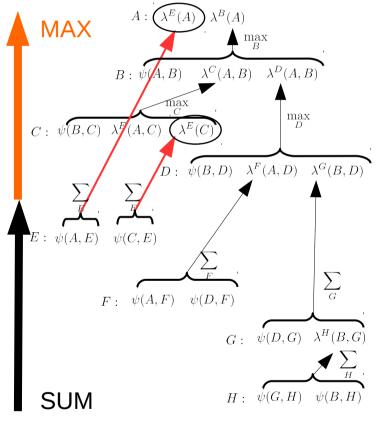
• Marginal Map task

 $\mathbf{x}_M^* = \operatorname{argmax}_{\mathbf{x}_M} \sum_{\mathbf{x}_s} \prod_{\alpha} \psi_{\alpha}(\mathbf{x}_{\alpha})$

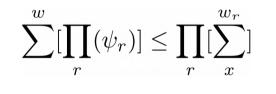
- $\mathbf{x} = \mathbf{x}_M \cup \mathbf{x}_S$
- Max and sum not commute


- Primal graph
 - nodes are variables
 - two nodes are connected if they appear in the same function

 $\mathbf{X}_M = \{A, B, C, D\}$ $\mathbf{X}_S = \{E, F, G, H\}$


Background – AND/OR search space

Bucket elimination [Dechter, 1999]
 AND/OR search graph [Mateescu, Dechter, 2007]


Background - WMB heuristics

- Mini-bucket elimination[Dechter, Rish 2001]
 - "i-bound", limit on the number of variables in a single mini-bucket

- Mini-bucket upper bound $\sum_{E} [\psi(A, E)\psi(C, E)] \leq [\sum_{E} \psi(A, E)] [\sum_{E} \psi(C, E)]$

- Weighted Mini-bucket [Liu, Ihler, 2012]
 - Holder's inequality

$$\sum_{x}^{w} f(x) \triangleq \left[\sum_{x} f(x)^{\frac{1}{w}}\right]^{w} \qquad w = \sum_{r} w_{r}$$

- WMB Moment Matching [Liu, Ihler, 2011] [Marinescu, Ihler, Decther, 2014]
 - MAP variables

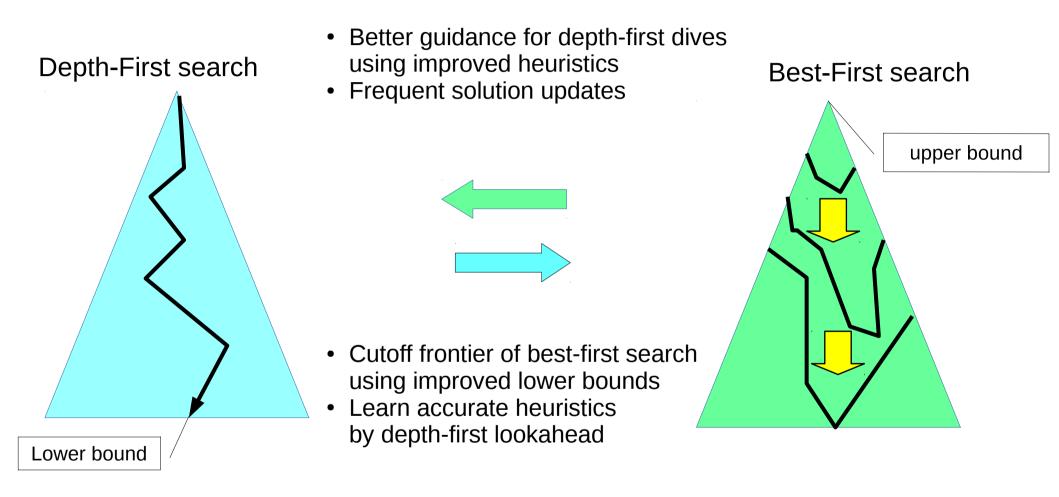
$$\psi_{kr} = \psi_{kr} \left(\frac{\mu}{\mu_{r}}\right)$$
$$\mu_{r} = \max_{\mathbf{Y}_{r}} \psi_{kr}; \ \mu = \left(\prod_{r} \mu_{r}\right)^{1/R}$$

