Publications & Technical Reports | |
R261 | |
Scaling Up AND/OR Abstraction Sampling
Kalev Kask, Bobak Pezeshki, Filjor Broka, Alex Ihler, and Rina Dechter.
|
Abstract
Abstraction Sampling (AS) is a recently introduced enhancement of Importance Sampling
that exploits stratification by using a notion of abstractions: groupings of similar nodes
into abstract states. It was previously shown that AS performs particularly well when
sampling over an AND/OR search space; however, existing schemes were limited to
``proper'' abstractions in order to ensure unbiasedness, severely hindering scalability.
In this paper, we introduce AOAS, a new Abstraction Sampling scheme on AND/OR search spaces
that allow more flexible use of abstractions by circumventing the properness requirement.
We analyze the properties of this new algorithm and, in an extensive empirical evaluation
on five benchmarks, over 480 problems, and comparing against other state of the art algorithms,
illustrate AOAS's properties and show that it provides a far more powerful and competitive
Abstraction Sampling framework.
[pdf] |