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Motivation and Contribution

● Marginal MAP Inference

– Probabilistic inference query 
● Optimal partial configuration after marginalizing hidden/latent variables in a probability distribution

– Complexity: NPpp complete

– Often it is the right task on various applications 
● Probabilistic conformant planning [Lee, Marinescu, Dechter, 2015]
● Natural language processing task [Bird, Klein, Loper, 2009]
● Image completion task [Xue, Li, Ermon, Gomes, Selman, 2016]

● Contributions

– Anytime hybrid (best+depth-first) search for MMAP

– Improvement of anytime performance for finding upper and lower bounds
● Upper-bound: estimate of optimal solution from a partial solution

● Lower-bound: sub-optimal solution
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Outline
● Background

– Graphical model

– AND/OR search space & WMB heuristic

– Previous MMAP search algorithms

● Best+Depth-First search for MMAP

– LAOBF (Best-First AND/OR Search with Depth-First Lookaheads)

– AAOBF (Alternating Best-First and Depth-First AND/OR search)

– LnDFS (Learning Depth-First AND/OR search)

● Experiments

● Conclusion
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Background – graphical model
● Graphical model

– variables

– domains

– functions

● Marginal Map task

–

– Max and sum not commute

● Primal graph
– nodes are variables

– two nodes are connected if they 
appear in the same function 
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Background – AND/OR search space

● Bucket elimination

● Pseudo tree

● AND/OR search graph
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Background - WMB heuristics
● Mini-bucket elimination

–  “i-bound”, limit on the number of  
variables  in a single mini-bucket

– Mini-bucket upper bound

● Weighted Mini-bucket

– Holder’s inequality

● WMB Moment Matching

– MAP variables

– SUM variables

[Marinescu,Ihler,Decther, 2014]

[Dechter, Rish 2001] [Liu, Ihler, 2012]

[Liu, Ihler, 2011]
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Previous MMAP search algorithms

Park, Darwiche 
Depth-First BnB
Join-tree upper bound 
(relaxed variable ordering)

Yuan, Hansen
Depth-First BnB
Incremental 
Join-tree upper bound 

2003

2009

2014

Marinescu, Decther, Ihler
Best-First/Recursive BF
AND/OR Search
WMB heuristic

2015

Lee,Marinescu, Decther, Ihler
Weighted Best-First
Anytime Depth-First AND/OR
WMB heuristic

Marinescu, Decther, Ihler
Depth-First BnB
AND/OR Search
WMB Heuristic

2016

- BF avoids solving summation problems
- very memory intensive
- no anytime, return optimal solution or no 
solution

- anytime solutions
- infrequent solution updates
- still memory intensive

- compact AND/OR search space
- more accurate WMB heuristics

- static heuristic

- depth-first search
- dynamic heuristic

Marinescu, Lee, Iihler, Decther
Best+Depth-First
- high quality upper/lower bounds
- more frequent solution updates 
- memory efficiency

2017
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Best+Depth-First Search

Depth-First search Best-First search

● Cutoff frontier of best-first search 
using improved lower bounds

● Learn accurate heuristics 
by depth-first lookahead

● Better guidance for depth-first dives 
using improved heuristics

● Frequent solution updates

When Global UB = Global LB,
Optimal Solution Discovered

Lower bound
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Notations – solution tree

partial solution tree
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Notations – basic operations
OR 

AND 

OR 

AND 

AND 

OR 

OR 

OR 

AND 

AND 

q(n), l(n)

● q(n) : upper bound at n
● q(root) : global upper bound

● l(n) : lower bound at n
● l(root) : global lower bound

●        : best partial solution
tree (partial solution tree
where OR nodes direct
the child m with best q(m)

Expand(n) Update(n)

● re-direct best partial 
solution tree

● backup q and l 
values

MAX
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LAOBF (best-first AND/OR search with depth-first lookaheads)

● depth-first dive at the tip of  
● compute global lower bound
● cache summation subproblems

● Select a tip node n
● Expand and Update n

cutoff parameter: control depth-first lookahead  (at every      number of node expansions.)