SUM variables

$$\psi_{kr} = \psi_{kr} \left(\frac{\mu}{\mu_r}\right)^{w_{kr}}$$
$$\mu_r = \sum_{\mathbf{Y}_r} \left(\psi_{kr}\right)^{1/w_{kr}}; \ \mu = \prod_r \left(\mu_r\right)^{w_{kr}}$$

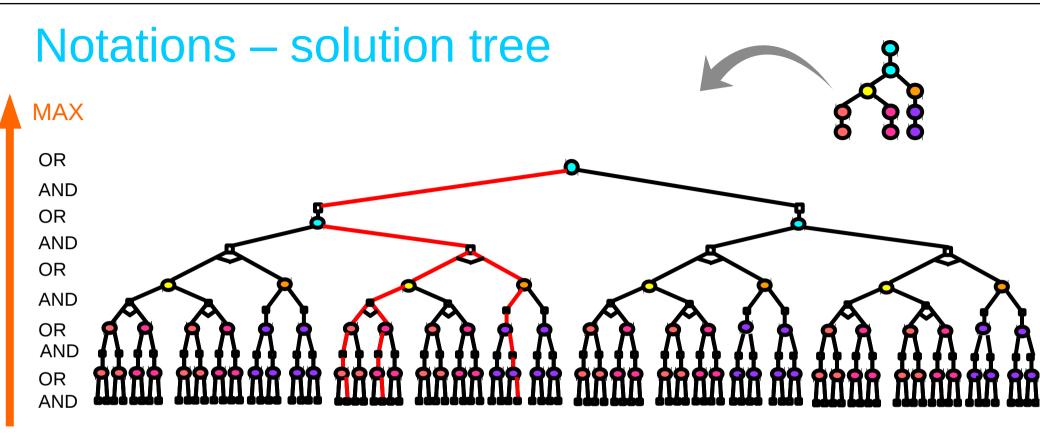
Previous MMAP search algorithms

Depth- Join-tre	Park, Darwiche Depth-First BnB Join-tree upper bound (relaxed variable ordering)		Marinescu, Decther, Ihler Depth-First BnB AND/OR Search WMB Heuristic			Weigł Anytir	Marinescu, Decther, Ihler Ihted Best-First ime Depth-First AND/OR 3 heuristic			
- depth - dynar	- compact AND/OR search space - more accurate WMB heuristics				 anytime solutions infrequent solution updates still memory intensive 					
2003	2003			2014			2016			
	2009 Yuan, Hansen Depth-First BnB Incremental Join-tree upper bound			2015			2017			
				Marinescu, Decther, Ihle Best-First/Recursive BF AND/OR Search WMB heuristic			Marinescu, Lee, lihler, Decther Best+Depth-First - high quality upper/lower bounds - more frequent solution updates - memory efficiency			
- static heuristic				 BF avoids solving summation problems very memory intensive no anytime, return optimal solution or no solution 						

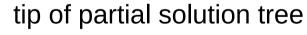


Outline

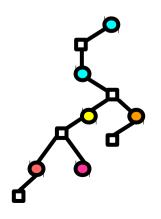
- Background
 - Graphical model
 - AND/OR search space & WMB heuristic

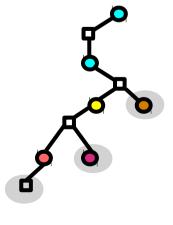

- Best+Depth-First search for MMAP
 - LAOBF (Best-First AND/OR Search with Depth-First Lookaheads)
 - AAOBF (Alternating Best-First and Depth-First AND/OR search)
 - LnDFS (Learning Depth-First AND/OR search)
- Experiments
- Conclusion

