Sampling over Search Trees Using Abstractions
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Abstract

We present a new sampling scheme for approximating hard to compute summation
queries over graphical models (e.g., partition function). The scheme builds upon
exact algorithms that traverse a weighted directed state-space tree representing a
global probability function over a graphical model. With the aid of an abstrac-
tion function and randomization, the state space can be compacted to facilitate
tractable computation, yielding a Monte Carlo Estimate that is unbiased.

1 Introduction and Background

Imagine that we want to compute a function over a weighted directed search tree where the graph
is given implicitly, e.g., using a generative state-space search model whose explicit state tree is
enormous and does not fit in memory. Knuth and Chen [4] |1]] proposed a pioneering sampling
scheme for estimating quantities that can be expressed as aggregates (e.g., sum) of functions defined
over the nodes in the tree, focusing on estimating the number of nodes. Our work is inspired by their
scheme and extends it to a class of functions defined over weighted directed graphs. In particular,
since reasoning tasks over graphical models (e.g., probability of evidence or partition function) can
be transformed into tasks over weighted directed state trees [2], our scheme (Abstraction Sampling)
should apply.

A graphical model can be defined by a 4-tuple M = (X, D, F,[]), where X = {X; :i € [} isa
set of variables indexed by a set [ and D = {D; : i € I} is the set of finite domains of values for
each X;. F = {1, : « € scopes(F)} is a set of discrete functions, where o C I and X, C X is the
scope of 1,. A graphical model represents a global function Pr(X) o [], %a(Xa). A popular
task is to compute the partition function Z = ) [], ¥a(Xa). A graphical model can also be
expressed via a weighted state tree (17). The states or nodes in the graph are partial assignments
relative to a fixed variable ordering, where each layer corresponds to one variable.

2 Abstraction Sampling

Abstraction sampling uses an abstraction function that partitions the nodes in the search tree into
subsets of abstract states under the assumption that nodes in the same abstract state represent similar
subproblems and can therefore be merged into a "typical" single representative. Given an abstrac-
tion function over a weighted directed tree 7', our algorithm generates a weighted directed subgraph
T using a generative randomized process. In particular, the scheme chooses randomly, using im-
portance sampling probabilities, a single representative node from each encountered abstract state



Table 1: The effective variance is the empirical variance multiplied by the average number of nodes
per probe. For j-level we compute the ratio between the effective variances of that level and the
0-level abstraction (r.e.v). The table displays the fraction of instances where r.e.v is less than x%
percent. In parentheses results for j in (1, 2, 4, 6, 8). Benchmark statistics: (71, w, k, |F|, §) are
averages of number of variables, induced width, max domain size, number of functions, max scope

size.

Benchmark i-bound < 100% < 50% < 10%
(#instances, 71, W, k, |F|, )

BN 10 (5/49, 3/49, 3/49, 4/49, 3/49) (3/49, 3/49, 1/49, 2/49, 2/49) (0/49, 0/49, 0/49, 2/49, 1/49)
(49, 266.5, 24.3, 2, 266.5, 11.04) 15 (3/49, 0/49, 2/49, 3/49, 4/49) (1749, 0/49, 1/49, 1/49, 2/49) (0/49, 0/49, 0/49, 1/49, 2/49)
DBN 10 (11/47, 16/47, 16/47, 9/47, 11/47) (11/47, 15/47, 16/47, 9/47, 11/47) (7147, 10/47, 11/47, 5/47, 8/47)
(47,750.3,26.2, 2, 14847.9, 2) 15 (14/47, 16/47, 19/47, 19/47, 20/47) (12/47, 14/47, 19/47, 16/47, 17/47) (8/47, 10/47, 15/47, 15/47, 16/47)
Grids 10 (217,217,317, 3/7, 3/7) (2/7,2/7, 317,317, 3/7) (2/7,2/7,2/7,2/7,2/7)
(7,271,24.3,2,791.4,4) 15 (3/7,2/7,217,1/7,2/7) /7, 17,17, 1/7,2/7) /7, 17,17, 177, 1/7)
Linkage 10 (6/17,6/17, 8/17,7/17, 4/16) (2/17,6/17,7/17, 6/17, 2/16) (1/17, 3/17, 3/17, 3/17, 2/16)
(17,949.9,29.1, 4.9,949.9, 4) 15 (6/15, 3/15, 2/15, 5/15, 2/14) (1/15, 1/15, 2/15, 4/15, 1/14) (0/15, 0/15, 0/15, 1/15, 0/14)
Promedas 10 (5/10, 6/10, 6/10, 4/10, 6/9) (4/10, 6/10, 6/10, 4/10, 6/9) (3/10, 6/10, 6/10, 3/10, 2/9)
(10, 670.9, 18.6, 2, 670.9, 3) 15 (4/10, 4/10, 4/9, 4/10, 6/10) (2/10, 4/10, 3/9, 4/10, 6/10) (2/10, 4/10, 2/9, 3/10, 2/10)
Segmentation 10 (076, 0/6, 0/6, 0/6, 0/6) (0/6, 0/6, 0/6, 0/6, 0/6) (0/6, 0/6, 0/6, 0/6, 0/6)
(6,230.2, 18, 2, 858.3,2) 15 (1/6, 1/6, 1/6, 1/6, 1/6) (1/6, 1/6, 1/6, 0/6, 1/6) (0/6, 0/6, 0/6, 0/6, 1/6)

and associates it with a weight that estimates the total contribution of all states that it represents.
Importance sampling probabilities are chosen proportional to the current weight of a node, the cost
of the path to the node, and an estimate of the total mass of the subtree rooted by this node, given
by a heuristic function. An estimator to our query over I’ can be computed over the generated rep-
resentative tree 71', which is supposed to be far smaller. Clearly, if the number of abstract states is
bounded, the generated tree is small and the estimator can be computed efficiently.

We show that like in the earlier schemes of Knuth and Chen [4} |1], our emerging estimator is unbi-
ased. Moreover, both accuracy and time complexity of our proposed abstraction sampling scheme
should depend on the quality of the abstraction function and the accuracy of the sampling process.

3 Experimental Results and Future Work

We evaluated our algorithm on instances from 6 benchmarks by running experiments using different
configurations of heuristic and abstraction functions for one hour each. We used Weighted Mini-
Bucket Elimination (WMBE) [3, 5] heuristic function, whose strength is controlled by a parameter
called the i-bound. Higher i-bounds lead to stronger heuristics at the expense of higher computa-
tion and memory cost. For each problem instance we experiment with two i-bounds (10, 15). As
abstraction function we used a family of abstraction functions called relaxed context-based abstrac-
tion, parametrized by a level. O-level abstraction merges all nodes corresponding to a variable in a
single abstract state, leading to a degenerate tree (path), and it thus corresponds to simple impor-
tance sampling. Higher level abstractions have increasing number of abstract states, thus leading
in general to higher number of nodes expanded during sampling. We tested 6 different abstraction
levels: 0, 1, 2, 4, 6, 8.

In Table [T] we present aggregate results comparing statistical efficiency of higher level abstraction
and O-level abstraction (simple importance sampling) as decribed in the caption. We notice that for
several benchmarks (Linkage, Promedas, DBN), there are around 30-40% of the instances for which
using a higher level abstraction outperforms using simple importance sampling.

Future work would include exploring and evaluating different abstraction function families, and
extending the existing algorithm to AND/OR search spaces [2] to benefit from sampling on smaller
search spaces.
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