Best-first selection Depth-first lookahead Best-first expansion & update
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AAOBF (alternating best-first with depth-first AND/OR search)

● Expand(n) and Update(n)

● depth-first greedy search

● redirect      from explicated search graph 
from the root
with updated q and l 

● select      
Expand and Update a tip node

Depth-first selection
Best-first selection

Depth-first greedy expansion
Best-first re-direct 

Depth-first re-direct 
Best-first expansion & update
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LnDFS (learning depth-first AND/OR search)

Keep expanding tips nodes of 

Update values from tip nodes of

Best-first selection

Depth-first expansion

Best-first update
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Experiments
● Anytime Algorithms

– Presented Best+Depth-First Search
● LAOBF
● AAOBF
● LnDFS

– State-of-the-art
● Weighted Recursive Best-First AND/OR Search 

with Overestimation
● Breadth Rotate AND/OR Branch and Bound 
● Anytime Factor Set Elimination

● Memory

– total 24 GB

– WMB-MM(i) i-bound: 20 or the largest within 4 GB

– caching for AND/OR search graph max 4 GB

[Maua,  Campos, 2012]

[Lee, Marinescu, Ihler, Dechter, 2016]

[Lee, Marinescu, Ihler, Dechter, 2016]
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Experiment
● Benchmark

– derived from UAI inference competitions for MPE query

– randomly choose 50% of the variables as MAP variables

– generate 4 random MMAP instances

– Grid, Pedigree, Promedas domain

● Problem instance parameters
Domain

(#. instances)

Grid
(128)

144,649,2500 144,649,2500 2,2 3,3 25,163,814 42,189,834

Pedigree
(88)

334,917,1289 334,917,1289 3,7 4,5 35,127,289 63,152,312

Promedas
(100)

381,1064,1997 385,1077,2024 2,2 3,3 11,137,552 33,171,577

N: number of variables, F: number of functions, K: domain size, S: scope size
W: constrained induced width, H: constrained pseudo tree height
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Experiment – individual instances
● Anytime search status for individual instances

N:2500 F:2500 K:2 S:3
W:788 H:817

N:1183 F:1183 K:5 S:5
W:272 H:290

N:1675 F:1701 K:2 S:3
W:259 H:298

- search: LAOBF (lab), AAOBF (aab), LnDFS (ldt), BRAOBB (bra)
- heuristic: WMB-MM (20)
- memory: 24 GB

Other algorithms couldn’t find any solution due to memory out
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Experiment - average solution quality
● Average solution quality

– anytime quality of lower bound normalized by optimal solution

– when optimal solution is not available, used best-known solution

● Result

– How the quality of solution improves over time

– LAOBF, AAOBF, LnDFS
● improved upon WRBFAOO on 3 domains

– BRAOBB
● best on promedas domain, second worst on pedigree domain

– AFSE: worst performance on 3 domains
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Experiment - average gap quality
● Average gap quality

– anytime gap (difference between upper and lower bound) normalized by 
upper bound (If no lower bound available, gap = 1)

● Result

– How the gap between lower/upper bound decreases over time (gap=0 optimal)

– LAOBF, AAOBF, LnDFS
● All similar improvements over time, especially at shorter time bounds
● AAOBF was overall best

– AFSE: worst performance on 3 domains
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Experiment – memory robustness
● Memory robustness

– How  search algorithm effectively utilized the memory and improves gap within the memory limit

–          % of instances terminated by memory limit

–          % of instances terminated by memory limit and  no solution found at all

–          average gap computed from out of memory instances only

–          average search time computed from out of memory instances

● Result

– LnDFS is the most memory robust algorithm

– AAOBF (LAOBF) improved memory robustness compared to WRBFAOO

– AFSE is the worst among 5 algorithms
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Conclusion
● Anytime Best+Depth-First search algorithms improved upon 

the state-of-the-art algorithms

– higher quality anytime solutions 

– tighter anytime upper bounds

– more effective use of memory

● Future work

– New anytime search + approximate summation inference
● variational bounds with search
● probabilistic bounds from sampling