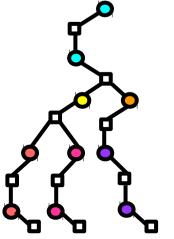
Best+Depth-First Search

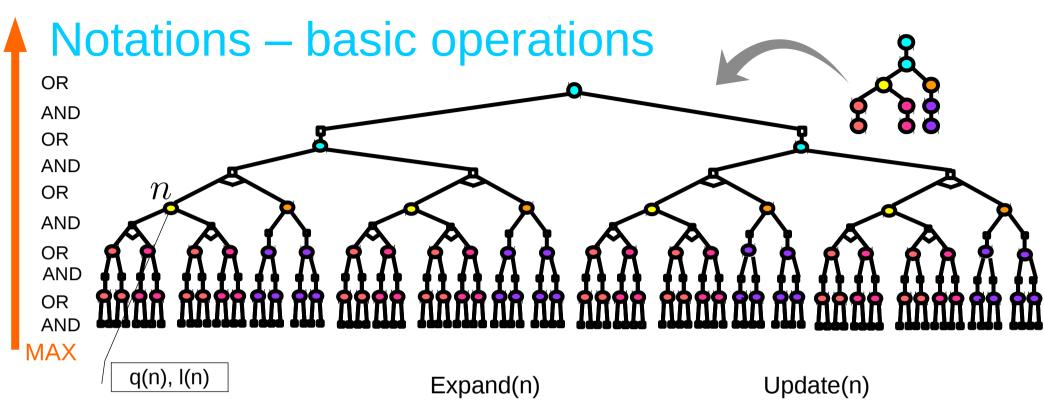


When Global UB = Global LB, Optimal Solution Discovered

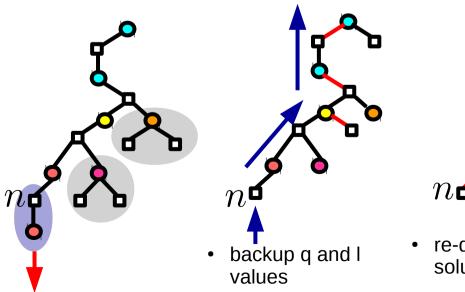


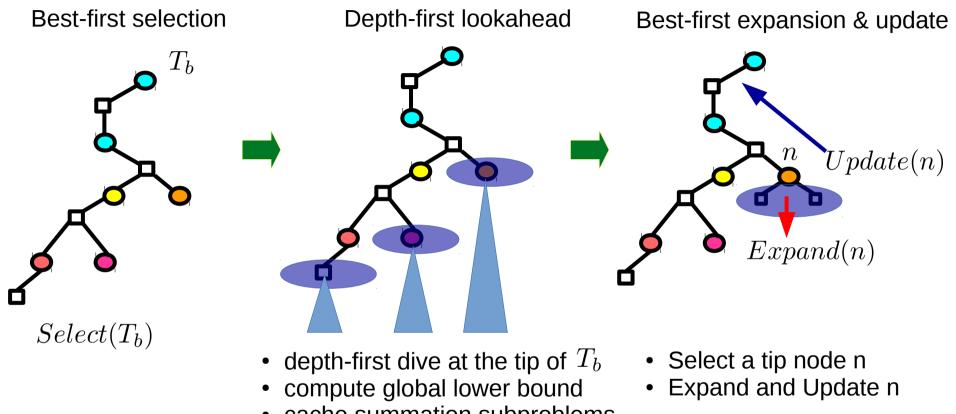






solution tree



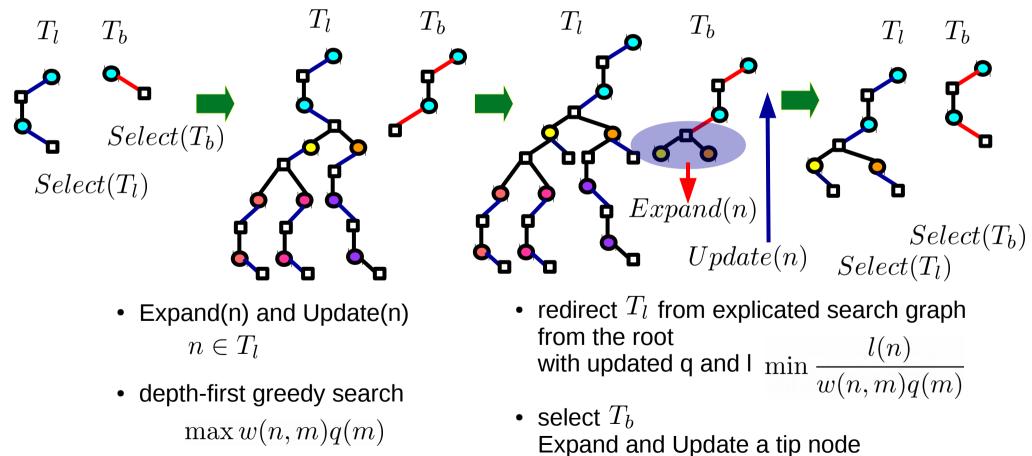


- q(n) : upper bound at n
- q(root) : global upper bound
- I(n) : lower bound at n
- I(root) : global lower bound
- T_b : best partial solution tree (partial solution tree where OR nodes direct the child m with best q(m)

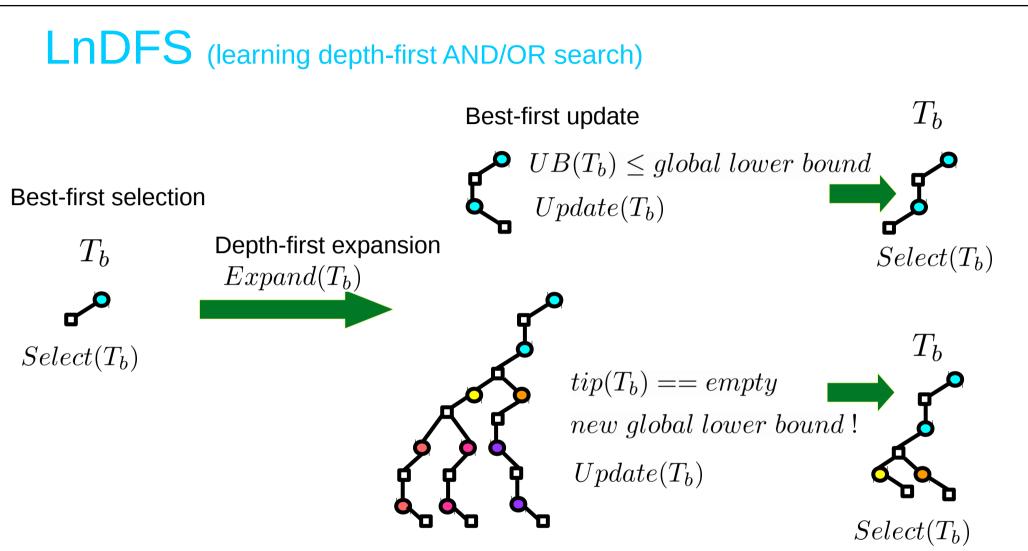
- re-direct best partial solution tree

LAOBF (best-first AND/OR search with depth-first lookaheads)

cache summation subproblems


cutoff parameter: control depth-first lookahead (at every θ number of node expansions.)

AAOBF (alternating best-first with depth-first AND/OR search)


Depth-first greedy expansion T_l Depth-first re-direct T_l Best-first re-direct T_b Best-first expansion & update T_b

Depth-first selection Best-first selection

University of California, Irvine

 $Expand(T_b)$ Keep expanding tips nodes of T_b $Update(T_b)$ Update values from tip nodes of T_b

Outline

- Background
 - Graphical model
 - AND/OR search space & WMB heuristic

- Best+Depth-First search for MMAP
 - LAOBF (Best-First AND/OR Search with Depth-First Lookaheads)
 - AAOBF (Alternating Best-First and Depth-First AND/OR search)
 - LnDFS (Learning Depth-First AND/OR search)
- Experiments
- Conclusion

Experiments

- Anytime Algorithms
 - Presented Best+Depth-First Search
 - LAOBF $\theta = 1000$
 - AAOBF
 - LnDFS
 - State-of-the-art
 - Weighted Recursive Best-First AND/OR Search [Lee, Marinescu, Ihler, Dechter, 2016] with Overestimation $w_{i+1} = \sqrt{w_i}$ $w_0 = 64$
 - Breadth Rotate AND/OR Branch and Bound [Lee, Marinescu, Ihler, Dechter, 2016]
 - Anytime Factor Set Elimination [Maua, Campos, 2012]
- Memory
 - total 24 GB
 - WMB-MM(i) i-bound: 20 or the largest within 4 GB
 - caching for AND/OR search graph max 4 GB

Experiment

- Benchmark
 - derived from UAI inference competitions for MPE query
 - randomly choose 50% of the variables as MAP variables
 - generate 4 random MMAP instances
 - Grid, Pedigree, Promedas domain

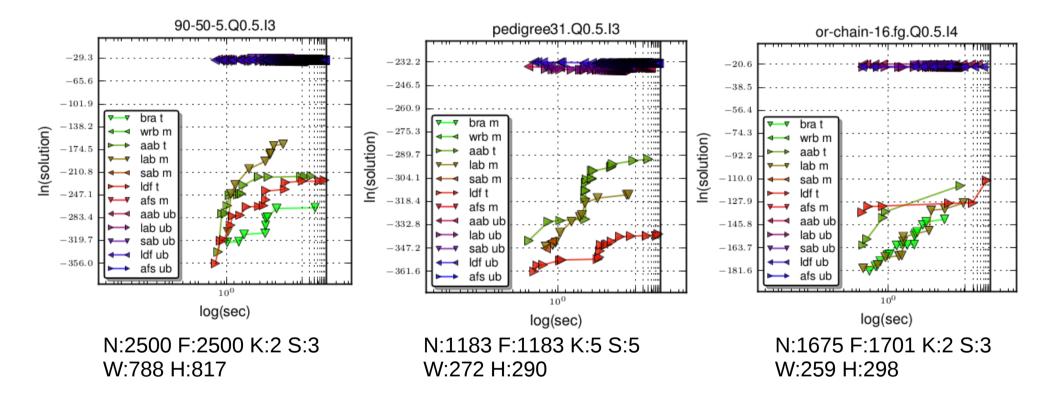
• Problem instance parameters

Domain (#. instances)	$N_{min} N_{ave} N_{max}$	$F_{min}F_{ave}F_{max}$	$K_{min} K_{max}$	$S_{min}S_{max}$	$W_{min}W_{av}W_{max}$	$_{x}H_{min}H_{av}H_{max}$
Grid (128)	144,649,2500	144,649,2500	2,2	3,3	25,163,814	42,189,834
Pedigree (88)	334,917,1289	334,917,1289	3,7	4,5	35,127,289	63,152,312
Promedas (100)	381,1064,1997	385,1077,2024	2,2	3,3	11,137,552	33,171,577

N: number of variables, W: constrained induced width,

F: number of functions,

n, H: constrained pseudo tree height

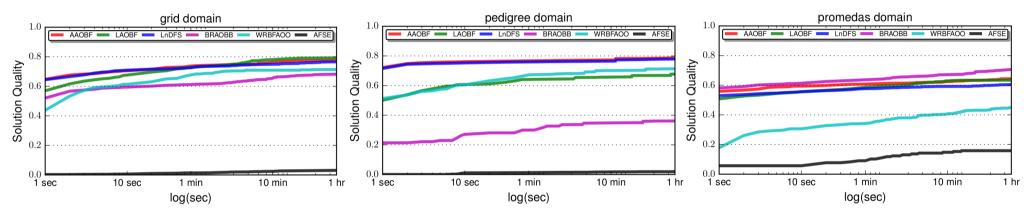

17

S: scope size

K: domain size,

Experiment – individual instances

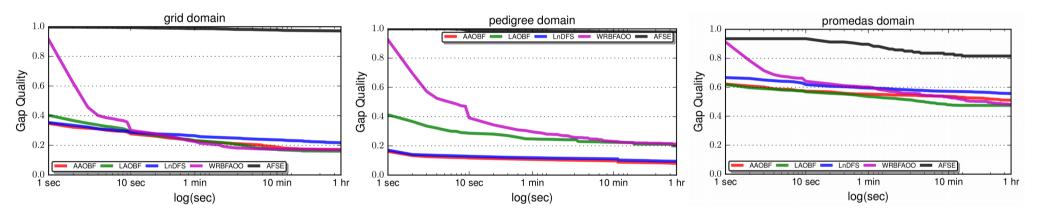
• Anytime search status for individual instances


- search: LAOBF (lab), AAOBF (aab), LnDFS (ldt), BRAOBB (bra)
- heuristic: WMB-MM (20)
- memory: 24 GB

Other algorithms couldn't find any solution due to memory out

Experiment - average solution quality

- Average solution quality $Ave[\frac{best \ solution \ found}{optimal \ solution}]$
 - anytime quality of lower bound normalized by optimal solution
 - when optimal solution is not available, used best-known solution



- Result
 - How the quality of solution improves over time
 - LAOBF, AAOBF, LnDFS
 - improved upon WRBFAOO on 3 domains
 - BRAOBB
 - best on promedas domain, second worst on pedigree domain
 - AFSE: worst performance on 3 domains

Experiment - average gap quality

- Average gap quality $Ave[\frac{upper \ bound \ \ lower \ bound}{upper \ bound}]$
 - anytime gap (difference between upper and lower bound) normalized by upper bound (If no lower bound available, gap = 1)

- Result
 - How the gap between lower/upper bound decreases over time (gap=0 optimal)
 - LAOBF, AAOBF, LnDFS
 - All similar improvements over time, especially at shorter time bounds
 - AAOBF was overall best
 - AFSE: worst performance on 3 domains

Experiment – memory robustness

Memory robustness

	grid					pedigree					promedas				
algorithm	M_{out}	M_{∞}	$\overline{\Delta_G}$	$\overline{T_M}$	-	M_{out}	M_{∞}	$\overline{\Delta_G}$	$\overline{T_M}$		M_{out}	M_{∞}	$\overline{\Delta_G}$	$\overline{T_M}$	
AAOBF	22%	0%	7%	1208s		13%	0%	6%	1596s	ן	0%	0%	-%	-S	
LAOBF	48%	0%	32%	1345s		59%	5%	17%	1418s		62%	0%	77%	1012s	
WRBFAOO	41%	11%	42%	645s		53%	10%	38%	707s		28%	28%	100%	749s	
LnDFS	0%	0%	-%	-S		1%	0%	27%	942s		0%	0%	-%	-S	
AFSE	77%	76%	99.9%	64s		83%	83%	100%	21s		74%	74%	100%	58s	

- How search algorithm effectively utilized the memory and improves gap within the memory limit
- M_{out} % of instances terminated by memory limit
- $\frac{M_{\infty}}{M_{\infty}}$ % of instances terminated by memory limit and no solution found at all
- $\overline{\Delta_G}$ average gap computed from out of memory instances only
- $\overline{T_M}$ average search time computed from out of memory instances
- Result
 - LnDFS is the most memory robust algorithm
 - AAOBF (LAOBF) improved memory robustness compared to WRBFAOO
 - AFSE is the worst among 5 algorithms

Conclusion

- Anytime Best+Depth-First search algorithms improved upon the state-of-the-art algorithms
 - higher quality anytime solutions
 - tighter anytime upper bounds
 - more effective use of memory
- Future work
 - New anytime search + approximate summation inference
 - variational bounds with search
 - probabilistic bounds from sampling